summaryrefslogtreecommitdiff
path: root/lib/bigint.pl
diff options
context:
space:
mode:
Diffstat (limited to 'lib/bigint.pl')
-rw-r--r--lib/bigint.pl324
1 files changed, 0 insertions, 324 deletions
diff --git a/lib/bigint.pl b/lib/bigint.pl
deleted file mode 100644
index 6de1c53fcf..0000000000
--- a/lib/bigint.pl
+++ /dev/null
@@ -1,324 +0,0 @@
-warn "Legacy library @{[(caller(0))[6]]} will be removed from the Perl core distribution in the next major release. Please install it from the CPAN distribution Perl4::CoreLibs. It is being used at @{[(caller)[1]]}, line @{[(caller)[2]]}.\n";
-
-package bigint;
-#
-# This library is no longer being maintained, and is included for backward
-# compatibility with Perl 4 programs which may require it.
-#
-# In particular, this should not be used as an example of modern Perl
-# programming techniques.
-# This legacy library is deprecated and will be removed in a future
-# release of perl.
-#
-# Suggested alternative: Math::BigInt
-
-# arbitrary size integer math package
-#
-# by Mark Biggar
-#
-# Canonical Big integer value are strings of the form
-# /^[+-]\d+$/ with leading zeros suppressed
-# Input values to these routines may be strings of the form
-# /^\s*[+-]?[\d\s]+$/.
-# Examples:
-# '+0' canonical zero value
-# ' -123 123 123' canonical value '-123123123'
-# '1 23 456 7890' canonical value '+1234567890'
-# Output values always in canonical form
-#
-# Actual math is done in an internal format consisting of an array
-# whose first element is the sign (/^[+-]$/) and whose remaining
-# elements are base 100000 digits with the least significant digit first.
-# The string 'NaN' is used to represent the result when input arguments
-# are not numbers, as well as the result of dividing by zero
-#
-# routines provided are:
-#
-# bneg(BINT) return BINT negation
-# babs(BINT) return BINT absolute value
-# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
-# badd(BINT,BINT) return BINT addition
-# bsub(BINT,BINT) return BINT subtraction
-# bmul(BINT,BINT) return BINT multiplication
-# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
-# bmod(BINT,BINT) return BINT modulus
-# bgcd(BINT,BINT) return BINT greatest common divisor
-# bnorm(BINT) return BINT normalization
-#
-
-# overcome a floating point problem on certain osnames (posix-bc, os390)
-BEGIN {
- my $x = 100000.0;
- my $use_mult = int($x*1e-5)*1e5 == $x ? 1 : 0;
-}
-
-$zero = 0;
-
-
-# normalize string form of number. Strip leading zeros. Strip any
-# white space and add a sign, if missing.
-# Strings that are not numbers result the value 'NaN'.
-
-sub main'bnorm { #(num_str) return num_str
- local($_) = @_;
- s/\s+//g; # strip white space
- if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
- substr($_,0,0) = '+' unless $1; # Add missing sign
- s/^-0/+0/;
- $_;
- } else {
- 'NaN';
- }
-}
-
-# Convert a number from string format to internal base 100000 format.
-# Assumes normalized value as input.
-sub internal { #(num_str) return int_num_array
- local($d) = @_;
- ($is,$il) = (substr($d,0,1),length($d)-2);
- substr($d,0,1) = '';
- ($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
-}
-
-# Convert a number from internal base 100000 format to string format.
-# This routine scribbles all over input array.
-sub external { #(int_num_array) return num_str
- $es = shift;
- grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
- &'bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
-}
-
-# Negate input value.
-sub main'bneg { #(num_str) return num_str
- local($_) = &'bnorm(@_);
- vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
- s/^./N/ unless /^[-+]/; # works both in ASCII and EBCDIC
- $_;
-}
-
-# Returns the absolute value of the input.
-sub main'babs { #(num_str) return num_str
- &abs(&'bnorm(@_));
-}
-
-sub abs { # post-normalized abs for internal use
- local($_) = @_;
- s/^-/+/;
- $_;
-}
-
-# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
-sub main'bcmp { #(num_str, num_str) return cond_code
- local($x,$y) = (&'bnorm($_[0]),&'bnorm($_[1]));
- if ($x eq 'NaN') {
- undef;
- } elsif ($y eq 'NaN') {
- undef;
- } else {
- &cmp($x,$y);
- }
-}
-
-sub cmp { # post-normalized compare for internal use
- local($cx, $cy) = @_;
- return 0 if ($cx eq $cy);
-
- local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
- local($ld);
-
- if ($sx eq '+') {
- return 1 if ($sy eq '-' || $cy eq '+0');
- $ld = length($cx) - length($cy);
- return $ld if ($ld);
- return $cx cmp $cy;
- } else { # $sx eq '-'
- return -1 if ($sy eq '+');
- $ld = length($cy) - length($cx);
- return $ld if ($ld);
- return $cy cmp $cx;
- }
-
-}
-
-sub main'badd { #(num_str, num_str) return num_str
- local(*x, *y); ($x, $y) = (&'bnorm($_[0]),&'bnorm($_[1]));
- if ($x eq 'NaN') {
- 'NaN';
- } elsif ($y eq 'NaN') {
- 'NaN';
- } else {
- @x = &internal($x); # convert to internal form
- @y = &internal($y);
- local($sx, $sy) = (shift @x, shift @y); # get signs
- if ($sx eq $sy) {
- &external($sx, &add(*x, *y)); # if same sign add
- } else {
- ($x, $y) = (&abs($x),&abs($y)); # make abs
- if (&cmp($y,$x) > 0) {
- &external($sy, &sub(*y, *x));
- } else {
- &external($sx, &sub(*x, *y));
- }
- }
- }
-}
-
-sub main'bsub { #(num_str, num_str) return num_str
- &'badd($_[0],&'bneg($_[1]));
-}
-
-# GCD -- Euclid's algorithm Knuth Vol 2 pg 296
-sub main'bgcd { #(num_str, num_str) return num_str
- local($x,$y) = (&'bnorm($_[0]),&'bnorm($_[1]));
- if ($x eq 'NaN' || $y eq 'NaN') {
- 'NaN';
- } else {
- ($x, $y) = ($y,&'bmod($x,$y)) while $y ne '+0';
- $x;
- }
-}
-
-# routine to add two base 1e5 numbers
-# stolen from Knuth Vol 2 Algorithm A pg 231
-# there are separate routines to add and sub as per Kunth pg 233
-sub add { #(int_num_array, int_num_array) return int_num_array
- local(*x, *y) = @_;
- $car = 0;
- for $x (@x) {
- last unless @y || $car;
- $x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5) ? 1 : 0;
- }
- for $y (@y) {
- last unless $car;
- $y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
- }
- (@x, @y, $car);
-}
-
-# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
-sub sub { #(int_num_array, int_num_array) return int_num_array
- local(*sx, *sy) = @_;
- $bar = 0;
- for $sx (@sx) {
- last unless @y || $bar;
- $sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
- }
- @sx;
-}
-
-# multiply two numbers -- stolen from Knuth Vol 2 pg 233
-sub main'bmul { #(num_str, num_str) return num_str
- local(*x, *y); ($x, $y) = (&'bnorm($_[0]), &'bnorm($_[1]));
- if ($x eq 'NaN') {
- 'NaN';
- } elsif ($y eq 'NaN') {
- 'NaN';
- } else {
- @x = &internal($x);
- @y = &internal($y);
- local($signr) = (shift @x ne shift @y) ? '-' : '+';
- @prod = ();
- for $x (@x) {
- ($car, $cty) = (0, 0);
- for $y (@y) {
- $prod = $x * $y + $prod[$cty] + $car;
- if ($use_mult) {
- $prod[$cty++] =
- $prod - ($car = int($prod * 1e-5)) * 1e5;
- }
- else {
- $prod[$cty++] =
- $prod - ($car = int($prod / 1e5)) * 1e5;
- }
- }
- $prod[$cty] += $car if $car;
- $x = shift @prod;
- }
- &external($signr, @x, @prod);
- }
-}
-
-# modulus
-sub main'bmod { #(num_str, num_str) return num_str
- (&'bdiv(@_))[1];
-}
-
-sub main'bdiv { #(dividend: num_str, divisor: num_str) return num_str
- local (*x, *y); ($x, $y) = (&'bnorm($_[0]), &'bnorm($_[1]));
- return wantarray ? ('NaN','NaN') : 'NaN'
- if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
- return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
- @x = &internal($x); @y = &internal($y);
- $srem = $y[0];
- $sr = (shift @x ne shift @y) ? '-' : '+';
- $car = $bar = $prd = 0;
- if (($dd = int(1e5/($y[$#y]+1))) != 1) {
- for $x (@x) {
- $x = $x * $dd + $car;
- if ($use_mult) {
- $x -= ($car = int($x * 1e-5)) * 1e5;
- }
- else {
- $x -= ($car = int($x / 1e5)) * 1e5;
- }
- }
- push(@x, $car); $car = 0;
- for $y (@y) {
- $y = $y * $dd + $car;
- if ($use_mult) {
- $y -= ($car = int($y * 1e-5)) * 1e5;
- }
- else {
- $y -= ($car = int($y / 1e5)) * 1e5;
- }
- }
- }
- else {
- push(@x, 0);
- }
- @q = (); ($v2,$v1) = @y[-2,-1];
- while ($#x > $#y) {
- ($u2,$u1,$u0) = @x[-3..-1];
- $q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
- --$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
- if ($q) {
- ($car, $bar) = (0,0);
- for ($y = 0, $x = $#x-$#y-1; $y <= $#y; ++$y,++$x) {
- $prd = $q * $y[$y] + $car;
- if ($use_mult) {
- $prd -= ($car = int($prd * 1e-5)) * 1e5;
- }
- else {
- $prd -= ($car = int($prd / 1e5)) * 1e5;
- }
- $x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
- }
- if ($x[$#x] < $car + $bar) {
- $car = 0; --$q;
- for ($y = 0, $x = $#x-$#y-1; $y <= $#y; ++$y,++$x) {
- $x[$x] -= 1e5
- if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
- }
- }
- }
- pop(@x); unshift(@q, $q);
- }
- if (wantarray) {
- @d = ();
- if ($dd != 1) {
- $car = 0;
- for $x (reverse @x) {
- $prd = $car * 1e5 + $x;
- $car = $prd - ($tmp = int($prd / $dd)) * $dd;
- unshift(@d, $tmp);
- }
- }
- else {
- @d = @x;
- }
- (&external($sr, @q), &external($srem, @d, $zero));
- } else {
- &external($sr, @q);
- }
-}
-1;