diff options
Diffstat (limited to 'lib/Math')
-rw-r--r-- | lib/Math/BigFloat.pm | 258 | ||||
-rw-r--r-- | lib/Math/BigInt.pm | 80 | ||||
-rw-r--r-- | lib/Math/BigInt/t/biglog.t | 65 | ||||
-rw-r--r-- | lib/Math/BigInt/t/fallback.t | 7 |
4 files changed, 354 insertions, 56 deletions
diff --git a/lib/Math/BigFloat.pm b/lib/Math/BigFloat.pm index f569036459..1242a37813 100644 --- a/lib/Math/BigFloat.pm +++ b/lib/Math/BigFloat.pm @@ -12,7 +12,7 @@ package Math::BigFloat; # _a : accuracy # _p : precision -$VERSION = '1.53'; +$VERSION = '1.54'; require 5.006002; require Exporter; @@ -89,7 +89,7 @@ sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); } BEGIN { - # when someone set's $rnd_mode, we catch this and check the value to see + # when someone sets $rnd_mode, we catch this and check the value to see # whether it is valid or not. $rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat'; @@ -103,8 +103,8 @@ BEGIN # valid method aliases for AUTOLOAD my %methods = map { $_ => 1 } qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm - fint facmp fcmp fzero fnan finf finc fdec flog ffac fneg - fceil ffloor frsft flsft fone flog froot + fint facmp fcmp fzero fnan finf finc fdec ffac fneg + fceil ffloor frsft flsft fone flog froot fexp /; # valid methods that can be handed up (for AUTOLOAD) my %hand_ups = map { $_ => 1 } @@ -812,6 +812,7 @@ sub blog local $Math::BigFloat::downgrade = undef; # upgrade $x if $x is not a BigFloat (handle BigInt input) + # XXX TODO: rebless! if (!$x->isa('Math::BigFloat')) { $x = Math::BigFloat->new($x); @@ -844,7 +845,8 @@ sub blog if ($done == 0) { - # first calculate the log to base e (using reduction by 10 (and probably 2)) + # base is undef, so base should be e (Euler's number), so first calculate the + # log to base e (using reduction by 10 (and probably 2)): $self->_log_10($x,$scale); # and if a different base was requested, convert it @@ -876,6 +878,153 @@ sub blog $x; } +sub bexp + { + # Calculate e ** X (Euler's constant to the power of X) + my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); + + return $x->binf() if $x->{sign} eq '+inf'; + return $x->bzero() if $x->{sign} eq '-inf'; + + # we need to limit the accuracy to protect against overflow + my $fallback = 0; + my ($scale,@params); + ($x,@params) = $x->_find_round_parameters($a,$p,$r); + + # also takes care of the "error in _find_round_parameters?" case + return $x if $x->{sign} eq 'NaN'; + + # no rounding at all, so must use fallback + if (scalar @params == 0) + { + # simulate old behaviour + $params[0] = $self->div_scale(); # and round to it as accuracy + $params[1] = undef; # P = undef + $scale = $params[0]+4; # at least four more for proper round + $params[2] = $r; # round mode by caller or undef + $fallback = 1; # to clear a/p afterwards + } + else + { + # the 4 below is empirical, and there might be cases where it's not enough... + $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined + } + + return $x->bone(@params) if $x->is_zero(); + + if (!$x->isa('Math::BigFloat')) + { + $x = Math::BigFloat->new($x); + $self = ref($x); + } + + # when user set globals, they would interfere with our calculation, so + # disable them and later re-enable them + no strict 'refs'; + my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef; + my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef; + # we also need to disable any set A or P on $x (_find_round_parameters took + # them already into account), since these would interfere, too + delete $x->{_a}; delete $x->{_p}; + # need to disable $upgrade in BigInt, to avoid deep recursion + local $Math::BigInt::upgrade = undef; + local $Math::BigFloat::downgrade = undef; + + my $x_org = $x->copy(); + delete $x_org->{_a}; delete $x_org->{_p}; + + # We use the following Taylor series: + + # x x^2 x^3 x^4 + # e = 1 + --- + --- + --- + --- ... + # 1! 2! 3! 4! + + # The difference for each term is X and N, which would result in: + # 2 copy, 2 mul, 2 add, 1 inc, 1 div operations per term + + # But it is faster to compute exp(1) and then raising it to the + # given power, esp. if $x is really big and an integer because: + + # * The numerator is always 1, making the computation faster + # * the series converges faster in the case of x == 1 + # * We can also easily check when we have reached our limit: when the + # term to be added is smaller than "1E$scale", we can stop - f.i. + # scale == 5, and we have 1/40320, then we stop since 1/40320 < 1E-5. + # * we can compute the *exact* result by simulating bigrat math: + + # 1 1 gcd(3,4) = 1 1*24 + 1*6 5 + # - + - = ---------- = -- + # 6 24 6*24 24 + + # We do not compute the gcd() here, but simple do: + # 1 1 1*24 + 1*6 30 + # - + - = --------- = -- + # 6 24 6*24 144 + + # In general: + # a c a*d + c*b and note that c is always 1 and d = (b*f) + # - + - = --------- + # b d b*d + + # This leads to: which can be reduced by b to: + # a 1 a*b*f + b a*f + 1 + # - + - = --------- = ------- + # b b*f b*b*f b*f + + # The first terms in the series are: + + # 1 1 1 1 1 1 1 1 13700 + # -- + -- + -- + -- + -- + --- + --- + ---- = ----- + # 1 1 2 6 24 120 720 5040 5040 + + # Note that we cannot simple reduce 13700/5040 to 685/252. + + # So we start with A / B = 13490 / 5040 and F = 8 + my $A = $MBI->_new(13700); + my $B = $MBI->_new(5040); + my $F = $MBI->_new(8); + + # Code based on big rational math: + my $limit = $MBI->_new('1' . '0' x ($scale - 2)); # scale=5 => 100000 + + # while $B is not yet too big (making 1/$B too small) + while ($MBI->_acmp($B,$limit) < 0) + { + # calculate $a * $f + 1 + $A = $MBI->_mul($A, $F); + $A = $MBI->_inc($A); + # calculate $b * $f + $B = $MBI->_mul($B, $F); + # increment f + $F = $MBI->_inc($F); + } + + $x = $self->new($MBI->_str($A))->bdiv($MBI->_str($B), $scale); + + delete $x->{_a}; delete $x->{_p}; + # raise $x to the wanted power + $x->bpow($x_org, $scale) unless $x_org->is_one(); + + # shortcut to not run through _find_round_parameters again + if (defined $params[0]) + { + $x->bround($params[0],$params[2]); # then round accordingly + } + else + { + $x->bfround($params[1],$params[2]); # then round accordingly + } + if ($fallback) + { + # clear a/p after round, since user did not request it + delete $x->{_a}; delete $x->{_p}; + } + # restore globals + $$abr = $ab; $$pbr = $pb; + + $x; # return modified $x + } + sub _log { # internal log function to calculate ln() based on Taylor series. @@ -885,6 +1034,8 @@ sub _log # in case of $x == 1, result is 0 return $x->bzero() if $x->is_one(); + # XXX TODO: rewrite this in a similiar manner to bexp() + # http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log # u = x-1, v = x+1 @@ -931,7 +1082,7 @@ sub _log # if we truncated $over and $below we might get 0.12345. Does this matter # for the end result? So we give $over and $below 4 more digits to be # on the safe side (unscientific error handling as usual... :+D - + $next = $over->copy->bround($scale+4)->bdiv( $below->copy->bmul($factor)->bround($scale+4), $scale); @@ -950,8 +1101,8 @@ sub _log $steps++; print "step $steps = $x\n" if $steps % 10 == 0; } } - $x->bmul($f); # $x *= 2 print "took $steps steps\n" if DEBUG; + $x->bmul($f); # $x *= 2 } sub _log_10 @@ -960,19 +1111,27 @@ sub _log_10 # and then "correcting" the result to the proper one. Modifies $x in place. my ($self,$x,$scale) = @_; - # taking blog() from numbers greater than 10 takes a *very long* time, so we + # Taking blog() from numbers greater than 10 takes a *very long* time, so we # break the computation down into parts based on the observation that: - # blog(x*y) = blog(x) + blog(y) - # We set $y here to multiples of 10 so that $x is below 1 (the smaller $x is - # the faster it get's, especially because 2*$x takes about 10 times as long, - # so by dividing $x by 10 we make it at least factor 100 faster...) - - # The same observation is valid for numbers smaller than 0.1 (e.g. computing - # log(1) is fastest, and the farther away we get from 1, the longer it takes) - # so we also 'break' this down by multiplying $x with 10 and subtract the + # blog(X*Y) = blog(X) + blog(Y) + # We set Y here to multiples of 10 so that $x becomes below 1 - the smaller + # $x is the faster it gets. Since 2*$x takes about 10 times as + # long, we make it faster by about a factor of 100 by dividing $x by 10. + + # The same observation is valid for numbers smaller than 0.1, e.g. computing + # log(1) is fastest, and the further away we get from 1, the longer it takes. + # So we also 'break' this down by multiplying $x with 10 and subtract the # log(10) afterwards to get the correct result. - # calculate nr of digits before dot + # To get $x even closer to 1, we also divide by 2 and then use log(2) to + # correct for this. For instance if $x is 2.4, we use the formula: + # blog(2.4 * 2) == blog (1.2) + blog(2) + # and thus calculate only blog(1.2) and blog(2), which is faster in total + # than calculating blog(2.4). + + # In addition, the values for blog(2) and blog(10) are cached. + + # Calculate nr of digits before dot: my $dbd = $MBI->_num($x->{_e}); $dbd = -$dbd if $x->{_es} eq '-'; $dbd += $MBI->_len($x->{_m}); @@ -990,9 +1149,10 @@ sub _log_10 # we can use the cached value in these cases if ($scale <= $LOG_10_A) { - $x->bzero(); $x->badd($LOG_10); + $x->bzero(); $x->badd($LOG_10); # modify $x in place $calc = 0; # no need to calc, but round } + # if we can't use the shortcut, we continue normally } else { @@ -1003,9 +1163,10 @@ sub _log_10 # we can use the cached value in these cases if ($scale <= $LOG_2_A) { - $x->bzero(); $x->badd($LOG_2); + $x->bzero(); $x->badd($LOG_2); # modify $x in place $calc = 0; # no need to calc, but round } + # if we can't use the shortcut, we continue normally } } @@ -1028,6 +1189,8 @@ sub _log_10 my $l_10; # value of ln(10) to A of $scale my $l_2; # value of ln(2) to A of $scale + my $two = $self->new(2); + # $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1 # so don't do this shortcut for 1 or 0 if (($dbd > 1) || ($dbd < 0)) @@ -1049,10 +1212,40 @@ sub _log_10 } else { - # else: slower, compute it (but don't cache it, because it could be big) + # else: slower, compute and cache result # also disable downgrade for this code path local $Math::BigFloat::downgrade = undef; - $l_10 = $self->new(10)->blog(undef,$scale); # scale+4, actually + + # shorten the time to calculate log(10) based on the following: + # log(1.25 * 8) = log(1.25) + log(8) + # = log(1.25) + log(2) + log(2) + log(2) + + # first get $l_2 (and possible compute and cache log(2)) + $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2; + if ($scale <= $LOG_2_A) + { + # use cached value + $l_2 = $LOG_2->copy(); # copy() for the mul below + } + else + { + # else: slower, compute and cache result + $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually + $LOG_2 = $l_2->copy(); # cache the result for later + # the copy() is for mul below + $LOG_2_A = $scale; + } + + # now calculate log(1.25): + $l_10 = $self->new('1.25'); $self->_log($l_10, $scale); # scale+4, actually + + # log(1.25) + log(2) + log(2) + log(2): + $l_10->badd($l_2); + $l_10->badd($l_2); + $l_10->badd($l_2); + $LOG_10 = $l_10->copy(); # cache the result for later + # the copy() is for mul below + $LOG_10_A = $scale; } $dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1 $l_10->bmul( $self->new($dbd)); # log(10) * (digits_before_dot-1) @@ -1075,31 +1268,33 @@ sub _log_10 $HALF = $self->new($HALF) unless ref($HALF); my $twos = 0; # default: none (0 times) - my $two = $self->new(2); - while ($x->bacmp($HALF) <= 0) + while ($x->bacmp($HALF) <= 0) # X <= 0.5 { $twos--; $x->bmul($two); } - while ($x->bacmp($two) >= 0) + while ($x->bacmp($two) >= 0) # X >= 2 { $twos++; $x->bdiv($two,$scale+4); # keep all digits } - # $twos > 0 => did mul 2, < 0 => did div 2 (never both) - # calculate correction factor based on ln(2) + # $twos > 0 => did mul 2, < 0 => did div 2 (but we never did both) + # So calculate correction factor based on ln(2): if ($twos != 0) { $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2; if ($scale <= $LOG_2_A) { # use cached value - $l_2 = $LOG_2->copy(); # copy for mul + $l_2 = $LOG_2->copy(); # copy() for the mul below } else { - # else: slower, compute it (but don't cache it, because it could be big) + # else: slower, compute and cache result # also disable downgrade for this code path local $Math::BigFloat::downgrade = undef; - $l_2 = $two->blog(undef,$scale); # scale+4, actually + $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually + $LOG_2 = $l_2->copy(); # cache the result for later + # the copy() is for mul below + $LOG_2_A = $scale; } $l_2->bmul($twos); # * -2 => subtract, * 2 => add } @@ -1107,7 +1302,9 @@ sub _log_10 $self->_log($x,$scale); # need to do the "normal" way $x->badd($l_10) if defined $l_10; # correct it by ln(10) $x->badd($l_2) if defined $l_2; # and maybe by ln(2) + # all done, $x contains now the result + $x; } sub blcm @@ -1919,7 +2116,7 @@ sub _pow { # we calculate the next term, and add it to the last # when the next term is below our limit, it won't affect the outcome - # anymore, so we stop + # anymore, so we stop: $next = $over->copy()->bdiv($below,$scale); last if $next->bacmp($limit) <= 0; $x->badd($next); @@ -2627,6 +2824,7 @@ Math::BigFloat - Arbitrary size floating point math package $x->blog(); # logarithm of $x to base e (Euler's number) $x->blog($base); # logarithm of $x to base $base (f.i. 2) + $x->bexp(); # calculate e ** $x where e is Euler's number $x->band($y); # bit-wise and $x->bior($y); # bit-wise inclusive or diff --git a/lib/Math/BigInt.pm b/lib/Math/BigInt.pm index 600970fde3..badf947ba6 100644 --- a/lib/Math/BigInt.pm +++ b/lib/Math/BigInt.pm @@ -18,7 +18,7 @@ package Math::BigInt; my $class = "Math::BigInt"; use 5.006002; -$VERSION = '1.80'; +$VERSION = '1.82'; @ISA = qw(Exporter); @EXPORT_OK = qw(objectify bgcd blcm); @@ -81,10 +81,9 @@ use overload "$_[1]" cmp $_[0]->bstr() : $_[0]->bstr() cmp "$_[1]" }, -# make cos()/sin()/exp() "work" with BigInt's or subclasses +# make cos()/sin()/atan2() "work" with BigInt's or subclasses 'cos' => sub { cos($_[0]->numify()) }, 'sin' => sub { sin($_[0]->numify()) }, -'exp' => sub { exp($_[0]->numify()) }, 'atan2' => sub { $_[2] ? atan2($_[1],$_[0]->numify()) : atan2($_[0]->numify(),$_[1]) }, @@ -95,6 +94,7 @@ use overload # log(N) is log(N, e), where e is Euler's number 'log' => sub { $_[0]->copy()->blog($_[1], undef); }, +'exp' => sub { $_[0]->copy()->bexp($_[1]); }, 'int' => sub { $_[0]->copy(); }, 'neg' => sub { $_[0]->copy()->bneg(); }, 'abs' => sub { $_[0]->copy()->babs(); }, @@ -1145,6 +1145,7 @@ sub bsub # set up parameters my ($self,$x,$y,@r) = (ref($_[0]),@_); + # objectify is costly, so avoid it if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { @@ -1264,6 +1265,37 @@ sub blog $x->round(@r); } +sub bexp + { + # Calculate e ** $x (Euler's number to the power of X), truncated to + # an integer value. + my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); + return $x if $x->modify('bexp'); + + # inf, -inf, NaN, <0 => NaN + return $x->bnan() if $x->{sign} eq 'NaN'; + return $x->bone() if $x->is_zero(); + return $x if $x->{sign} eq '+inf'; + return $x->bzero() if $x->{sign} eq '-inf'; + + my $u; + { + # run through Math::BigFloat unless told otherwise + local $upgrade = 'Math::BigFloat' unless defined $upgrade; + # calculate result, truncate it to integer + $u = $upgrade->bexp($upgrade->new($x),@r); + } + + if (!defined $upgrade) + { + $u = $u->as_int(); + # modify $x in place + $x->{value} = $u->{value}; + $x->round(@r); + } + else { $x = $u; } + } + sub blcm { # (BINT or num_str, BINT or num_str) return BINT @@ -2055,7 +2087,8 @@ sub exponent } return $self->bone() if $x->is_zero(); - $self->new($x->_trailing_zeros()); + # 12300 => 2 trailing zeros => exponent is 2 + $self->new( $CALC->_zeros($x->{value}) ); } sub mantissa @@ -2069,8 +2102,9 @@ sub mantissa return $self->new($x->{sign}); } my $m = $x->copy(); delete $m->{_p}; delete $m->{_a}; + # that's a bit inefficient: - my $zeros = $m->_trailing_zeros(); + my $zeros = $CALC->_zeros($m->{value}); $m->brsft($zeros,10) if $zeros != 0; $m; } @@ -2343,7 +2377,7 @@ sub objectify } my $up = ${"$a[0]::upgrade"}; - #print "Now in objectify, my class is today $a[0], count = $count\n"; + # print STDERR "# Now in objectify, my class is today $a[0], count = $count\n"; if ($count == 0) { while (@_) @@ -2366,7 +2400,7 @@ sub objectify while ($count > 0) { $count--; - $k = shift; + $k = shift; if (!ref($k)) { $k = $a[0]->new($k); @@ -2830,8 +2864,8 @@ Math::BigInt - Arbitrary size integer/float math package $x->bmodinv($mod); # the inverse of $x in the given modulus $mod $x->bpow($y); # power of arguments (x ** y) - $x->blsft($y); # left shift in base 10 - $x->brsft($y); # right shift in base 10 + $x->blsft($y); # left shift in base 2 + $x->brsft($y); # right shift in base 2 # returns (quo,rem) or quo if in scalar context $x->blsft($y,$n); # left shift by $y places in base $n $x->brsft($y,$n); # right shift by $y places in base $n @@ -2846,6 +2880,10 @@ Math::BigInt - Arbitrary size integer/float math package $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root) $x->bfac(); # factorial of $x (1*2*3*4*..$x) + $x->blog(); # logarithm of $x to base e (Euler's number) + $x->blog($base); # logarithm of $x to base $base (f.i. 2) + $x->bexp(); # calculate e ** $x where e is Euler's number + $x->round($A,$P,$mode); # round to accuracy or precision using mode $mode $x->bround($n); # accuracy: preserve $n digits $x->bfround($n); # round to $nth digit, no-op for BigInts @@ -3362,14 +3400,32 @@ is exactly equivalent to $x->bpow($y); # power of arguments (x ** y) +=head2 blog() + + $x->blog($base, $accuracy); # logarithm of x to the base $base + +If C<$base> is not defined, Euler's number (e) is used: + + print $x->blog(undef, 100); # log(x) to 100 digits + +=head2 bexp() + + $x->bexp($accuracy); # calculate e ** X + +Calculates the expression C<e ** $x> where C<e> is Euler's number. + +This method was added in v1.82 of Math::BigInt (April 2007). + +See also L<blog()>. + =head2 blsft() - $x->blsft($y); # left shift + $x->blsft($y); # left shift in base 2 $x->blsft($y,$n); # left shift, in base $n (like 10) =head2 brsft() - $x->brsft($y); # right shift + $x->brsft($y); # right shift in base 2 $x->brsft($y,$n); # right shift, in base $n (like 10) =head2 band() @@ -4240,6 +4296,8 @@ is in effect, they will always hand up their work: =item blog() +=item bexp() + =back Beware: This list is not complete. diff --git a/lib/Math/BigInt/t/biglog.t b/lib/Math/BigInt/t/biglog.t index 0958ddcc81..a3f2e62cac 100644 --- a/lib/Math/BigInt/t/biglog.t +++ b/lib/Math/BigInt/t/biglog.t @@ -1,6 +1,6 @@ #!/usr/bin/perl -w -# Test blog function (and bpow, since it uses blog). +# Test blog function (and bpow, since it uses blog), as well as bexp(). # It is too slow to be simple included in bigfltpm.inc, where it would get # executed 3 times. One time would be under BareCalc, which shouldn't make any @@ -11,7 +11,7 @@ # it at all (which did lead to wrong answers for 0 < $x < 1 in blog() in # versions up to v1.63, and for bsqrt($x) when $x << 1 for instance). -use Test; +use Test::More; use strict; BEGIN @@ -37,7 +37,7 @@ BEGIN } print "# INC = @INC\n"; - plan tests => 56; + plan tests => 66; } use Math::BigFloat; @@ -45,16 +45,48 @@ use Math::BigInt; my $cl = "Math::BigInt"; +############################################################################# # test log($n) in BigInt (broken until 1.80) -ok ($cl->new(2)->blog(), '0'); -ok ($cl->new(288)->blog(), '5'); -ok ($cl->new(2000)->blog(), '7'); +is ($cl->new(2)->blog(), '0', "blog(2)"); +is ($cl->new(288)->blog(), '5',"blog(288)"); +is ($cl->new(2000)->blog(), '7', "blog(2000)"); + +############################################################################# +# test exp($n) in BigInt + +is ($cl->new(1)->bexp(), '2', "bexp(1)"); +is ($cl->new(2)->bexp(), '7',"bexp(2)"); +is ($cl->new(3)->bexp(), '20', "bexp(3)"); ############################################################################# +############################################################################# +# BigFloat tests + +############################################################################# +# test log(2, N) where N > 67 (broken until 1.82) $cl = "Math::BigFloat"; +# These tests can take quite a while, but are nec. Maybe protect them with +# some alarm()? + +# this triggers the calculation and caching of ln(2): +ok ($cl->new(5)->blog(undef,71), +'1.6094379124341003746007593332261876395256013542685177219126478914741790'); + +# if the cache was correct, we should get this result, fast: +ok ($cl->new(2)->blog(undef,71), +'0.69314718055994530941723212145817656807550013436025525412068000949339362'); + +ok ($cl->new(10)->blog(undef,71), +'2.3025850929940456840179914546843642076011014886287729760333279009675726'); + +ok ($cl->new(21)->blog(undef,71), +'3.0445224377234229965005979803657054342845752874046106401940844835750742'); + +############################################################################# + # These tests are now really fast, since they collapse to blog(10), basically # Don't attempt to run them with older versions. You are warned. @@ -107,12 +139,12 @@ ok ($cl->new('1.2')->bpow('0.3',10), '1.056219968'); ok ($cl->new('10')->bpow('0.6',10), '3.981071706'); # blog should handle bigint input -ok (Math::BigFloat::blog(Math::BigInt->new(100),10), 2); +is (Math::BigFloat::blog(Math::BigInt->new(100),10), 2, "blog(100)"); # some integer results -ok ($cl->new(2)->bpow(32)->blog(2), '32'); # 2 ** 32 -ok ($cl->new(3)->bpow(32)->blog(3), '32'); # 3 ** 32 -ok ($cl->new(2)->bpow(65)->blog(2), '65'); # 2 ** 65 +is ($cl->new(2)->bpow(32)->blog(2), '32', "2 ** 32"); +is ($cl->new(3)->bpow(32)->blog(3), '32', "3 ** 32"); +is ($cl->new(2)->bpow(65)->blog(2), '65', "2 ** 65"); # test for bug in bsqrt() not taking negative _e into account test_bpow ('200','0.5',10, '14.14213562'); @@ -138,6 +170,18 @@ test_bpow ('9.86902225','0.5',undef, '3.1415'); test_bpow ('0.2','0.41',10, '0.5169187652'); +############################################################################# +# test bexp() + +is ($cl->new(1)->bexp(), '2.718281828459045235360287471352662497757', 'bexp(1)'); +is ($cl->new(2)->bexp(40), $cl->new(1)->bexp(45)->bpow(2,40), 'bexp(2)'); + +is ($cl->new("12.5")->bexp(61), $cl->new(1)->bexp(65)->bpow(12.5,61), 'bexp(12.5)'); + +# all done +1; + +############################################################################# sub test_bpow { my ($x,$y,$scale,$result) = @_; @@ -146,3 +190,4 @@ sub test_bpow unless ok ($cl->new($x)->bpow($y,$scale),$result); } + diff --git a/lib/Math/BigInt/t/fallback.t b/lib/Math/BigInt/t/fallback.t index 00f1dfd74b..010ff8a592 100644 --- a/lib/Math/BigInt/t/fallback.t +++ b/lib/Math/BigInt/t/fallback.t @@ -1,6 +1,6 @@ #!/usr/bin/perl -w -# test 'fallback' for overload cos/sin/atan2/exp +# test 'fallback' for overload cos/sin/atan2 use Test; use strict; @@ -28,7 +28,7 @@ BEGIN } print "# INC = @INC\n"; - plan tests => 12; + plan tests => 9; } # The tests below test that cos(BigInt) = cos(Scalar) which is DWIM, but not @@ -43,19 +43,16 @@ my $bi = Math::BigInt->new(1); ok (cos($bi), cos(1)); ok (sin($bi), sin(1)); -ok (exp($bi), exp(1)); ok (atan2($bi,$bi), atan2(1,1)); my $bf = Math::BigInt->new(0); ok (cos($bf), cos(0)); ok (sin($bf), sin(0)); -ok (exp($bf), exp(0)); ok (atan2($bi,$bf), atan2(1,0)); ok (atan2($bf,$bi), atan2(0,1)); my $bone = Math::BigInt->new(1); ok (cos($bone), cos(1)); ok (sin($bone), sin(1)); -ok (exp($bone), exp(1)); |