summaryrefslogtreecommitdiff
path: root/lib/Math/BigInt.pm
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Math/BigInt.pm')
-rw-r--r--lib/Math/BigInt.pm347
1 files changed, 347 insertions, 0 deletions
diff --git a/lib/Math/BigInt.pm b/lib/Math/BigInt.pm
new file mode 100644
index 0000000000..3e0fc17ff6
--- /dev/null
+++ b/lib/Math/BigInt.pm
@@ -0,0 +1,347 @@
+package Math::BigInt;
+
+%OVERLOAD = (
+ # Anonymous subroutines:
+'+' => sub {new BigInt &badd},
+'-' => sub {new BigInt
+ $_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])},
+'<=>' => sub {new BigInt
+ $_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])},
+'cmp' => sub {new BigInt
+ $_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
+'*' => sub {new BigInt &bmul},
+'/' => sub {new BigInt
+ $_[2]? scalar bdiv($_[1],${$_[0]}) :
+ scalar bdiv(${$_[0]},$_[1])},
+'%' => sub {new BigInt
+ $_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])},
+'**' => sub {new BigInt
+ $_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])},
+'neg' => sub {new BigInt &bneg},
+'abs' => sub {new BigInt &babs},
+
+qw(
+"" stringify
+0+ numify) # Order of arguments unsignificant
+);
+
+sub new {
+ my $foo = bnorm($_[1]);
+ die "Not a number initialized to BigInt" if $foo eq "NaN";
+ bless \$foo;
+}
+sub stringify { "${$_[0]}" }
+sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
+ # comparing to direct compilation based on
+ # stringify
+
+# arbitrary size integer math package
+#
+# by Mark Biggar
+#
+# Canonical Big integer value are strings of the form
+# /^[+-]\d+$/ with leading zeros suppressed
+# Input values to these routines may be strings of the form
+# /^\s*[+-]?[\d\s]+$/.
+# Examples:
+# '+0' canonical zero value
+# ' -123 123 123' canonical value '-123123123'
+# '1 23 456 7890' canonical value '+1234567890'
+# Output values always always in canonical form
+#
+# Actual math is done in an internal format consisting of an array
+# whose first element is the sign (/^[+-]$/) and whose remaining
+# elements are base 100000 digits with the least significant digit first.
+# The string 'NaN' is used to represent the result when input arguments
+# are not numbers, as well as the result of dividing by zero
+#
+# routines provided are:
+#
+# bneg(BINT) return BINT negation
+# babs(BINT) return BINT absolute value
+# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
+# badd(BINT,BINT) return BINT addition
+# bsub(BINT,BINT) return BINT subtraction
+# bmul(BINT,BINT) return BINT multiplication
+# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
+# bmod(BINT,BINT) return BINT modulus
+# bgcd(BINT,BINT) return BINT greatest common divisor
+# bnorm(BINT) return BINT normalization
+#
+
+$zero = 0;
+
+
+# normalize string form of number. Strip leading zeros. Strip any
+# white space and add a sign, if missing.
+# Strings that are not numbers result the value 'NaN'.
+
+sub bnorm { #(num_str) return num_str
+ local($_) = @_;
+ s/\s+//g; # strip white space
+ if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
+ substr($_,$[,0) = '+' unless $1; # Add missing sign
+ s/^-0/+0/;
+ $_;
+ } else {
+ 'NaN';
+ }
+}
+
+# Convert a number from string format to internal base 100000 format.
+# Assumes normalized value as input.
+sub internal { #(num_str) return int_num_array
+ local($d) = @_;
+ ($is,$il) = (substr($d,$[,1),length($d)-2);
+ substr($d,$[,1) = '';
+ ($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
+}
+
+# Convert a number from internal base 100000 format to string format.
+# This routine scribbles all over input array.
+sub external { #(int_num_array) return num_str
+ $es = shift;
+ grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
+ &bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
+}
+
+# Negate input value.
+sub bneg { #(num_str) return num_str
+ local($_) = &bnorm(@_);
+ vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
+ s/^H/N/;
+ $_;
+}
+
+# Returns the absolute value of the input.
+sub babs { #(num_str) return num_str
+ &abs(&bnorm(@_));
+}
+
+sub abs { # post-normalized abs for internal use
+ local($_) = @_;
+ s/^-/+/;
+ $_;
+}
+
+# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
+sub bcmp { #(num_str, num_str) return cond_code
+ local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ undef;
+ } elsif ($y eq 'NaN') {
+ undef;
+ } else {
+ &cmp($x,$y);
+ }
+}
+
+sub cmp { # post-normalized compare for internal use
+ local($cx, $cy) = @_;
+ $cx cmp $cy
+ &&
+ (
+ ord($cy) <=> ord($cx)
+ ||
+ ($cx cmp ',') * (length($cy) <=> length($cx) || $cy cmp $cx)
+ );
+}
+
+sub badd { #(num_str, num_str) return num_str
+ local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($y eq 'NaN') {
+ 'NaN';
+ } else {
+ @x = &internal($x); # convert to internal form
+ @y = &internal($y);
+ local($sx, $sy) = (shift @x, shift @y); # get signs
+ if ($sx eq $sy) {
+ &external($sx, &add(*x, *y)); # if same sign add
+ } else {
+ ($x, $y) = (&abs($x),&abs($y)); # make abs
+ if (&cmp($y,$x) > 0) {
+ &external($sy, &sub(*y, *x));
+ } else {
+ &external($sx, &sub(*x, *y));
+ }
+ }
+ }
+}
+
+sub bsub { #(num_str, num_str) return num_str
+ &badd($_[$[],&bneg($_[$[+1]));
+}
+
+# GCD -- Euclids algorithm Knuth Vol 2 pg 296
+sub bgcd { #(num_str, num_str) return num_str
+ local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
+ if ($x eq 'NaN' || $y eq 'NaN') {
+ 'NaN';
+ } else {
+ ($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0';
+ $x;
+ }
+}
+
+# routine to add two base 1e5 numbers
+# stolen from Knuth Vol 2 Algorithm A pg 231
+# there are separate routines to add and sub as per Kunth pg 233
+sub add { #(int_num_array, int_num_array) return int_num_array
+ local(*x, *y) = @_;
+ $car = 0;
+ for $x (@x) {
+ last unless @y || $car;
+ $x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5);
+ }
+ for $y (@y) {
+ last unless $car;
+ $y -= 1e5 if $car = (($y += $car) >= 1e5);
+ }
+ (@x, @y, $car);
+}
+
+# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
+sub sub { #(int_num_array, int_num_array) return int_num_array
+ local(*sx, *sy) = @_;
+ $bar = 0;
+ for $sx (@sx) {
+ last unless @y || $bar;
+ $sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
+ }
+ @sx;
+}
+
+# multiply two numbers -- stolen from Knuth Vol 2 pg 233
+sub bmul { #(num_str, num_str) return num_str
+ local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($y eq 'NaN') {
+ 'NaN';
+ } else {
+ @x = &internal($x);
+ @y = &internal($y);
+ &external(&mul(*x,*y));
+ }
+}
+
+# multiply two numbers in internal representation
+# destroys the arguments, supposes that two arguments are different
+sub mul { #(*int_num_array, *int_num_array) return int_num_array
+ local(*x, *y) = (shift, shift);
+ local($signr) = (shift @x ne shift @y) ? '-' : '+';
+ @prod = ();
+ for $x (@x) {
+ ($car, $cty) = (0, $[);
+ for $y (@y) {
+ $prod = $x * $y + $prod[$cty] + $car;
+ $prod[$cty++] =
+ $prod - ($car = int($prod * 1e-5)) * 1e5;
+ }
+ $prod[$cty] += $car if $car;
+ $x = shift @prod;
+ }
+ ($signr, @x, @prod);
+}
+
+# modulus
+sub bmod { #(num_str, num_str) return num_str
+ (&bdiv(@_))[$[+1];
+}
+
+sub bdiv { #(dividend: num_str, divisor: num_str) return num_str
+ local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
+ return wantarray ? ('NaN','NaN') : 'NaN'
+ if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
+ return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
+ @x = &internal($x); @y = &internal($y);
+ $srem = $y[$[];
+ $sr = (shift @x ne shift @y) ? '-' : '+';
+ $car = $bar = $prd = 0;
+ if (($dd = int(1e5/($y[$#y]+1))) != 1) {
+ for $x (@x) {
+ $x = $x * $dd + $car;
+ $x -= ($car = int($x * 1e-5)) * 1e5;
+ }
+ push(@x, $car); $car = 0;
+ for $y (@y) {
+ $y = $y * $dd + $car;
+ $y -= ($car = int($y * 1e-5)) * 1e5;
+ }
+ }
+ else {
+ push(@x, 0);
+ }
+ @q = (); ($v2,$v1) = @y[-2,-1];
+ while ($#x > $#y) {
+ ($u2,$u1,$u0) = @x[-3..-1];
+ $q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
+ --$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
+ if ($q) {
+ ($car, $bar) = (0,0);
+ for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
+ $prd = $q * $y[$y] + $car;
+ $prd -= ($car = int($prd * 1e-5)) * 1e5;
+ $x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
+ }
+ if ($x[$#x] < $car + $bar) {
+ $car = 0; --$q;
+ for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
+ $x[$x] -= 1e5
+ if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
+ }
+ }
+ }
+ pop(@x); unshift(@q, $q);
+ }
+ if (wantarray) {
+ @d = ();
+ if ($dd != 1) {
+ $car = 0;
+ for $x (reverse @x) {
+ $prd = $car * 1e5 + $x;
+ $car = $prd - ($tmp = int($prd / $dd)) * $dd;
+ unshift(@d, $tmp);
+ }
+ }
+ else {
+ @d = @x;
+ }
+ (&external($sr, @q), &external($srem, @d, $zero));
+ } else {
+ &external($sr, @q);
+ }
+}
+
+# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
+sub bpow { #(num_str, num_str) return num_str
+ local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($y eq 'NaN') {
+ 'NaN';
+ } elsif ($x eq '+1') {
+ '+1';
+ } elsif ($x eq '-1') {
+ &bmod($x,2) ? '-1': '+1';
+ } elsif ($y =~ /^-/) {
+ 'NaN';
+ } elsif ($x eq '+0' && $y eq '+0') {
+ 'NaN';
+ } else {
+ @x = &internal($x);
+ local(@pow2)=@x;
+ local(@pow)=&internal("+1");
+ local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul
+ while ($y ne '+0') {
+ ($y,$res)=&bdiv($y,2);
+ if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);}
+ if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);}
+ }
+ &external(@pow);
+ }
+}
+
+1;