#!./perl # # Regression tests for the Math::Trig package # # The tests here are quite modest as the Math::Complex tests exercise # these interfaces quite vigorously. # # -- Jarkko Hietaniemi, April 1997 BEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = '../lib'; } } BEGIN { eval { require Test::More }; if ($@) { # We are willing to lose testing in e.g. 5.00504. print "1..0 # No Test::More, skipping\n"; exit(0); } else { import Test::More; } } plan(tests => 69); use Math::Trig 1.03; my $pip2 = pi / 2; use strict; use vars qw($x $y $z); my $eps = 1e-11; if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t. $eps = 1e-10; } sub near ($$;$) { my $e = defined $_[2] ? $_[2] : $eps; my $d = $_[1] ? abs($_[0]/$_[1] - 1) : abs($_[0]); print "# near? $_[0] $_[1] : $d : $e\n"; $_[1] ? ($d < $e) : abs($_[0]) < $e; } $x = 0.9; ok(near(tan($x), sin($x) / cos($x))); ok(near(sinh(2), 3.62686040784702)); ok(near(acsch(0.1), 2.99822295029797)); $x = asin(2); is(ref $x, 'Math::Complex'); # avoid using Math::Complex here $x =~ /^([^-]+)(-[^i]+)i$/; ($y, $z) = ($1, $2); ok(near($y, 1.5707963267949)); ok(near($z, -1.31695789692482)); ok(near(deg2rad(90), pi/2)); ok(near(rad2deg(pi), 180)); use Math::Trig ':radial'; { my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($z, 1)); ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 1)); ($r,$t,$z) = cartesian_to_cylindrical(1,1,0); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($z, 0)); ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 0)); } { my ($r,$t,$f) = cartesian_to_spherical(1,1,1); ok(near($r, sqrt(3))); ok(near($t, deg2rad(45))); ok(near($f, atan2(sqrt(2), 1))); ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 1)); ($r,$t,$f) = cartesian_to_spherical(1,1,0); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($f, deg2rad(90))); ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 0)); } { my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1)); ok(near($r, 1)); ok(near($t, 1)); ok(near($z, 1)); ($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1)); ok(near($r, 1)); ok(near($t, 1)); ok(near($z, 1)); } { use Math::Trig 'great_circle_distance'; ok(near(great_circle_distance(0, 0, 0, pi/2), pi/2)); ok(near(great_circle_distance(0, 0, pi, pi), pi)); # London to Tokyo. my @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); my @T = (deg2rad(139.8),deg2rad(90 - 35.7)); my $km = great_circle_distance(@L, @T, 6378); ok(near($km, 9605.26637021388)); } { my $R2D = 57.295779513082320876798154814169; sub frac { $_[0] - int($_[0]) } my $lotta_radians = deg2rad(1E+20, 1); ok(near($lotta_radians, 1E+20/$R2D)); my $negat_degrees = rad2deg(-1E20, 1); ok(near($negat_degrees, -1E+20*$R2D)); my $posit_degrees = rad2deg(-10000, 1); ok(near($posit_degrees, -10000*$R2D)); } { use Math::Trig 'great_circle_direction'; ok(near(great_circle_direction(0, 0, 0, pi/2), pi)); # Retired test: Relies on atan2(0, 0), which is not portable. # ok(near(great_circle_direction(0, 0, pi, pi), -pi()/2)); my @London = (deg2rad( -0.167), deg2rad(90 - 51.3)); my @Tokyo = (deg2rad( 139.5), deg2rad(90 - 35.7)); my @Berlin = (deg2rad ( 13.417), deg2rad(90 - 52.533)); my @Paris = (deg2rad ( 2.333), deg2rad(90 - 48.867)); ok(near(rad2deg(great_circle_direction(@London, @Tokyo)), 31.791945393073)); ok(near(rad2deg(great_circle_direction(@Tokyo, @London)), 336.069766430326)); ok(near(rad2deg(great_circle_direction(@Berlin, @Paris)), 246.800348034667)); ok(near(rad2deg(great_circle_direction(@Paris, @Berlin)), 58.2079877553156)); use Math::Trig 'great_circle_bearing'; ok(near(rad2deg(great_circle_bearing(@Paris, @Berlin)), 58.2079877553156)); use Math::Trig 'great_circle_waypoint'; use Math::Trig 'great_circle_midpoint'; my ($lon, $lat); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.0); ok(near($lon, $London[0])); ok(near($lat, $pip2 - $London[1])); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 1.0); ok(near($lon, $Tokyo[0])); ok(near($lat, $pip2 - $Tokyo[1])); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.5); ok(near($lon, 1.55609593577679)); # 89.1577 E ok(near($lat, 1.20296099733328)); # 68.9246 N ($lon, $lat) = great_circle_midpoint(@London, @Tokyo); ok(near($lon, 1.55609593577679)); # 89.1577 E ok(near($lat, 1.20296099733328)); # 68.9246 N ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.25); ok(near($lon, 0.516073562850837)); # 29.5688 E ok(near($lat, 1.170565013391510)); # 67.0684 N ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.75); ok(near($lon, 2.17494903805952)); # 124.6154 E ok(near($lat, 0.952987032741305)); # 54.6021 N use Math::Trig 'great_circle_destination'; my $dir1 = great_circle_direction(@London, @Tokyo); my $dst1 = great_circle_distance(@London, @Tokyo); ($lon, $lat) = great_circle_destination(@London, $dir1, $dst1); ok(near($lon, $Tokyo[0])); ok(near($lat, $pip2 - $Tokyo[1])); my $dir2 = great_circle_direction(@Tokyo, @London); my $dst2 = great_circle_distance(@Tokyo, @London); ($lon, $lat) = great_circle_destination(@Tokyo, $dir2, $dst2); ok(near($lon, $London[0])); ok(near($lat, $pip2 - $London[1])); my $dir3 = (great_circle_destination(@London, $dir1, $dst1))[2]; ok(near($dir3, 2.69379263839118)); # about 154.343 deg my $dir4 = (great_circle_destination(@Tokyo, $dir2, $dst2))[2]; ok(near($dir4, 3.6993902625701)); # about 211.959 deg ok(near($dst1, $dst2)); } # eof