/* perly.y * * Copyright (c) 1991-2002, 2003, 2004, 2005, 2006 Larry Wall * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * 'I see,' laughed Strider. 'I look foul and feel fair. Is that it? * All that is gold does not glitter, not all those who wander are lost.' * * This file holds the grammar for the Perl language. If edited, you need * to run regen_perly.pl, which re-creates the files perly.h, perly.tab * and perly.act which are derived from this. * * Note that these derived files are included and compiled twice; once * from perly.c, and once from madly.c. The second time, a number of MAD * macros are defined, which compile in extra code that allows the parse * tree to be accurately dumped. In particular: * * MAD defined if compiling madly.c * DO_MAD(A) expands to A under madly.c, to null otherwise * IF_MAD(a,b) expands to A under madly.c, to B otherwise * TOKEN_GETMAD() expands to token_getmad() under madly.c, to null otherwise * TOKEN_FREE() similarly * OP_GETMAD() similarly * IVAL(i) expands to (i)->tk_lval.ival or (i) * PVAL(p) expands to (p)->tk_lval.pval or (p) * * The main job of of this grammar is to call the various newFOO() * functions in op.c to build a syntax tree of OP structs. * It relies on the lexer in toke.c to do the tokenizing. * * Note: due to the way that the cleanup code works WRT to freeing ops on * the parse stack, it is dangerous to assign to the $n variables within * an action. */ /* Make the parser re-entrant. */ %pure_parser /* FIXME for MAD - is the new mintro on while and until important? */ %start prog %union { I32 ival; /* __DEFAULT__ (marker for regen_perly.pl; must always be 1st union member) */ char *pval; OP *opval; GV *gvval; #ifdef PERL_IN_MADLY_C TOKEN* p_tkval; TOKEN* i_tkval; #else char *p_tkval; I32 i_tkval; #endif #ifdef PERL_MAD TOKEN* tkval; #endif } %token '{' '}' '[' ']' '-' '+' '$' '@' '%' '*' '&' ';' %token WORD METHOD FUNCMETH THING PMFUNC PRIVATEREF %token FUNC0SUB UNIOPSUB LSTOPSUB %token LABEL %token FORMAT SUB ANONSUB PACKAGE USE %token WHILE UNTIL IF UNLESS ELSE ELSIF CONTINUE FOR %token GIVEN WHEN DEFAULT %token LOOPEX DOTDOT %token FUNC0 FUNC1 FUNC UNIOP LSTOP %token RELOP EQOP MULOP ADDOP %token DOLSHARP DO HASHBRACK NOAMP %token LOCAL MY MYSUB REQUIRE %token COLONATTR %type prog progstart remember mremember savescope %type startsub startanonsub startformsub /* FIXME for MAD - are these two ival? */ %type mydefsv mintro %type decl format subrout mysubrout package use peg %type block mblock lineseq line loop cond else %type expr term subscripted scalar ary hsh arylen star amper sideff %type argexpr nexpr texpr iexpr mexpr mnexpr miexpr %type listexpr listexprcom indirob listop method %type formname subname proto subbody cont my_scalar %type subattrlist myattrlist myattrterm myterm %type termbinop termunop anonymous termdo %type switch case %type label %nonassoc PREC_LOW %nonassoc LOOPEX %left OROP DOROP %left ANDOP %right NOTOP %nonassoc LSTOP LSTOPSUB %left ',' %right ASSIGNOP %right '?' ':' %nonassoc DOTDOT %left OROR DORDOR %left ANDAND %left BITOROP %left BITANDOP %nonassoc EQOP %nonassoc RELOP %nonassoc UNIOP UNIOPSUB %nonassoc REQUIRE %left SHIFTOP %left ADDOP %left MULOP %left MATCHOP %right '!' '~' UMINUS REFGEN %right POWOP %nonassoc PREINC PREDEC POSTINC POSTDEC %left ARROW %nonassoc ')' %left '(' %left '[' '{' %token PEG %% /* RULES */ /* The whole program */ prog : progstart /*CONTINUED*/ lineseq { $$ = $1; newPROG(block_end($1,$2)); } ; /* An ordinary block */ block : '{' remember lineseq '}' { if (PL_parser->copline > (line_t)IVAL($1)) PL_parser->copline = (line_t)IVAL($1); $$ = block_end($2, $3); TOKEN_GETMAD($1,$$,'{'); TOKEN_GETMAD($4,$$,'}'); } ; remember: /* NULL */ /* start a full lexical scope */ { $$ = block_start(TRUE); } ; mydefsv: /* NULL */ /* lexicalize $_ */ { $$ = (I32) allocmy("$_"); } ; progstart: { PL_parser->expect = XSTATE; $$ = block_start(TRUE); } ; mblock : '{' mremember lineseq '}' { if (PL_parser->copline > (line_t)IVAL($1)) PL_parser->copline = (line_t)IVAL($1); $$ = block_end($2, $3); TOKEN_GETMAD($1,$$,'{'); TOKEN_GETMAD($4,$$,'}'); } ; mremember: /* NULL */ /* start a partial lexical scope */ { $$ = block_start(FALSE); } ; savescope: /* NULL */ /* remember stack pos in case of error */ { $$ = PL_savestack_ix; } /* A collection of "lines" in the program */ lineseq : /* NULL */ { $$ = Nullop; } | lineseq decl { $$ = IF_MAD( append_list(OP_LINESEQ, (LISTOP*)$1, (LISTOP*)$2), $1); } | lineseq savescope line { LEAVE_SCOPE($2); $$ = append_list(OP_LINESEQ, (LISTOP*)$1, (LISTOP*)$3); PL_pad_reset_pending = TRUE; if ($1 && $3) PL_hints |= HINT_BLOCK_SCOPE; } ; /* A "line" in the program */ line : label cond { $$ = newSTATEOP(0, PVAL($1), $2); TOKEN_GETMAD($1,((LISTOP*)$$)->op_first,'L'); } | loop /* loops add their own labels */ | switch /* ... and so do switches */ { $$ = $1; } | label case { $$ = newSTATEOP(0, PVAL($1), $2); } | label ';' { if (PVAL($1)) { $$ = newSTATEOP(0, PVAL($1), newOP(OP_NULL, 0)); TOKEN_GETMAD($1,$$,'L'); TOKEN_GETMAD($2,((LISTOP*)$$)->op_first,';'); } else { $$ = IF_MAD( newOP(OP_NULL, 0), Nullop); PL_parser->copline = NOLINE; TOKEN_FREE($1); TOKEN_GETMAD($2,$$,';'); } PL_parser->expect = XSTATE; } | label sideff ';' { $$ = newSTATEOP(0, PVAL($1), $2); PL_parser->expect = XSTATE; DO_MAD( /* sideff might already have a nexstate */ OP* op = ((LISTOP*)$$)->op_first; if (op) { while (op->op_sibling && op->op_sibling->op_type == OP_NEXTSTATE) op = op->op_sibling; token_getmad($1,op,'L'); token_getmad($3,op,';'); } ) } ; /* An expression which may have a side-effect */ sideff : error { $$ = Nullop; } | expr { $$ = $1; } | expr IF expr { $$ = newLOGOP(OP_AND, 0, $3, $1); TOKEN_GETMAD($2,$$,'i'); } | expr UNLESS expr { $$ = newLOGOP(OP_OR, 0, $3, $1); TOKEN_GETMAD($2,$$,'i'); } | expr WHILE expr { $$ = newLOOPOP(OPf_PARENS, 1, scalar($3), $1); TOKEN_GETMAD($2,$$,'w'); } | expr UNTIL iexpr { $$ = newLOOPOP(OPf_PARENS, 1, $3, $1); TOKEN_GETMAD($2,$$,'w'); } | expr FOR expr { $$ = newFOROP(0, Nullch, (line_t)IVAL($2), Nullop, $3, $1, Nullop); TOKEN_GETMAD($2,((LISTOP*)$$)->op_first->op_sibling,'w'); } ; /* else and elsif blocks */ else : /* NULL */ { $$ = Nullop; } | ELSE mblock { ($2)->op_flags |= OPf_PARENS; $$ = scope($2); TOKEN_GETMAD($1,$$,'o'); } | ELSIF '(' mexpr ')' mblock else { PL_parser->copline = (line_t)IVAL($1); $$ = newCONDOP(0, $3, scope($5), $6); PL_hints |= HINT_BLOCK_SCOPE; TOKEN_GETMAD($1,$$,'I'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($4,$$,')'); } ; /* Real conditional expressions */ cond : IF '(' remember mexpr ')' mblock else { PL_parser->copline = (line_t)IVAL($1); $$ = block_end($3, newCONDOP(0, $4, scope($6), $7)); TOKEN_GETMAD($1,$$,'I'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($5,$$,')'); } | UNLESS '(' remember miexpr ')' mblock else { PL_parser->copline = (line_t)IVAL($1); $$ = block_end($3, newCONDOP(0, $4, scope($6), $7)); TOKEN_GETMAD($1,$$,'I'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($5,$$,')'); } ; /* Cases for a switch statement */ case : WHEN '(' remember mexpr ')' mblock { $$ = block_end($3, newWHENOP($4, scope($6))); } | DEFAULT block { $$ = newWHENOP(0, scope($2)); } ; /* Continue blocks */ cont : /* NULL */ { $$ = Nullop; } | CONTINUE block { $$ = scope($2); TOKEN_GETMAD($1,$$,'o'); } ; /* Loops: while, until, for, and a bare block */ loop : label WHILE '(' remember texpr ')' mintro mblock cont { OP *innerop; PL_parser->copline = (line_t)$2; $$ = block_end($4, newSTATEOP(0, PVAL($1), innerop = newWHILEOP(0, 1, (LOOP*)Nullop, IVAL($2), $5, $8, $9, $7))); TOKEN_GETMAD($1,innerop,'L'); TOKEN_GETMAD($2,innerop,'W'); TOKEN_GETMAD($3,innerop,'('); TOKEN_GETMAD($6,innerop,')'); } | label UNTIL '(' remember iexpr ')' mintro mblock cont { OP *innerop; PL_parser->copline = (line_t)$2; $$ = block_end($4, newSTATEOP(0, PVAL($1), innerop = newWHILEOP(0, 1, (LOOP*)Nullop, IVAL($2), $5, $8, $9, $7))); TOKEN_GETMAD($1,innerop,'L'); TOKEN_GETMAD($2,innerop,'W'); TOKEN_GETMAD($3,innerop,'('); TOKEN_GETMAD($6,innerop,')'); } | label FOR MY remember my_scalar '(' mexpr ')' mblock cont { OP *innerop; $$ = block_end($4, innerop = newFOROP(0, PVAL($1), (line_t)IVAL($2), $5, $7, $9, $10)); TOKEN_GETMAD($1,((LISTOP*)innerop)->op_first,'L'); TOKEN_GETMAD($2,((LISTOP*)innerop)->op_first->op_sibling,'W'); TOKEN_GETMAD($3,((LISTOP*)innerop)->op_first->op_sibling,'d'); TOKEN_GETMAD($6,((LISTOP*)innerop)->op_first->op_sibling,'('); TOKEN_GETMAD($8,((LISTOP*)innerop)->op_first->op_sibling,')'); } | label FOR scalar '(' remember mexpr ')' mblock cont { OP *innerop; $$ = block_end($5, innerop = newFOROP(0, PVAL($1), (line_t)IVAL($2), mod($3, OP_ENTERLOOP), $6, $8, $9)); TOKEN_GETMAD($1,((LISTOP*)innerop)->op_first,'L'); TOKEN_GETMAD($2,((LISTOP*)innerop)->op_first->op_sibling,'W'); TOKEN_GETMAD($4,((LISTOP*)innerop)->op_first->op_sibling,'('); TOKEN_GETMAD($7,((LISTOP*)innerop)->op_first->op_sibling,')'); } | label FOR '(' remember mexpr ')' mblock cont { OP *innerop; $$ = block_end($4, innerop = newFOROP(0, PVAL($1), (line_t)IVAL($2), Nullop, $5, $7, $8)); TOKEN_GETMAD($1,((LISTOP*)innerop)->op_first,'L'); TOKEN_GETMAD($2,((LISTOP*)innerop)->op_first->op_sibling,'W'); TOKEN_GETMAD($3,((LISTOP*)innerop)->op_first->op_sibling,'('); TOKEN_GETMAD($6,((LISTOP*)innerop)->op_first->op_sibling,')'); } | label FOR '(' remember mnexpr ';' texpr ';' mintro mnexpr ')' mblock /* basically fake up an initialize-while lineseq */ { OP *forop; PL_parser->copline = (line_t)IVAL($2); forop = newSTATEOP(0, PVAL($1), newWHILEOP(0, 1, (LOOP*)Nullop, IVAL($2), scalar($7), $12, $10, $9)); #ifdef MAD forop = newUNOP(OP_NULL, 0, append_elem(OP_LINESEQ, newSTATEOP(0, CopLABEL_alloc(($1)->tk_lval.pval), ($5 ? $5 : newOP(OP_NULL, 0)) ), forop)); token_getmad($2,forop,'3'); token_getmad($3,forop,'('); token_getmad($6,forop,'1'); token_getmad($8,forop,'2'); token_getmad($11,forop,')'); token_getmad($1,forop,'L'); #else if ($5) { forop = append_elem(OP_LINESEQ, newSTATEOP(0, CopLABEL_alloc($1), $5), forop); } #endif $$ = block_end($4, forop); } | label block cont /* a block is a loop that happens once */ { $$ = newSTATEOP(0, PVAL($1), newWHILEOP(0, 1, (LOOP*)Nullop, NOLINE, Nullop, $2, $3, 0)); TOKEN_GETMAD($1,((LISTOP*)$$)->op_first,'L'); } ; /* Switch blocks */ switch : label GIVEN '(' remember mydefsv mexpr ')' mblock { PL_parser->copline = (line_t) $2; $$ = block_end($4, newSTATEOP(0, PVAL($1), newGIVENOP($6, scope($8), (PADOFFSET) $5) )); } ; /* determine whether there are any new my declarations */ mintro : /* NULL */ { $$ = (PL_min_intro_pending && PL_max_intro_pending >= PL_min_intro_pending); intro_my(); } /* Normal expression */ nexpr : /* NULL */ { $$ = Nullop; } | sideff ; /* Boolean expression */ texpr : /* NULL means true */ { YYSTYPE tmplval; (void)scan_num("1", &tmplval); $$ = tmplval.opval; } | expr ; /* Inverted boolean expression */ iexpr : expr { $$ = invert(scalar($1)); } ; /* Expression with its own lexical scope */ mexpr : expr { $$ = $1; intro_my(); } ; mnexpr : nexpr { $$ = $1; intro_my(); } ; miexpr : iexpr { $$ = $1; intro_my(); } ; /* Optional "MAIN:"-style loop labels */ label : /* empty */ { #ifdef MAD YYSTYPE tmplval; tmplval.pval = Nullch; $$ = newTOKEN(OP_NULL, tmplval, 0); #else $$ = Nullch; #endif } | LABEL ; /* Some kind of declaration - just hang on peg in the parse tree */ decl : format { $$ = $1; } | subrout { $$ = $1; } | mysubrout { $$ = $1; } | package { $$ = $1; } | use { $$ = $1; } /* these two are only used by MAD */ | peg { $$ = $1; } ; peg : PEG { $$ = newOP(OP_NULL,0); TOKEN_GETMAD($1,$$,'p'); } ; format : FORMAT startformsub formname block { SvREFCNT_inc_simple_void(PL_compcv); #ifdef MAD $$ = newFORM($2, $3, $4); prepend_madprops($1->tk_mad, $$, 'F'); $1->tk_mad = 0; token_free($1); #else newFORM($2, $3, $4); $$ = Nullop; #endif } ; formname: WORD { $$ = $1; } | /* NULL */ { $$ = Nullop; } ; /* Unimplemented "my sub foo { }" */ mysubrout: MYSUB startsub subname proto subattrlist subbody { SvREFCNT_inc_simple_void(PL_compcv); #ifdef MAD $$ = newMYSUB($2, $3, $4, $5, $6); token_getmad($1,$$,'d'); #else newMYSUB($2, $3, $4, $5, $6); $$ = Nullop; #endif } ; /* Subroutine definition */ subrout : SUB startsub subname proto subattrlist subbody { SvREFCNT_inc_simple_void(PL_compcv); #ifdef MAD OP* o = newSVOP(OP_ANONCODE, 0, (SV*)newATTRSUB($2, $3, $4, $5, $6)); $$ = newOP(OP_NULL,0); op_getmad(o,$$,'&'); op_getmad($3,$$,'n'); op_getmad($4,$$,'s'); op_getmad($5,$$,'a'); token_getmad($1,$$,'d'); append_madprops($6->op_madprop, $$, 0); $6->op_madprop = 0; #else newATTRSUB($2, $3, $4, $5, $6); $$ = Nullop; #endif } ; startsub: /* NULL */ /* start a regular subroutine scope */ { $$ = start_subparse(FALSE, 0); SAVEFREESV(PL_compcv); } ; startanonsub: /* NULL */ /* start an anonymous subroutine scope */ { $$ = start_subparse(FALSE, CVf_ANON); SAVEFREESV(PL_compcv); } ; startformsub: /* NULL */ /* start a format subroutine scope */ { $$ = start_subparse(TRUE, 0); SAVEFREESV(PL_compcv); } ; /* Name of a subroutine - must be a bareword, could be special */ subname : WORD { const char *const name = SvPV_nolen_const(((SVOP*)$1)->op_sv); if (strEQ(name, "BEGIN") || strEQ(name, "END") || strEQ(name, "INIT") || strEQ(name, "CHECK") || strEQ(name, "UNITCHECK")) CvSPECIAL_on(PL_compcv); $$ = $1; } ; /* Subroutine prototype */ proto : /* NULL */ { $$ = Nullop; } | THING ; /* Optional list of subroutine attributes */ subattrlist: /* NULL */ { $$ = Nullop; } | COLONATTR THING { $$ = $2; TOKEN_GETMAD($1,$$,':'); } | COLONATTR { $$ = IF_MAD( newOP(OP_NULL, 0), Nullop ); TOKEN_GETMAD($1,$$,':'); } ; /* List of attributes for a "my" variable declaration */ myattrlist: COLONATTR THING { $$ = $2; TOKEN_GETMAD($1,$$,':'); } | COLONATTR { $$ = IF_MAD( newOP(OP_NULL, 0), Nullop ); TOKEN_GETMAD($1,$$,':'); } ; /* Subroutine body - either null or a block */ subbody : block { $$ = $1; } | ';' { $$ = IF_MAD( newOP(OP_NULL,0), Nullop ); PL_parser->expect = XSTATE; TOKEN_GETMAD($1,$$,';'); } ; package : PACKAGE WORD ';' { #ifdef MAD $$ = package($2); token_getmad($1,$$,'o'); token_getmad($3,$$,';'); #else package($2); $$ = Nullop; #endif } ; use : USE startsub { CvSPECIAL_on(PL_compcv); /* It's a BEGIN {} */ } WORD WORD listexpr ';' { SvREFCNT_inc_simple_void(PL_compcv); #ifdef MAD $$ = utilize(IVAL($1), $2, $4, $5, $6); token_getmad($1,$$,'o'); token_getmad($7,$$,';'); if (PL_parser->rsfp_filters && AvFILLp(PL_parser->rsfp_filters) >= 0) append_madprops(newMADPROP('!', MAD_PV, "", 0), $$, 0); #else utilize(IVAL($1), $2, $4, $5, $6); $$ = Nullop; #endif } ; /* Ordinary expressions; logical combinations */ expr : expr ANDOP expr { $$ = newLOGOP(OP_AND, 0, $1, $3); TOKEN_GETMAD($2,$$,'o'); } | expr OROP expr { $$ = newLOGOP(IVAL($2), 0, $1, $3); TOKEN_GETMAD($2,$$,'o'); } | expr DOROP expr { $$ = newLOGOP(OP_DOR, 0, $1, $3); TOKEN_GETMAD($2,$$,'o'); } | argexpr %prec PREC_LOW ; /* Expressions are a list of terms joined by commas */ argexpr : argexpr ',' { #ifdef MAD OP* op = newNULLLIST(); token_getmad($2,op,','); $$ = append_elem(OP_LIST, $1, op); #else $$ = $1; #endif } | argexpr ',' term { OP* term = $3; DO_MAD( term = newUNOP(OP_NULL, 0, term); token_getmad($2,term,','); ) $$ = append_elem(OP_LIST, $1, term); } | term %prec PREC_LOW ; /* List operators */ listop : LSTOP indirob argexpr /* map {...} @args or print $fh @args */ { $$ = convert(IVAL($1), OPf_STACKED, prepend_elem(OP_LIST, newGVREF(IVAL($1),$2), $3) ); TOKEN_GETMAD($1,$$,'o'); } | FUNC '(' indirob expr ')' /* print ($fh @args */ { $$ = convert(IVAL($1), OPf_STACKED, prepend_elem(OP_LIST, newGVREF(IVAL($1),$3), $4) ); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($5,$$,')'); } | term ARROW method '(' listexprcom ')' /* $foo->bar(list) */ { $$ = convert(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, prepend_elem(OP_LIST, scalar($1), $5), newUNOP(OP_METHOD, 0, $3))); TOKEN_GETMAD($2,$$,'A'); TOKEN_GETMAD($4,$$,'('); TOKEN_GETMAD($6,$$,')'); } | term ARROW method /* $foo->bar */ { $$ = convert(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, scalar($1), newUNOP(OP_METHOD, 0, $3))); TOKEN_GETMAD($2,$$,'A'); } | METHOD indirob listexpr /* new Class @args */ { $$ = convert(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, prepend_elem(OP_LIST, $2, $3), newUNOP(OP_METHOD, 0, $1))); } | FUNCMETH indirob '(' listexprcom ')' /* method $object (@args) */ { $$ = convert(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, prepend_elem(OP_LIST, $2, $4), newUNOP(OP_METHOD, 0, $1))); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($5,$$,')'); } | LSTOP listexpr /* print @args */ { $$ = convert(IVAL($1), 0, $2); TOKEN_GETMAD($1,$$,'o'); } | FUNC '(' listexprcom ')' /* print (@args) */ { $$ = convert(IVAL($1), 0, $3); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($4,$$,')'); } | LSTOPSUB startanonsub block /* sub f(&@); f { foo } ... */ { SvREFCNT_inc_simple_void(PL_compcv); $$ = newANONATTRSUB($2, 0, Nullop, $3); } listexpr %prec LSTOP /* ... @bar */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, prepend_elem(OP_LIST, $4, $5), $1)); } ; /* Names of methods. May use $object->$methodname */ method : METHOD | scalar ; /* Some kind of subscripted expression */ subscripted: star '{' expr ';' '}' /* *main::{something} */ /* In this and all the hash accessors, ';' is * provided by the tokeniser */ { $$ = newBINOP(OP_GELEM, 0, $1, scalar($3)); PL_parser->expect = XOPERATOR; TOKEN_GETMAD($2,$$,'{'); TOKEN_GETMAD($4,$$,';'); TOKEN_GETMAD($5,$$,'}'); } | scalar '[' expr ']' /* $array[$element] */ { $$ = newBINOP(OP_AELEM, 0, oopsAV($1), scalar($3)); TOKEN_GETMAD($2,$$,'['); TOKEN_GETMAD($4,$$,']'); } | term ARROW '[' expr ']' /* somearef->[$element] */ { $$ = newBINOP(OP_AELEM, 0, ref(newAVREF($1),OP_RV2AV), scalar($4)); TOKEN_GETMAD($2,$$,'a'); TOKEN_GETMAD($3,$$,'['); TOKEN_GETMAD($5,$$,']'); } | subscripted '[' expr ']' /* $foo->[$bar]->[$baz] */ { $$ = newBINOP(OP_AELEM, 0, ref(newAVREF($1),OP_RV2AV), scalar($3)); TOKEN_GETMAD($2,$$,'['); TOKEN_GETMAD($4,$$,']'); } | scalar '{' expr ';' '}' /* $foo->{bar();} */ { $$ = newBINOP(OP_HELEM, 0, oopsHV($1), jmaybe($3)); PL_parser->expect = XOPERATOR; TOKEN_GETMAD($2,$$,'{'); TOKEN_GETMAD($4,$$,';'); TOKEN_GETMAD($5,$$,'}'); } | term ARROW '{' expr ';' '}' /* somehref->{bar();} */ { $$ = newBINOP(OP_HELEM, 0, ref(newHVREF($1),OP_RV2HV), jmaybe($4)); PL_parser->expect = XOPERATOR; TOKEN_GETMAD($2,$$,'a'); TOKEN_GETMAD($3,$$,'{'); TOKEN_GETMAD($5,$$,';'); TOKEN_GETMAD($6,$$,'}'); } | subscripted '{' expr ';' '}' /* $foo->[bar]->{baz;} */ { $$ = newBINOP(OP_HELEM, 0, ref(newHVREF($1),OP_RV2HV), jmaybe($3)); PL_parser->expect = XOPERATOR; TOKEN_GETMAD($2,$$,'{'); TOKEN_GETMAD($4,$$,';'); TOKEN_GETMAD($5,$$,'}'); } | term ARROW '(' ')' /* $subref->() */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, newCVREF(0, scalar($1))); TOKEN_GETMAD($2,$$,'a'); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($4,$$,')'); } | term ARROW '(' expr ')' /* $subref->(@args) */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, $4, newCVREF(0, scalar($1)))); TOKEN_GETMAD($2,$$,'a'); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($5,$$,')'); } | subscripted '(' expr ')' /* $foo->{bar}->(@args) */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, $3, newCVREF(0, scalar($1)))); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($4,$$,')'); } | subscripted '(' ')' /* $foo->{bar}->() */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, newCVREF(0, scalar($1))); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($3,$$,')'); } | '(' expr ')' '[' expr ']' /* list slice */ { $$ = newSLICEOP(0, $5, $2); TOKEN_GETMAD($1,$$,'('); TOKEN_GETMAD($3,$$,')'); TOKEN_GETMAD($4,$$,'['); TOKEN_GETMAD($6,$$,']'); } | '(' ')' '[' expr ']' /* empty list slice! */ { $$ = newSLICEOP(0, $4, Nullop); TOKEN_GETMAD($1,$$,'('); TOKEN_GETMAD($2,$$,')'); TOKEN_GETMAD($3,$$,'['); TOKEN_GETMAD($5,$$,']'); } ; /* Binary operators between terms */ termbinop: term ASSIGNOP term /* $x = $y */ { $$ = newASSIGNOP(OPf_STACKED, $1, IVAL($2), $3); TOKEN_GETMAD($2,$$,'o'); } | term POWOP term /* $x ** $y */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term MULOP term /* $x * $y, $x x $y */ { if (IVAL($2) != OP_REPEAT) scalar($1); $$ = newBINOP(IVAL($2), 0, $1, scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term ADDOP term /* $x + $y */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term SHIFTOP term /* $x >> $y, $x << $y */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term RELOP term /* $x > $y, etc. */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term EQOP term /* $x == $y, $x eq $y */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term BITANDOP term /* $x & $y */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term BITOROP term /* $x | $y */ { $$ = newBINOP(IVAL($2), 0, scalar($1), scalar($3)); TOKEN_GETMAD($2,$$,'o'); } | term DOTDOT term /* $x..$y, $x...$y */ { $$ = newRANGE(IVAL($2), scalar($1), scalar($3)); DO_MAD( UNOP *op; op = (UNOP*)$$; op = (UNOP*)op->op_first; /* get to flop */ op = (UNOP*)op->op_first; /* get to flip */ op = (UNOP*)op->op_first; /* get to range */ token_getmad($2,(OP*)op,'o'); ) } | term ANDAND term /* $x && $y */ { $$ = newLOGOP(OP_AND, 0, $1, $3); TOKEN_GETMAD($2,$$,'o'); } | term OROR term /* $x || $y */ { $$ = newLOGOP(OP_OR, 0, $1, $3); TOKEN_GETMAD($2,$$,'o'); } | term DORDOR term /* $x // $y */ { $$ = newLOGOP(OP_DOR, 0, $1, $3); TOKEN_GETMAD($2,$$,'o'); } | term MATCHOP term /* $x =~ /$y/ */ { $$ = bind_match(IVAL($2), $1, $3); TOKEN_GETMAD($2, ($$->op_type == OP_NOT ? ((UNOP*)$$)->op_first : $$), '~'); } ; /* Unary operators and terms */ termunop : '-' term %prec UMINUS /* -$x */ { $$ = newUNOP(OP_NEGATE, 0, scalar($2)); TOKEN_GETMAD($1,$$,'o'); } | '+' term %prec UMINUS /* +$x */ { $$ = IF_MAD( newUNOP(OP_NULL, 0, $2), $2 ); TOKEN_GETMAD($1,$$,'+'); } | '!' term /* !$x */ { $$ = newUNOP(OP_NOT, 0, scalar($2)); TOKEN_GETMAD($1,$$,'o'); } | '~' term /* ~$x */ { $$ = newUNOP(OP_COMPLEMENT, 0, scalar($2)); TOKEN_GETMAD($1,$$,'o'); } | term POSTINC /* $x++ */ { $$ = newUNOP(OP_POSTINC, 0, mod(scalar($1), OP_POSTINC)); TOKEN_GETMAD($2,$$,'o'); } | term POSTDEC /* $x-- */ { $$ = newUNOP(OP_POSTDEC, 0, mod(scalar($1), OP_POSTDEC)); TOKEN_GETMAD($2,$$,'o'); } | PREINC term /* ++$x */ { $$ = newUNOP(OP_PREINC, 0, mod(scalar($2), OP_PREINC)); TOKEN_GETMAD($1,$$,'o'); } | PREDEC term /* --$x */ { $$ = newUNOP(OP_PREDEC, 0, mod(scalar($2), OP_PREDEC)); TOKEN_GETMAD($1,$$,'o'); } ; /* Constructors for anonymous data */ anonymous: '[' expr ']' { $$ = newANONLIST($2); TOKEN_GETMAD($1,$$,'['); TOKEN_GETMAD($3,$$,']'); } | '[' ']' { $$ = newANONLIST(Nullop); TOKEN_GETMAD($1,$$,'['); TOKEN_GETMAD($2,$$,']'); } | HASHBRACK expr ';' '}' %prec '(' /* { foo => "Bar" } */ { $$ = newANONHASH($2); TOKEN_GETMAD($1,$$,'{'); TOKEN_GETMAD($3,$$,';'); TOKEN_GETMAD($4,$$,'}'); } | HASHBRACK ';' '}' %prec '(' /* { } (';' by tokener) */ { $$ = newANONHASH(Nullop); TOKEN_GETMAD($1,$$,'{'); TOKEN_GETMAD($2,$$,';'); TOKEN_GETMAD($3,$$,'}'); } | ANONSUB startanonsub proto subattrlist block %prec '(' { SvREFCNT_inc_simple_void(PL_compcv); $$ = newANONATTRSUB($2, $3, $4, $5); TOKEN_GETMAD($1,$$,'o'); OP_GETMAD($3,$$,'s'); OP_GETMAD($4,$$,'a'); } ; /* Things called with "do" */ termdo : DO term %prec UNIOP /* do $filename */ { $$ = dofile($2, IVAL($1)); TOKEN_GETMAD($1,$$,'o'); } | DO block %prec '(' /* do { code */ { $$ = newUNOP(OP_NULL, OPf_SPECIAL, scope($2)); TOKEN_GETMAD($1,$$,'D'); } | DO WORD '(' ')' /* do somesub() */ { $$ = newUNOP(OP_ENTERSUB, OPf_SPECIAL|OPf_STACKED, prepend_elem(OP_LIST, scalar(newCVREF( (OPpENTERSUB_AMPER<<8), scalar($2) )),Nullop)); dep(); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($4,$$,')'); } | DO WORD '(' expr ')' /* do somesub(@args) */ { $$ = newUNOP(OP_ENTERSUB, OPf_SPECIAL|OPf_STACKED, append_elem(OP_LIST, $4, scalar(newCVREF( (OPpENTERSUB_AMPER<<8), scalar($2) )))); dep(); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($5,$$,')'); } | DO scalar '(' ')' /* do $subref () */ { $$ = newUNOP(OP_ENTERSUB, OPf_SPECIAL|OPf_STACKED, prepend_elem(OP_LIST, scalar(newCVREF(0,scalar($2))), Nullop)); dep(); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($4,$$,')'); } | DO scalar '(' expr ')' /* do $subref (@args) */ { $$ = newUNOP(OP_ENTERSUB, OPf_SPECIAL|OPf_STACKED, prepend_elem(OP_LIST, $4, scalar(newCVREF(0,scalar($2))))); dep(); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($3,$$,'('); TOKEN_GETMAD($5,$$,')'); } ; term : termbinop | termunop | anonymous | termdo | term '?' term ':' term { $$ = newCONDOP(0, $1, $3, $5); TOKEN_GETMAD($2,$$,'?'); TOKEN_GETMAD($4,$$,':'); } | REFGEN term /* \$x, \@y, \%z */ { $$ = newUNOP(OP_REFGEN, 0, mod($2,OP_REFGEN)); TOKEN_GETMAD($1,$$,'o'); } | myattrterm %prec UNIOP { $$ = $1; } | LOCAL term %prec UNIOP { $$ = localize($2,IVAL($1)); TOKEN_GETMAD($1,$$,'d'); } | '(' expr ')' { $$ = sawparens(IF_MAD(newUNOP(OP_NULL,0,$2), $2)); TOKEN_GETMAD($1,$$,'('); TOKEN_GETMAD($3,$$,')'); } | '(' ')' { $$ = sawparens(newNULLLIST()); TOKEN_GETMAD($1,$$,'('); TOKEN_GETMAD($2,$$,')'); } | scalar %prec '(' { $$ = $1; } | star %prec '(' { $$ = $1; } | hsh %prec '(' { $$ = $1; } | ary %prec '(' { $$ = $1; } | arylen %prec '(' /* $#x, $#{ something } */ { $$ = newUNOP(OP_AV2ARYLEN, 0, ref($1, OP_AV2ARYLEN));} | subscripted { $$ = $1; } | ary '[' expr ']' /* array slice */ { $$ = prepend_elem(OP_ASLICE, newOP(OP_PUSHMARK, 0), newLISTOP(OP_ASLICE, 0, list($3), ref($1, OP_ASLICE))); TOKEN_GETMAD($2,$$,'['); TOKEN_GETMAD($4,$$,']'); } | ary '{' expr ';' '}' /* @hash{@keys} */ { $$ = prepend_elem(OP_HSLICE, newOP(OP_PUSHMARK, 0), newLISTOP(OP_HSLICE, 0, list($3), ref(oopsHV($1), OP_HSLICE))); PL_parser->expect = XOPERATOR; TOKEN_GETMAD($2,$$,'{'); TOKEN_GETMAD($4,$$,';'); TOKEN_GETMAD($5,$$,'}'); } | THING %prec '(' { $$ = $1; } | amper /* &foo; */ { $$ = newUNOP(OP_ENTERSUB, 0, scalar($1)); } | amper '(' ')' /* &foo() */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, scalar($1)); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($3,$$,')'); } | amper '(' expr ')' /* &foo(@args) */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, $3, scalar($1))); DO_MAD( OP* op = $$; if (op->op_type == OP_CONST) { /* defeat const fold */ op = (OP*)op->op_madprop->mad_val; } token_getmad($2,op,'('); token_getmad($4,op,')'); ) } | NOAMP WORD listexpr /* foo(@args) */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, $3, scalar($2))); TOKEN_GETMAD($1,$$,'o'); } | LOOPEX /* loop exiting command (goto, last, dump, etc) */ { $$ = newOP(IVAL($1), OPf_SPECIAL); PL_hints |= HINT_BLOCK_SCOPE; TOKEN_GETMAD($1,$$,'o'); } | LOOPEX term { $$ = newLOOPEX(IVAL($1),$2); TOKEN_GETMAD($1,$$,'o'); } | NOTOP argexpr /* not $foo */ { $$ = newUNOP(OP_NOT, 0, scalar($2)); TOKEN_GETMAD($1,$$,'o'); } | UNIOP /* Unary op, $_ implied */ { $$ = newOP(IVAL($1), 0); TOKEN_GETMAD($1,$$,'o'); } | UNIOP block /* eval { foo }* */ { $$ = newUNOP(IVAL($1), 0, $2); TOKEN_GETMAD($1,$$,'o'); } | UNIOP term /* Unary op */ { $$ = newUNOP(IVAL($1), 0, $2); TOKEN_GETMAD($1,$$,'o'); } | REQUIRE /* require, $_ implied */ { $$ = newOP(OP_REQUIRE, $1 ? OPf_SPECIAL : 0); TOKEN_GETMAD($1,$$,'o'); } | REQUIRE term /* require Foo */ { $$ = newUNOP(OP_REQUIRE, $1 ? OPf_SPECIAL : 0, $2); TOKEN_GETMAD($1,$$,'o'); } | UNIOPSUB { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, scalar($1)); } | UNIOPSUB term /* Sub treated as unop */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, append_elem(OP_LIST, $2, scalar($1))); } | FUNC0 /* Nullary operator */ { $$ = newOP(IVAL($1), 0); TOKEN_GETMAD($1,$$,'o'); } | FUNC0 '(' ')' { $$ = newOP(IVAL($1), 0); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($3,$$,')'); } | FUNC0SUB /* Sub treated as nullop */ { $$ = newUNOP(OP_ENTERSUB, OPf_STACKED, scalar($1)); } | FUNC1 '(' ')' /* not () */ { $$ = (IVAL($1) == OP_NOT) ? newUNOP(IVAL($1), 0, newSVOP(OP_CONST, 0, newSViv(0))) : newOP(IVAL($1), OPf_SPECIAL); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($3,$$,')'); } | FUNC1 '(' expr ')' /* not($foo) */ { $$ = newUNOP(IVAL($1), 0, $3); TOKEN_GETMAD($1,$$,'o'); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($4,$$,')'); } | PMFUNC '(' argexpr ')' /* m//, s///, tr/// */ { $$ = pmruntime($1, $3, 1); TOKEN_GETMAD($2,$$,'('); TOKEN_GETMAD($4,$$,')'); } | WORD | listop ; /* "my" declarations, with optional attributes */ myattrterm: MY myterm myattrlist { $$ = my_attrs($2,$3); DO_MAD( token_getmad($1,$$,'d'); append_madprops($3->op_madprop, $$, 'a'); $3->op_madprop = 0; ) } | MY myterm { $$ = localize($2,IVAL($1)); TOKEN_GETMAD($1,$$,'d'); } ; /* Things that can be "my"'d */ myterm : '(' expr ')' { $$ = sawparens($2); TOKEN_GETMAD($1,$$,'('); TOKEN_GETMAD($3,$$,')'); } | '(' ')' { $$ = sawparens(newNULLLIST()); TOKEN_GETMAD($1,$$,'('); TOKEN_GETMAD($2,$$,')'); } | scalar %prec '(' { $$ = $1; } | hsh %prec '(' { $$ = $1; } | ary %prec '(' { $$ = $1; } ; /* Basic list expressions */ listexpr: /* NULL */ %prec PREC_LOW { $$ = Nullop; } | argexpr %prec PREC_LOW { $$ = $1; } ; listexprcom: /* NULL */ { $$ = Nullop; } | expr { $$ = $1; } | expr ',' { #ifdef MAD OP* op = newNULLLIST(); token_getmad($2,op,','); $$ = append_elem(OP_LIST, $1, op); #else $$ = $1; #endif } ; /* A little bit of trickery to make "for my $foo (@bar)" actually be lexical */ my_scalar: scalar { PL_parser->in_my = 0; $$ = my($1); } ; amper : '&' indirob { $$ = newCVREF(IVAL($1),$2); TOKEN_GETMAD($1,$$,'&'); } ; scalar : '$' indirob { $$ = newSVREF($2); TOKEN_GETMAD($1,$$,'$'); } ; ary : '@' indirob { $$ = newAVREF($2); TOKEN_GETMAD($1,$$,'@'); } ; hsh : '%' indirob { $$ = newHVREF($2); TOKEN_GETMAD($1,$$,'%'); } ; arylen : DOLSHARP indirob { $$ = newAVREF($2); TOKEN_GETMAD($1,$$,'l'); } ; star : '*' indirob { $$ = newGVREF(0,$2); TOKEN_GETMAD($1,$$,'*'); } ; /* Indirect objects */ indirob : WORD { $$ = scalar($1); } | scalar %prec PREC_LOW { $$ = scalar($1); } | block { $$ = scope($1); } | PRIVATEREF { $$ = $1; } ;