#!/usr/bin/perl -w # The following hash values are internally used: # _e: exponent (BigInt) # _m: mantissa (absolute BigInt) # sign: +,-,"NaN" if not a number # _a: accuracy # _p: precision # _f: flags, used to signal MBI not to touch our private parts package Math::BigFloat; $VERSION = '1.26'; require 5.005; use Exporter; use Math::BigInt qw/objectify/; @ISA = qw( Exporter Math::BigInt); #@EXPORT_OK = qw( # bcmp # badd bmul bdiv bmod bnorm bsub # bgcd blcm bround bfround # bpow bnan bzero bfloor bceil # bacmp bstr binc bdec binf # is_odd is_even is_nan is_inf is_positive is_negative # is_zero is_one sign # ); use strict; use vars qw/$AUTOLOAD $accuracy $precision $div_scale $round_mode $rnd_mode/; my $class = "Math::BigFloat"; use overload '<=>' => sub { $_[2] ? ref($_[0])->bcmp($_[1],$_[0]) : ref($_[0])->bcmp($_[0],$_[1])}, 'int' => sub { $_[0]->as_number() }, # 'trunc' to bigint ; ############################################################################## # global constants, flags and accessory use constant MB_NEVER_ROUND => 0x0001; # are NaNs ok? my $NaNOK=1; # constant for easier life my $nan = 'NaN'; # class constants, use Class->constant_name() to access $round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc' $accuracy = undef; $precision = undef; $div_scale = 40; ############################################################################## # the old code had $rnd_mode, so we need to support it, too $rnd_mode = 'even'; sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; } sub FETCH { return $round_mode; } sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); } BEGIN { tie $rnd_mode, 'Math::BigFloat'; } ############################################################################## # in case we call SUPER::->foo() and this wants to call modify() # sub modify () { 0; } { # valid method aliases for AUTOLOAD my %methods = map { $_ => 1 } qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm fint facmp fcmp fzero fnan finf finc fdec fceil ffloor frsft flsft fone /; # valid method's that need to be hand-ed up (for AUTOLOAD) my %hand_ups = map { $_ => 1 } qw / is_nan is_inf is_negative is_positive accuracy precision div_scale round_mode fneg fabs babs fnot /; sub method_alias { return exists $methods{$_[0]||''}; } sub method_hand_up { return exists $hand_ups{$_[0]||''}; } } ############################################################################## # constructors sub new { # create a new BigFloat object from a string or another bigfloat object. # _e: exponent # _m: mantissa # sign => sign (+/-), or "NaN" my $class = shift; my $wanted = shift; # avoid numify call by not using || here return $class->bzero() if !defined $wanted; # default to 0 return $wanted->copy() if ref($wanted) eq $class; my $round = shift; $round = 0 if !defined $round; # no rounding as default my $self = {}; bless $self, $class; # shortcut for bigints and its subclasses if ((ref($wanted)) && (ref($wanted) ne $class)) { $self->{_m} = $wanted->as_number(); # get us a bigint copy $self->{_e} = Math::BigInt->bzero(); $self->{_m}->babs(); $self->{sign} = $wanted->sign(); return $self->bnorm(); } # got string # handle '+inf', '-inf' first if ($wanted =~ /^[+-]?inf$/) { $self->{_e} = Math::BigInt->bzero(); $self->{_m} = Math::BigInt->bzero(); $self->{sign} = $wanted; $self->{sign} = '+inf' if $self->{sign} eq 'inf'; return $self->bnorm(); } #print "new string '$wanted'\n"; my ($mis,$miv,$mfv,$es,$ev) = Math::BigInt::_split(\$wanted); if (!ref $mis) { die "$wanted is not a number initialized to $class" if !$NaNOK; $self->{_e} = Math::BigInt->bzero(); $self->{_m} = Math::BigInt->bzero(); $self->{sign} = $nan; } else { # make integer from mantissa by adjusting exp, then convert to bigint $self->{_e} = Math::BigInt->new("$$es$$ev"); # exponent $self->{_m} = Math::BigInt->new("$$miv$$mfv"); # create mantissa # 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5 $self->{_e} -= CORE::length($$mfv) if CORE::length($$mfv) != 0; $self->{sign} = $$mis; } #print "$wanted => $self->{sign} $self->{value}\n"; $self->bnorm(); # first normalize # if any of the globals is set, round to them and thus store them insid $self $self->round($accuracy,$precision,$class->round_mode) if defined $accuracy || defined $precision; return $self; } sub bnan { # create a bigfloat 'NaN', if given a BigFloat, set it to 'NaN' my $self = shift; $self = $class if !defined $self; if (!ref($self)) { my $c = $self; $self = {}; bless $self, $c; } $self->{_m} = Math::BigInt->bzero(); $self->{_e} = Math::BigInt->bzero(); $self->{sign} = $nan; ($self->{_a},$self->{_p}) = @_ if @_ > 0; return $self; } sub binf { # create a bigfloat '+-inf', if given a BigFloat, set it to '+-inf' my $self = shift; my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-'; $self = $class if !defined $self; if (!ref($self)) { my $c = $self; $self = {}; bless $self, $c; } $self->{_m} = Math::BigInt->bzero(); $self->{_e} = Math::BigInt->bzero(); $self->{sign} = $sign.'inf'; ($self->{_a},$self->{_p}) = @_ if @_ > 0; return $self; } sub bone { # create a bigfloat '+-1', if given a BigFloat, set it to '+-1' my $self = shift; my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-'; $self = $class if !defined $self; if (!ref($self)) { my $c = $self; $self = {}; bless $self, $c; } $self->{_m} = Math::BigInt->bone(); $self->{_e} = Math::BigInt->bzero(); $self->{sign} = $sign; ($self->{_a},$self->{_p}) = @_ if @_ > 0; return $self; } sub bzero { # create a bigfloat '+0', if given a BigFloat, set it to 0 my $self = shift; $self = $class if !defined $self; if (!ref($self)) { my $c = $self; $self = {}; bless $self, $c; } $self->{_m} = Math::BigInt->bzero(); $self->{_e} = Math::BigInt->bone(); $self->{sign} = '+'; ($self->{_a},$self->{_p}) = @_ if @_ > 0; return $self; } ############################################################################## # string conversation sub bstr { # (ref to BFLOAT or num_str ) return num_str # Convert number from internal format to (non-scientific) string format. # internal format is always normalized (no leading zeros, "-0" => "+0") my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); #my $x = shift; my $class = ref($x) || $x; #$x = $class->new(shift) unless ref($x); #die "Oups! e was $nan" if $x->{_e}->{sign} eq $nan; #die "Oups! m was $nan" if $x->{_m}->{sign} eq $nan; if ($x->{sign} !~ /^[+-]$/) { return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN return 'inf'; # +inf } my $es = '0'; my $len = 1; my $cad = 0; my $dot = '.'; my $not_zero = !$x->is_zero(); if ($not_zero) { $es = $x->{_m}->bstr(); $len = CORE::length($es); if (!$x->{_e}->is_zero()) # { # $es = $x->{sign}.$es if $x->{sign} eq '-'; # } # else { if ($x->{_e}->sign() eq '-') { $dot = ''; if ($x->{_e} <= -$len) { # print "style: 0.xxxx\n"; my $r = $x->{_e}->copy(); $r->babs()->bsub( CORE::length($es) ); $es = '0.'. ('0' x $r) . $es; $cad = -($len+$r); } else { # print "insert '.' at $x->{_e} in '$es'\n"; substr($es,$x->{_e},0) = '.'; $cad = $x->{_e}; } } else { # expand with zeros $es .= '0' x $x->{_e}; $len += $x->{_e}; $cad = 0; } } } # if not zero $es = $x->{sign}.$es if $x->{sign} eq '-'; # if set accuracy or precision, pad with zeros if ((defined $x->{_a}) && ($not_zero)) { # 123400 => 6, 0.1234 => 4, 0.001234 => 4 my $zeros = $x->{_a} - $cad; # cad == 0 => 12340 $zeros = $x->{_a} - $len if $cad != $len; #print "acc padd $x->{_a} $zeros (len $len cad $cad)\n"; $es .= $dot.'0' x $zeros if $zeros > 0; } elsif ($x->{_p} || 0 < 0) { # 123400 => 6, 0.1234 => 4, 0.001234 => 6 my $zeros = -$x->{_p} + $cad; #print "pre padd $x->{_p} $zeros (len $len cad $cad)\n"; $es .= $dot.'0' x $zeros if $zeros > 0; } return $es; } sub bsstr { # (ref to BFLOAT or num_str ) return num_str # Convert number from internal format to scientific string format. # internal format is always normalized (no leading zeros, "-0E0" => "+0E0") my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); #my $x = shift; my $class = ref($x) || $x; #$x = $class->new(shift) unless ref($x); #die "Oups! e was $nan" if $x->{_e}->{sign} eq $nan; #die "Oups! m was $nan" if $x->{_m}->{sign} eq $nan; if ($x->{sign} !~ /^[+-]$/) { return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN return 'inf'; # +inf } my $sign = $x->{_e}->{sign}; $sign = '' if $sign eq '-'; my $sep = 'e'.$sign; return $x->{_m}->bstr().$sep.$x->{_e}->bstr(); } sub numify { # Make a number from a BigFloat object # simple return string and let Perl's atoi()/atof() handle the rest my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); return $x->bsstr(); } ############################################################################## # public stuff (usually prefixed with "b") # tels 2001-08-04 # todo: this must be overwritten and return NaN for non-integer values # band(), bior(), bxor(), too #sub bnot # { # $class->SUPER::bnot($class,@_); # } sub bcmp { # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort) # (BFLOAT or num_str, BFLOAT or num_str) return cond_code my ($self,$x,$y) = objectify(2,@_); if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) { # handle +-inf and NaN return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); return 0 if ($x->{sign} eq $y->{sign}) && ($x->{sign} =~ /^[+-]inf$/); return +1 if $x->{sign} eq '+inf'; return -1 if $x->{sign} eq '-inf'; return -1 if $y->{sign} eq '+inf'; return +1 if $y->{sign} eq '-inf'; } # check sign for speed first return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0 # shortcut my $xz = $x->is_zero(); my $yz = $y->is_zero(); return 0 if $xz && $yz; # 0 <=> 0 return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0 # adjust so that exponents are equal my $lxm = $x->{_m}->length(); my $lym = $y->{_m}->length(); my $lx = $lxm + $x->{_e}; my $ly = $lym + $y->{_e}; # print "x $x y $y lx $lx ly $ly\n"; my $l = $lx - $ly; $l = -$l if $x->{sign} eq '-'; # print "$l $x->{sign}\n"; return $l <=> 0 if $l != 0; # lengths (corrected by exponent) are equal # so make mantissa euqal length by padding with zero (shift left) my $diff = $lxm - $lym; my $xm = $x->{_m}; # not yet copy it my $ym = $y->{_m}; if ($diff > 0) { $ym = $y->{_m}->copy()->blsft($diff,10); } elsif ($diff < 0) { $xm = $x->{_m}->copy()->blsft(-$diff,10); } my $rc = $xm->bcmp($ym); $rc = -$rc if $x->{sign} eq '-'; # -124 < -123 return $rc <=> 0; } sub bacmp { # Compares 2 values, ignoring their signs. # Returns one of undef, <0, =0, >0. (suitable for sort) # (BFLOAT or num_str, BFLOAT or num_str) return cond_code my ($self,$x,$y) = objectify(2,@_); # handle +-inf and NaN's if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/) { return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); return 0 if ($x->is_inf() && $y->is_inf()); return 1 if ($x->is_inf() && !$y->is_inf()); return -1 if (!$x->is_inf() && $y->is_inf()); } # shortcut my $xz = $x->is_zero(); my $yz = $y->is_zero(); return 0 if $xz && $yz; # 0 <=> 0 return -1 if $xz && !$yz; # 0 <=> +y return 1 if $yz && !$xz; # +x <=> 0 # adjust so that exponents are equal my $lxm = $x->{_m}->length(); my $lym = $y->{_m}->length(); my $lx = $lxm + $x->{_e}; my $ly = $lym + $y->{_e}; # print "x $x y $y lx $lx ly $ly\n"; my $l = $lx - $ly; # print "$l $x->{sign}\n"; return $l <=> 0 if $l != 0; # lengths (corrected by exponent) are equal # so make mantissa equal-length by padding with zero (shift left) my $diff = $lxm - $lym; my $xm = $x->{_m}; # not yet copy it my $ym = $y->{_m}; if ($diff > 0) { $ym = $y->{_m}->copy()->blsft($diff,10); } elsif ($diff < 0) { $xm = $x->{_m}->copy()->blsft(-$diff,10); } my $rc = $xm->bcmp($ym); return $rc <=> 0; } sub badd { # add second arg (BFLOAT or string) to first (BFLOAT) (modifies first) # return result as BFLOAT my ($self,$x,$y,$a,$p,$r) = objectify(2,@_); # inf and NaN handling if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) { # NaN first return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); # inf handline if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) { # + and + => +, - and - => -, + and - => 0, - and + => 0 return $x->bzero() if $x->{sign} ne $y->{sign}; return $x; } # +-inf + something => +inf # something +-inf => +-inf $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/; return $x; } # speed: no add for 0+y or x+0 return $x if $y->is_zero(); # x+0 if ($x->is_zero()) # 0+y { # make copy, clobbering up x (modify in place!) $x->{_e} = $y->{_e}->copy(); $x->{_m} = $y->{_m}->copy(); $x->{sign} = $y->{sign} || $nan; return $x->round($a,$p,$r,$y); } # take lower of the two e's and adapt m1 to it to match m2 my $e = $y->{_e}; $e = Math::BigInt::bzero() if !defined $e; # if no BFLOAT $e = $e - $x->{_e}; my $add = $y->{_m}->copy(); if ($e < 0) { # print "e < 0\n"; #print "\$x->{_m}: $x->{_m} "; #print "\$x->{_e}: $x->{_e}\n"; my $e1 = $e->copy()->babs(); $x->{_m} *= (10 ** $e1); $x->{_e} += $e; # need the sign of e #$x->{_m} += $y->{_m}; #print "\$x->{_m}: $x->{_m} "; #print "\$x->{_e}: $x->{_e}\n"; } elsif ($e > 0) { # print "e > 0\n"; #print "\$x->{_m}: $x->{_m} \$y->{_m}: $y->{_m} \$e: $e ",ref($e),"\n"; $add *= (10 ** $e); #$x->{_m} += $y->{_m} * (10 ** $e); #print "\$x->{_m}: $x->{_m}\n"; } # else: both e are same, so leave them #print "badd $x->{sign}$x->{_m} + $y->{sign}$add\n"; # fiddle with signs $x->{_m}->{sign} = $x->{sign}; $add->{sign} = $y->{sign}; # finally do add/sub $x->{_m} += $add; # re-adjust signs $x->{sign} = $x->{_m}->{sign}; $x->{_m}->{sign} = '+'; #$x->bnorm(); # delete trailing zeros return $x->round($a,$p,$r,$y); } sub bsub { # (BigFloat or num_str, BigFloat or num_str) return BigFloat # subtract second arg from first, modify first my ($self,$x,$y,$a,$p,$r) = objectify(2,@_); if (!$y->is_zero()) # don't need to do anything if $y is 0 { $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN $x->badd($y,$a,$p,$r); # badd does not leave internal zeros $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN) } $x; # already rounded by badd() } sub binc { # increment arg by one my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); if ($x->{_e}->sign() eq '-') { return $x->badd($self->bone(),$a,$p,$r); # digits after dot } if (!$x->{_e}->is_zero()) { $x->{_m}->blsft($x->{_e},10); # 1e2 => 100 $x->{_e}->bzero(); } # now $x->{_e} == 0 if ($x->{sign} eq '+') { $x->{_m}->binc(); return $x->bnorm()->bround($a,$p,$r); } elsif ($x->{sign} eq '-') { $x->{_m}->bdec(); $x->{sign} = '+' if $x->{_m}->is_zero(); # -1 +1 => -0 => +0 return $x->bnorm()->bround($a,$p,$r); } # inf, nan handling etc $x->badd($self->__one(),$a,$p,$r); # does round } sub bdec { # decrement arg by one my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); if ($x->{_e}->sign() eq '-') { return $x->badd($self->bone('-'),$a,$p,$r); # digits after dot } if (!$x->{_e}->is_zero()) { $x->{_m}->blsft($x->{_e},10); # 1e2 => 100 $x->{_e}->bzero(); } # now $x->{_e} == 0 my $zero = $x->is_zero(); # <= 0 if (($x->{sign} eq '-') || $zero) { $x->{_m}->binc(); $x->{sign} = '-' if $zero; # 0 => 1 => -1 $x->{sign} = '+' if $x->{_m}->is_zero(); # -1 +1 => -0 => +0 return $x->bnorm()->round($a,$p,$r); } # > 0 elsif ($x->{sign} eq '+') { $x->{_m}->bdec(); return $x->bnorm()->round($a,$p,$r); } # inf, nan handling etc $x->badd($self->bone('-'),$a,$p,$r); # does round } sub blcm { # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT # does not modify arguments, but returns new object # Lowest Common Multiplicator my ($self,@arg) = objectify(0,@_); my $x = $self->new(shift @arg); while (@arg) { $x = _lcm($x,shift @arg); } $x; } sub bgcd { # (BFLOAT or num_str, BFLOAT or num_str) return BINT # does not modify arguments, but returns new object # GCD -- Euclids algorithm Knuth Vol 2 pg 296 my ($self,@arg) = objectify(0,@_); my $x = $self->new(shift @arg); while (@arg) { $x = _gcd($x,shift @arg); } $x; } sub is_zero { # return true if arg (BFLOAT or num_str) is zero (array '+', '0') my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); return 1 if $x->{sign} eq '+' && $x->{_m}->is_zero(); return 0; } sub is_one { # return true if arg (BFLOAT or num_str) is +1 (array '+', '1') # or -1 if signis given my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); my $sign = shift || ''; $sign = '+' if $sign ne '-'; return 1 if ($x->{sign} eq $sign && $x->{_e}->is_zero() && $x->{_m}->is_one()); return 0; } sub is_odd { # return true if arg (BFLOAT or num_str) is odd or false if even my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't return 1 if ($x->{_e}->is_zero() && $x->{_m}->is_odd()); return 0; } sub is_even { # return true if arg (BINT or num_str) is even or false if odd my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't return 1 if $x->{_m}->is_zero(); # 0e1 is even return 1 if ($x->{_e}->is_zero() && $x->{_m}->is_even()); # 123.45 is never return 0; } sub bmul { # multiply two numbers -- stolen from Knuth Vol 2 pg 233 # (BINT or num_str, BINT or num_str) return BINT my ($self,$x,$y,$a,$p,$r) = objectify(2,@_); # print "mbf bmul $x->{_m}e$x->{_e} $y->{_m}e$y->{_e}\n"; return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); # handle result = 0 return $x->bzero() if $x->is_zero() || $y->is_zero(); # inf handling if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) { # result will always be +-inf: # +inf * +/+inf => +inf, -inf * -/-inf => +inf # +inf * -/-inf => -inf, -inf * +/+inf => -inf return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); return $x->binf('-'); } # aEb * cEd = (a*c)E(b+d) $x->{_m}->bmul($y->{_m}); $x->{_e}->badd($y->{_e}); # adjust sign: $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+'; return $x->bnorm()->round($a,$p,$r,$y); } sub bdiv { # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return # (BFLOAT,BFLOAT) (quo,rem) or BINT (only rem) my ($self,$x,$y,$a,$p,$r) = objectify(2,@_); # x / +-inf => 0, reminder x return wantarray ? ($x->bzero(),$x->copy()) : $x->bzero() if $y->{sign} =~ /^[+-]inf$/; # NaN if x == NaN or y == NaN or x==y==0 return wantarray ? ($x->bnan(),bnan()) : $x->bnan() if (($x->is_nan() || $y->is_nan()) || ($x->is_zero() && $y->is_zero())); # 5 / 0 => +inf, -6 / 0 => -inf return wantarray ? ($x->binf($x->{sign}),$self->bnan()) : $x->binf($x->{sign}) if ($x->{sign} =~ /^[+-]$/ && $y->is_zero()); # x== 0 or y == 1 or y == -1 return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero(); # we need to limit the accuracy to protect against overflow my $fallback = 0; my $scale = 0; my @params = $x->_find_round_parameters($a,$p,$r,$y); # no rounding at all, so must use fallback if (scalar @params == 1) { # simulate old behaviour $scale = $self->div_scale()+1; # at least one more for proper round $params[1] = $self->div_scale(); # and round to it as accuracy $params[3] = $r; # round mode by caller or undef $fallback = 1; # to clear a/p afterwards } else { # the 4 below is empirical, and there might be cases where it is not # enough... $scale = abs($params[1] || $params[2]) + 4; # take whatever is defined } my $lx = $x->{_m}->length(); my $ly = $y->{_m}->length(); $scale = $lx if $lx > $scale; $scale = $ly if $ly > $scale; my $diff = $ly - $lx; $scale += $diff if $diff > 0; # if lx << ly, but not if ly << lx! $x->{sign} = $x->{sign} ne $y->sign() ? '-' : '+'; # check for / +-1 ( +/- 1E0) if (!$y->is_one()) { # promote BigInts and it's subclasses (except when already a BigFloat) $y = $self->new($y) unless $y->isa('Math::BigFloat'); # calculate the result to $scale digits and then round it # a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d) $x->{_m}->blsft($scale,10); $x->{_m}->bdiv( $y->{_m} ); # a/c $x->{_e}->bsub( $y->{_e} ); # b-d $x->{_e}->bsub($scale); # correct for 10**scale $x->bnorm(); # remove trailing 0's } # shortcut to not run trough _find_round_parameters again if (defined $params[1]) { $x->bround($params[1],undef,$params[3]); # then round accordingly } else { $x->bfround($params[2],$params[3]); # then round accordingly } if ($fallback) { # clear a/p after round, since user did not request it $x->{_a} = undef; $x->{_p} = undef; } if (wantarray) { my $rem; if (!$y->is_one()) { $rem = $x->copy(); $rem->bmod($y,$params[1],$params[2],$params[3]); } else { $rem = $self->bzero(); } if ($fallback) { # clear a/p after round, since user did not request it $rem->{_a} = undef; $rem->{_p} = undef; } return ($x,$rem); } return $x; } sub bmod { # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return reminder my ($self,$x,$y,$a,$p,$r) = objectify(2,@_); return $x->bnan() if ($x->is_nan() || $y->is_nan() || $y->is_zero()); return $x->bzero() if $y->is_one(); # XXX tels: not done yet return $x->round($a,$p,$r,$y); } sub bsqrt { # calculate square root; this should probably # use a different test to see whether the accuracy we want is... my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); return $x->bnan() if $x->{sign} eq 'NaN' || $x->{sign} =~ /^-/; # <0, NaN return $x if $x->{sign} eq '+inf'; # +inf return $x if $x->is_zero() || $x->is_one(); # we need to limit the accuracy to protect against overflow (ignore $p) my ($scale) = $x->_scale_a($self->accuracy(),$self->round_mode,$a,$r); my $fallback = 0; if (!defined $scale) { # simulate old behaviour $scale = $self->div_scale()+1; # one more for proper riund $a = $self->div_scale(); # and round to it $fallback = 1; # to clear a/p afterwards } my $xas = $x->as_number(); my $gs = $xas->copy()->bsqrt(); # some guess if (($x->{_e}->{sign} ne '-') # guess can't be accurate if there are # digits after the dot && ($xas->bcmp($gs * $gs) == 0)) # guess hit the nail on the head? { # exact result $x->{_m} = $gs; # leave alone if _e is already right $x->{_e} = Math::BigInt->bzero(); return $x->bnorm()->round($a,$p,$r) } $gs = $self->new( $gs ); my $lx = $x->{_m}->length(); $scale = $lx if $scale < $lx; my $e = $self->new("1E-$scale"); # make test variable return $x->bnan() if $e->sign() eq 'NaN'; # start with some reasonable guess # $lx = $lx+$x->{_e}; # $lx = $lx / 2; # $lx = 1 if $lx < 1; # my $gs = Math::BigFloat->new("1E$lx"); # print "first guess: $gs (x $x) scale $scale\n"; # # use BigInt:sqrt as reasonabe guess # print "second guess: $gs (x $x) scale $scale\n"; my $diff = $e; my $y = $x->copy(); my $two = $self->new(2); # promote BigInts and it's subclasses (except when already a BigFloat) $y = $self->new($y) unless $y->isa('Math::BigFloat'); my $rem; # my $steps = 0; while ($diff >= $e) { # return $x->bnan() if $gs->is_zero(); $x = $y->copy()->bdiv($gs,$scale)->badd($gs)->bdiv($two,$scale); $diff = $x->copy()->bsub($gs)->babs(); $gs = $x->copy(); # $steps++; } # print "steps $steps\n"; $x->round($a,$p,$r); if ($fallback) { # clear a/p after round, since user did not request it $x->{_a} = undef; $x->{_p} = undef; } $x; } sub bpow { # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT # compute power of two numbers, second arg is used as integer # modifies first argument my ($self,$x,$y,$a,$p,$r) = objectify(2,@_); return $x if $x->{sign} =~ /^[+-]inf$/; return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan; return $x->bone() if $y->is_zero(); return $x if $x->is_one() || $y->is_one(); my $y1 = $y->as_number(); # make bigint (trunc) # if ($x == -1) if ($x->{sign} eq '-' && $x->{_m}->is_one() && $x->{_e}->is_zero()) { # if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1 return $y1->is_odd() ? $x : $x->babs(1); } return $x if $x->is_zero() && $y->{sign} eq '+'; # 0**y => 0 (if not y <= 0) # 0 ** -y => 1 / (0 ** y) => / 0! (1 / 0 => +inf) return $x->binf() if $x->is_zero() && $y->{sign} eq '-'; # calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster) $y1->babs(); $x->{_m}->bpow($y1); $x->{_e}->bmul($y1); $x->{sign} = $nan if $x->{_m}->{sign} eq $nan || $x->{_e}->{sign} eq $nan; $x->bnorm(); if ($y->{sign} eq '-') { # modify $x in place! my $z = $x->copy(); $x->bzero()->binc(); return $x->bdiv($z,$a,$p,$r); # round in one go (might ignore y's A!) } return $x->round($a,$p,$r,$y); } ############################################################################### # rounding functions sub bfround { # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.' # $n == 0 means round to integer # expects and returns normalized numbers! my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x); return $x if $x->modify('bfround'); my ($scale,$mode) = $x->_scale_p($self->precision(),$self->round_mode(),@_); return $x if !defined $scale; # no-op # never round a 0, +-inf, NaN return $x if $x->{sign} !~ /^[+-]$/ || $x->is_zero(); # print "MBF bfround $x to scale $scale mode $mode\n"; # don't round if x already has lower precision return $x if (defined $x->{_p} && $x->{_p} < 0 && $scale < $x->{_p}); $x->{_p} = $scale; # remember round in any case $x->{_a} = undef; # and clear A if ($scale < 0) { # print "bfround scale $scale e $x->{_e}\n"; # round right from the '.' return $x if $x->{_e} >= 0; # nothing to round $scale = -$scale; # positive for simplicity my $len = $x->{_m}->length(); # length of mantissa my $dad = -$x->{_e}; # digits after dot my $zad = 0; # zeros after dot $zad = -$len-$x->{_e} if ($x->{_e} < -$len);# for 0.00..00xxx style #print "scale $scale dad $dad zad $zad len $len\n"; # number bsstr len zad dad # 0.123 123e-3 3 0 3 # 0.0123 123e-4 3 1 4 # 0.001 1e-3 1 2 3 # 1.23 123e-2 3 0 2 # 1.2345 12345e-4 5 0 4 # do not round after/right of the $dad return $x if $scale > $dad; # 0.123, scale >= 3 => exit # round to zero if rounding inside the $zad, but not for last zero like: # 0.0065, scale -2, round last '0' with following '65' (scale == zad case) return $x->bzero() if $scale < $zad; if ($scale == $zad) # for 0.006, scale -3 and trunc { $scale = -$len-1; } else { # adjust round-point to be inside mantissa if ($zad != 0) { $scale = $scale-$zad; } else { my $dbd = $len - $dad; $dbd = 0 if $dbd < 0; # digits before dot $scale = $dbd+$scale; } } # print "round to $x->{_m} to $scale\n"; } else { # 123 => 100 means length(123) = 3 - $scale (2) => 1 # calculate digits before dot my $dbt = $x->{_m}->length(); $dbt += $x->{_e} if $x->{_e}->sign() eq '-'; # if not enough digits before dot, round to zero return $x->bzero() if ($scale > $dbt) && ($dbt < 0); # scale always >= 0 here if ($dbt == 0) { # 0.49->bfround(1): scale == 1, dbt == 0: => 0.0 # 0.51->bfround(0): scale == 0, dbt == 0: => 1.0 # 0.5->bfround(0): scale == 0, dbt == 0: => 0 # 0.05->bfround(0): scale == 0, dbt == 0: => 0 # print "$scale $dbt $x->{_m}\n"; $scale = -$x->{_m}->length(); } elsif ($dbt > 0) { # correct by subtracting scale $scale = $dbt - $scale; } else { $scale = $x->{_m}->length() - $scale; } } # print "using $scale for $x->{_m} with '$mode'\n"; # pass sign to bround for rounding modes '+inf' and '-inf' $x->{_m}->{sign} = $x->{sign}; $x->{_m}->bround($scale,$mode); $x->{_m}->{sign} = '+'; # fix sign back $x->bnorm(); } sub bround { # accuracy: preserve $N digits, and overwrite the rest with 0's my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x); die ('bround() needs positive accuracy') if ($_[0] || 0) < 0; my ($scale,$mode) = $x->_scale_a($self->accuracy(),$self->round_mode(),@_); return $x if !defined $scale; # no-op return $x if $x->modify('bround'); # scale is now either $x->{_a}, $accuracy, or the user parameter # test whether $x already has lower accuracy, do nothing in this case # but do round if the accuracy is the same, since a math operation might # want to round a number with A=5 to 5 digits afterwards again return $x if defined $_[0] && defined $x->{_a} && $x->{_a} < $_[0]; # print "bround $scale $mode\n"; # 0 => return all digits, scale < 0 makes no sense return $x if ($scale <= 0); # never round a 0, +-inf, NaN return $x if $x->{sign} !~ /^[+-]$/ || $x->is_zero(); # if $e longer than $m, we have 0.0000xxxyyy style number, and must # subtract the delta from scale, to simulate keeping the zeros # -5 +5 => 1; -10 +5 => -4 my $delta = $x->{_e} + $x->{_m}->length() + 1; # if we should keep more digits than the mantissa has, do nothing return $x if $x->{_m}->length() <= $scale; # pass sign to bround for '+inf' and '-inf' rounding modes $x->{_m}->{sign} = $x->{sign}; $x->{_m}->bround($scale,$mode); # round mantissa $x->{_m}->{sign} = '+'; # fix sign back $x->{_a} = $scale; # remember rounding $x->{_p} = undef; # and clear P $x->bnorm(); # del trailing zeros gen. by bround() } sub bfloor { # return integer less or equal then $x my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); return $x if $x->modify('bfloor'); return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf # if $x has digits after dot if ($x->{_e}->{sign} eq '-') { $x->{_m}->brsft(-$x->{_e},10); $x->{_e}->bzero(); $x-- if $x->{sign} eq '-'; } return $x->round($a,$p,$r); } sub bceil { # return integer greater or equal then $x my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_); return $x if $x->modify('bceil'); return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf # if $x has digits after dot if ($x->{_e}->{sign} eq '-') { $x->{_m}->brsft(-$x->{_e},10); $x->{_e}->bzero(); $x++ if $x->{sign} eq '+'; } return $x->round($a,$p,$r); } sub brsft { # shift right by $y (divide by power of 2) my ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_); return $x if $x->modify('brsft'); return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf $n = 2 if !defined $n; $n = Math::BigFloat->new($n); $x->bdiv($n ** $y,$a,$p,$r,$y); } sub blsft { # shift right by $y (divide by power of 2) my ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_); return $x if $x->modify('brsft'); return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf $n = 2 if !defined $n; $n = Math::BigFloat->new($n); $x->bmul($n ** $y,$a,$p,$r,$y); } ############################################################################### sub DESTROY { # going through AUTOLOAD for every DESTROY is costly, so avoid it by empty sub } sub AUTOLOAD { # make fxxx and bxxx work # my $self = $_[0]; my $name = $AUTOLOAD; $name =~ s/.*:://; # split package #print "$name\n"; no strict 'refs'; if (!method_alias($name)) { if (!defined $name) { # delayed load of Carp and avoid recursion require Carp; Carp::croak ("Can't call a method without name"); } if (!method_hand_up($name)) { # delayed load of Carp and avoid recursion require Carp; Carp::croak ("Can't call $class\-\>$name, not a valid method"); } # try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx() $name =~ s/^f/b/; return &{'Math::BigInt'."::$name"}(@_); } my $bname = $name; $bname =~ s/^f/b/; *{$class."\:\:$name"} = \&$bname; &$bname; # uses @_ } sub exponent { # return a copy of the exponent my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); if ($x->{sign} !~ /^[+-]$/) { my $s = $x->{sign}; $s =~ s/^[+-]//; return $self->new($s); # -inf, +inf => +inf } return $x->{_e}->copy(); } sub mantissa { # return a copy of the mantissa my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); if ($x->{sign} !~ /^[+-]$/) { my $s = $x->{sign}; $s =~ s/^[+]//; return $self->new($s); # -inf, +inf => +inf } my $m = $x->{_m}->copy(); # faster than going via bstr() $m->bneg() if $x->{sign} eq '-'; return $m; } sub parts { # return a copy of both the exponent and the mantissa my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); if ($x->{sign} !~ /^[+-]$/) { my $s = $x->{sign}; $s =~ s/^[+]//; my $se = $s; $se =~ s/^[-]//; return ($self->new($s),$self->new($se)); # +inf => inf and -inf,+inf => inf } my $m = $x->{_m}->copy(); # faster than going via bstr() $m->bneg() if $x->{sign} eq '-'; return ($m,$x->{_e}->copy()); } ############################################################################## # private stuff (internal use only) sub import { my $self = shift; for ( my $i = 0; $i < @_ ; $i++ ) { if ( $_[$i] eq ':constant' ) { # this rest causes overlord er load to step in # print "overload @_\n"; overload::constant float => sub { $self->new(shift); }; splice @_, $i, 1; last; } } # any non :constant stuff is handled by our parent, Exporter # even if @_ is empty, to give it a chance $self->SUPER::import(@_); # for subclasses $self->export_to_level(1,$self,@_); # need this, too } sub bnorm { # adjust m and e so that m is smallest possible # round number according to accuracy and precision settings my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); return $x if $x->{sign} !~ /^[+-]$/; # inf, nan etc my $zeros = $x->{_m}->_trailing_zeros(); # correct for trailing zeros if ($zeros != 0) { $x->{_m}->brsft($zeros,10); $x->{_e} += $zeros; } # for something like 0Ey, set y to 1, and -0 => +0 $x->{sign} = '+', $x->{_e}->bone() if $x->{_m}->is_zero(); # this is to prevent automatically rounding when MBI's globals are set $x->{_m}->{_f} = MB_NEVER_ROUND; $x->{_e}->{_f} = MB_NEVER_ROUND; # 'forget' that mantissa was rounded via MBI::bround() in MBF's bfround() $x->{_m}->{_a} = undef; $x->{_e}->{_a} = undef; $x->{_m}->{_p} = undef; $x->{_e}->{_p} = undef; return $x; # MBI bnorm is no-op, so dont call it } ############################################################################## # internal calculation routines sub as_number { # return copy as a bigint representation of this BigFloat number my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); my $z; if ($x->{_e}->is_zero()) { $z = $x->{_m}->copy(); $z->{sign} = $x->{sign}; return $z; } $z = $x->{_m}->copy(); if ($x->{_e} < 0) { $z->brsft(-$x->{_e},10); } else { $z->blsft($x->{_e},10); } $z->{sign} = $x->{sign}; return $z; } sub length { my $x = shift; my $class = ref($x) || $x; $x = $class->new(shift) unless ref($x); return 1 if $x->{_m}->is_zero(); my $len = $x->{_m}->length(); $len += $x->{_e} if $x->{_e}->sign() eq '+'; if (wantarray()) { my $t = Math::BigInt::bzero(); $t = $x->{_e}->copy()->babs() if $x->{_e}->sign() eq '-'; return ($len,$t); } return $len; } 1; __END__ =head1 NAME Math::BigFloat - Arbitrary size floating point math package =head1 SYNOPSIS use Math::BigFloat; # Number creation $x = Math::BigInt->new($str); # defaults to 0 $nan = Math::BigInt->bnan(); # create a NotANumber $zero = Math::BigInt->bzero();# create a "+0" # Testing $x->is_zero(); # return whether arg is zero or not $x->is_nan(); # return whether arg is NaN or not $x->is_one(); # true if arg is +1 $x->is_one('-'); # true if arg is -1 $x->is_odd(); # true if odd, false for even $x->is_even(); # true if even, false for odd $x->is_positive(); # true if >= 0 $x->is_negative(); # true if < 0 $x->is_inf(sign) # true if +inf or -inf (sign default '+') $x->bcmp($y); # compare numbers (undef,<0,=0,>0) $x->bacmp($y); # compare absolutely (undef,<0,=0,>0) $x->sign(); # return the sign, either +,- or NaN # The following all modify their first argument: # set $x->bzero(); # set $i to 0 $x->bnan(); # set $i to NaN $x->bneg(); # negation $x->babs(); # absolute value $x->bnorm(); # normalize (no-op) $x->bnot(); # two's complement (bit wise not) $x->binc(); # increment x by 1 $x->bdec(); # decrement x by 1 $x->badd($y); # addition (add $y to $x) $x->bsub($y); # subtraction (subtract $y from $x) $x->bmul($y); # multiplication (multiply $x by $y) $x->bdiv($y); # divide, set $i to quotient # return (quo,rem) or quo if scalar $x->bmod($y); # modulus $x->bpow($y); # power of arguments (a**b) $x->blsft($y); # left shift $x->brsft($y); # right shift # return (quo,rem) or quo if scalar $x->band($y); # bit-wise and $x->bior($y); # bit-wise inclusive or $x->bxor($y); # bit-wise exclusive or $x->bnot(); # bit-wise not (two's complement) $x->bround($N); # accuracy: preserver $N digits $x->bfround($N); # precision: round to the $Nth digit # The following do not modify their arguments: bgcd(@values); # greatest common divisor blcm(@values); # lowest common multiplicator $x->bstr(); # return string $x->bsstr(); # return string in scientific notation $x->exponent(); # return exponent as BigInt $x->mantissa(); # return mantissa as BigInt $x->parts(); # return (mantissa,exponent) as BigInt $x->length(); # number of digits (w/o sign and '.') ($l,$f) = $x->length(); # number of digits, and length of fraction =head1 DESCRIPTION All operators (inlcuding basic math operations) are overloaded if you declare your big floating point numbers as $i = new Math::BigFloat '12_3.456_789_123_456_789E-2'; Operations with overloaded operators preserve the arguments, which is exactly what you expect. =head2 Canonical notation Input to these routines are either BigFloat objects, or strings of the following four forms: =over 2 =item * C =item * C =item * C =item * C =back all with optional leading and trailing zeros and/or spaces. Additonally, numbers are allowed to have an underscore between any two digits. Empty strings as well as other illegal numbers results in 'NaN'. bnorm() on a BigFloat object is now effectively a no-op, since the numbers are always stored in normalized form. On a string, it creates a BigFloat object. =head2 Output Output values are BigFloat objects (normalized), except for bstr() and bsstr(). The string output will always have leading and trailing zeros stripped and drop a plus sign. C will give you always the form with a decimal point, while C (for scientific) gives you the scientific notation. Input bstr() bsstr() '-0' '0' '0E1' ' -123 123 123' '-123123123' '-123123123E0' '00.0123' '0.0123' '123E-4' '123.45E-2' '1.2345' '12345E-4' '10E+3' '10000' '1E4' Some routines (C, C, C, C, C) return true or false, while others (C, C) return either undef, <0, 0 or >0 and are suited for sort. Actual math is done by using BigInts to represent the mantissa and exponent. The sign C is stored separately. The string 'NaN' is used to represent the result when input arguments are not numbers, as well as the result of dividing by zero. =head2 C, C and C C and C return the said parts of the BigFloat as BigInts such that: $m = $x->mantissa(); $e = $x->exponent(); $y = $m * ( 10 ** $e ); print "ok\n" if $x == $y; C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them. A zero is represented and returned as C<0E1>, B C<0E0> (after Knuth). Currently the mantissa is reduced as much as possible, favouring higher exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0). This might change in the future, so do not depend on it. =head2 Accuracy vs. Precision See also: L. Math::BigFloat supports both precision and accuracy. For a full documentation, examples and tips on these topics please see the large section in L. Since things like sqrt(2) or 1/3 must presented with a limited precision lest a operation consumes all resources, each operation produces no more than C digits. In case the result of one operation has more precision than specified, it is rounded. The rounding mode taken is either the default mode, or the one supplied to the operation after the I: $x = Math::BigFloat->new(2); Math::BigFloat::precision(5); # 5 digits max $y = $x->copy()->bdiv(3); # will give 0.66666 $y = $x->copy()->bdiv(3,6); # will give 0.666666 $y = $x->copy()->bdiv(3,6,'odd'); # will give 0.666667 Math::BigFloat::round_mode('zero'); $y = $x->copy()->bdiv(3,6); # will give 0.666666 =head2 Rounding =over 2 =item ffround ( +$scale ) Rounds to the $scale'th place left from the '.', counting from the dot. The first digit is numbered 1. =item ffround ( -$scale ) Rounds to the $scale'th place right from the '.', counting from the dot. =item ffround ( 0 ) Rounds to an integer. =item fround ( +$scale ) Preserves accuracy to $scale digits from the left (aka significant digits) and pads the rest with zeros. If the number is between 1 and -1, the significant digits count from the first non-zero after the '.' =item fround ( -$scale ) and fround ( 0 ) These are effetively no-ops. =back All rounding functions take as a second parameter a rounding mode from one of the following: 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'. The default rounding mode is 'even'. By using C<< Math::BigFloat::round_mode($round_mode); >> you can get and set the default mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is no longer supported. The second parameter to the round functions then overrides the default temporarily. The C<< as_number() >> function returns a BigInt from a Math::BigFloat. It uses 'trunc' as rounding mode to make it equivalent to: $x = 2.5; $y = int($x) + 2; You can override this by passing the desired rounding mode as parameter to C: $x = Math::BigFloat->new(2.5); $y = $x->as_number('odd'); # $y = 3 =head1 EXAMPLES # not ready yet =head1 Autocreating constants After C all the floating point constants in the given scope are converted to C. This conversion happens at compile time. In particular perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"' prints the value of C<2E-100>. Note that without conversion of constants the expression 2E-100 will be calculated as normal floating point number. =head1 BUGS =over 2 =item * The following does not work yet: $m = $x->mantissa(); $e = $x->exponent(); $y = $m * ( 10 ** $e ); print "ok\n" if $x == $y; =item * There is no fmod() function yet. =back =head1 CAVEAT =over 1 =item stringify, bstr() Both stringify and bstr() now drop the leading '+'. The old code would return '+1.23', the new returns '1.23'. See the documentation in L for reasoning and details. =item bdiv The following will probably not do what you expect: print $c->bdiv(123.456),"\n"; It prints both quotient and reminder since print works in list context. Also, bdiv() will modify $c, so be carefull. You probably want to use print $c / 123.456,"\n"; print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c instead. =item Modifying and = Beware of: $x = Math::BigFloat->new(5); $y = $x; It will not do what you think, e.g. making a copy of $x. Instead it just makes a second reference to the B object and stores it in $y. Thus anything that modifies $x will modify $y, and vice versa. $x->bmul(2); print "$x, $y\n"; # prints '10, 10' If you want a true copy of $x, use: $y = $x->copy(); See also the documentation in L regarding C<=>. =item bpow C now modifies the first argument, unlike the old code which left it alone and only returned the result. This is to be consistent with C etc. The first will modify $x, the second one won't: print bpow($x,$i),"\n"; # modify $x print $x->bpow($i),"\n"; # ditto print $x ** $i,"\n"; # leave $x alone =back =head1 LICENSE This program is free software; you may redistribute it and/or modify it under the same terms as Perl itself. =head1 AUTHORS Mark Biggar, overloaded interface by Ilya Zakharevich. Completely rewritten by Tels http://bloodgate.com in 2001. =cut