/* numeric.c * * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, * 2000, 2001, 2002, 2003, by Larry Wall and others * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * "That only makes eleven (plus one mislaid) and not fourteen, unless * wizards count differently to other people." */ /* =head1 Numeric functions */ #include "EXTERN.h" #define PERL_IN_NUMERIC_C #include "perl.h" U32 Perl_cast_ulong(pTHX_ NV f) { if (f < 0.0) return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; if (f < U32_MAX_P1) { #if CASTFLAGS & 2 if (f < U32_MAX_P1_HALF) return (U32) f; f -= U32_MAX_P1_HALF; return ((U32) f) | (1 + U32_MAX >> 1); #else return (U32) f; #endif } return f > 0 ? U32_MAX : 0 /* NaN */; } I32 Perl_cast_i32(pTHX_ NV f) { if (f < I32_MAX_P1) return f < I32_MIN ? I32_MIN : (I32) f; if (f < U32_MAX_P1) { #if CASTFLAGS & 2 if (f < U32_MAX_P1_HALF) return (I32)(U32) f; f -= U32_MAX_P1_HALF; return (I32)(((U32) f) | (1 + U32_MAX >> 1)); #else return (I32)(U32) f; #endif } return f > 0 ? (I32)U32_MAX : 0 /* NaN */; } IV Perl_cast_iv(pTHX_ NV f) { if (f < IV_MAX_P1) return f < IV_MIN ? IV_MIN : (IV) f; if (f < UV_MAX_P1) { #if CASTFLAGS & 2 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ if (f < UV_MAX_P1_HALF) return (IV)(UV) f; f -= UV_MAX_P1_HALF; return (IV)(((UV) f) | (1 + UV_MAX >> 1)); #else return (IV)(UV) f; #endif } return f > 0 ? (IV)UV_MAX : 0 /* NaN */; } UV Perl_cast_uv(pTHX_ NV f) { if (f < 0.0) return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; if (f < UV_MAX_P1) { #if CASTFLAGS & 2 if (f < UV_MAX_P1_HALF) return (UV) f; f -= UV_MAX_P1_HALF; return ((UV) f) | (1 + UV_MAX >> 1); #else return (UV) f; #endif } return f > 0 ? UV_MAX : 0 /* NaN */; } #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)) /* * This hack is to force load of "huge" support from libm.a * So it is in perl for (say) POSIX to use. * Needed for SunOS with Sun's 'acc' for example. */ NV Perl_huge(void) { # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL) return HUGE_VALL; # endif return HUGE_VAL; } #endif /* =for apidoc grok_bin converts a string representing a binary number to numeric form. On entry I and I<*len> give the string to scan, I<*flags> gives conversion flags, and I should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first invalid character. On return I<*len> is set to the length scanned string, and I<*flags> gives output flags. If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing is written to I<*result>. If the value is > UV_MAX C returns UV_MAX, sets C in the output flags, and writes the value to I<*result> (or the value is discarded if I is NULL). The hex number may optionally be prefixed with "0b" or "b" unless C is set in I<*flags> on entry. If C is set in I<*flags> then the binary number may use '_' characters to separate digits. =cut */ UV Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { const char *s = start; STRLEN len = *len_p; UV value = 0; NV value_nv = 0; const UV max_div_2 = UV_MAX / 2; bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; bool overflowed = FALSE; if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { /* strip off leading b or 0b. for compatibility silently suffer "b" and "0b" as valid binary numbers. */ if (len >= 1) { if (s[0] == 'b') { s++; len--; } else if (len >= 2 && s[0] == '0' && s[1] == 'b') { s+=2; len-=2; } } } for (; len-- && *s; s++) { char bit = *s; if (bit == '0' || bit == '1') { /* Write it in this wonky order with a goto to attempt to get the compiler to make the common case integer-only loop pretty tight. With gcc seems to be much straighter code than old scan_bin. */ redo: if (!overflowed) { if (value <= max_div_2) { value = (value << 1) | (bit - '0'); continue; } /* Bah. We're just overflowed. */ if (ckWARN_d(WARN_OVERFLOW)) Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), "Integer overflow in binary number"); overflowed = TRUE; value_nv = (NV) value; } value_nv *= 2.0; /* If an NV has not enough bits in its mantissa to * represent a UV this summing of small low-order numbers * is a waste of time (because the NV cannot preserve * the low-order bits anyway): we could just remember when * did we overflow and in the end just multiply value_nv by the * right amount. */ value_nv += (NV)(bit - '0'); continue; } if (bit == '_' && len && allow_underscores && (bit = s[1]) && (bit == '0' || bit == '1')) { --len; ++s; goto redo; } if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) Perl_warner(aTHX_ packWARN(WARN_DIGIT), "Illegal binary digit '%c' ignored", *s); break; } if ( ( overflowed && value_nv > 4294967295.0) #if UVSIZE > 4 || (!overflowed && value > 0xffffffff ) #endif ) { if (ckWARN(WARN_PORTABLE)) Perl_warner(aTHX_ packWARN(WARN_PORTABLE), "Binary number > 0b11111111111111111111111111111111 non-portable"); } *len_p = s - start; if (!overflowed) { *flags = 0; return value; } *flags = PERL_SCAN_GREATER_THAN_UV_MAX; if (result) *result = value_nv; return UV_MAX; } /* =for apidoc grok_hex converts a string representing a hex number to numeric form. On entry I and I<*len> give the string to scan, I<*flags> gives conversion flags, and I should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first non-hex-digit character. On return I<*len> is set to the length scanned string, and I<*flags> gives output flags. If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing is written to I<*result>. If the value is > UV_MAX C returns UV_MAX, sets C in the output flags, and writes the value to I<*result> (or the value is discarded if I is NULL). The hex number may optionally be prefixed with "0x" or "x" unless C is set in I<*flags> on entry. If C is set in I<*flags> then the hex number may use '_' characters to separate digits. =cut */ UV Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { const char *s = start; STRLEN len = *len_p; UV value = 0; NV value_nv = 0; const UV max_div_16 = UV_MAX / 16; bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; bool overflowed = FALSE; const char *hexdigit; if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { /* strip off leading x or 0x. for compatibility silently suffer "x" and "0x" as valid hex numbers. */ if (len >= 1) { if (s[0] == 'x') { s++; len--; } else if (len >= 2 && s[0] == '0' && s[1] == 'x') { s+=2; len-=2; } } } for (; len-- && *s; s++) { hexdigit = strchr((char *) PL_hexdigit, *s); if (hexdigit) { /* Write it in this wonky order with a goto to attempt to get the compiler to make the common case integer-only loop pretty tight. With gcc seems to be much straighter code than old scan_hex. */ redo: if (!overflowed) { if (value <= max_div_16) { value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); continue; } /* Bah. We're just overflowed. */ if (ckWARN_d(WARN_OVERFLOW)) Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), "Integer overflow in hexadecimal number"); overflowed = TRUE; value_nv = (NV) value; } value_nv *= 16.0; /* If an NV has not enough bits in its mantissa to * represent a UV this summing of small low-order numbers * is a waste of time (because the NV cannot preserve * the low-order bits anyway): we could just remember when * did we overflow and in the end just multiply value_nv by the * right amount of 16-tuples. */ value_nv += (NV)((hexdigit - PL_hexdigit) & 15); continue; } if (*s == '_' && len && allow_underscores && s[1] && (hexdigit = strchr((char *) PL_hexdigit, s[1]))) { --len; ++s; goto redo; } if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) Perl_warner(aTHX_ packWARN(WARN_DIGIT), "Illegal hexadecimal digit '%c' ignored", *s); break; } if ( ( overflowed && value_nv > 4294967295.0) #if UVSIZE > 4 || (!overflowed && value > 0xffffffff ) #endif ) { if (ckWARN(WARN_PORTABLE)) Perl_warner(aTHX_ packWARN(WARN_PORTABLE), "Hexadecimal number > 0xffffffff non-portable"); } *len_p = s - start; if (!overflowed) { *flags = 0; return value; } *flags = PERL_SCAN_GREATER_THAN_UV_MAX; if (result) *result = value_nv; return UV_MAX; } /* =for apidoc grok_oct =cut */ UV Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { const char *s = start; STRLEN len = *len_p; UV value = 0; NV value_nv = 0; const UV max_div_8 = UV_MAX / 8; bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; bool overflowed = FALSE; for (; len-- && *s; s++) { /* gcc 2.95 optimiser not smart enough to figure that this subtraction out front allows slicker code. */ int digit = *s - '0'; if (digit >= 0 && digit <= 7) { /* Write it in this wonky order with a goto to attempt to get the compiler to make the common case integer-only loop pretty tight. */ redo: if (!overflowed) { if (value <= max_div_8) { value = (value << 3) | digit; continue; } /* Bah. We're just overflowed. */ if (ckWARN_d(WARN_OVERFLOW)) Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), "Integer overflow in octal number"); overflowed = TRUE; value_nv = (NV) value; } value_nv *= 8.0; /* If an NV has not enough bits in its mantissa to * represent a UV this summing of small low-order numbers * is a waste of time (because the NV cannot preserve * the low-order bits anyway): we could just remember when * did we overflow and in the end just multiply value_nv by the * right amount of 8-tuples. */ value_nv += (NV)digit; continue; } if (digit == ('_' - '0') && len && allow_underscores && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) { --len; ++s; goto redo; } /* Allow \octal to work the DWIM way (that is, stop scanning * as soon as non-octal characters are seen, complain only iff * someone seems to want to use the digits eight and nine). */ if (digit == 8 || digit == 9) { if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) Perl_warner(aTHX_ packWARN(WARN_DIGIT), "Illegal octal digit '%c' ignored", *s); } break; } if ( ( overflowed && value_nv > 4294967295.0) #if UVSIZE > 4 || (!overflowed && value > 0xffffffff ) #endif ) { if (ckWARN(WARN_PORTABLE)) Perl_warner(aTHX_ packWARN(WARN_PORTABLE), "Octal number > 037777777777 non-portable"); } *len_p = s - start; if (!overflowed) { *flags = 0; return value; } *flags = PERL_SCAN_GREATER_THAN_UV_MAX; if (result) *result = value_nv; return UV_MAX; } /* =for apidoc scan_bin For backwards compatibility. Use C instead. =for apidoc scan_hex For backwards compatibility. Use C instead. =for apidoc scan_oct For backwards compatibility. Use C instead. =cut */ NV Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen) { NV rnv; I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; UV ruv = grok_bin (start, &len, &flags, &rnv); *retlen = len; return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; } NV Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen) { NV rnv; I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; UV ruv = grok_oct (start, &len, &flags, &rnv); *retlen = len; return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; } NV Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen) { NV rnv; I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; UV ruv = grok_hex (start, &len, &flags, &rnv); *retlen = len; return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; } /* =for apidoc grok_numeric_radix Scan and skip for a numeric decimal separator (radix). =cut */ bool Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) { #ifdef USE_LOCALE_NUMERIC if (PL_numeric_radix_sv && IN_LOCALE) { STRLEN len; char* radix = SvPV(PL_numeric_radix_sv, len); if (*sp + len <= send && memEQ(*sp, radix, len)) { *sp += len; return TRUE; } } /* always try "." if numeric radix didn't match because * we may have data from different locales mixed */ #endif if (*sp < send && **sp == '.') { ++*sp; return TRUE; } return FALSE; } /* =for apidoc grok_number Recognise (or not) a number. The type of the number is returned (0 if unrecognised), otherwise it is a bit-ORed combination of IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). If the value of the number can fit an in UV, it is returned in the *valuep IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV will never be set unless *valuep is valid, but *valuep may have been assigned to during processing even though IS_NUMBER_IN_UV is not set on return. If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when valuep is non-NULL, but no actual assignment (or SEGV) will occur. IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were seen (in which case *valuep gives the true value truncated to an integer), and IS_NUMBER_NEG if the number is negative (in which case *valuep holds the absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the number is larger than a UV. =cut */ int Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) { const char *s = pv; const char *send = pv + len; const UV max_div_10 = UV_MAX / 10; const char max_mod_10 = UV_MAX % 10; int numtype = 0; int sawinf = 0; int sawnan = 0; while (s < send && isSPACE(*s)) s++; if (s == send) { return 0; } else if (*s == '-') { s++; numtype = IS_NUMBER_NEG; } else if (*s == '+') s++; if (s == send) return 0; /* next must be digit or the radix separator or beginning of infinity */ if (isDIGIT(*s)) { /* UVs are at least 32 bits, so the first 9 decimal digits cannot overflow. */ UV value = *s - '0'; /* This construction seems to be more optimiser friendly. (without it gcc does the isDIGIT test and the *s - '0' separately) With it gcc on arm is managing 6 instructions (6 cycles) per digit. In theory the optimiser could deduce how far to unroll the loop before checking for overflow. */ if (++s < send) { int digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { /* Now got 9 digits, so need to check each time for overflow. */ digit = *s - '0'; while (digit >= 0 && digit <= 9 && (value < max_div_10 || (value == max_div_10 && digit <= max_mod_10))) { value = value * 10 + digit; if (++s < send) digit = *s - '0'; else break; } if (digit >= 0 && digit <= 9 && (s < send)) { /* value overflowed. skip the remaining digits, don't worry about setting *valuep. */ do { s++; } while (s < send && isDIGIT(*s)); numtype |= IS_NUMBER_GREATER_THAN_UV_MAX; goto skip_value; } } } } } } } } } } } } } } } } } } numtype |= IS_NUMBER_IN_UV; if (valuep) *valuep = value; skip_value: if (GROK_NUMERIC_RADIX(&s, send)) { numtype |= IS_NUMBER_NOT_INT; while (s < send && isDIGIT(*s)) /* optional digits after the radix */ s++; } } else if (GROK_NUMERIC_RADIX(&s, send)) { numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ /* no digits before the radix means we need digits after it */ if (s < send && isDIGIT(*s)) { do { s++; } while (s < send && isDIGIT(*s)); if (valuep) { /* integer approximation is valid - it's 0. */ *valuep = 0; } } else return 0; } else if (*s == 'I' || *s == 'i') { s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; s++; if (s < send && (*s == 'I' || *s == 'i')) { s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; s++; if (s == send || (*s != 'T' && *s != 't')) return 0; s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; s++; } sawinf = 1; } else if (*s == 'N' || *s == 'n') { /* XXX TODO: There are signaling NaNs and quiet NaNs. */ s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; s++; sawnan = 1; } else return 0; if (sawinf) { numtype &= IS_NUMBER_NEG; /* Keep track of sign */ numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; } else if (sawnan) { numtype &= IS_NUMBER_NEG; /* Keep track of sign */ numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; } else if (s < send) { /* we can have an optional exponent part */ if (*s == 'e' || *s == 'E') { /* The only flag we keep is sign. Blow away any "it's UV" */ numtype &= IS_NUMBER_NEG; numtype |= IS_NUMBER_NOT_INT; s++; if (s < send && (*s == '-' || *s == '+')) s++; if (s < send && isDIGIT(*s)) { do { s++; } while (s < send && isDIGIT(*s)); } else return 0; } } while (s < send && isSPACE(*s)) s++; if (s >= send) return numtype; if (len == 10 && memEQ(pv, "0 but true", 10)) { if (valuep) *valuep = 0; return IS_NUMBER_IN_UV; } return 0; } NV S_mulexp10(NV value, I32 exponent) { NV result = 1.0; NV power = 10.0; bool negative = 0; I32 bit; if (exponent == 0) return value; if (value == 0) return 0; /* On OpenVMS VAX we by default use the D_FLOAT double format, * and that format does not have *easy* capabilities [1] for * overflowing doubles 'silently' as IEEE fp does. We also need * to support G_FLOAT on both VAX and Alpha, and though the exponent * range is much larger than D_FLOAT it still doesn't do silent * overflow. Therefore we need to detect early whether we would * overflow (this is the behaviour of the native string-to-float * conversion routines, and therefore of native applications, too). * * [1] Trying to establish a condition handler to trap floating point * exceptions is not a good idea. */ /* In UNICOS and in certain Cray models (such as T90) there is no * IEEE fp, and no way at all from C to catch fp overflows gracefully. * There is something you can do if you are willing to use some * inline assembler: the instruction is called DFI-- but that will * disable *all* floating point interrupts, a little bit too large * a hammer. Therefore we need to catch potential overflows before * it's too late. */ #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) STMT_START { NV exp_v = log10(value); if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) return NV_MAX; if (exponent < 0) { if (-(exponent + exp_v) >= NV_MAX_10_EXP) return 0.0; while (-exponent >= NV_MAX_10_EXP) { /* combination does not overflow, but 10^(-exponent) does */ value /= 10; ++exponent; } } } STMT_END; #endif if (exponent < 0) { negative = 1; exponent = -exponent; } for (bit = 1; exponent; bit <<= 1) { if (exponent & bit) { exponent ^= bit; result *= power; /* Floating point exceptions are supposed to be turned off, * but if we're obviously done, don't risk another iteration. */ if (exponent == 0) break; } power *= power; } return negative ? value / result : value * result; } NV Perl_my_atof(pTHX_ const char* s) { NV x = 0.0; #ifdef USE_LOCALE_NUMERIC if (PL_numeric_local && IN_LOCALE) { NV y; /* Scan the number twice; once using locale and once without; * choose the larger result (in absolute value). */ Perl_atof2(s, x); SET_NUMERIC_STANDARD(); Perl_atof2(s, y); SET_NUMERIC_LOCAL(); if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) return y; } else Perl_atof2(s, x); #else Perl_atof2(s, x); #endif return x; } char* Perl_my_atof2(pTHX_ const char* orig, NV* value) { NV result[3] = {0.0, 0.0, 0.0}; char* s = (char*)orig; #ifdef USE_PERL_ATOF UV accumulator[2] = {0,0}; /* before/after dp */ bool negative = 0; char* send = s + strlen(orig) - 1; bool seen_digit = 0; I32 exp_adjust[2] = {0,0}; I32 exp_acc[2] = {-1, -1}; /* the current exponent adjust for the accumulators */ I32 exponent = 0; I32 seen_dp = 0; I32 digit = 0; I32 old_digit = 0; I32 sig_digits = 0; /* noof significant digits seen so far */ /* There is no point in processing more significant digits * than the NV can hold. Note that NV_DIG is a lower-bound value, * while we need an upper-bound value. We add 2 to account for this; * since it will have been conservative on both the first and last digit. * For example a 32-bit mantissa with an exponent of 4 would have * exact values in the set * 4 * 8 * .. * 17179869172 * 17179869176 * 17179869180 * * where for the purposes of calculating NV_DIG we would have to discount * both the first and last digit, since neither can hold all values from * 0..9; but for calculating the value we must examine those two digits. */ #define MAX_SIG_DIGITS (NV_DIG+2) /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) /* leading whitespace */ while (isSPACE(*s)) ++s; /* sign */ switch (*s) { case '-': negative = 1; /* fall through */ case '+': ++s; } /* we accumulate digits into an integer; when this becomes too * large, we add the total to NV and start again */ while (1) { if (isDIGIT(*s)) { seen_digit = 1; old_digit = digit; digit = *s++ - '0'; if (seen_dp) exp_adjust[1]++; /* don't start counting until we see the first significant * digit, eg the 5 in 0.00005... */ if (!sig_digits && digit == 0) continue; if (++sig_digits > MAX_SIG_DIGITS) { /* limits of precision reached */ if (digit > 5) { ++accumulator[seen_dp]; } else if (digit == 5) { if (old_digit % 2) { /* round to even - Allen */ ++accumulator[seen_dp]; } } if (seen_dp) { exp_adjust[1]--; } else { exp_adjust[0]++; } /* skip remaining digits */ while (isDIGIT(*s)) { ++s; if (! seen_dp) { exp_adjust[0]++; } } /* warn of loss of precision? */ } else { if (accumulator[seen_dp] > MAX_ACCUMULATE) { /* add accumulator to result and start again */ result[seen_dp] = S_mulexp10(result[seen_dp], exp_acc[seen_dp]) + (NV)accumulator[seen_dp]; accumulator[seen_dp] = 0; exp_acc[seen_dp] = 0; } accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; ++exp_acc[seen_dp]; } } else if (!seen_dp && GROK_NUMERIC_RADIX((const char **)&s, send)) { seen_dp = 1; if (sig_digits > MAX_SIG_DIGITS) { ++s; while (isDIGIT(*s)) { ++s; } break; } } else { break; } } result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; if (seen_dp) { result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; } if (seen_digit && (*s == 'e' || *s == 'E')) { bool expnegative = 0; ++s; switch (*s) { case '-': expnegative = 1; /* fall through */ case '+': ++s; } while (isDIGIT(*s)) exponent = exponent * 10 + (*s++ - '0'); if (expnegative) exponent = -exponent; } /* now apply the exponent */ if (seen_dp) { result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) + S_mulexp10(result[1],exponent-exp_adjust[1]); } else { result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); } /* now apply the sign */ if (negative) result[2] = -result[2]; #endif /* USE_PERL_ATOF */ *value = result[2]; return s; } #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL) long double Perl_my_modfl(long double x, long double *ip) { *ip = aintl(x); return (x == *ip ? copysignl(0.0L, x) : x - *ip); } #endif #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL) long double Perl_my_frexpl(long double x, int *e) { *e = x == 0.0L ? 0 : ilogbl(x) + 1; return (scalbnl(x, -*e)); } #endif