summaryrefslogtreecommitdiff
path: root/dist
diff options
context:
space:
mode:
Diffstat (limited to 'dist')
-rw-r--r--dist/Math-BigInt/lib/Math/BigInt.pm243
1 files changed, 127 insertions, 116 deletions
diff --git a/dist/Math-BigInt/lib/Math/BigInt.pm b/dist/Math-BigInt/lib/Math/BigInt.pm
index 36b10490f4..3da16ded7e 100644
--- a/dist/Math-BigInt/lib/Math/BigInt.pm
+++ b/dist/Math-BigInt/lib/Math/BigInt.pm
@@ -18,7 +18,7 @@ package Math::BigInt;
my $class = "Math::BigInt";
use 5.006002;
-$VERSION = '1.995';
+$VERSION = '1.996';
@ISA = qw(Exporter);
@EXPORT_OK = qw(objectify bgcd blcm);
@@ -3344,9 +3344,10 @@ Math::BigInt - Arbitrary size integer/float math package
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left
- # The following all modify their first argument. If you want to preserve
- # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
- # necessary when mixing $a = $b assignments with non-overloaded math.
+ # The following all modify their first argument. If you want to pre-
+ # serve $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for
+ # why this is necessary when mixing $a = $b assignments with non-over-
+ # loaded math.
$x->bzero(); # set $x to 0
$x->bnan(); # set $x to NaN
@@ -3377,10 +3378,12 @@ Math::BigInt - Arbitrary size integer/float math package
$x->bpow($y); # power of arguments (x ** y)
$x->blsft($y); # left shift in base 2
$x->brsft($y); # right shift in base 2
- # returns (quo,rem) or quo if in scalar context
+ # returns (quo,rem) or quo if in sca-
+ # lar context
$x->blsft($y,$n); # left shift by $y places in base $n
$x->brsft($y,$n); # right shift by $y places in base $n
- # returns (quo,rem) or quo if in scalar context
+ # returns (quo,rem) or quo if in sca-
+ # lar context
$x->band($y); # bitwise and
$x->bior($y); # bitwise inclusive or
@@ -3397,7 +3400,8 @@ Math::BigInt - Arbitrary size integer/float math package
$x->blog($base); # logarithm of $x to base $base (f.i. 2)
$x->bexp(); # calculate e ** $x where e is Euler's number
- $x->round($A,$P,$mode); # round to accuracy or precision using mode $mode
+ $x->round($A,$P,$mode); # round to accuracy or precision using
+ # mode $mode
$x->bround($n); # accuracy: preserve $n digits
$x->bfround($n); # $n > 0: round $nth digits,
# $n < 0: round to the $nth digit after the
@@ -3417,36 +3421,38 @@ Math::BigInt - Arbitrary size integer/float math package
my $lcm = Math::BigInt::blcm(@values);
$x->length(); # return number of digits in number
- ($xl,$f) = $x->length(); # length of number and length of fraction part,
- # latter is always 0 digits long for BigInts
+ ($xl,$f) = $x->length(); # length of number and length of fraction
+ # part, latter is always 0 digits long
+ # for BigInts
- $x->exponent(); # return exponent as BigInt
- $x->mantissa(); # return (signed) mantissa as BigInt
- $x->parts(); # return (mantissa,exponent) as BigInt
- $x->copy(); # make a true copy of $x (unlike $y = $x;)
- $x->as_int(); # return as BigInt (in BigInt: same as copy())
- $x->numify(); # return as scalar (might overflow!)
+ $x->exponent(); # return exponent as BigInt
+ $x->mantissa(); # return (signed) mantissa as BigInt
+ $x->parts(); # return (mantissa,exponent) as BigInt
+ $x->copy(); # make a true copy of $x (unlike $y = $x;)
+ $x->as_int(); # return as BigInt (in BigInt: same as copy())
+ $x->numify(); # return as scalar (might overflow!)
# conversion to string (do not modify their argument)
- $x->bstr(); # normalized string (e.g. '3')
- $x->bsstr(); # norm. string in scientific notation (e.g. '3E0')
- $x->as_hex(); # as signed hexadecimal string with prefixed 0x
- $x->as_bin(); # as signed binary string with prefixed 0b
- $x->as_oct(); # as signed octal string with prefixed 0
+ $x->bstr(); # normalized string (e.g. '3')
+ $x->bsstr(); # norm. string in scientific notation (e.g. '3E0')
+ $x->as_hex(); # as signed hexadecimal string with prefixed 0x
+ $x->as_bin(); # as signed binary string with prefixed 0b
+ $x->as_oct(); # as signed octal string with prefixed 0
# precision and accuracy (see section about rounding for more)
- $x->precision(); # return P of $x (or global, if P of $x undef)
- $x->precision($n); # set P of $x to $n
- $x->accuracy(); # return A of $x (or global, if A of $x undef)
- $x->accuracy($n); # set A $x to $n
+ $x->precision(); # return P of $x (or global, if P of $x undef)
+ $x->precision($n); # set P of $x to $n
+ $x->accuracy(); # return A of $x (or global, if A of $x undef)
+ $x->accuracy($n); # set A $x to $n
# Global methods
- Math::BigInt->precision(); # get/set global P for all BigInt objects
- Math::BigInt->accuracy(); # get/set global A for all BigInt objects
- Math::BigInt->round_mode(); # get/set global round mode, one of
- # 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
- Math::BigInt->config(); # return hash containing configuration
+ Math::BigInt->precision(); # get/set global P for all BigInt objects
+ Math::BigInt->accuracy(); # get/set global A for all BigInt objects
+ Math::BigInt->round_mode(); # get/set global round mode, one of
+ # 'even', 'odd', '+inf', '-inf', 'zero',
+ # 'trunc' or 'common'
+ Math::BigInt->config(); # return hash containing configuration
=head1 DESCRIPTION
@@ -3527,33 +3533,33 @@ Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
- key Description
- Example
+ key Description
+ Example
============================================================
- lib Name of the low-level math library
- Math::BigInt::Calc
- lib_version Version of low-level math library (see 'lib')
- 0.30
- class The class name of config() you just called
- Math::BigInt
- upgrade To which class math operations might be upgraded
- Math::BigFloat
- downgrade To which class math operations might be downgraded
- undef
- precision Global precision
- undef
- accuracy Global accuracy
- undef
- round_mode Global round mode
- even
- version version number of the class you used
- 1.61
- div_scale Fallback accuracy for div
- 40
- trap_nan If true, traps creation of NaN via croak()
- 1
- trap_inf If true, traps creation of +inf/-inf via croak()
- 1
+ lib Name of the low-level math library
+ Math::BigInt::Calc
+ lib_version Version of low-level math library (see 'lib')
+ 0.30
+ class The class name of config() you just called
+ Math::BigInt
+ upgrade To which class math operations might be upgraded
+ Math::BigFloat
+ downgrade To which class math operations might be downgraded
+ undef
+ precision Global precision
+ undef
+ accuracy Global accuracy
+ undef
+ round_mode Global round mode
+ even
+ version version number of the class you used
+ 1.61
+ div_scale Fallback accuracy for div
+ 40
+ trap_nan If true, traps creation of NaN via croak()
+ 1
+ trap_inf If true, traps creation of +inf/-inf via croak()
+ 1
The following values can be set by passing C<config()> a reference to a hash:
@@ -3562,16 +3568,18 @@ The following values can be set by passing C<config()> a reference to a hash:
Example:
- $new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } );
+ $new_cfg = Math::BigInt->config(
+ { trap_inf => 1, precision => 5 }
+ );
=head2 accuracy()
- $x->accuracy(5); # local for $x
- CLASS->accuracy(5); # global for all members of CLASS
- # Note: This also applies to new()!
+ $x->accuracy(5); # local for $x
+ CLASS->accuracy(5); # global for all members of CLASS
+ # Note: This also applies to new()!
- $A = $x->accuracy(); # read out accuracy that affects $x
- $A = CLASS->accuracy(); # read out global accuracy
+ $A = $x->accuracy(); # read out accuracy that affects $x
+ $A = CLASS->accuracy(); # read out global accuracy
Set or get the global or local accuracy, aka how many significant digits the
results have. If you set a global accuracy, then this also applies to new()!
@@ -3584,31 +3592,32 @@ In most cases, you should probably round the results explicitly using one of
L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
to the math operation as additional parameter:
- my $x = Math::BigInt->new(30000);
- my $y = Math::BigInt->new(7);
- print scalar $x->copy()->bdiv($y, 2); # print 4300
- print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
+ my $x = Math::BigInt->new(30000);
+ my $y = Math::BigInt->new(7);
+ print scalar $x->copy()->bdiv($y, 2); # print 4300
+ print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
Please see the section about L<ACCURACY and PRECISION> for further details.
Value must be greater than zero. Pass an undef value to disable it:
- $x->accuracy(undef);
- Math::BigInt->accuracy(undef);
+ $x->accuracy(undef);
+ Math::BigInt->accuracy(undef);
Returns the current accuracy. For C<< $x->accuracy() >> it will return either
the local accuracy, or if not defined, the global. This means the return value
represents the accuracy that will be in effect for $x:
- $y = Math::BigInt->new(1234567); # unrounded
- print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
- $x = Math::BigInt->new(123456); # $x will be automatically rounded!
- print "$x $y\n"; # '123500 1234567'
- print $x->accuracy(),"\n"; # will be 4
- print $y->accuracy(),"\n"; # also 4, since global is 4
- print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
- print $x->accuracy(),"\n"; # still 4
- print $y->accuracy(),"\n"; # 5, since global is 5
+ $y = Math::BigInt->new(1234567); # unrounded
+ print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
+ $x = Math::BigInt->new(123456); # $x will be automatic-
+ # ally rounded!
+ print "$x $y\n"; # '123500 1234567'
+ print $x->accuracy(),"\n"; # will be 4
+ print $y->accuracy(),"\n"; # also 4, since global is 4
+ print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
+ print $x->accuracy(),"\n"; # still 4
+ print $y->accuracy(),"\n"; # 5, since global is 5
Note: Works also for subclasses like Math::BigFloat. Each class has it's own
globals separated from Math::BigInt, but it is possible to subclass
@@ -3617,15 +3626,17 @@ Math::BigInt.
=head2 precision()
- $x->precision(-2); # local for $x, round at the second digit right of the dot
- $x->precision(2); # ditto, round at the second digit left of the dot
+ $x->precision(-2); # local for $x, round at the second
+ # digit right of the dot
+ $x->precision(2); # ditto, round at the second digit left
+ # of the dot
- CLASS->precision(5); # Global for all members of CLASS
- # This also applies to new()!
- CLASS->precision(-5); # ditto
+ CLASS->precision(5); # Global for all members of CLASS
+ # This also applies to new()!
+ CLASS->precision(-5); # ditto
- $P = CLASS->precision(); # read out global precision
- $P = $x->precision(); # read out precision that affects $x
+ $P = CLASS->precision(); # read out global precision
+ $P = $x->precision(); # read out precision that affects $x
Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
set the number of digits each result should have, with L<precision> you
@@ -3643,17 +3654,17 @@ Please see the section about L<ACCURACY and PRECISION> for further details.
Pass an undef value to disable it:
- $x->precision(undef);
- Math::BigInt->precision(undef);
+ $x->precision(undef);
+ Math::BigInt->precision(undef);
Returns the current precision. For C<< $x->precision() >> it will return either
the local precision of $x, or if not defined, the global. This means the return
value represents the prevision that will be in effect for $x:
- $y = Math::BigInt->new(1234567); # unrounded
- print Math::BigInt->precision(4),"\n"; # set 4, print 4
- $x = Math::BigInt->new(123456); # will be automatically rounded
- print $x; # print "120000"!
+ $y = Math::BigInt->new(1234567); # unrounded
+ print Math::BigInt->precision(4),"\n"; # set 4, print 4
+ $x = Math::BigInt->new(123456); # will be automatically rounded
+ print $x; # print "120000"!
Note: Works also for subclasses like L<Math::BigFloat>. Each class has its
own globals separated from Math::BigInt, but it is possible to subclass
@@ -3762,12 +3773,12 @@ If used on an object, it will set it to one:
=head2 is_one()/is_zero()/is_nan()/is_inf()
- $x->is_zero(); # true if arg is +0
- $x->is_nan(); # true if arg is NaN
- $x->is_one(); # true if arg is +1
- $x->is_one('-'); # true if arg is -1
- $x->is_inf(); # true if +inf
- $x->is_inf('-'); # true if -inf (sign is default '+')
+ $x->is_zero(); # true if arg is +0
+ $x->is_nan(); # true if arg is NaN
+ $x->is_one(); # true if arg is +1
+ $x->is_one('-'); # true if arg is -1
+ $x->is_inf(); # true if +inf
+ $x->is_inf('-'); # true if -inf (sign is default '+')
These methods all test the BigInt for being one specific value and return
true or false depending on the input. These are faster than doing something
@@ -3831,7 +3842,7 @@ If you want $x to have a certain sign, use one of the following methods:
=head2 digit()
- $x->digit($n); # return the nth digit, counting from right
+ $x->digit($n); # return the nth digit, counting from right
If C<$n> is negative, returns the digit counting from left.
@@ -3866,23 +3877,23 @@ but faster.
=head2 binc()
- $x->binc(); # increment x by 1
+ $x->binc(); # increment x by 1
=head2 bdec()
- $x->bdec(); # decrement x by 1
+ $x->bdec(); # decrement x by 1
=head2 badd()
- $x->badd($y); # addition (add $y to $x)
+ $x->badd($y); # addition (add $y to $x)
=head2 bsub()
- $x->bsub($y); # subtraction (subtract $y from $x)
+ $x->bsub($y); # subtraction (subtract $y from $x)
=head2 bmul()
- $x->bmul($y); # multiplication (multiply $x by $y)
+ $x->bmul($y); # multiplication (multiply $x by $y)
=head2 bmuladd()
@@ -3894,16 +3905,16 @@ This method was added in v1.87 of Math::BigInt (June 2007).
=head2 bdiv()
- $x->bdiv($y); # divide, set $x to quotient
- # return (quo,rem) or quo if scalar
+ $x->bdiv($y); # divide, set $x to quotient
+ # return (quo,rem) or quo if scalar
=head2 bmod()
- $x->bmod($y); # modulus (x % y)
+ $x->bmod($y); # modulus (x % y)
=head2 bmodinv()
- $x->bmodinv($mod); # modular multiplicative inverse
+ $x->bmodinv($mod); # modular multiplicative inverse
Returns the multiplicative inverse of C<$x> modulo C<$mod>. If
@@ -3942,19 +3953,19 @@ is exactly equivalent to
=head2 bpow()
- $x->bpow($y); # power of arguments (x ** y)
+ $x->bpow($y); # power of arguments (x ** y)
=head2 blog()
- $x->blog($base, $accuracy); # logarithm of x to the base $base
+ $x->blog($base, $accuracy); # logarithm of x to the base $base
If C<$base> is not defined, Euler's number (e) is used:
- print $x->blog(undef, 100); # log(x) to 100 digits
+ print $x->blog(undef, 100); # log(x) to 100 digits
=head2 bexp()
- $x->bexp($accuracy); # calculate e ** X
+ $x->bexp($accuracy); # calculate e ** X
Calculates the expression C<e ** $x> where C<e> is Euler's number.
@@ -3964,7 +3975,7 @@ See also L<blog()>.
=head2 bnok()
- $x->bnok($y); # x over y (binomial coefficient n over k)
+ $x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
@@ -4154,11 +4165,11 @@ Return the signed mantissa of $x as BigInt.
=head2 parts()
- $x->parts(); # return (mantissa,exponent) as BigInt
+ $x->parts(); # return (mantissa,exponent) as BigInt
=head2 copy()
- $x->copy(); # make a true copy of $x (unlike $y = $x;)
+ $x->copy(); # make a true copy of $x (unlike $y = $x;)
=head2 as_int()/as_number()
@@ -4178,19 +4189,19 @@ Returns a normalized string representation of C<$x>.
=head2 bsstr()
- $x->bsstr(); # normalized string in scientific notation
+ $x->bsstr(); # normalized string in scientific notation
=head2 as_hex()
- $x->as_hex(); # as signed hexadecimal string with prefixed 0x
+ $x->as_hex(); # as signed hexadecimal string with prefixed 0x
=head2 as_bin()
- $x->as_bin(); # as signed binary string with prefixed 0b
+ $x->as_bin(); # as signed binary string with prefixed 0b
=head2 as_oct()
- $x->as_oct(); # as signed octal string with prefixed 0
+ $x->as_oct(); # as signed octal string with prefixed 0
=head2 numify()