diff options
Diffstat (limited to 'lib/Math/Complex.pm')
-rw-r--r-- | lib/Math/Complex.pm | 424 |
1 files changed, 228 insertions, 196 deletions
diff --git a/lib/Math/Complex.pm b/lib/Math/Complex.pm index 33c60231aa..64477fa7f3 100644 --- a/lib/Math/Complex.pm +++ b/lib/Math/Complex.pm @@ -1,26 +1,29 @@ -# $RCSFile$ # # Complex numbers and associated mathematical functions -# -- Raphael Manfredi, September 1996 -# -- Jarkko Hietaniemi, March-April 1997 +# -- Raphael Manfredi September 1996 +# -- Jarkko Hietaniemi March-October 1997 +# -- Daniel S. Lewart September-October 1997 +# require Exporter; package Math::Complex; +$VERSION = 1.05; + +# $Id: Complex.pm,v 1.2 1997/10/15 10:08:39 jhi Exp $ + use strict; use vars qw($VERSION @ISA @EXPORT %EXPORT_TAGS $package $display - $i $logn %logn); + $i $ip2 $logn %logn); @ISA = qw(Exporter); -$VERSION = 1.01; - my @trig = qw( pi - sin cos tan + tan csc cosec sec cot cotan asin acos atan acsc acosec asec acot acotan @@ -32,7 +35,7 @@ my @trig = qw( @EXPORT = (qw( i Re Im arg - sqrt exp log ln + sqrt log ln log10 logn cbrt root cplx cplxe ), @@ -99,8 +102,11 @@ sub make { sub emake { my $self = bless {}, shift; my ($rho, $theta) = @_; - $theta += pi() if $rho < 0; - $self->{'polar'} = [abs($rho), $theta]; + if ($rho < 0) { + $rho = -$rho; + $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); + } + $self->{'polar'} = [$rho, $theta]; $self->{p_dirty} = 0; $self->{c_dirty} = 1; return $self; @@ -133,18 +139,30 @@ sub cplxe { # # pi # -# The number defined as 2 * pi = 360 degrees +# The number defined as pi = 180 degrees # - use constant pi => 4 * atan2(1, 1); # -# log2inv +# pit2 # -# Used in log10(). +# The full circle +# +use constant pit2 => 2 * pi; + # +# pip2 +# +# The quarter circle +# +use constant pip2 => pi / 2; -use constant log10inv => 1 / log(10); +# +# uplog10 +# +# Used in log10(). +# +use constant uplog10 => 1 / log(10); # # i @@ -155,7 +173,7 @@ sub i () { return $i if ($i); $i = bless {}; $i->{'cartesian'} = [0, 1]; - $i->{'polar'} = [1, pi/2]; + $i->{'polar'} = [1, pip2]; $i->{c_dirty} = 0; $i->{p_dirty} = 0; return $i; @@ -242,15 +260,28 @@ sub minus { # Computes z1*z2. # sub multiply { - my ($z1, $z2, $regular) = @_; - my ($r1, $t1) = @{$z1->polar}; - $z2 = cplxe(abs($z2), $z2 >= 0 ? 0 : pi) unless ref $z2; - my ($r2, $t2) = @{$z2->polar}; - unless (defined $regular) { - $z1->set_polar([$r1 * $r2, $t1 + $t2]); + my ($z1, $z2, $regular) = @_; + if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { + # if both polar better use polar to avoid rounding errors + my ($r1, $t1) = @{$z1->polar}; + my ($r2, $t2) = @{$z2->polar}; + my $t = $t1 + $t2; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + unless (defined $regular) { + $z1->set_polar([$r1 * $r2, $t]); return $z1; + } + return (ref $z1)->emake($r1 * $r2, $t); + } else { + my ($x1, $y1) = @{$z1->cartesian}; + if (ref $z2) { + my ($x2, $y2) = @{$z2->cartesian}; + return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); + } else { + return (ref $z1)->make($x1*$z2, $y1*$z2); + } } - return (ref $z1)->emake($r1 * $r2, $t1 + $t2); } # @@ -268,7 +299,7 @@ sub _divbyzero { } my @up = caller(1); - + $mess .= "Died at $up[1] line $up[2].\n"; die $mess; @@ -281,20 +312,45 @@ sub _divbyzero { # sub divide { my ($z1, $z2, $inverted) = @_; - my ($r1, $t1) = @{$z1->polar}; - $z2 = cplxe(abs($z2), $z2 >= 0 ? 0 : pi) unless ref $z2; - my ($r2, $t2) = @{$z2->polar}; - unless (defined $inverted) { - _divbyzero "$z1/0" if ($r2 == 0); - $z1->set_polar([$r1 / $r2, $t1 - $t2]); - return $z1; - } - if ($inverted) { + if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { + # if both polar better use polar to avoid rounding errors + my ($r1, $t1) = @{$z1->polar}; + my ($r2, $t2) = @{$z2->polar}; + my $t; + if ($inverted) { _divbyzero "$z2/0" if ($r1 == 0); - return (ref $z1)->emake($r2 / $r1, $t2 - $t1); - } else { + $t = $t2 - $t1; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + return (ref $z1)->emake($r2 / $r1, $t); + } else { _divbyzero "$z1/0" if ($r2 == 0); - return (ref $z1)->emake($r1 / $r2, $t1 - $t2); + $t = $t1 - $t2; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } + return (ref $z1)->emake($r1 / $r2, $t); + } + } else { + my ($d, $x2, $y2); + if ($inverted) { + ($x2, $y2) = @{$z1->cartesian}; + $d = $x2*$x2 + $y2*$y2; + _divbyzero "$z2/0" if $d == 0; + return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); + } else { + my ($x1, $y1) = @{$z1->cartesian}; + if (ref $z2) { + ($x2, $y2) = @{$z2->cartesian}; + $d = $x2*$x2 + $y2*$y2; + _divbyzero "$z1/0" if $d == 0; + my $u = ($x1*$x2 + $y1*$y2)/$d; + my $v = ($y1*$x2 - $x1*$y2)/$d; + return (ref $z1)->make($u, $v); + } else { + _divbyzero "$z1/0" if $z2 == 0; + return (ref $z1)->make($x1/$z2, $y1/$z2); + } + } } } @@ -307,7 +363,7 @@ sub _zerotozero { my $mess = "The zero raised to the zeroth power is not defined.\n"; my @up = caller(1); - + $mess .= "Died at $up[1] line $up[2].\n"; die $mess; @@ -330,14 +386,7 @@ sub power { return 0 if ($z1z); return 1 if ($z2z or $z1 == 1); } - $z2 = cplx($z2) unless ref $z2; - unless (defined $inverted) { - my $z3 = exp($z2 * log $z1); - $z1->set_cartesian([@{$z3->cartesian}]); - return $z1; - } - return exp($z2 * log $z1) unless $inverted; - return exp($z1 * log $z2); + return $inverted ? exp($z1 * log $z2) : exp($z2 * log $z1); } # @@ -364,7 +413,8 @@ sub negate { my ($z) = @_; if ($z->{c_dirty}) { my ($r, $t) = @{$z->polar}; - return (ref $z)->emake($r, pi + $t); + $t = ($t <= 0) ? $t + pi : $t - pi; + return (ref $z)->emake($r, $t); } my ($re, $im) = @{$z->cartesian}; return (ref $z)->make(-$re, -$im); @@ -392,9 +442,8 @@ sub conjugate { # sub abs { my ($z) = @_; - return abs($z) unless ref $z; my ($r, $t) = @{$z->polar}; - return abs($r); + return $r; } # @@ -406,6 +455,8 @@ sub arg { my ($z) = @_; return ($z < 0 ? pi : 0) unless ref $z; my ($r, $t) = @{$z->polar}; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } return $t; } @@ -416,7 +467,9 @@ sub arg { # sub sqrt { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; + return $z >= 0 ? sqrt($z) : cplx(0, sqrt(-$z)) unless ref $z; + my ($re, $im) = @{$z->cartesian}; + return cplx($re < 0 ? (0, sqrt(-$re)) : (sqrt($re), 0)) if $im == 0; my ($r, $t) = @{$z->polar}; return (ref $z)->emake(sqrt($r), $t/2); } @@ -428,9 +481,10 @@ sub sqrt { # sub cbrt { my ($z) = @_; - return cplx($z, 0) ** (1/3) unless ref $z; + return $z < 0 ? -exp(log(-$z)/3) : ($z > 0 ? exp(log($z)/3): 0) + unless ref $z; my ($r, $t) = @{$z->polar}; - return (ref $z)->emake($r**(1/3), $t/3); + return (ref $z)->emake(exp(log($r)/3), $t/3); } # @@ -442,7 +496,7 @@ sub _rootbad { my $mess = "Root $_[0] not defined, root must be positive integer.\n"; my @up = caller(1); - + $mess .= "Died at $up[1] line $up[2].\n"; die $mess; @@ -464,7 +518,7 @@ sub root { my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi); my @root; my $k; - my $theta_inc = 2 * pi / $n; + my $theta_inc = pit2 / $n; my $rho = $r ** (1/$n); my $theta; my $complex = ref($z) || $package; @@ -505,7 +559,6 @@ sub Im { # sub exp { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->cartesian}; return (ref $z)->emake(exp($x), $y); } @@ -513,7 +566,7 @@ sub exp { # # _logofzero # -# Die on division by zero. +# Die on logarithm of zero. # sub _logofzero { my $mess = "$_[0]: Logarithm of zero.\n"; @@ -525,7 +578,7 @@ sub _logofzero { } my @up = caller(1); - + $mess .= "Died at $up[1] line $up[2].\n"; die $mess; @@ -538,11 +591,14 @@ sub _logofzero { # sub log { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; - my ($x, $y) = @{$z->cartesian}; + unless (ref $z) { + _logofzero("log") if $z == 0; + return $z > 0 ? log($z) : cplx(log(-$z), pi); + } my ($r, $t) = @{$z->polar}; - $t -= 2 * pi if ($t > pi() and $x < 0); - $t += 2 * pi if ($t < -pi() and $x < 0); + _logofzero("log") if $r == 0; + if ($t > pi()) { $t -= pit2 } + elsif ($t <= -pi()) { $t += pit2 } return (ref $z)->make(log($r), $t); } @@ -560,11 +616,7 @@ sub ln { Math::Complex::log(@_) } # sub log10 { - my ($z) = @_; - - return log(cplx($z, 0)) * log10inv unless ref $z; - my ($r, $t) = @{$z->polar}; - return (ref $z)->make(log($r) * log10inv, $t * log10inv); + return Math::Complex::log($_[0]) * uplog10; } # @@ -587,7 +639,6 @@ sub logn { # sub cos { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->cartesian}; my $ey = exp($y); my $ey_1 = 1 / $ey; @@ -602,7 +653,6 @@ sub cos { # sub sin { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; my ($x, $y) = @{$z->cartesian}; my $ey = exp($y); my $ey_1 = 1 / $ey; @@ -656,7 +706,7 @@ sub cosec { Math::Complex::csc(@_) } # # cot # -# Computes cot(z) = 1 / tan(z). +# Computes cot(z) = cos(z) / sin(z). # sub cot { my ($z) = @_; @@ -678,21 +728,20 @@ sub cotan { Math::Complex::cot(@_) } # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). # sub acos { - my ($z) = @_; - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - return atan2(sqrt(1 - $re * $re), $re) - if ($im == 0 and abs($re) <= 1.0); - my $acos = ~i * log($z + sqrt($z*$z - 1)); - if ($im == 0 || - (abs($re) < 1 && abs($im) < 1) || - (abs($re) > 1 && abs($im) > 1 - && !($re > 1 && $im > 1) - && !($re < -1 && $im < -1))) { - # this rule really, REALLY, must be simpler - return -$acos; - } - return $acos; + my $z = $_[0]; + return atan2(sqrt(1-$z*$z), $z) if (! ref $z) && abs($z) <= 1; + my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); + my $t1 = sqrt(($x+1)*($x+1) + $y*$y); + my $t2 = sqrt(($x-1)*($x-1) + $y*$y); + my $alpha = ($t1 + $t2)/2; + my $beta = ($t1 - $t2)/2; + $alpha = 1 if $alpha < 1; + if ($beta > 1) { $beta = 1 } + elsif ($beta < -1) { $beta = -1 } + my $u = atan2(sqrt(1-$beta*$beta), $beta); + my $v = log($alpha + sqrt($alpha*$alpha-1)); + $v = -$v if $y > 0 || ($y == 0 && $x < -1); + return $package->make($u, $v); } # @@ -701,12 +750,20 @@ sub acos { # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). # sub asin { - my ($z) = @_; - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - return atan2($re, sqrt(1 - $re * $re)) - if ($im == 0 and abs($re) <= 1.0); - return ~i * log(i * $z + sqrt(1 - $z*$z)); + my $z = $_[0]; + return atan2($z, sqrt(1-$z*$z)) if (! ref $z) && abs($z) <= 1; + my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0); + my $t1 = sqrt(($x+1)*($x+1) + $y*$y); + my $t2 = sqrt(($x-1)*($x-1) + $y*$y); + my $alpha = ($t1 + $t2)/2; + my $beta = ($t1 - $t2)/2; + $alpha = 1 if $alpha < 1; + if ($beta > 1) { $beta = 1 } + elsif ($beta < -1) { $beta = -1 } + my $u = atan2($beta, sqrt(1-$beta*$beta)); + my $v = -log($alpha + sqrt($alpha*$alpha-1)); + $v = -$v if $y > 0 || ($y == 0 && $x < -1); + return $package->make($u, $v); } # @@ -716,10 +773,12 @@ sub asin { # sub atan { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; + return atan2($z, 1) unless ref $z; _divbyzero "atan(i)" if ( $z == i); _divbyzero "atan(-i)" if (-$z == i); - return i/2*log((i + $z) / (i - $z)); + my $log = log((i + $z) / (i - $z)); + $ip2 = 0.5 * i unless defined $ip2; + return $ip2 * $log; } # @@ -730,16 +789,7 @@ sub atan { sub asec { my ($z) = @_; _divbyzero "asec($z)", $z if ($z == 0); - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - if ($im == 0 && abs($re) >= 1.0) { - my $ire = 1 / $re; - return atan2(sqrt(1 - $ire * $ire), $ire); - } - my $asec = acos(1 / $z); - return ~$asec if $re < 0 && $re > -1 && $im == 0; - return -$asec if $im && !($re > 0 && $im > 0) && !($re < 0 && $im < 0); - return $asec; + return acos(1 / $z); } # @@ -750,15 +800,7 @@ sub asec { sub acsc { my ($z) = @_; _divbyzero "acsc($z)", $z if ($z == 0); - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - if ($im == 0 && abs($re) >= 1.0) { - my $ire = 1 / $re; - return atan2($ire, sqrt(1 - $ire * $ire)); - } - my $acsc = asin(1 / $z); - return ~$acsc if $re < 0 && $re > -1 && $im == 0; - return $acsc; + return asin(1 / $z); } # @@ -775,8 +817,7 @@ sub acosec { Math::Complex::acsc(@_) } # sub acot { my ($z) = @_; - _divbyzero "acot($z)" if ($z == 0); - $z = cplx($z, 0) unless ref $z; + return ($z >= 0) ? atan2(1, $z) : atan2(-1, -$z) unless ref $z; _divbyzero "acot(i)", if ( $z == i); _divbyzero "acot(-i)" if (-$z == i); return atan(1 / $z); @@ -796,15 +837,14 @@ sub acotan { Math::Complex::acot(@_) } # sub cosh { my ($z) = @_; - my $real; + my $ex; unless (ref $z) { - $z = cplx($z, 0); - $real = 1; + $ex = exp($z); + return ($ex + 1/$ex)/2; } my ($x, $y) = @{$z->cartesian}; - my $ex = exp($x); + $ex = exp($x); my $ex_1 = 1 / $ex; - return cplx(0.5 * ($ex + $ex_1), 0) if $real; return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, sin($y) * ($ex - $ex_1)/2); } @@ -816,15 +856,14 @@ sub cosh { # sub sinh { my ($z) = @_; - my $real; + my $ex; unless (ref $z) { - $z = cplx($z, 0); - $real = 1; + $ex = exp($z); + return ($ex - 1/$ex)/2; } my ($x, $y) = @{$z->cartesian}; - my $ex = exp($x); + $ex = exp($x); my $ex_1 = 1 / $ex; - return cplx(0.5 * ($ex - $ex_1), 0) if $real; return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, sin($y) * ($ex + $ex_1)/2); } @@ -894,14 +933,19 @@ sub cotanh { Math::Complex::coth(@_) } # # acosh # -# Computes the arc hyperbolic cosine acosh(z) = log(z +- sqrt(z*z-1)). +# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). # sub acosh { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; + unless (ref $z) { + return log($z + sqrt($z*$z-1)) if $z >= 1; + $z = cplx($z, 0); + } my ($re, $im) = @{$z->cartesian}; - return log($re + sqrt(cplx($re*$re - 1, 0))) - if ($im == 0 && $re < 0); + if ($im == 0) { + return cplx(log($re + sqrt($re*$re - 1)), 0) if $re >= 1; + return cplx(0, atan2(sqrt(1-$re*$re), $re)) if abs($re) <= 1; + } return log($z + sqrt($z*$z - 1)); } @@ -912,7 +956,6 @@ sub acosh { # sub asinh { my ($z) = @_; - $z = cplx($z, 0) unless ref $z; return log($z + sqrt($z*$z + 1)); } @@ -923,14 +966,13 @@ sub asinh { # sub atanh { my ($z) = @_; + unless (ref $z) { + return log((1 + $z)/(1 - $z))/2 if abs($z) < 1; + $z = cplx($z, 0); + } _divbyzero 'atanh(1)', "1 - $z" if ($z == 1); _logofzero 'atanh(-1)' if ($z == -1); - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - if ($im == 0 && $re > 1) { - return cplx(atanh(1 / $re), pi/2); - } - return log((1 + $z) / (1 - $z)) / 2; + return 0.5 * log((1 + $z) / (1 - $z)); } # @@ -941,12 +983,6 @@ sub atanh { sub asech { my ($z) = @_; _divbyzero 'asech(0)', $z if ($z == 0); - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - if ($im == 0 && $re < 0) { - my $ire = 1 / $re; - return log($ire + sqrt(cplx($ire*$ire - 1, 0))); - } return acosh(1 / $z); } @@ -975,13 +1011,12 @@ sub acosech { Math::Complex::acsch(@_) } # sub acoth { my ($z) = @_; + unless (ref $z) { + return log(($z + 1)/($z - 1))/2 if abs($z) > 1; + $z = cplx($z, 0); + } _divbyzero 'acoth(1)', "$z - 1" if ($z == 1); _logofzero 'acoth(-1)' if ($z == -1); - $z = cplx($z, 0) unless ref $z; - my ($re, $im) = @{$z->cartesian}; - if ($im == 0 and abs($re) < 1) { - return cplx(acoth(1/$re) , pi/2); - } return log((1 + $z) / ($z - 1)) / 2; } @@ -999,17 +1034,23 @@ sub acotanh { Math::Complex::acoth(@_) } # sub atan2 { my ($z1, $z2, $inverted) = @_; - my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0); - my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); - my $tan; - if (defined $inverted && $inverted) { # atan(z2/z1) - return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0; - $tan = $z2 / $z1; + my ($re1, $im1, $re2, $im2); + if ($inverted) { + ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); + ($re2, $im2) = @{$z1->cartesian}; } else { - return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0; - $tan = $z1 / $z2; + ($re1, $im1) = @{$z1->cartesian}; + ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0); + } + if ($im2 == 0) { + return cplx(atan2($re1, $re2), 0) if $im1 == 0; + return cplx(($im1<=>0) * pip2, 0) if $re2 == 0; } - return atan($tan); + my $w = atan($z1/$z2); + my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0); + $u += pi if $re2 < 0; + $u -= pit2 if $u > pi; + return cplx($u, $v); } # @@ -1017,7 +1058,7 @@ sub atan2 { # ->display_format # # Set (fetch if no argument) display format for all complex numbers that -# don't happen to have overrriden it via ->display_format +# don't happen to have overridden it via ->display_format # # When called as a method, this actually sets the display format for # the current object. @@ -1076,16 +1117,17 @@ sub stringify_cartesian { my $z = shift; my ($x, $y) = @{$z->cartesian}; my ($re, $im); + my $eps = 1e-14; - $x = int($x + ($x < 0 ? -1 : 1) * 1e-14) - if int(abs($x)) != int(abs($x) + 1e-14); - $y = int($y + ($y < 0 ? -1 : 1) * 1e-14) - if int(abs($y)) != int(abs($y) + 1e-14); + $x = int($x + ($x < 0 ? -1 : 1) * $eps) + if int(abs($x)) != int(abs($x) + $eps); + $y = int($y + ($y < 0 ? -1 : 1) * $eps) + if int(abs($y)) != int(abs($y) + $eps); - $re = "$x" if abs($x) >= 1e-14; - if ($y == 1) { $im = 'i' } - elsif ($y == -1) { $im = '-i' } - elsif (abs($y) >= 1e-14) { $im = $y . "i" } + $re = "$x" if abs($x) >= $eps; + if ($y == 1) { $im = 'i' } + elsif ($y == -1) { $im = '-i' } + elsif (abs($y) >= $eps) { $im = $y . "i" } my $str = ''; $str = $re if defined $re; @@ -1110,10 +1152,9 @@ sub stringify_polar { return '[0,0]' if $r <= $eps; - my $tpi = 2 * pi; - my $nt = $t / $tpi; - $nt = ($nt - int($nt)) * $tpi; - $nt += $tpi if $nt < 0; # Range [0, 2pi] + my $nt = $t / pit2; + $nt = ($nt - int($nt)) * pit2; + $nt += pit2 if $nt < 0; # Range [0, 2pi] if (abs($nt) <= $eps) { $theta = 0 } elsif (abs(pi-$nt) <= $eps) { $theta = 'pi' } @@ -1131,9 +1172,9 @@ sub stringify_polar { # Okay, number is not a real. Try to identify pi/n and friends... # - $nt -= $tpi if $nt > pi; + $nt -= pit2 if $nt > pi; my ($n, $k, $kpi); - + for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) { $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5); if (abs($kpi/$n - $nt) <= $eps) { @@ -1164,7 +1205,7 @@ Math::Complex - complex numbers and associated mathematical functions =head1 SYNOPSIS use Math::Complex; - + $z = Math::Complex->make(5, 6); $t = 4 - 3*i + $z; $j = cplxe(1, 2*pi/3); @@ -1241,7 +1282,7 @@ between this form and the cartesian form C<a + bi> is immediate: which is also expressed by this formula: - z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) + z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) In other words, it's the projection of the vector onto the I<x> and I<y> axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> @@ -1251,8 +1292,8 @@ noted C<abs(z)>. The polar notation (also known as the trigonometric representation) is much more handy for performing multiplications and divisions of complex numbers, whilst the cartesian notation is better -suited for additions and substractions. Real numbers are on the I<x> -axis, and therefore I<theta> is zero. +suited for additions and subtractions. Real numbers are on the I<x> +axis, and therefore I<theta> is zero or I<pi>. All the common operations that can be performed on a real number have been defined to work on complex numbers as well, and are merely @@ -1261,8 +1302,8 @@ they keep their natural meaning when there is no imaginary part, provided the number is within their definition set. For instance, the C<sqrt> routine which computes the square root of -its argument is only defined for positive real numbers and yields a -positive real number (it is an application from B<R+> to B<R+>). +its argument is only defined for non-negative real numbers and yields a +non-negative real number (it is an application from B<R+> to B<R+>). If we allow it to return a complex number, then it can be extended to negative real numbers to become an application from B<R> to B<C> (the set of complex numbers): @@ -1275,10 +1316,9 @@ the following definition: sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) -Indeed, a negative real number can be noted C<[x,pi]> -(the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a -negative number) -and the above definition states that +Indeed, a negative real number can be noted C<[x,pi]> (the modulus +I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative +number) and the above definition states that sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i @@ -1342,7 +1382,6 @@ the following (overloaded) operations are supported on complex numbers: log(z1) = log(r1) + i*t1 sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1)) cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1)) - abs(z1) = r1 atan2(z1, z2) = atan(z1/z2) The following extra operations are supported on both real and complex @@ -1363,7 +1402,7 @@ numbers: cot(z) = 1 / tan(z) asin(z) = -i * log(i*z + sqrt(1-z*z)) - acos(z) = -i * log(z + sqrt(z*z-1)) + acos(z) = -i * log(z + i*sqrt(1-z*z)) atan(z) = i/2 * log((i+z) / (i-z)) acsc(z) = asin(1 / z) @@ -1377,7 +1416,7 @@ numbers: csch(z) = 1 / sinh(z) sech(z) = 1 / cosh(z) coth(z) = 1 / tanh(z) - + asinh(z) = log(z + sqrt(z*z+1)) acosh(z) = log(z + sqrt(z*z-1)) atanh(z) = 1/2 * log((1+z) / (1-z)) @@ -1423,21 +1462,21 @@ if you know the cartesian form of the number, or $z = 3 + 4*i; -if you like. To create a number using the trigonometric form, use either: +if you like. To create a number using the polar form, use either: $z = Math::Complex->emake(5, pi/3); $x = cplxe(5, pi/3); instead. The first argument is the modulus, the second is the angle -(in radians, the full circle is 2*pi). (Mnmemonic: C<e> is used as a -notation for complex numbers in the trigonometric form). +(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a +notation for complex numbers in the polar form). It is possible to write: $x = cplxe(-3, pi/4); but that will be silently converted into C<[3,-3pi/4]>, since the modulus -must be positive (it represents the distance to the origin in the complex +must be non-negative (it represents the distance to the origin in the complex plane). =head1 STRINGIFICATION @@ -1534,17 +1573,8 @@ argument cannot be I<pi/2 + k * pi>, where I<k> is any integer. =head1 BUGS Saying C<use Math::Complex;> exports many mathematical routines in the -caller environment and even overrides some (C<sin>, C<cos>, C<sqrt>, -C<log>, C<exp>). This is construed as a feature by the Authors, -actually... ;-) - -The code is not optimized for speed, although we try to use the cartesian -form for addition-like operators and the trigonometric form for all -multiplication-like operators. - -The arg() routine does not ensure the angle is within the range [-pi,+pi] -(a side effect caused by multiplication and division using the trigonometric -representation). +caller environment and even overrides some (C<sqrt>, C<log>). +This is construed as a feature by the Authors, actually... ;-) All routines expect to be given real or complex numbers. Don't attempt to use BigFloat, since Perl has currently no rule to disambiguate a '+' @@ -1555,6 +1585,8 @@ operation (for instance) between two overloaded entities. Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> and Jarkko Hietaniemi <F<jhi@iki.fi>>. +Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>. + =cut # eof |