/* av.c * * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * "...for the Entwives desired order, and plenty, and peace (by which they * meant that things should remain where they had set them)." --Treebeard */ /* =head1 Array Manipulation Functions */ #include "EXTERN.h" #define PERL_IN_AV_C #include "perl.h" void Perl_av_reify(pTHX_ AV *av) { dVAR; I32 key; PERL_ARGS_ASSERT_AV_REIFY; if (AvREAL(av)) return; #ifdef DEBUGGING if (SvTIED_mg((SV*)av, PERL_MAGIC_tied) && ckWARN_d(WARN_DEBUGGING)) Perl_warner(aTHX_ packWARN(WARN_DEBUGGING), "av_reify called on tied array"); #endif key = AvMAX(av) + 1; while (key > AvFILLp(av) + 1) AvARRAY(av)[--key] = &PL_sv_undef; while (key) { SV * const sv = AvARRAY(av)[--key]; assert(sv); if (sv != &PL_sv_undef) SvREFCNT_inc_simple_void_NN(sv); } key = AvARRAY(av) - AvALLOC(av); while (key) AvALLOC(av)[--key] = &PL_sv_undef; AvREIFY_off(av); AvREAL_on(av); } /* =for apidoc av_extend Pre-extend an array. The C is the index to which the array should be extended. =cut */ void Perl_av_extend(pTHX_ AV *av, I32 key) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_EXTEND; mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied); if (mg) { dSP; ENTER; SAVETMPS; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); EXTEND(SP,2); PUSHs(SvTIED_obj((SV*)av, mg)); mPUSHi(key + 1); PUTBACK; call_method("EXTEND", G_SCALAR|G_DISCARD); POPSTACK; FREETMPS; LEAVE; return; } if (key > AvMAX(av)) { SV** ary; I32 tmp; I32 newmax; if (AvALLOC(av) != AvARRAY(av)) { ary = AvALLOC(av) + AvFILLp(av) + 1; tmp = AvARRAY(av) - AvALLOC(av); Move(AvARRAY(av), AvALLOC(av), AvFILLp(av)+1, SV*); AvMAX(av) += tmp; AvARRAY(av) = AvALLOC(av); if (AvREAL(av)) { while (tmp) ary[--tmp] = &PL_sv_undef; } if (key > AvMAX(av) - 10) { newmax = key + AvMAX(av); goto resize; } } else { #ifdef PERL_MALLOC_WRAP static const char oom_array_extend[] = "Out of memory during array extend"; /* Duplicated in pp_hot.c */ #endif if (AvALLOC(av)) { #if !defined(STRANGE_MALLOC) && !defined(MYMALLOC) MEM_SIZE bytes; IV itmp; #endif #ifdef Perl_safesysmalloc_size /* Whilst it would be quite possible to move this logic around (as I did in the SV code), so as to set AvMAX(av) early, based on calling Perl_safesysmalloc_size() immediately after allocation, I'm not convinced that it is a great idea here. In an array we have to loop round setting everything to &PL_sv_undef, which means writing to memory, potentially lots of it, whereas for the SV buffer case we don't touch the "bonus" memory. So there there is no cost in telling the world about it, whereas here we have to do work before we can tell the world about it, and that work involves writing to memory that might never be read. So, I feel, better to keep the current lazy system of only writing to it if our caller has a need for more space. NWC */ newmax = Perl_safesysmalloc_size((void*)AvALLOC(av)) / sizeof(SV*) - 1; if (key <= newmax) goto resized; #endif newmax = key + AvMAX(av) / 5; resize: MEM_WRAP_CHECK_1(newmax+1, SV*, oom_array_extend); #if defined(STRANGE_MALLOC) || defined(MYMALLOC) Renew(AvALLOC(av),newmax+1, SV*); #else bytes = (newmax + 1) * sizeof(SV*); #define MALLOC_OVERHEAD 16 itmp = MALLOC_OVERHEAD; while ((MEM_SIZE)(itmp - MALLOC_OVERHEAD) < bytes) itmp += itmp; itmp -= MALLOC_OVERHEAD; itmp /= sizeof(SV*); assert(itmp > newmax); newmax = itmp - 1; assert(newmax >= AvMAX(av)); Newx(ary, newmax+1, SV*); Copy(AvALLOC(av), ary, AvMAX(av)+1, SV*); if (AvMAX(av) > 64) offer_nice_chunk(AvALLOC(av), (AvMAX(av)+1) * sizeof(SV*)); else Safefree(AvALLOC(av)); AvALLOC(av) = ary; #endif #ifdef Perl_safesysmalloc_size resized: #endif ary = AvALLOC(av) + AvMAX(av) + 1; tmp = newmax - AvMAX(av); if (av == PL_curstack) { /* Oops, grew stack (via av_store()?) */ PL_stack_sp = AvALLOC(av) + (PL_stack_sp - PL_stack_base); PL_stack_base = AvALLOC(av); PL_stack_max = PL_stack_base + newmax; } } else { newmax = key < 3 ? 3 : key; MEM_WRAP_CHECK_1(newmax+1, SV*, oom_array_extend); Newx(AvALLOC(av), newmax+1, SV*); ary = AvALLOC(av) + 1; tmp = newmax; AvALLOC(av)[0] = &PL_sv_undef; /* For the stacks */ } if (AvREAL(av)) { while (tmp) ary[--tmp] = &PL_sv_undef; } AvARRAY(av) = AvALLOC(av); AvMAX(av) = newmax; } } } /* =for apidoc av_fetch Returns the SV at the specified index in the array. The C is the index. If C is set then the fetch will be part of a store. Check that the return value is non-null before dereferencing it to a C. See L for more information on how to use this function on tied arrays. =cut */ SV** Perl_av_fetch(pTHX_ register AV *av, I32 key, I32 lval) { dVAR; PERL_ARGS_ASSERT_AV_FETCH; if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((SV*)av, PERL_MAGIC_tied); if (tied_magic || mg_find((SV*)av, PERL_MAGIC_regdata)) { SV *sv; if (key < 0) { I32 adjust_index = 1; if (tied_magic) { /* Handle negative array indices 20020222 MJD */ SV * const * const negative_indices_glob = hv_fetch(SvSTASH(SvRV(SvTIED_obj((SV *)av, tied_magic))), NEGATIVE_INDICES_VAR, 16, 0); if (negative_indices_glob && SvTRUE(GvSV(*negative_indices_glob))) adjust_index = 0; } if (adjust_index) { key += AvFILL(av) + 1; if (key < 0) return NULL; } } sv = sv_newmortal(); sv_upgrade(sv, SVt_PVLV); mg_copy((SV*)av, sv, 0, key); LvTYPE(sv) = 't'; LvTARG(sv) = sv; /* fake (SV**) */ return &(LvTARG(sv)); } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return NULL; } if (key > AvFILLp(av)) { if (!lval) return NULL; return av_store(av,key,newSV(0)); } if (AvARRAY(av)[key] == &PL_sv_undef) { emptyness: if (lval) return av_store(av,key,newSV(0)); return NULL; } else if (AvREIFY(av) && (!AvARRAY(av)[key] /* eg. @_ could have freed elts */ || SvIS_FREED(AvARRAY(av)[key]))) { AvARRAY(av)[key] = &PL_sv_undef; /* 1/2 reify */ goto emptyness; } return &AvARRAY(av)[key]; } /* =for apidoc av_store Stores an SV in an array. The array index is specified as C. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the array (as in the case of tied arrays). Otherwise it can be dereferenced to get the original C. Note that the caller is responsible for suitably incrementing the reference count of C before the call, and decrementing it if the function returned NULL. See L for more information on how to use this function on tied arrays. =cut */ SV** Perl_av_store(pTHX_ register AV *av, I32 key, SV *val) { dVAR; SV** ary; PERL_ARGS_ASSERT_AV_STORE; /* S_regclass relies on being able to pass in a NULL sv (unicode_alternate may be NULL). */ if (!val) val = &PL_sv_undef; if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((SV*)av, PERL_MAGIC_tied); if (tied_magic) { /* Handle negative array indices 20020222 MJD */ if (key < 0) { bool adjust_index = 1; SV * const * const negative_indices_glob = hv_fetch(SvSTASH(SvRV(SvTIED_obj((SV *)av, tied_magic))), NEGATIVE_INDICES_VAR, 16, 0); if (negative_indices_glob && SvTRUE(GvSV(*negative_indices_glob))) adjust_index = 0; if (adjust_index) { key += AvFILL(av) + 1; if (key < 0) return 0; } } if (val != &PL_sv_undef) { mg_copy((SV*)av, val, 0, key); } return NULL; } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return NULL; } if (SvREADONLY(av) && key >= AvFILL(av)) Perl_croak(aTHX_ PL_no_modify); if (!AvREAL(av) && AvREIFY(av)) av_reify(av); if (key > AvMAX(av)) av_extend(av,key); ary = AvARRAY(av); if (AvFILLp(av) < key) { if (!AvREAL(av)) { if (av == PL_curstack && key > PL_stack_sp - PL_stack_base) PL_stack_sp = PL_stack_base + key; /* XPUSH in disguise */ do { ary[++AvFILLp(av)] = &PL_sv_undef; } while (AvFILLp(av) < key); } AvFILLp(av) = key; } else if (AvREAL(av)) SvREFCNT_dec(ary[key]); ary[key] = val; if (SvSMAGICAL(av)) { const MAGIC* const mg = SvMAGIC(av); if (val != &PL_sv_undef) { sv_magic(val, (SV*)av, toLOWER(mg->mg_type), 0, key); } if (PL_delaymagic && mg->mg_type == PERL_MAGIC_isa) PL_delaymagic |= DM_ARRAY; else mg_set((SV*)av); } return &ary[key]; } /* =for apidoc av_make Creates a new AV and populates it with a list of SVs. The SVs are copied into the array, so they may be freed after the call to av_make. The new AV will have a reference count of 1. =cut */ AV * Perl_av_make(pTHX_ register I32 size, register SV **strp) { register AV * const av = (AV*)newSV_type(SVt_PVAV); /* sv_upgrade does AvREAL_only() */ PERL_ARGS_ASSERT_AV_MAKE; if (size) { /* "defined" was returning undef for size==0 anyway. */ register SV** ary; register I32 i; Newx(ary,size,SV*); AvALLOC(av) = ary; AvARRAY(av) = ary; AvFILLp(av) = AvMAX(av) = size - 1; for (i = 0; i < size; i++) { assert (*strp); ary[i] = newSV(0); sv_setsv(ary[i], *strp); strp++; } } return av; } /* =for apidoc av_clear Clears an array, making it empty. Does not free the memory used by the array itself. =cut */ void Perl_av_clear(pTHX_ register AV *av) { dVAR; I32 extra; PERL_ARGS_ASSERT_AV_CLEAR; #ifdef DEBUGGING if (SvREFCNT(av) == 0 && ckWARN_d(WARN_DEBUGGING)) { Perl_warner(aTHX_ packWARN(WARN_DEBUGGING), "Attempt to clear deleted array"); } #endif if (SvREADONLY(av)) Perl_croak(aTHX_ PL_no_modify); /* Give any tie a chance to cleanup first */ if (SvRMAGICAL(av)) { const MAGIC* const mg = SvMAGIC(av); if (PL_delaymagic && mg->mg_type == PERL_MAGIC_isa) PL_delaymagic |= DM_ARRAY; else mg_clear((SV*)av); } if (AvMAX(av) < 0) return; if (AvREAL(av)) { SV** const ary = AvARRAY(av); I32 index = AvFILLp(av) + 1; while (index) { SV * const sv = ary[--index]; /* undef the slot before freeing the value, because a * destructor might try to modify this array */ ary[index] = &PL_sv_undef; SvREFCNT_dec(sv); } } extra = AvARRAY(av) - AvALLOC(av); if (extra) { AvMAX(av) += extra; AvARRAY(av) = AvALLOC(av); } AvFILLp(av) = -1; } /* =for apidoc av_undef Undefines the array. Frees the memory used by the array itself. =cut */ void Perl_av_undef(pTHX_ register AV *av) { PERL_ARGS_ASSERT_AV_UNDEF; /* Give any tie a chance to cleanup first */ if (SvTIED_mg((SV*)av, PERL_MAGIC_tied)) av_fill(av, -1); if (AvREAL(av)) { register I32 key = AvFILLp(av) + 1; while (key) SvREFCNT_dec(AvARRAY(av)[--key]); } Safefree(AvALLOC(av)); AvALLOC(av) = NULL; AvARRAY(av) = NULL; AvMAX(av) = AvFILLp(av) = -1; if(SvRMAGICAL(av)) mg_clear((SV*)av); } /* =for apidoc av_create_and_push Push an SV onto the end of the array, creating the array if necessary. A small internal helper function to remove a commonly duplicated idiom. =cut */ void Perl_av_create_and_push(pTHX_ AV **const avp, SV *const val) { PERL_ARGS_ASSERT_AV_CREATE_AND_PUSH; if (!*avp) *avp = newAV(); av_push(*avp, val); } /* =for apidoc av_push Pushes an SV onto the end of the array. The array will grow automatically to accommodate the addition. =cut */ void Perl_av_push(pTHX_ register AV *av, SV *val) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_PUSH; if (SvREADONLY(av)) Perl_croak(aTHX_ PL_no_modify); if ((mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied))) { dSP; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); EXTEND(SP,2); PUSHs(SvTIED_obj((SV*)av, mg)); PUSHs(val); PUTBACK; ENTER; call_method("PUSH", G_SCALAR|G_DISCARD); LEAVE; POPSTACK; return; } av_store(av,AvFILLp(av)+1,val); } /* =for apidoc av_pop Pops an SV off the end of the array. Returns C<&PL_sv_undef> if the array is empty. =cut */ SV * Perl_av_pop(pTHX_ register AV *av) { dVAR; SV *retval; MAGIC* mg; PERL_ARGS_ASSERT_AV_POP; if (SvREADONLY(av)) Perl_croak(aTHX_ PL_no_modify); if ((mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied))) { dSP; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); XPUSHs(SvTIED_obj((SV*)av, mg)); PUTBACK; ENTER; if (call_method("POP", G_SCALAR)) { retval = newSVsv(*PL_stack_sp--); } else { retval = &PL_sv_undef; } LEAVE; POPSTACK; return retval; } if (AvFILL(av) < 0) return &PL_sv_undef; retval = AvARRAY(av)[AvFILLp(av)]; AvARRAY(av)[AvFILLp(av)--] = &PL_sv_undef; if (SvSMAGICAL(av)) mg_set((SV*)av); return retval; } /* =for apidoc av_create_and_unshift_one Unshifts an SV onto the beginning of the array, creating the array if necessary. A small internal helper function to remove a commonly duplicated idiom. =cut */ SV ** Perl_av_create_and_unshift_one(pTHX_ AV **const avp, SV *const val) { PERL_ARGS_ASSERT_AV_CREATE_AND_UNSHIFT_ONE; if (!*avp) *avp = newAV(); av_unshift(*avp, 1); return av_store(*avp, 0, val); } /* =for apidoc av_unshift Unshift the given number of C values onto the beginning of the array. The array will grow automatically to accommodate the addition. You must then use C to assign values to these new elements. =cut */ void Perl_av_unshift(pTHX_ register AV *av, register I32 num) { dVAR; register I32 i; MAGIC* mg; PERL_ARGS_ASSERT_AV_UNSHIFT; if (SvREADONLY(av)) Perl_croak(aTHX_ PL_no_modify); if ((mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied))) { dSP; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); EXTEND(SP,1+num); PUSHs(SvTIED_obj((SV*)av, mg)); while (num-- > 0) { PUSHs(&PL_sv_undef); } PUTBACK; ENTER; call_method("UNSHIFT", G_SCALAR|G_DISCARD); LEAVE; POPSTACK; return; } if (num <= 0) return; if (!AvREAL(av) && AvREIFY(av)) av_reify(av); i = AvARRAY(av) - AvALLOC(av); if (i) { if (i > num) i = num; num -= i; AvMAX(av) += i; AvFILLp(av) += i; AvARRAY(av) = AvARRAY(av) - i; } if (num) { register SV **ary; const I32 i = AvFILLp(av); /* Create extra elements */ const I32 slide = i > 0 ? i : 0; num += slide; av_extend(av, i + num); AvFILLp(av) += num; ary = AvARRAY(av); Move(ary, ary + num, i + 1, SV*); do { ary[--num] = &PL_sv_undef; } while (num); /* Make extra elements into a buffer */ AvMAX(av) -= slide; AvFILLp(av) -= slide; AvARRAY(av) = AvARRAY(av) + slide; } } /* =for apidoc av_shift Shifts an SV off the beginning of the array. =cut */ SV * Perl_av_shift(pTHX_ register AV *av) { dVAR; SV *retval; MAGIC* mg; PERL_ARGS_ASSERT_AV_SHIFT; if (SvREADONLY(av)) Perl_croak(aTHX_ PL_no_modify); if ((mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied))) { dSP; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); XPUSHs(SvTIED_obj((SV*)av, mg)); PUTBACK; ENTER; if (call_method("SHIFT", G_SCALAR)) { retval = newSVsv(*PL_stack_sp--); } else { retval = &PL_sv_undef; } LEAVE; POPSTACK; return retval; } if (AvFILL(av) < 0) return &PL_sv_undef; retval = *AvARRAY(av); if (AvREAL(av)) *AvARRAY(av) = &PL_sv_undef; AvARRAY(av) = AvARRAY(av) + 1; AvMAX(av)--; AvFILLp(av)--; if (SvSMAGICAL(av)) mg_set((SV*)av); return retval; } /* =for apidoc av_len Returns the highest index in the array. The number of elements in the array is C. Returns -1 if the array is empty. =cut */ I32 Perl_av_len(pTHX_ register const AV *av) { PERL_ARGS_ASSERT_AV_LEN; return AvFILL(av); } /* =for apidoc av_fill Set the highest index in the array to the given number, equivalent to Perl's C<$#array = $fill;>. The number of elements in the an array will be C after av_fill() returns. If the array was previously shorter then the additional elements appended are set to C. If the array was longer, then the excess elements are freed. C is the same as C. =cut */ void Perl_av_fill(pTHX_ register AV *av, I32 fill) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_AV_FILL; if (fill < 0) fill = -1; if ((mg = SvTIED_mg((SV*)av, PERL_MAGIC_tied))) { dSP; ENTER; SAVETMPS; PUSHSTACKi(PERLSI_MAGIC); PUSHMARK(SP); EXTEND(SP,2); PUSHs(SvTIED_obj((SV*)av, mg)); mPUSHi(fill + 1); PUTBACK; call_method("STORESIZE", G_SCALAR|G_DISCARD); POPSTACK; FREETMPS; LEAVE; return; } if (fill <= AvMAX(av)) { I32 key = AvFILLp(av); SV** const ary = AvARRAY(av); if (AvREAL(av)) { while (key > fill) { SvREFCNT_dec(ary[key]); ary[key--] = &PL_sv_undef; } } else { while (key < fill) ary[++key] = &PL_sv_undef; } AvFILLp(av) = fill; if (SvSMAGICAL(av)) mg_set((SV*)av); } else (void)av_store(av,fill,&PL_sv_undef); } /* =for apidoc av_delete Deletes the element indexed by C from the array. Returns the deleted element. If C equals C, the element is freed and null is returned. =cut */ SV * Perl_av_delete(pTHX_ AV *av, I32 key, I32 flags) { dVAR; SV *sv; PERL_ARGS_ASSERT_AV_DELETE; if (SvREADONLY(av)) Perl_croak(aTHX_ PL_no_modify); if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((SV*)av, PERL_MAGIC_tied); if ((tied_magic || mg_find((SV*)av, PERL_MAGIC_regdata))) { /* Handle negative array indices 20020222 MJD */ SV **svp; if (key < 0) { unsigned adjust_index = 1; if (tied_magic) { SV * const * const negative_indices_glob = hv_fetch(SvSTASH(SvRV(SvTIED_obj((SV *)av, tied_magic))), NEGATIVE_INDICES_VAR, 16, 0); if (negative_indices_glob && SvTRUE(GvSV(*negative_indices_glob))) adjust_index = 0; } if (adjust_index) { key += AvFILL(av) + 1; if (key < 0) return NULL; } } svp = av_fetch(av, key, TRUE); if (svp) { sv = *svp; mg_clear(sv); if (mg_find(sv, PERL_MAGIC_tiedelem)) { sv_unmagic(sv, PERL_MAGIC_tiedelem); /* No longer an element */ return sv; } return NULL; } } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return NULL; } if (key > AvFILLp(av)) return NULL; else { if (!AvREAL(av) && AvREIFY(av)) av_reify(av); sv = AvARRAY(av)[key]; if (key == AvFILLp(av)) { AvARRAY(av)[key] = &PL_sv_undef; do { AvFILLp(av)--; } while (--key >= 0 && AvARRAY(av)[key] == &PL_sv_undef); } else AvARRAY(av)[key] = &PL_sv_undef; if (SvSMAGICAL(av)) mg_set((SV*)av); } if (flags & G_DISCARD) { SvREFCNT_dec(sv); sv = NULL; } else if (AvREAL(av)) sv = sv_2mortal(sv); return sv; } /* =for apidoc av_exists Returns true if the element indexed by C has been initialized. This relies on the fact that uninitialized array elements are set to C<&PL_sv_undef>. =cut */ bool Perl_av_exists(pTHX_ AV *av, I32 key) { dVAR; PERL_ARGS_ASSERT_AV_EXISTS; if (SvRMAGICAL(av)) { const MAGIC * const tied_magic = mg_find((SV*)av, PERL_MAGIC_tied); if (tied_magic || mg_find((SV*)av, PERL_MAGIC_regdata)) { SV * const sv = sv_newmortal(); MAGIC *mg; /* Handle negative array indices 20020222 MJD */ if (key < 0) { unsigned adjust_index = 1; if (tied_magic) { SV * const * const negative_indices_glob = hv_fetch(SvSTASH(SvRV(SvTIED_obj((SV *)av, tied_magic))), NEGATIVE_INDICES_VAR, 16, 0); if (negative_indices_glob && SvTRUE(GvSV(*negative_indices_glob))) adjust_index = 0; } if (adjust_index) { key += AvFILL(av) + 1; if (key < 0) return FALSE; } } mg_copy((SV*)av, sv, 0, key); mg = mg_find(sv, PERL_MAGIC_tiedelem); if (mg) { magic_existspack(sv, mg); return (bool)SvTRUE(sv); } } } if (key < 0) { key += AvFILL(av) + 1; if (key < 0) return FALSE; } if (key <= AvFILLp(av) && AvARRAY(av)[key] != &PL_sv_undef && AvARRAY(av)[key]) { return TRUE; } else return FALSE; } MAGIC * S_get_aux_mg(pTHX_ AV *av) { dVAR; MAGIC *mg; PERL_ARGS_ASSERT_GET_AUX_MG; mg = mg_find((SV*)av, PERL_MAGIC_arylen_p); if (!mg) { mg = sv_magicext((SV*)av, 0, PERL_MAGIC_arylen_p, &PL_vtbl_arylen_p, 0, 0); assert(mg); /* sv_magicext won't set this for us because we pass in a NULL obj */ mg->mg_flags |= MGf_REFCOUNTED; } return mg; } SV ** Perl_av_arylen_p(pTHX_ AV *av) { MAGIC *const mg = get_aux_mg(av); PERL_ARGS_ASSERT_AV_ARYLEN_P; return &(mg->mg_obj); } IV * Perl_av_iter_p(pTHX_ AV *av) { MAGIC *const mg = get_aux_mg(av); PERL_ARGS_ASSERT_AV_ITER_P; #if IVSIZE == I32SIZE return (IV *)&(mg->mg_len); #else if (!mg->mg_ptr) { IV *temp; mg->mg_len = IVSIZE; Newxz(temp, 1, IV); mg->mg_ptr = (char *) temp; } return (IV *)mg->mg_ptr; #endif } /* * Local variables: * c-indentation-style: bsd * c-basic-offset: 4 * indent-tabs-mode: t * End: * * ex: set ts=8 sts=4 sw=4 noet: */