From 7d193e396ed9e1516565a568311b86ae5b3466a3 Mon Sep 17 00:00:00 2001 From: Tels Date: Mon, 9 Apr 2007 20:59:22 +0000 Subject: BigInt, FastCalc, BitRat, bignum released to CPAN [PATCH] Message-Id: <200704092059.24058@bloodgate.com> p4raw-id: //depot/perl@30876 --- lib/Math/BigFloat.pm | 258 +++++++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 228 insertions(+), 30 deletions(-) (limited to 'lib/Math/BigFloat.pm') diff --git a/lib/Math/BigFloat.pm b/lib/Math/BigFloat.pm index f569036459..1242a37813 100644 --- a/lib/Math/BigFloat.pm +++ b/lib/Math/BigFloat.pm @@ -12,7 +12,7 @@ package Math::BigFloat; # _a : accuracy # _p : precision -$VERSION = '1.53'; +$VERSION = '1.54'; require 5.006002; require Exporter; @@ -89,7 +89,7 @@ sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); } BEGIN { - # when someone set's $rnd_mode, we catch this and check the value to see + # when someone sets $rnd_mode, we catch this and check the value to see # whether it is valid or not. $rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat'; @@ -103,8 +103,8 @@ BEGIN # valid method aliases for AUTOLOAD my %methods = map { $_ => 1 } qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm - fint facmp fcmp fzero fnan finf finc fdec flog ffac fneg - fceil ffloor frsft flsft fone flog froot + fint facmp fcmp fzero fnan finf finc fdec ffac fneg + fceil ffloor frsft flsft fone flog froot fexp /; # valid methods that can be handed up (for AUTOLOAD) my %hand_ups = map { $_ => 1 } @@ -812,6 +812,7 @@ sub blog local $Math::BigFloat::downgrade = undef; # upgrade $x if $x is not a BigFloat (handle BigInt input) + # XXX TODO: rebless! if (!$x->isa('Math::BigFloat')) { $x = Math::BigFloat->new($x); @@ -844,7 +845,8 @@ sub blog if ($done == 0) { - # first calculate the log to base e (using reduction by 10 (and probably 2)) + # base is undef, so base should be e (Euler's number), so first calculate the + # log to base e (using reduction by 10 (and probably 2)): $self->_log_10($x,$scale); # and if a different base was requested, convert it @@ -876,6 +878,153 @@ sub blog $x; } +sub bexp + { + # Calculate e ** X (Euler's constant to the power of X) + my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); + + return $x->binf() if $x->{sign} eq '+inf'; + return $x->bzero() if $x->{sign} eq '-inf'; + + # we need to limit the accuracy to protect against overflow + my $fallback = 0; + my ($scale,@params); + ($x,@params) = $x->_find_round_parameters($a,$p,$r); + + # also takes care of the "error in _find_round_parameters?" case + return $x if $x->{sign} eq 'NaN'; + + # no rounding at all, so must use fallback + if (scalar @params == 0) + { + # simulate old behaviour + $params[0] = $self->div_scale(); # and round to it as accuracy + $params[1] = undef; # P = undef + $scale = $params[0]+4; # at least four more for proper round + $params[2] = $r; # round mode by caller or undef + $fallback = 1; # to clear a/p afterwards + } + else + { + # the 4 below is empirical, and there might be cases where it's not enough... + $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined + } + + return $x->bone(@params) if $x->is_zero(); + + if (!$x->isa('Math::BigFloat')) + { + $x = Math::BigFloat->new($x); + $self = ref($x); + } + + # when user set globals, they would interfere with our calculation, so + # disable them and later re-enable them + no strict 'refs'; + my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef; + my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef; + # we also need to disable any set A or P on $x (_find_round_parameters took + # them already into account), since these would interfere, too + delete $x->{_a}; delete $x->{_p}; + # need to disable $upgrade in BigInt, to avoid deep recursion + local $Math::BigInt::upgrade = undef; + local $Math::BigFloat::downgrade = undef; + + my $x_org = $x->copy(); + delete $x_org->{_a}; delete $x_org->{_p}; + + # We use the following Taylor series: + + # x x^2 x^3 x^4 + # e = 1 + --- + --- + --- + --- ... + # 1! 2! 3! 4! + + # The difference for each term is X and N, which would result in: + # 2 copy, 2 mul, 2 add, 1 inc, 1 div operations per term + + # But it is faster to compute exp(1) and then raising it to the + # given power, esp. if $x is really big and an integer because: + + # * The numerator is always 1, making the computation faster + # * the series converges faster in the case of x == 1 + # * We can also easily check when we have reached our limit: when the + # term to be added is smaller than "1E$scale", we can stop - f.i. + # scale == 5, and we have 1/40320, then we stop since 1/40320 < 1E-5. + # * we can compute the *exact* result by simulating bigrat math: + + # 1 1 gcd(3,4) = 1 1*24 + 1*6 5 + # - + - = ---------- = -- + # 6 24 6*24 24 + + # We do not compute the gcd() here, but simple do: + # 1 1 1*24 + 1*6 30 + # - + - = --------- = -- + # 6 24 6*24 144 + + # In general: + # a c a*d + c*b and note that c is always 1 and d = (b*f) + # - + - = --------- + # b d b*d + + # This leads to: which can be reduced by b to: + # a 1 a*b*f + b a*f + 1 + # - + - = --------- = ------- + # b b*f b*b*f b*f + + # The first terms in the series are: + + # 1 1 1 1 1 1 1 1 13700 + # -- + -- + -- + -- + -- + --- + --- + ---- = ----- + # 1 1 2 6 24 120 720 5040 5040 + + # Note that we cannot simple reduce 13700/5040 to 685/252. + + # So we start with A / B = 13490 / 5040 and F = 8 + my $A = $MBI->_new(13700); + my $B = $MBI->_new(5040); + my $F = $MBI->_new(8); + + # Code based on big rational math: + my $limit = $MBI->_new('1' . '0' x ($scale - 2)); # scale=5 => 100000 + + # while $B is not yet too big (making 1/$B too small) + while ($MBI->_acmp($B,$limit) < 0) + { + # calculate $a * $f + 1 + $A = $MBI->_mul($A, $F); + $A = $MBI->_inc($A); + # calculate $b * $f + $B = $MBI->_mul($B, $F); + # increment f + $F = $MBI->_inc($F); + } + + $x = $self->new($MBI->_str($A))->bdiv($MBI->_str($B), $scale); + + delete $x->{_a}; delete $x->{_p}; + # raise $x to the wanted power + $x->bpow($x_org, $scale) unless $x_org->is_one(); + + # shortcut to not run through _find_round_parameters again + if (defined $params[0]) + { + $x->bround($params[0],$params[2]); # then round accordingly + } + else + { + $x->bfround($params[1],$params[2]); # then round accordingly + } + if ($fallback) + { + # clear a/p after round, since user did not request it + delete $x->{_a}; delete $x->{_p}; + } + # restore globals + $$abr = $ab; $$pbr = $pb; + + $x; # return modified $x + } + sub _log { # internal log function to calculate ln() based on Taylor series. @@ -885,6 +1034,8 @@ sub _log # in case of $x == 1, result is 0 return $x->bzero() if $x->is_one(); + # XXX TODO: rewrite this in a similiar manner to bexp() + # http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log # u = x-1, v = x+1 @@ -931,7 +1082,7 @@ sub _log # if we truncated $over and $below we might get 0.12345. Does this matter # for the end result? So we give $over and $below 4 more digits to be # on the safe side (unscientific error handling as usual... :+D - + $next = $over->copy->bround($scale+4)->bdiv( $below->copy->bmul($factor)->bround($scale+4), $scale); @@ -950,8 +1101,8 @@ sub _log $steps++; print "step $steps = $x\n" if $steps % 10 == 0; } } - $x->bmul($f); # $x *= 2 print "took $steps steps\n" if DEBUG; + $x->bmul($f); # $x *= 2 } sub _log_10 @@ -960,19 +1111,27 @@ sub _log_10 # and then "correcting" the result to the proper one. Modifies $x in place. my ($self,$x,$scale) = @_; - # taking blog() from numbers greater than 10 takes a *very long* time, so we + # Taking blog() from numbers greater than 10 takes a *very long* time, so we # break the computation down into parts based on the observation that: - # blog(x*y) = blog(x) + blog(y) - # We set $y here to multiples of 10 so that $x is below 1 (the smaller $x is - # the faster it get's, especially because 2*$x takes about 10 times as long, - # so by dividing $x by 10 we make it at least factor 100 faster...) - - # The same observation is valid for numbers smaller than 0.1 (e.g. computing - # log(1) is fastest, and the farther away we get from 1, the longer it takes) - # so we also 'break' this down by multiplying $x with 10 and subtract the + # blog(X*Y) = blog(X) + blog(Y) + # We set Y here to multiples of 10 so that $x becomes below 1 - the smaller + # $x is the faster it gets. Since 2*$x takes about 10 times as + # long, we make it faster by about a factor of 100 by dividing $x by 10. + + # The same observation is valid for numbers smaller than 0.1, e.g. computing + # log(1) is fastest, and the further away we get from 1, the longer it takes. + # So we also 'break' this down by multiplying $x with 10 and subtract the # log(10) afterwards to get the correct result. - # calculate nr of digits before dot + # To get $x even closer to 1, we also divide by 2 and then use log(2) to + # correct for this. For instance if $x is 2.4, we use the formula: + # blog(2.4 * 2) == blog (1.2) + blog(2) + # and thus calculate only blog(1.2) and blog(2), which is faster in total + # than calculating blog(2.4). + + # In addition, the values for blog(2) and blog(10) are cached. + + # Calculate nr of digits before dot: my $dbd = $MBI->_num($x->{_e}); $dbd = -$dbd if $x->{_es} eq '-'; $dbd += $MBI->_len($x->{_m}); @@ -990,9 +1149,10 @@ sub _log_10 # we can use the cached value in these cases if ($scale <= $LOG_10_A) { - $x->bzero(); $x->badd($LOG_10); + $x->bzero(); $x->badd($LOG_10); # modify $x in place $calc = 0; # no need to calc, but round } + # if we can't use the shortcut, we continue normally } else { @@ -1003,9 +1163,10 @@ sub _log_10 # we can use the cached value in these cases if ($scale <= $LOG_2_A) { - $x->bzero(); $x->badd($LOG_2); + $x->bzero(); $x->badd($LOG_2); # modify $x in place $calc = 0; # no need to calc, but round } + # if we can't use the shortcut, we continue normally } } @@ -1028,6 +1189,8 @@ sub _log_10 my $l_10; # value of ln(10) to A of $scale my $l_2; # value of ln(2) to A of $scale + my $two = $self->new(2); + # $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1 # so don't do this shortcut for 1 or 0 if (($dbd > 1) || ($dbd < 0)) @@ -1049,10 +1212,40 @@ sub _log_10 } else { - # else: slower, compute it (but don't cache it, because it could be big) + # else: slower, compute and cache result # also disable downgrade for this code path local $Math::BigFloat::downgrade = undef; - $l_10 = $self->new(10)->blog(undef,$scale); # scale+4, actually + + # shorten the time to calculate log(10) based on the following: + # log(1.25 * 8) = log(1.25) + log(8) + # = log(1.25) + log(2) + log(2) + log(2) + + # first get $l_2 (and possible compute and cache log(2)) + $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2; + if ($scale <= $LOG_2_A) + { + # use cached value + $l_2 = $LOG_2->copy(); # copy() for the mul below + } + else + { + # else: slower, compute and cache result + $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually + $LOG_2 = $l_2->copy(); # cache the result for later + # the copy() is for mul below + $LOG_2_A = $scale; + } + + # now calculate log(1.25): + $l_10 = $self->new('1.25'); $self->_log($l_10, $scale); # scale+4, actually + + # log(1.25) + log(2) + log(2) + log(2): + $l_10->badd($l_2); + $l_10->badd($l_2); + $l_10->badd($l_2); + $LOG_10 = $l_10->copy(); # cache the result for later + # the copy() is for mul below + $LOG_10_A = $scale; } $dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1 $l_10->bmul( $self->new($dbd)); # log(10) * (digits_before_dot-1) @@ -1075,31 +1268,33 @@ sub _log_10 $HALF = $self->new($HALF) unless ref($HALF); my $twos = 0; # default: none (0 times) - my $two = $self->new(2); - while ($x->bacmp($HALF) <= 0) + while ($x->bacmp($HALF) <= 0) # X <= 0.5 { $twos--; $x->bmul($two); } - while ($x->bacmp($two) >= 0) + while ($x->bacmp($two) >= 0) # X >= 2 { $twos++; $x->bdiv($two,$scale+4); # keep all digits } - # $twos > 0 => did mul 2, < 0 => did div 2 (never both) - # calculate correction factor based on ln(2) + # $twos > 0 => did mul 2, < 0 => did div 2 (but we never did both) + # So calculate correction factor based on ln(2): if ($twos != 0) { $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2; if ($scale <= $LOG_2_A) { # use cached value - $l_2 = $LOG_2->copy(); # copy for mul + $l_2 = $LOG_2->copy(); # copy() for the mul below } else { - # else: slower, compute it (but don't cache it, because it could be big) + # else: slower, compute and cache result # also disable downgrade for this code path local $Math::BigFloat::downgrade = undef; - $l_2 = $two->blog(undef,$scale); # scale+4, actually + $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually + $LOG_2 = $l_2->copy(); # cache the result for later + # the copy() is for mul below + $LOG_2_A = $scale; } $l_2->bmul($twos); # * -2 => subtract, * 2 => add } @@ -1107,7 +1302,9 @@ sub _log_10 $self->_log($x,$scale); # need to do the "normal" way $x->badd($l_10) if defined $l_10; # correct it by ln(10) $x->badd($l_2) if defined $l_2; # and maybe by ln(2) + # all done, $x contains now the result + $x; } sub blcm @@ -1919,7 +2116,7 @@ sub _pow { # we calculate the next term, and add it to the last # when the next term is below our limit, it won't affect the outcome - # anymore, so we stop + # anymore, so we stop: $next = $over->copy()->bdiv($below,$scale); last if $next->bacmp($limit) <= 0; $x->badd($next); @@ -2627,6 +2824,7 @@ Math::BigFloat - Arbitrary size floating point math package $x->blog(); # logarithm of $x to base e (Euler's number) $x->blog($base); # logarithm of $x to base $base (f.i. 2) + $x->bexp(); # calculate e ** $x where e is Euler's number $x->band($y); # bit-wise and $x->bior($y); # bit-wise inclusive or -- cgit v1.2.1