############################################################################# # Pod/Usage.pm -- print usage messages for the running script. # # Copyright (C) 1996-2000 by Bradford Appleton. All rights reserved. # This file is part of "PodParser". PodParser is free software; # you can redistribute it and/or modify it under the same terms # as Perl itself. ############################################################################# package Pod::Usage; use vars qw($VERSION); $VERSION = 1.14; ## Current version of this package require 5.005; ## requires this Perl version or later =head1 NAME Pod::Usage, pod2usage() - print a usage message from embedded pod documentation =head1 SYNOPSIS use Pod::Usage my $message_text = "This text precedes the usage message."; my $exit_status = 2; ## The exit status to use my $verbose_level = 0; ## The verbose level to use my $filehandle = \*STDERR; ## The filehandle to write to pod2usage($message_text); pod2usage($exit_status); pod2usage( { -message => $message_text , -exitval => $exit_status , -verbose => $verbose_level, -output => $filehandle } ); pod2usage( -msg => $message_text , -exitval => $exit_status , -verbose => $verbose_level, -output => $filehandle ); =head1 ARGUMENTS B should be given either a single argument, or a list of arguments corresponding to an associative array (a "hash"). When a single argument is given, it should correspond to exactly one of the following: =over 4 =item * A string containing the text of a message to print I printing the usage message =item * A numeric value corresponding to the desired exit status =item * A reference to a hash =back If more than one argument is given then the entire argument list is assumed to be a hash. If a hash is supplied (either as a reference or as a list) it should contain one or more elements with the following keys: =over 4 =item C<-message> =item C<-msg> The text of a message to print immediately prior to printing the program's usage message. =item C<-exitval> The desired exit status to pass to the B function. This should be an integer, or else the string "NOEXIT" to indicate that control should simply be returned without terminating the invoking process. =item C<-verbose> The desired level of "verboseness" to use when printing the usage message. If the corresponding value is 0, then only the "SYNOPSIS" section of the pod documentation is printed. If the corresponding value is 1, then the "SYNOPSIS" section, along with any section entitled "OPTIONS", "ARGUMENTS", or "OPTIONS AND ARGUMENTS" is printed. If the corresponding value is 2 or more then the entire manpage is printed. =item C<-output> A reference to a filehandle, or the pathname of a file to which the usage message should be written. The default is C<\*STDERR> unless the exit value is less than 2 (in which case the default is C<\*STDOUT>). =item C<-input> A reference to a filehandle, or the pathname of a file from which the invoking script's pod documentation should be read. It defaults to the file indicated by C<$0> (C<$PROGRAM_NAME> for users of F). =item C<-pathlist> A list of directory paths. If the input file does not exist, then it will be searched for in the given directory list (in the order the directories appear in the list). It defaults to the list of directories implied by C<$ENV{PATH}>. The list may be specified either by a reference to an array, or by a string of directory paths which use the same path separator as C<$ENV{PATH}> on your system (e.g., C<:> for Unix, C<;> for MSWin32 and DOS). =back =head1 DESCRIPTION B will print a usage message for the invoking script (using its embedded pod documentation) and then exit the script with the desired exit status. The usage message printed may have any one of three levels of "verboseness": If the verbose level is 0, then only a synopsis is printed. If the verbose level is 1, then the synopsis is printed along with a description (if present) of the command line options and arguments. If the verbose level is 2, then the entire manual page is printed. Unless they are explicitly specified, the default values for the exit status, verbose level, and output stream to use are determined as follows: =over 4 =item * If neither the exit status nor the verbose level is specified, then the default is to use an exit status of 2 with a verbose level of 0. =item * If an exit status I specified but the verbose level is I, then the verbose level will default to 1 if the exit status is less than 2 and will default to 0 otherwise. =item * If an exit status is I specified but verbose level I given, then the exit status will default to 2 if the verbose level is 0 and will default to 1 otherwise. =item * If the exit status used is less than 2, then output is printed on C. Otherwise output is printed on C. =back Although the above may seem a bit confusing at first, it generally does "the right thing" in most situations. This determination of the default values to use is based upon the following typical Unix conventions: =over 4 =item * An exit status of 0 implies "success". For example, B exits with a status of 0 if the two files have the same contents. =item * An exit status of 1 implies possibly abnormal, but non-defective, program termination. For example, B exits with a status of 1 if it did I find a matching line for the given regular expression. =item * An exit status of 2 or more implies a fatal error. For example, B exits with a status of 2 if you specify an illegal (unknown) option on the command line. =item * Usage messages issued as a result of bad command-line syntax should go to C. However, usage messages issued due to an explicit request to print usage (like specifying B<-help> on the command line) should go to C, just in case the user wants to pipe the output to a pager (such as B). =item * If program usage has been explicitly requested by the user, it is often desireable to exit with a status of 1 (as opposed to 0) after issuing the user-requested usage message. It is also desireable to give a more verbose description of program usage in this case. =back B doesn't force the above conventions upon you, but it will use them by default if you don't expressly tell it to do otherwise. The ability of B to accept a single number or a string makes it convenient to use as an innocent looking error message handling function: use Pod::Usage; use Getopt::Long; ## Parse options GetOptions("help", "man", "flag1") || pod2usage(2); pod2usage(1) if ($opt_help); pod2usage(-verbose => 2) if ($opt_man); ## Check for too many filenames pod2usage("$0: Too many files given.\n") if (@ARGV > 1); Some user's however may feel that the above "economy of expression" is not particularly readable nor consistent and may instead choose to do something more like the following: use Pod::Usage; use Getopt::Long; ## Parse options GetOptions("help", "man", "flag1") || pod2usage(-verbose => 0); pod2usage(-verbose => 1) if ($opt_help); pod2usage(-verbose => 2) if ($opt_man); ## Check for too many filenames pod2usage(-verbose => 2, -message => "$0: Too many files given.\n") if (@ARGV > 1); As with all things in Perl, I, and B adheres to this philosophy. If you are interested in seeing a number of different ways to invoke B (although by no means exhaustive), please refer to L<"EXAMPLES">. =head1 EXAMPLES Each of the following invocations of C will print just the "SYNOPSIS" section to C and will exit with a status of 2: pod2usage(); pod2usage(2); pod2usage(-verbose => 0); pod2usage(-exitval => 2); pod2usage({-exitval => 2, -output => \*STDERR}); pod2usage({-verbose => 0, -output => \*STDERR}); pod2usage(-exitval => 2, -verbose => 0); pod2usage(-exitval => 2, -verbose => 0, -output => \*STDERR); Each of the following invocations of C will print a message of "Syntax error." (followed by a newline) to C, immediately followed by just the "SYNOPSIS" section (also printed to C) and will exit with a status of 2: pod2usage("Syntax error."); pod2usage(-message => "Syntax error.", -verbose => 0); pod2usage(-msg => "Syntax error.", -exitval => 2); pod2usage({-msg => "Syntax error.", -exitval => 2, -output => \*STDERR}); pod2usage({-msg => "Syntax error.", -verbose => 0, -output => \*STDERR}); pod2usage(-msg => "Syntax error.", -exitval => 2, -verbose => 0); pod2usage(-message => "Syntax error.", -exitval => 2, -verbose => 0, -output => \*STDERR); Each of the following invocations of C will print the "SYNOPSIS" section and any "OPTIONS" and/or "ARGUMENTS" sections to C and will exit with a status of 1: pod2usage(1); pod2usage(-verbose => 1); pod2usage(-exitval => 1); pod2usage({-exitval => 1, -output => \*STDOUT}); pod2usage({-verbose => 1, -output => \*STDOUT}); pod2usage(-exitval => 1, -verbose => 1); pod2usage(-exitval => 1, -verbose => 1, -output => \*STDOUT}); Each of the following invocations of C will print the entire manual page to C and will exit with a status of 1: pod2usage(-verbose => 2); pod2usage({-verbose => 2, -output => \*STDOUT}); pod2usage(-exitval => 1, -verbose => 2); pod2usage({-exitval => 1, -verbose => 2, -output => \*STDOUT}); =head2 Recommended Use Most scripts should print some type of usage message to C when a command line syntax error is detected. They should also provide an option (usually C<-H> or C<-help>) to print a (possibly more verbose) usage message to C. Some scripts may even wish to go so far as to provide a means of printing their complete documentation to C (perhaps by allowing a C<-man> option). The following complete example uses B in combination with B to do all of these things: use Getopt::Long; use Pod::Usage; my $man = 0; my $help = 0; ## Parse options and print usage if there is a syntax error, ## or if usage was explicitly requested. GetOptions('help|?' => \$help, man => \$man) or pod2usage(2); pod2usage(1) if $help; pod2usage(-verbose => 2) if $man; ## If no arguments were given, then allow STDIN to be used only ## if it's not connected to a terminal (otherwise print usage) pod2usage("$0: No files given.") if ((@ARGV == 0) && (-t STDIN)); __END__ =head1 NAME sample - Using GetOpt::Long and Pod::Usage =head1 SYNOPSIS sample [options] [file ...] Options: -help brief help message -man full documentation =head1 OPTIONS =over 8 =item B<-help> Print a brief help message and exits. =item B<-man> Prints the manual page and exits. =back =head1 DESCRIPTION B will read the given input file(s) and do something useful with the contents thereof. =cut =head1 CAVEATS By default, B will use C<$0> as the path to the pod input file. Unfortunately, not all systems on which Perl runs will set C<$0> properly (although if C<$0> isn't found, B will search C<$ENV{PATH}> or else the list specified by the C<-pathlist> option). If this is the case for your system, you may need to explicitly specify the path to the pod docs for the invoking script using something similar to the following: pod2usage(-exitval => 2, -input => "/path/to/your/pod/docs"); =head1 AUTHOR Brad Appleton Ebradapp@enteract.comE Based on code for B written by Tom Christiansen Etchrist@mox.perl.comE =head1 ACKNOWLEDGEMENTS Steven McDougall Eswmcd@world.std.comE for his help and patience with re-writing this manpage. =cut ############################################################################# use strict; #use diagnostics; use Carp; use Config; use Exporter; use File::Spec; use vars qw(@ISA @EXPORT); @EXPORT = qw(&pod2usage); BEGIN { if ( $] >= 5.005_58 ) { require Pod::Text; @ISA = qw( Pod::Text ); } else { require Pod::PlainText; @ISA = qw( Pod::PlainText ); } } ##--------------------------------------------------------------------------- ##--------------------------------- ## Function definitions begin here ##--------------------------------- sub pod2usage { local($_) = shift || ""; my %opts; ## Collect arguments if (@_ > 0) { ## Too many arguments - assume that this is a hash and ## the user forgot to pass a reference to it. %opts = ($_, @_); } elsif (ref $_) { ## User passed a ref to a hash %opts = %{$_} if (ref($_) eq 'HASH'); } elsif (/^[-+]?\d+$/) { ## User passed in the exit value to use $opts{"-exitval"} = $_; } else { ## User passed in a message to print before issuing usage. $_ and $opts{"-message"} = $_; } ## Need this for backward compatibility since we formerly used ## options that were all uppercase words rather than ones that ## looked like Unix command-line options. ## to be uppercase keywords) %opts = map { my $val = $opts{$_}; s/^(?=\w)/-/; /^-msg/i and $_ = '-message'; /^-exit/i and $_ = '-exitval'; lc($_) => $val; } (keys %opts); ## Now determine default -exitval and -verbose values to use if ((! defined $opts{"-exitval"}) && (! defined $opts{"-verbose"})) { $opts{"-exitval"} = 2; $opts{"-verbose"} = 0; } elsif (! defined $opts{"-exitval"}) { $opts{"-exitval"} = ($opts{"-verbose"} > 0) ? 1 : 2; } elsif (! defined $opts{"-verbose"}) { $opts{"-verbose"} = ($opts{"-exitval"} < 2); } ## Default the output file $opts{"-output"} = ($opts{"-exitval"} < 2) ? \*STDOUT : \*STDERR unless (defined $opts{"-output"}); ## Default the input file $opts{"-input"} = $0 unless (defined $opts{"-input"}); ## Look up input file in path if it doesnt exist. unless ((ref $opts{"-input"}) || (-e $opts{"-input"})) { my ($dirname, $basename) = ('', $opts{"-input"}); my $pathsep = ($^O =~ /^(?:dos|os2|MSWin32)$/) ? ";" : (($^O eq 'MacOS' || $^O eq 'VMS') ? ',' : ":"); my $pathspec = $opts{"-pathlist"} || $ENV{PATH} || $ENV{PERL5LIB}; my @paths = (ref $pathspec) ? @$pathspec : split($pathsep, $pathspec); for $dirname (@paths) { $_ = File::Spec->catfile($dirname, $basename) if length; last if (-e $_) && ($opts{"-input"} = $_); } } ## Now create a pod reader and constrain it to the desired sections. my $parser = new Pod::Usage(USAGE_OPTIONS => \%opts); if ($opts{"-verbose"} == 0) { $parser->select("SYNOPSIS"); } elsif ($opts{"-verbose"} == 1) { my $opt_re = '(?i)' . '(?:OPTIONS|ARGUMENTS)' . '(?:\s*(?:AND|\/)\s*(?:OPTIONS|ARGUMENTS))?'; $parser->select( 'SYNOPSIS', $opt_re, "DESCRIPTION/$opt_re" ); } ## Now translate the pod document and then exit with the desired status if ( $opts{"-verbose"} >= 2 and !ref($opts{"-input"}) and $opts{"-output"} == \*STDOUT ) { ## spit out the entire PODs. Might as well invoke perldoc my $progpath = File::Spec->catfile($Config{scriptdir}, "perldoc"); system($progpath, $opts{"-input"}); } else { $parser->parse_from_file($opts{"-input"}, $opts{"-output"}); } exit($opts{"-exitval"}) unless (lc($opts{"-exitval"}) eq 'noexit'); } ##--------------------------------------------------------------------------- ##------------------------------- ## Method definitions begin here ##------------------------------- sub new { my $this = shift; my $class = ref($this) || $this; my %params = @_; my $self = {%params}; bless $self, $class; $self->initialize(); return $self; } sub begin_pod { my $self = shift; $self->SUPER::begin_pod(); ## Have to call superclass my $msg = $self->{USAGE_OPTIONS}->{-message} or return 1; my $out_fh = $self->output_handle(); print $out_fh "$msg\n"; } sub preprocess_paragraph { my $self = shift; local $_ = shift; my $line = shift; ## See if this is a heading and we arent printing the entire manpage. if (($self->{USAGE_OPTIONS}->{-verbose} < 2) && /^=head/) { ## Change the title of the SYNOPSIS section to USAGE s/^=head1\s+SYNOPSIS\s*$/=head1 USAGE/; ## Try to do some lowercasing instead of all-caps in headings s{([A-Z])([A-Z]+)}{((length($2) > 2) ? $1 : lc($1)) . lc($2)}ge; ## Use a colon to end all headings s/\s*$/:/ unless (/:\s*$/); $_ .= "\n"; } return $self->SUPER::preprocess_paragraph($_); } 1; # keep require happy