| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
and also implement the pp functions, though nothing compiles to
these ops yet.
|
| |
|
|
|
|
|
|
|
|
| |
opcode_debug has never had an API to turn it on/set it to non-0 since
Opcode::'s initial commit 6badd1a5d1 in 5.003001. Making opcode_debug a
constant allows the CC to constant fold away the code, the warn string
literals, and makes the my_cxt_t struct slightly smaller. Dont remove the
code entirely since someone might find it useful one day.
|
| |
|
| |
|
|
|
|
| |
GIMME_V is a simpler macro that results in smaller machine code.
|
|
|
|
|
|
|
|
| |
(or, rather, in Opcode.xs).
It was providing scalar context when invoked in void context. Test-
ing Safe->reval itself is complicated, because Opcode.xs, which is an
essential part of the fix, is not dual-life.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This op is an optimisation for any series of one or more array or hash
lookups and dereferences, where the key/index is a simple constant or
package/lexical variable. If the first-level lookup is of a simple
array/hash variable or scalar ref, then that is included in the op too.
So all of the following are replaced with a single op:
$h{foo}
$a[$i]
$a[5][$k][$i]
$r->{$k}
local $a[0][$i]
exists $a[$i]{$k}
delete $h{foo}
while these aren't:
$a[0] already handled by OP_AELEMFAST
$a[$x+1] not a simple index
and these are partially replaced:
(expr)->[0]{$k} the bit following (expr) is replaced
$h{foo}[$x+1][0] the first and third lookups are each done with
a multideref op, while the $x+1 expression and
middle lookup are done by existing add, aelem etc
ops.
Up until now, aggregate dereferencing has been very heavyweight in ops; for
example, $r->[0]{$x} is compiled as:
gv[*r] s
rv2sv sKM/DREFAV,1
rv2av[t2] sKR/1
const[IV 0] s
aelem sKM/DREFHV,2
rv2hv sKR/1
gvsv[*x] s
helem vK/2
When executing this, in addition to the actual calls to av_fetch() and
hv_fetch(), there is a lot of overhead of pushing SVs on and off the
stack, and calling lots of little pp() functions from the runops loop
(each with its potential indirect branch miss).
The multideref op avoids that by running all the code in a loop in a
switch statement. It makes use of the new UNOP_AUX type to hold an array
of
typedef union {
PADOFFSET pad_offset;
SV *sv;
IV iv;
UV uv;
} UNOP_AUX_item;
In something like $a[7][$i]{foo}, the GVs or pad offsets for @a and $i are
stored as items in the array, along with a pointer to a const SV holding
'foo', and the UV 7 is stored directly. Along with this, some UVs are used
to store a sequence of actions (several actions are squeezed into a single
UV).
Then the main body of pp_multideref is a big while loop round a switch,
which reads actions and values from the AUX array. The two big branches in
the switch are ones that are affectively unrolled (/DREFAV, rv2av, aelem)
and (/DREFHV, rv2hv, helem) triplets. The other branches are various entry
points that handle retrieving the different types of initial value; for
example 'my %h; $h{foo}' needs to get %h from the pad, while '(expr)->{foo}'
needs to pop expr off the stack.
Note that there is a slight complication with /DEREF; in the example above
of $r->[0]{$x}, the aelem op is actually
aelem sKM/DREFHV,2
which means that the aelem, after having retrieved a (possibly undef)
value from the array, is responsible for autovivifying it into a hash,
ready for the next op. Similarly, the rv2sv that retrieves $r from the
typeglob is responsible for autovivifying it into an AV. This action
of doing the next op's work for it complicates matters somewhat. Within
pp_multideref, the autovivification action is instead included as the
first step of the current action.
In terms of benchmarking with Porting/bench.pl, a simple lexical
$a[$i][$j] shows a reduction of approx 40% in numbers of instructions
executed, while $r->[0][0][0] uses 54% fewer. The speed-up for hash
accesses is relatively more modest, since the actual hash lookup (i.e.
hv_fetch()) is more expensive than an array lookup. A lexical $h{foo}
uses 10% fewer, while $r->{foo}{bar}{baz} uses 34% fewer instructions.
Overall,
bench.pl --tests='/expr::(array|hash)/' ...
gives:
PRE POST
------ ------
Ir 100.00 145.00
Dr 100.00 165.30
Dw 100.00 175.74
COND 100.00 132.02
IND 100.00 171.11
COND_m 100.00 127.65
IND_m 100.00 203.90
with cache misses unchanged at 100%.
In general, the more lookups done, the bigger the proportionate saving.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It was done by adding new OP_METHOD_REDIR and OP_METHOD_REDIR_SUPER optypes.
Class name to redirect is saved into METHOP as a shared hash string.
Method name is changed (class name removed) an saved into op_meth_sv as
a shared string hash.
So there is no need now to scan for '::' and calculate class and method names
at runtime (in gv_fetchmethod_*) and searching cache HV without precomputed hash.
B::* modules are changed to support new op types.
method_redir is now printed by Concise like (for threaded perl)
$obj->AAA::meth
5 <.> method_redir[PACKAGE "AAA", PV "meth"] ->6
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In ck_method:
Scan for '/::. If found SUPER::, create OP_METHOD_SUPER op
with precomputed hash value for method name.
In B::*, added support for method_super
In pp_hot.c, pp_method_*:
S_method_common removed, code related to getting stash is
moved to S_opmethod_stash, other code is moved to
pp_method_* functions.
As a result, SUPER::func() calls speeded up by 50%.
|
|
|
|
|
| |
This will be used for slurpy array ref assignments. \(@a) = \(@b)
will make @a share the same elements as @b.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
test added.
This example hacks outside environment:
package My::Controller;
use strict;
sub jopa { return "jopa\n"; }
package main;
use Safe;
my $s = new Safe;
my $ok = $s->reval(q{
package My::Controller;
sub jopa { return "hacked\n"; }
My::Controller->jopa();
});
print My::Controller->jopa();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
HvNAME_get() can return NULL, and strNE() wants non-null args.
[
As a side note: on debugging builds this line
if (strNE(HvNAME_get(hv),"main")) {
macro-expands into an 18,000 character line (!) due to the fact that
HvNAME_get() is quite a big expansion under debugging, and strNE expands to
strlen, which under gcc expands to a huge macro (which is mainly lots of
different compile-time alternatives depending on which of its args are
constants), that references its args several times.
]
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This single op can, in some circumstances, replace the sequence of a
pushmark followed by one or more padsv/padav/padhv ops, and possibly
a trailing 'list' op, but only where the targs of the pad ops form
a continuous range.
This is generally more efficient, but is particularly so in the case
of void-context my declarations, such as:
my ($a,@b);
Formerly this would be executed as the following set of ops:
pushmark pushes a new mark
padsv[$a] pushes $a, does a SAVEt_CLEARSV
padav[@b] pushes all the flattened elements (i.e. none) of @a,
does a SAVEt_CLEARSV
list pops the mark, and pops all stack elements except the last
nextstate pops the remaining stack element
It's now:
padrange[$a..@b] does two SAVEt_CLEARSV's
nextstate nothing needing doing to the stack
Note that in the case above, this commit changes user-visible behaviour in
pathological cases; in particular, it has always been possible to modify a
lexical var *before* the my is executed, using goto or closure tricks.
So in principle someone could tie an array, then could notice that FETCH
is no longer being called, e.g.
f();
my ($s, @a); # this no longer triggers two FETCHES
sub f {
tie @a, ...;
push @a, 1,2;
}
But I think we can live with that.
Note also that having a padrange operator will allow us shortly to have
a corresponding SAVEt_CLEARPADRANGE save type, that will replace multiple
individual SAVEt_CLEARSV's.
|
|
|
|
|
|
| |
This will be used for cloning a ‘my’ sub on scope entry.
I was going to use pp_padcv for this, but it would end up having a
top-level if/else.
|
|
|
|
|
| |
This will be used for introducing ‘my’ subs on scope entry, by turning
off the stale flag.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Along with the simple_casefolding and full_casefolding features.
fc() stands for foldcase, a sort of pseudo case (like lowercase),
which is used to implement Unicode casefolding. It maps a string
to a form where all case differences are erased, so it's a
locale-independent way of checking if two strings are the same,
regardless of case.
This functionality was, and still is, available through the
regular expression engine -- /i matches would use casefolding
internally. The fc keyword merely exposes this for easier access.
Previously, one could attempt to case-insensitively test two strings
for equality by doing
lc($a) eq lc($b)
But that might get you wrong results, for example in the case of
\x{DF}, LATIN SMALL LETTER SHARP S.
|
|
|
|
|
| |
After much alternation, altercation and alteration, __SUB__ is
finally here.
|
|
|
|
|
|
|
|
|
|
| |
This stops PL_curstash from pointing to a freed-and-reused scalar in
cases like ‘package Foo; BEGIN {*Foo:: = *Bar::}’.
In such cases, another BEGIN block, or any subroutine definition,
would cause a crash. Now it just happily proceeds. newATTRSUB and
newXS have been modified not to call mro_method_changed_in in such
cases, as it doesn’t make sense.
|
|
|
|
| |
&CORE::foo subs will use this operator for sorting out @_.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
6a077020aea1c5f0 extended the OP_AELEMFAST optimisation to lexical arrays.
Previously OP_AELEMFAST was only used as an optimisation for OP_GV, which is a
PADOP/SVOP.
However, by reusing the same opcode, and signalling (pad) lexical vs package,
it introduced a myriad of special cases, because OP_PADAV is a BASEOP (not a
PADOP), whilst OP_AELEMFAST is a PADOP/SVOP (which is larger).
Using two OP numbers allows each variant to have the correct OP flags in
PL_opargs. Both can continue to share the same C code.
|
|
|
|
|
|
|
|
|
| |
# New Ticket Created by (Peter J. Acklam)
# Please include the string: [perl #81882]
# in the subject line of all future correspondence about this issue.
# <URL: http://rt.perl.org/rt3/Ticket/Display.html?id=81882 >
Signed-off-by: Abigail <abigail@abigail.be>
|
|
|
|
|
| |
Core-only modules that have changed from v5.13.7, and dual-life modules
that have changed from v5.13.7 and didn't show up in earlier passes.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Trivial changes to fix warnings of types
* unclear precedence
* assignment as conditional
* signed/unsigned mixing
* unused parameter/variable
* value computed not used
* wrong argument type for a printf format
* variable may be used uninitialised (due to unhandled switch case)
|
|
|
|
| |
This will fail if there are untagged ops.
|
|
|
|
|
| |
Convert a loop with a die into regular tests. Don't declare lexicals ahead of
use. Don't even declare a lexical @o3, which isn't used.
|
|
|
|
| |
The tests (including the still-TODO) mostly date from 1996.
|
|
|
|
| |
The ops are the recently-introduced reach, rvalues, rkeys and transr.
|
|
|
|
| |
This commit brought to you by the campaign for elimination of strlen().
|
|
|
|
|
|
|
|
|
| |
Change op_names_init() to use memset() rather than a longhand loop, and to
call put_op_bitspec() with an explicit length by using STR_WITH_LEN().
As all calls to put_op_bitspec() now pass in a length, remove the code to call
strlen() if the passed-in length is zero.
This commit brought to you by the campaign for elimination of strlen().
|
| |
|
| |
|
|
|
|
|
|
|
| |
Brought to you by the Campaign for the Elimination of strlen().
(And the elimination of accidental bugs due to typos in lenghts of constants,
and the elimination of abuse of boolean constants for parameters with more than
2 values.)
|
|
|
|
|
|
|
|
|
|
|
| |
Thread was "[PATCH] Make if (%hash) {} act the same as if (keys %hash) {}"
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2006-11/msg00432.html
but the implementation evolved from the approach described in the subject, to
instead add a new opcode pp_boolkeys, to exactly preserve the existing
behaviour.
Various conflicts with the passage of time resolved, 'register' removed, and a
$VERSION bump.
|
|
|
|
|
|
|
|
|
|
|
| |
Inspired by, and in parts borrows from, Schwern's branch on github, but takes a
slightly different approach in places.
Not quite perfect yet - ext/File-Glob still runs from t, at least one FIXME
needs fixing, and the changes to dual-life modules' tests need to be filtered
back upstream, and possibly modified to suit their respective authors.
But it works.
|
| |
|
| |
|
| |
|