/* pp_ctl.c * * Copyright (c) 1991-1999, Larry Wall * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file. * */ /* * Now far ahead the Road has gone, * And I must follow, if I can, * Pursuing it with eager feet, * Until it joins some larger way * Where many paths and errands meet. * And whither then? I cannot say. */ #include "EXTERN.h" #define PERL_IN_PP_CTL_C #include "perl.h" #ifndef WORD_ALIGN #define WORD_ALIGN sizeof(U16) #endif #define DOCATCH(o) ((CATCH_GET == TRUE) ? docatch(o) : (o)) #ifdef PERL_OBJECT #define CALLOP this->*PL_op #else #define CALLOP *PL_op #endif PP(pp_wantarray) { djSP; I32 cxix; EXTEND(SP, 1); cxix = dopoptosub(cxstack_ix); if (cxix < 0) RETPUSHUNDEF; switch (cxstack[cxix].blk_gimme) { case G_ARRAY: RETPUSHYES; case G_SCALAR: RETPUSHNO; default: RETPUSHUNDEF; } } PP(pp_regcmaybe) { return NORMAL; } PP(pp_regcreset) { /* XXXX Should store the old value to allow for tie/overload - and restore in regcomp, where marked with XXXX. */ PL_reginterp_cnt = 0; return NORMAL; } PP(pp_regcomp) { djSP; register PMOP *pm = (PMOP*)cLOGOP->op_other; register char *t; SV *tmpstr; STRLEN len; MAGIC *mg = Null(MAGIC*); tmpstr = POPs; if (SvROK(tmpstr)) { SV *sv = SvRV(tmpstr); if(SvMAGICAL(sv)) mg = mg_find(sv, 'r'); } if (mg) { regexp *re = (regexp *)mg->mg_obj; ReREFCNT_dec(pm->op_pmregexp); pm->op_pmregexp = ReREFCNT_inc(re); } else { t = SvPV(tmpstr, len); /* Check against the last compiled regexp. */ if (!pm->op_pmregexp || !pm->op_pmregexp->precomp || pm->op_pmregexp->prelen != len || memNE(pm->op_pmregexp->precomp, t, len)) { if (pm->op_pmregexp) { ReREFCNT_dec(pm->op_pmregexp); pm->op_pmregexp = Null(REGEXP*); /* crucial if regcomp aborts */ } if (PL_op->op_flags & OPf_SPECIAL) PL_reginterp_cnt = I32_MAX; /* Mark as safe. */ pm->op_pmflags = pm->op_pmpermflags; /* reset case sensitivity */ pm->op_pmregexp = CALLREGCOMP(aTHX_ t, t + len, pm); PL_reginterp_cnt = 0; /* XXXX Be extra paranoid - needed inside tie/overload accessors. */ } } #ifndef INCOMPLETE_TAINTS if (PL_tainting) { if (PL_tainted) pm->op_pmdynflags |= PMdf_TAINTED; else pm->op_pmdynflags &= ~PMdf_TAINTED; } #endif if (!pm->op_pmregexp->prelen && PL_curpm) pm = PL_curpm; else if (strEQ("\\s+", pm->op_pmregexp->precomp)) pm->op_pmflags |= PMf_WHITE; if (pm->op_pmflags & PMf_KEEP) { pm->op_private &= ~OPpRUNTIME; /* no point compiling again */ cLOGOP->op_first->op_next = PL_op->op_next; } RETURN; } PP(pp_substcont) { djSP; register PMOP *pm = (PMOP*) cLOGOP->op_other; register PERL_CONTEXT *cx = &cxstack[cxstack_ix]; register SV *dstr = cx->sb_dstr; register char *s = cx->sb_s; register char *m = cx->sb_m; char *orig = cx->sb_orig; register REGEXP *rx = cx->sb_rx; rxres_restore(&cx->sb_rxres, rx); if (cx->sb_iters++) { if (cx->sb_iters > cx->sb_maxiters) DIE(aTHX_ "Substitution loop"); if (!(cx->sb_rxtainted & 2) && SvTAINTED(TOPs)) cx->sb_rxtainted |= 2; sv_catsv(dstr, POPs); /* Are we done */ if (cx->sb_once || !CALLREGEXEC(aTHX_ rx, s, cx->sb_strend, orig, s == m, cx->sb_targ, NULL, ((cx->sb_rflags & REXEC_COPY_STR) ? (REXEC_IGNOREPOS|REXEC_NOT_FIRST) : (REXEC_COPY_STR|REXEC_IGNOREPOS|REXEC_NOT_FIRST)))) { SV *targ = cx->sb_targ; sv_catpvn(dstr, s, cx->sb_strend - s); cx->sb_rxtainted |= RX_MATCH_TAINTED(rx); (void)SvOOK_off(targ); Safefree(SvPVX(targ)); SvPVX(targ) = SvPVX(dstr); SvCUR_set(targ, SvCUR(dstr)); SvLEN_set(targ, SvLEN(dstr)); SvPVX(dstr) = 0; sv_free(dstr); TAINT_IF(cx->sb_rxtainted & 1); PUSHs(sv_2mortal(newSViv((I32)cx->sb_iters - 1))); (void)SvPOK_only(targ); TAINT_IF(cx->sb_rxtainted); SvSETMAGIC(targ); SvTAINT(targ); LEAVE_SCOPE(cx->sb_oldsave); POPSUBST(cx); RETURNOP(pm->op_next); } } if (RX_MATCH_COPIED(rx) && rx->subbeg != orig) { m = s; s = orig; cx->sb_orig = orig = rx->subbeg; s = orig + (m - s); cx->sb_strend = s + (cx->sb_strend - m); } cx->sb_m = m = rx->startp[0] + orig; sv_catpvn(dstr, s, m-s); cx->sb_s = rx->endp[0] + orig; cx->sb_rxtainted |= RX_MATCH_TAINTED(rx); rxres_save(&cx->sb_rxres, rx); RETURNOP(pm->op_pmreplstart); } void Perl_rxres_save(pTHX_ void **rsp, REGEXP *rx) { UV *p = (UV*)*rsp; U32 i; if (!p || p[1] < rx->nparens) { i = 6 + rx->nparens * 2; if (!p) New(501, p, i, UV); else Renew(p, i, UV); *rsp = (void*)p; } *p++ = (UV)(RX_MATCH_COPIED(rx) ? rx->subbeg : Nullch); RX_MATCH_COPIED_off(rx); *p++ = rx->nparens; *p++ = (UV)rx->subbeg; *p++ = (UV)rx->sublen; for (i = 0; i <= rx->nparens; ++i) { *p++ = (UV)rx->startp[i]; *p++ = (UV)rx->endp[i]; } } void Perl_rxres_restore(pTHX_ void **rsp, REGEXP *rx) { UV *p = (UV*)*rsp; U32 i; if (RX_MATCH_COPIED(rx)) Safefree(rx->subbeg); RX_MATCH_COPIED_set(rx, *p); *p++ = 0; rx->nparens = *p++; rx->subbeg = (char*)(*p++); rx->sublen = (I32)(*p++); for (i = 0; i <= rx->nparens; ++i) { rx->startp[i] = (I32)(*p++); rx->endp[i] = (I32)(*p++); } } void Perl_rxres_free(pTHX_ void **rsp) { UV *p = (UV*)*rsp; if (p) { Safefree((char*)(*p)); Safefree(p); *rsp = Null(void*); } } PP(pp_formline) { djSP; dMARK; dORIGMARK; register SV *tmpForm = *++MARK; register U16 *fpc; register char *t; register char *f; register char *s; register char *send; register I32 arg; register SV *sv; char *item; I32 itemsize; I32 fieldsize; I32 lines = 0; bool chopspace = (strchr(PL_chopset, ' ') != Nullch); char *chophere; char *linemark; double value; bool gotsome; STRLEN len; STRLEN fudge = SvCUR(tmpForm) * (IN_UTF8 ? 3 : 1) + 1; if (!SvMAGICAL(tmpForm) || !SvCOMPILED(tmpForm)) { SvREADONLY_off(tmpForm); doparseform(tmpForm); } SvPV_force(PL_formtarget, len); t = SvGROW(PL_formtarget, len + fudge + 1); /* XXX SvCUR bad */ t += len; f = SvPV(tmpForm, len); /* need to jump to the next word */ s = f + len + WORD_ALIGN - SvCUR(tmpForm) % WORD_ALIGN; fpc = (U16*)s; for (;;) { DEBUG_f( { char *name = "???"; arg = -1; switch (*fpc) { case FF_LITERAL: arg = fpc[1]; name = "LITERAL"; break; case FF_BLANK: arg = fpc[1]; name = "BLANK"; break; case FF_SKIP: arg = fpc[1]; name = "SKIP"; break; case FF_FETCH: arg = fpc[1]; name = "FETCH"; break; case FF_DECIMAL: arg = fpc[1]; name = "DECIMAL"; break; case FF_CHECKNL: name = "CHECKNL"; break; case FF_CHECKCHOP: name = "CHECKCHOP"; break; case FF_SPACE: name = "SPACE"; break; case FF_HALFSPACE: name = "HALFSPACE"; break; case FF_ITEM: name = "ITEM"; break; case FF_CHOP: name = "CHOP"; break; case FF_LINEGLOB: name = "LINEGLOB"; break; case FF_NEWLINE: name = "NEWLINE"; break; case FF_MORE: name = "MORE"; break; case FF_LINEMARK: name = "LINEMARK"; break; case FF_END: name = "END"; break; } if (arg >= 0) PerlIO_printf(PerlIO_stderr(), "%-16s%ld\n", name, (long) arg); else PerlIO_printf(PerlIO_stderr(), "%-16s\n", name); } ) switch (*fpc++) { case FF_LINEMARK: linemark = t; lines++; gotsome = FALSE; break; case FF_LITERAL: arg = *fpc++; while (arg--) *t++ = *f++; break; case FF_SKIP: f += *fpc++; break; case FF_FETCH: arg = *fpc++; f += arg; fieldsize = arg; if (MARK < SP) sv = *++MARK; else { sv = &PL_sv_no; if (ckWARN(WARN_SYNTAX)) Perl_warner(aTHX_ WARN_SYNTAX, "Not enough format arguments"); } break; case FF_CHECKNL: item = s = SvPV(sv, len); itemsize = len; if (IN_UTF8) { itemsize = sv_len_utf8(sv); if (itemsize != len) { I32 itembytes; if (itemsize > fieldsize) { itemsize = fieldsize; itembytes = itemsize; sv_pos_u2b(sv, &itembytes, 0); } else itembytes = len; send = chophere = s + itembytes; while (s < send) { if (*s & ~31) gotsome = TRUE; else if (*s == '\n') break; s++; } itemsize = s - item; sv_pos_b2u(sv, &itemsize); break; } } if (itemsize > fieldsize) itemsize = fieldsize; send = chophere = s + itemsize; while (s < send) { if (*s & ~31) gotsome = TRUE; else if (*s == '\n') break; s++; } itemsize = s - item; break; case FF_CHECKCHOP: item = s = SvPV(sv, len); itemsize = len; if (IN_UTF8) { itemsize = sv_len_utf8(sv); if (itemsize != len) { I32 itembytes; if (itemsize <= fieldsize) { send = chophere = s + itemsize; while (s < send) { if (*s == '\r') { itemsize = s - item; break; } if (*s++ & ~31) gotsome = TRUE; } } else { itemsize = fieldsize; itembytes = itemsize; sv_pos_u2b(sv, &itembytes, 0); send = chophere = s + itembytes; while (s < send || (s == send && isSPACE(*s))) { if (isSPACE(*s)) { if (chopspace) chophere = s; if (*s == '\r') break; } else { if (*s & ~31) gotsome = TRUE; if (strchr(PL_chopset, *s)) chophere = s + 1; } s++; } itemsize = chophere - item; sv_pos_b2u(sv, &itemsize); } break; } } if (itemsize <= fieldsize) { send = chophere = s + itemsize; while (s < send) { if (*s == '\r') { itemsize = s - item; break; } if (*s++ & ~31) gotsome = TRUE; } } else { itemsize = fieldsize; send = chophere = s + itemsize; while (s < send || (s == send && isSPACE(*s))) { if (isSPACE(*s)) { if (chopspace) chophere = s; if (*s == '\r') break; } else { if (*s & ~31) gotsome = TRUE; if (strchr(PL_chopset, *s)) chophere = s + 1; } s++; } itemsize = chophere - item; } break; case FF_SPACE: arg = fieldsize - itemsize; if (arg) { fieldsize -= arg; while (arg-- > 0) *t++ = ' '; } break; case FF_HALFSPACE: arg = fieldsize - itemsize; if (arg) { arg /= 2; fieldsize -= arg; while (arg-- > 0) *t++ = ' '; } break; case FF_ITEM: arg = itemsize; s = item; if (IN_UTF8) { while (arg--) { if (*s & 0x80) { switch (UTF8SKIP(s)) { case 7: *t++ = *s++; case 6: *t++ = *s++; case 5: *t++ = *s++; case 4: *t++ = *s++; case 3: *t++ = *s++; case 2: *t++ = *s++; case 1: *t++ = *s++; } } else { if ( !((*t++ = *s++) & ~31) ) t[-1] = ' '; } } break; } while (arg--) { #ifdef EBCDIC int ch = *t++ = *s++; if (iscntrl(ch)) #else if ( !((*t++ = *s++) & ~31) ) #endif t[-1] = ' '; } break; case FF_CHOP: s = chophere; if (chopspace) { while (*s && isSPACE(*s)) s++; } sv_chop(sv,s); break; case FF_LINEGLOB: item = s = SvPV(sv, len); itemsize = len; if (itemsize) { gotsome = TRUE; send = s + itemsize; while (s < send) { if (*s++ == '\n') { if (s == send) itemsize--; else lines++; } } SvCUR_set(PL_formtarget, t - SvPVX(PL_formtarget)); sv_catpvn(PL_formtarget, item, itemsize); SvGROW(PL_formtarget, SvCUR(PL_formtarget) + fudge + 1); t = SvPVX(PL_formtarget) + SvCUR(PL_formtarget); } break; case FF_DECIMAL: /* If the field is marked with ^ and the value is undefined, blank it out. */ arg = *fpc++; if ((arg & 512) && !SvOK(sv)) { arg = fieldsize; while (arg--) *t++ = ' '; break; } gotsome = TRUE; value = SvNV(sv); /* Formats aren't yet marked for locales, so assume "yes". */ { RESTORE_NUMERIC_LOCAL(); if (arg & 256) { sprintf(t, "%#*.*f", (int) fieldsize, (int) arg & 255, value); } else { sprintf(t, "%*.0f", (int) fieldsize, value); } RESTORE_NUMERIC_STANDARD(); } t += fieldsize; break; case FF_NEWLINE: f++; while (t-- > linemark && *t == ' ') ; t++; *t++ = '\n'; break; case FF_BLANK: arg = *fpc++; if (gotsome) { if (arg) { /* repeat until fields exhausted? */ *t = '\0'; SvCUR_set(PL_formtarget, t - SvPVX(PL_formtarget)); lines += FmLINES(PL_formtarget); if (lines == 200) { arg = t - linemark; if (strnEQ(linemark, linemark - arg, arg)) DIE(aTHX_ "Runaway format"); } FmLINES(PL_formtarget) = lines; SP = ORIGMARK; RETURNOP(cLISTOP->op_first); } } else { t = linemark; lines--; } break; case FF_MORE: s = chophere; send = item + len; if (chopspace) { while (*s && isSPACE(*s) && s < send) s++; } if (s < send) { arg = fieldsize - itemsize; if (arg) { fieldsize -= arg; while (arg-- > 0) *t++ = ' '; } s = t - 3; if (strnEQ(s," ",3)) { while (s > SvPVX(PL_formtarget) && isSPACE(s[-1])) s--; } *s++ = '.'; *s++ = '.'; *s++ = '.'; } break; case FF_END: *t = '\0'; SvCUR_set(PL_formtarget, t - SvPVX(PL_formtarget)); FmLINES(PL_formtarget) += lines; SP = ORIGMARK; RETPUSHYES; } } } PP(pp_grepstart) { djSP; SV *src; if (PL_stack_base + *PL_markstack_ptr == SP) { (void)POPMARK; if (GIMME_V == G_SCALAR) XPUSHs(sv_2mortal(newSViv(0))); RETURNOP(PL_op->op_next->op_next); } PL_stack_sp = PL_stack_base + *PL_markstack_ptr + 1; pp_pushmark(); /* push dst */ pp_pushmark(); /* push src */ ENTER; /* enter outer scope */ SAVETMPS; /* SAVE_DEFSV does *not* suffice here for USE_THREADS */ SAVESPTR(DEFSV); ENTER; /* enter inner scope */ SAVESPTR(PL_curpm); src = PL_stack_base[*PL_markstack_ptr]; SvTEMP_off(src); DEFSV = src; PUTBACK; if (PL_op->op_type == OP_MAPSTART) pp_pushmark(); /* push top */ return ((LOGOP*)PL_op->op_next)->op_other; } PP(pp_mapstart) { DIE(aTHX_ "panic: mapstart"); /* uses grepstart */ } PP(pp_mapwhile) { djSP; I32 diff = (SP - PL_stack_base) - *PL_markstack_ptr; I32 count; I32 shift; SV** src; SV** dst; ++PL_markstack_ptr[-1]; if (diff) { if (diff > PL_markstack_ptr[-1] - PL_markstack_ptr[-2]) { shift = diff - (PL_markstack_ptr[-1] - PL_markstack_ptr[-2]); count = (SP - PL_stack_base) - PL_markstack_ptr[-1] + 2; EXTEND(SP,shift); src = SP; dst = (SP += shift); PL_markstack_ptr[-1] += shift; *PL_markstack_ptr += shift; while (--count) *dst-- = *src--; } dst = PL_stack_base + (PL_markstack_ptr[-2] += diff) - 1; ++diff; while (--diff) *dst-- = SvTEMP(TOPs) ? POPs : sv_mortalcopy(POPs); } LEAVE; /* exit inner scope */ /* All done yet? */ if (PL_markstack_ptr[-1] > *PL_markstack_ptr) { I32 items; I32 gimme = GIMME_V; (void)POPMARK; /* pop top */ LEAVE; /* exit outer scope */ (void)POPMARK; /* pop src */ items = --*PL_markstack_ptr - PL_markstack_ptr[-1]; (void)POPMARK; /* pop dst */ SP = PL_stack_base + POPMARK; /* pop original mark */ if (gimme == G_SCALAR) { dTARGET; XPUSHi(items); } else if (gimme == G_ARRAY) SP += items; RETURN; } else { SV *src; ENTER; /* enter inner scope */ SAVESPTR(PL_curpm); src = PL_stack_base[PL_markstack_ptr[-1]]; SvTEMP_off(src); DEFSV = src; RETURNOP(cLOGOP->op_other); } } STATIC I32 S_sv_ncmp(pTHX_ SV *a, SV *b) { double nv1 = SvNV(a); double nv2 = SvNV(b); return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0; } STATIC I32 S_sv_i_ncmp(pTHX_ SV *a, SV *b) { IV iv1 = SvIV(a); IV iv2 = SvIV(b); return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0; } #define tryCALL_AMAGICbin(left,right,meth,svp) STMT_START { \ *svp = Nullsv; \ if (PL_amagic_generation) { \ if (SvAMAGIC(left)||SvAMAGIC(right))\ *svp = amagic_call(left, \ right, \ CAT2(meth,_amg), \ 0); \ } \ } STMT_END STATIC I32 S_amagic_ncmp(pTHX_ register SV *a, register SV *b) { SV *tmpsv; tryCALL_AMAGICbin(a,b,ncmp,&tmpsv); if (tmpsv) { double d; if (SvIOK(tmpsv)) { I32 i = SvIVX(tmpsv); if (i > 0) return 1; return i? -1 : 0; } d = SvNV(tmpsv); if (d > 0) return 1; return d? -1 : 0; } return sv_ncmp(a, b); } STATIC I32 S_amagic_i_ncmp(pTHX_ register SV *a, register SV *b) { SV *tmpsv; tryCALL_AMAGICbin(a,b,ncmp,&tmpsv); if (tmpsv) { double d; if (SvIOK(tmpsv)) { I32 i = SvIVX(tmpsv); if (i > 0) return 1; return i? -1 : 0; } d = SvNV(tmpsv); if (d > 0) return 1; return d? -1 : 0; } return sv_i_ncmp(a, b); } STATIC I32 S_amagic_cmp(pTHX_ register SV *str1, register SV *str2) { SV *tmpsv; tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv); if (tmpsv) { double d; if (SvIOK(tmpsv)) { I32 i = SvIVX(tmpsv); if (i > 0) return 1; return i? -1 : 0; } d = SvNV(tmpsv); if (d > 0) return 1; return d? -1 : 0; } return sv_cmp(str1, str2); } STATIC I32 S_amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2) { SV *tmpsv; tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv); if (tmpsv) { double d; if (SvIOK(tmpsv)) { I32 i = SvIVX(tmpsv); if (i > 0) return 1; return i? -1 : 0; } d = SvNV(tmpsv); if (d > 0) return 1; return d? -1 : 0; } return sv_cmp_locale(str1, str2); } PP(pp_sort) { djSP; dMARK; dORIGMARK; register SV **up; SV **myorigmark = ORIGMARK; register I32 max; HV *stash; GV *gv; CV *cv; I32 gimme = GIMME; OP* nextop = PL_op->op_next; I32 overloading = 0; if (gimme != G_ARRAY) { SP = MARK; RETPUSHUNDEF; } ENTER; SAVEPPTR(PL_sortcop); if (PL_op->op_flags & OPf_STACKED) { if (PL_op->op_flags & OPf_SPECIAL) { OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */ kid = kUNOP->op_first; /* pass rv2gv */ kid = kUNOP->op_first; /* pass leave */ PL_sortcop = kid->op_next; stash = PL_curcop->cop_stash; } else { cv = sv_2cv(*++MARK, &stash, &gv, 0); if (!(cv && CvROOT(cv))) { if (gv) { SV *tmpstr = sv_newmortal(); gv_efullname3(tmpstr, gv, Nullch); if (cv && CvXSUB(cv)) DIE(aTHX_ "Xsub \"%s\" called in sort", SvPVX(tmpstr)); DIE(aTHX_ "Undefined sort subroutine \"%s\" called", SvPVX(tmpstr)); } if (cv) { if (CvXSUB(cv)) DIE(aTHX_ "Xsub called in sort"); DIE(aTHX_ "Undefined subroutine in sort"); } DIE(aTHX_ "Not a CODE reference in sort"); } PL_sortcop = CvSTART(cv); SAVESPTR(CvROOT(cv)->op_ppaddr); CvROOT(cv)->op_ppaddr = PL_ppaddr[OP_NULL]; SAVESPTR(PL_curpad); PL_curpad = AvARRAY((AV*)AvARRAY(CvPADLIST(cv))[1]); } } else { PL_sortcop = Nullop; stash = PL_curcop->cop_stash; } up = myorigmark + 1; while (MARK < SP) { /* This may or may not shift down one here. */ /*SUPPRESS 560*/ if (*up = *++MARK) { /* Weed out nulls. */ SvTEMP_off(*up); if (!PL_sortcop && !SvPOK(*up)) { STRLEN n_a; if (SvAMAGIC(*up)) overloading = 1; else (void)sv_2pv(*up, &n_a); } up++; } } max = --up - myorigmark; if (PL_sortcop) { if (max > 1) { PERL_CONTEXT *cx; SV** newsp; bool oldcatch = CATCH_GET; SAVETMPS; SAVEOP(); CATCH_SET(TRUE); PUSHSTACKi(PERLSI_SORT); if (PL_sortstash != stash) { PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV); PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV); PL_sortstash = stash; } SAVESPTR(GvSV(PL_firstgv)); SAVESPTR(GvSV(PL_secondgv)); PUSHBLOCK(cx, CXt_NULL, PL_stack_base); if (!(PL_op->op_flags & OPf_SPECIAL)) { bool hasargs = FALSE; cx->cx_type = CXt_SUB; cx->blk_gimme = G_SCALAR; PUSHSUB(cx); if (!CvDEPTH(cv)) (void)SvREFCNT_inc(cv); /* in preparation for POPSUB */ } PL_sortcxix = cxstack_ix; qsortsv((myorigmark+1), max, FUNC_NAME_TO_PTR(S_sortcv)); POPBLOCK(cx,PL_curpm); PL_stack_sp = newsp; POPSTACK; CATCH_SET(oldcatch); } } else { if (max > 1) { MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */ qsortsv(ORIGMARK+1, max, (PL_op->op_private & OPpSORT_NUMERIC) ? ( (PL_op->op_private & OPpSORT_INTEGER) ? ( overloading ? FUNC_NAME_TO_PTR(S_amagic_i_ncmp) : FUNC_NAME_TO_PTR(S_sv_i_ncmp)) : ( overloading ? FUNC_NAME_TO_PTR(S_amagic_ncmp) : FUNC_NAME_TO_PTR(S_sv_ncmp))) : ( (PL_op->op_private & OPpLOCALE) ? ( overloading ? FUNC_NAME_TO_PTR(S_amagic_cmp_locale) : FUNC_NAME_TO_PTR(Perl_sv_cmp_locale)) : ( overloading ? FUNC_NAME_TO_PTR(S_amagic_cmp) : FUNC_NAME_TO_PTR(Perl_sv_cmp) ))); if (PL_op->op_private & OPpSORT_REVERSE) { SV **p = ORIGMARK+1; SV **q = ORIGMARK+max; while (p < q) { SV *tmp = *p; *p++ = *q; *q-- = tmp; } } } } LEAVE; PL_stack_sp = ORIGMARK + max; return nextop; } /* Range stuff. */ PP(pp_range) { if (GIMME == G_ARRAY) return cCONDOP->op_true; if (SvTRUEx(PAD_SV(PL_op->op_targ))) return cCONDOP->op_false; else return cCONDOP->op_true; } PP(pp_flip) { djSP; if (GIMME == G_ARRAY) { RETURNOP(((CONDOP*)cUNOP->op_first)->op_false); } else { dTOPss; SV *targ = PAD_SV(PL_op->op_targ); if ((PL_op->op_private & OPpFLIP_LINENUM) ? (PL_last_in_gv && SvIV(sv) == (IV)IoLINES(GvIOp(PL_last_in_gv))) : SvTRUE(sv) ) { sv_setiv(PAD_SV(cUNOP->op_first->op_targ), 1); if (PL_op->op_flags & OPf_SPECIAL) { sv_setiv(targ, 1); SETs(targ); RETURN; } else { sv_setiv(targ, 0); SP--; RETURNOP(((CONDOP*)cUNOP->op_first)->op_false); } } sv_setpv(TARG, ""); SETs(targ); RETURN; } } PP(pp_flop) { djSP; if (GIMME == G_ARRAY) { dPOPPOPssrl; register I32 i, j; register SV *sv; I32 max; if (SvGMAGICAL(left)) mg_get(left); if (SvGMAGICAL(right)) mg_get(right); if (SvNIOKp(left) || !SvPOKp(left) || (looks_like_number(left) && *SvPVX(left) != '0') ) { if (SvNV(left) < IV_MIN || SvNV(right) > IV_MAX) Perl_croak(aTHX_ "Range iterator outside integer range"); i = SvIV(left); max = SvIV(right); if (max >= i) { j = max - i + 1; EXTEND_MORTAL(j); EXTEND(SP, j); } else j = 0; while (j--) { sv = sv_2mortal(newSViv(i++)); PUSHs(sv); } } else { SV *final = sv_mortalcopy(right); STRLEN len, n_a; char *tmps = SvPV(final, len); sv = sv_mortalcopy(left); SvPV_force(sv,n_a); while (!SvNIOKp(sv) && SvCUR(sv) <= len) { XPUSHs(sv); if (strEQ(SvPVX(sv),tmps)) break; sv = sv_2mortal(newSVsv(sv)); sv_inc(sv); } } } else { dTOPss; SV *targ = PAD_SV(cUNOP->op_first->op_targ); sv_inc(targ); if ((PL_op->op_private & OPpFLIP_LINENUM) ? (PL_last_in_gv && SvIV(sv) == (IV)IoLINES(GvIOp(PL_last_in_gv))) : SvTRUE(sv) ) { sv_setiv(PAD_SV(((UNOP*)cUNOP->op_first)->op_first->op_targ), 0); sv_catpv(targ, "E0"); } SETs(targ); } RETURN; } /* Control. */ STATIC I32 S_dopoptolabel(pTHX_ char *label) { dTHR; register I32 i; register PERL_CONTEXT *cx; for (i = cxstack_ix; i >= 0; i--) { cx = &cxstack[i]; switch (CxTYPE(cx)) { case CXt_SUBST: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting substitution via %s", PL_op_name[PL_op->op_type]); break; case CXt_SUB: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting subroutine via %s", PL_op_name[PL_op->op_type]); break; case CXt_EVAL: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting eval via %s", PL_op_name[PL_op->op_type]); break; case CXt_NULL: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting pseudo-block via %s", PL_op_name[PL_op->op_type]); return -1; case CXt_LOOP: if (!cx->blk_loop.label || strNE(label, cx->blk_loop.label) ) { DEBUG_l(Perl_deb(aTHX_ "(Skipping label #%ld %s)\n", (long)i, cx->blk_loop.label)); continue; } DEBUG_l( Perl_deb(aTHX_ "(Found label #%ld %s)\n", (long)i, label)); return i; } } return i; } I32 Perl_dowantarray(pTHX) { I32 gimme = block_gimme(); return (gimme == G_VOID) ? G_SCALAR : gimme; } I32 Perl_block_gimme(pTHX) { dTHR; I32 cxix; cxix = dopoptosub(cxstack_ix); if (cxix < 0) return G_VOID; switch (cxstack[cxix].blk_gimme) { case G_VOID: return G_VOID; case G_SCALAR: return G_SCALAR; case G_ARRAY: return G_ARRAY; default: Perl_croak(aTHX_ "panic: bad gimme: %d\n", cxstack[cxix].blk_gimme); /* NOTREACHED */ return 0; } } STATIC I32 S_dopoptosub(pTHX_ I32 startingblock) { dTHR; return dopoptosub_at(cxstack, startingblock); } STATIC I32 S_dopoptosub_at(pTHX_ PERL_CONTEXT *cxstk, I32 startingblock) { dTHR; I32 i; register PERL_CONTEXT *cx; for (i = startingblock; i >= 0; i--) { cx = &cxstk[i]; switch (CxTYPE(cx)) { default: continue; case CXt_EVAL: case CXt_SUB: DEBUG_l( Perl_deb(aTHX_ "(Found sub #%ld)\n", (long)i)); return i; } } return i; } STATIC I32 S_dopoptoeval(pTHX_ I32 startingblock) { dTHR; I32 i; register PERL_CONTEXT *cx; for (i = startingblock; i >= 0; i--) { cx = &cxstack[i]; switch (CxTYPE(cx)) { default: continue; case CXt_EVAL: DEBUG_l( Perl_deb(aTHX_ "(Found eval #%ld)\n", (long)i)); return i; } } return i; } STATIC I32 S_dopoptoloop(pTHX_ I32 startingblock) { dTHR; I32 i; register PERL_CONTEXT *cx; for (i = startingblock; i >= 0; i--) { cx = &cxstack[i]; switch (CxTYPE(cx)) { case CXt_SUBST: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting substitution via %s", PL_op_name[PL_op->op_type]); break; case CXt_SUB: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting subroutine via %s", PL_op_name[PL_op->op_type]); break; case CXt_EVAL: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting eval via %s", PL_op_name[PL_op->op_type]); break; case CXt_NULL: if (ckWARN(WARN_UNSAFE)) Perl_warner(aTHX_ WARN_UNSAFE, "Exiting pseudo-block via %s", PL_op_name[PL_op->op_type]); return -1; case CXt_LOOP: DEBUG_l( Perl_deb(aTHX_ "(Found loop #%ld)\n", (long)i)); return i; } } return i; } void Perl_dounwind(pTHX_ I32 cxix) { dTHR; register PERL_CONTEXT *cx; SV **newsp; I32 optype; while (cxstack_ix > cxix) { cx = &cxstack[cxstack_ix]; DEBUG_l(PerlIO_printf(Perl_debug_log, "Unwinding block %ld, type %s\n", (long) cxstack_ix, PL_block_type[CxTYPE(cx)])); /* Note: we don't need to restore the base context info till the end. */ switch (CxTYPE(cx)) { case CXt_SUBST: POPSUBST(cx); continue; /* not break */ case CXt_SUB: POPSUB(cx); break; case CXt_EVAL: POPEVAL(cx); break; case CXt_LOOP: POPLOOP(cx); break; case CXt_NULL: break; } cxstack_ix--; } } /* * Closures mentioned at top level of eval cannot be referenced * again, and their presence indirectly causes a memory leak. * (Note that the fact that compcv and friends are still set here * is, AFAIK, an accident.) --Chip * * XXX need to get comppad et al from eval's cv rather than * relying on the incidental global values. */ STATIC void S_free_closures(pTHX) { dTHR; SV **svp = AvARRAY(PL_comppad_name); I32 ix; for (ix = AvFILLp(PL_comppad_name); ix >= 0; ix--) { SV *sv = svp[ix]; if (sv && sv != &PL_sv_undef && *SvPVX(sv) == '&') { SvREFCNT_dec(sv); svp[ix] = &PL_sv_undef; sv = PL_curpad[ix]; if (CvCLONE(sv)) { SvREFCNT_dec(CvOUTSIDE(sv)); CvOUTSIDE(sv) = Nullcv; } else { SvREFCNT_dec(sv); sv = NEWSV(0,0); SvPADTMP_on(sv); PL_curpad[ix] = sv; } } } } OP * Perl_die_where(pTHX_ char *message, STRLEN msglen) { dSP; STRLEN n_a; if (PL_in_eval) { I32 cxix; register PERL_CONTEXT *cx; I32 gimme; SV **newsp; if (message) { if (PL_in_eval & EVAL_KEEPERR) { SV **svp; svp = hv_fetch(ERRHV, message, msglen, TRUE); if (svp) { if (!SvIOK(*svp)) { static char prefix[] = "\t(in cleanup) "; SV *err = ERRSV; sv_upgrade(*svp, SVt_IV); (void)SvIOK_only(*svp); if (!SvPOK(err)) sv_setpv(err,""); SvGROW(err, SvCUR(err)+sizeof(prefix)+msglen); sv_catpvn(err, prefix, sizeof(prefix)-1); sv_catpvn(err, message, msglen); if (ckWARN(WARN_UNSAFE)) { STRLEN start = SvCUR(err)-msglen-sizeof(prefix)+1; Perl_warner(aTHX_ WARN_UNSAFE, SvPVX(err)+start); } } sv_inc(*svp); } } else sv_setpvn(ERRSV, message, msglen); } else message = SvPVx(ERRSV, msglen); while ((cxix = dopoptoeval(cxstack_ix)) < 0 && PL_curstackinfo->si_prev) { dounwind(-1); POPSTACK; } if (cxix >= 0) { I32 optype; if (cxix < cxstack_ix) dounwind(cxix); POPBLOCK(cx,PL_curpm); if (CxTYPE(cx) != CXt_EVAL) { PerlIO_write(PerlIO_stderr(), "panic: die ", 11); PerlIO_write(PerlIO_stderr(), message, msglen); my_exit(1); } POPEVAL(cx); if (gimme == G_SCALAR) *++newsp = &PL_sv_undef; PL_stack_sp = newsp; LEAVE; if (optype == OP_REQUIRE) { char* msg = SvPVx(ERRSV, n_a); DIE(aTHX_ "%s", *msg ? msg : "Compilation failed in require"); } return pop_return(); } } if (!message) message = SvPVx(ERRSV, msglen); { #ifdef USE_SFIO /* SFIO can really mess with your errno */ int e = errno; #endif PerlIO_write(PerlIO_stderr(), message, msglen); (void)PerlIO_flush(PerlIO_stderr()); #ifdef USE_SFIO errno = e; #endif } my_failure_exit(); /* NOTREACHED */ return 0; } PP(pp_xor) { djSP; dPOPTOPssrl; if (SvTRUE(left) != SvTRUE(right)) RETSETYES; else RETSETNO; } PP(pp_andassign) { djSP; if (!SvTRUE(TOPs)) RETURN; else RETURNOP(cLOGOP->op_other); } PP(pp_orassign) { djSP; if (SvTRUE(TOPs)) RETURN; else RETURNOP(cLOGOP->op_other); } PP(pp_caller) { djSP; register I32 cxix = dopoptosub(cxstack_ix); register PERL_CONTEXT *cx; register PERL_CONTEXT *ccstack = cxstack; PERL_SI *top_si = PL_curstackinfo; I32 dbcxix; I32 gimme; HV *hv; SV *sv; I32 count = 0; if (MAXARG) count = POPi; EXTEND(SP, 7); for (;;) { /* we may be in a higher stacklevel, so dig down deeper */ while (cxix < 0 && top_si->si_type != PERLSI_MAIN) { top_si = top_si->si_prev; ccstack = top_si->si_cxstack; cxix = dopoptosub_at(ccstack, top_si->si_cxix); } if (cxix < 0) { if (GIMME != G_ARRAY) RETPUSHUNDEF; RETURN; } if (PL_DBsub && cxix >= 0 && ccstack[cxix].blk_sub.cv == GvCV(PL_DBsub)) count++; if (!count--) break; cxix = dopoptosub_at(ccstack, cxix - 1); } cx = &ccstack[cxix]; if (CxTYPE(cx) == CXt_SUB) { dbcxix = dopoptosub_at(ccstack, cxix - 1); /* We expect that ccstack[dbcxix] is CXt_SUB, anyway, the field below is defined for any cx. */ if (PL_DBsub && dbcxix >= 0 && ccstack[dbcxix].blk_sub.cv == GvCV(PL_DBsub)) cx = &ccstack[dbcxix]; } if (GIMME != G_ARRAY) { hv = cx->blk_oldcop->cop_stash; if (!hv) PUSHs(&PL_sv_undef); else { dTARGET; sv_setpv(TARG, HvNAME(hv)); PUSHs(TARG); } RETURN; } hv = cx->blk_oldcop->cop_stash; if (!hv) PUSHs(&PL_sv_undef); else PUSHs(sv_2mortal(newSVpv(HvNAME(hv), 0))); PUSHs(sv_2mortal(newSVpvn(SvPVX(GvSV(cx->blk_oldcop->cop_filegv)), SvCUR(GvSV(cx->blk_oldcop->cop_filegv))))); PUSHs(sv_2mortal(newSViv((I32)cx->blk_oldcop->cop_line))); if (!MAXARG) RETURN; if (CxTYPE(cx) == CXt_SUB) { /* So is ccstack[dbcxix]. */ sv = NEWSV(49, 0); gv_efullname3(sv, CvGV(ccstack[cxix].blk_sub.cv), Nullch); PUSHs(sv_2mortal(sv)); PUSHs(sv_2mortal(newSViv((I32)cx->blk_sub.hasargs))); } else { PUSHs(sv_2mortal(newSVpvn("(eval)",6))); PUSHs(sv_2mortal(newSViv(0))); } gimme = (I32)cx->blk_gimme; if (gimme == G_VOID) PUSHs(&PL_sv_undef); else PUSHs(sv_2mortal(newSViv(gimme & G_ARRAY))); if (CxTYPE(cx) == CXt_EVAL) { if (cx->blk_eval.old_op_type == OP_ENTEREVAL) { PUSHs(cx->blk_eval.cur_text); PUSHs(&PL_sv_no); } else if (cx->blk_eval.old_name) { /* Try blocks have old_name == 0. */ /* Require, put the name. */ PUSHs(sv_2mortal(newSVpv(cx->blk_eval.old_name, 0))); PUSHs(&PL_sv_yes); } } else if (CxTYPE(cx) == CXt_SUB && cx->blk_sub.hasargs && PL_curcop->cop_stash == PL_debstash) { AV *ary = cx->blk_sub.argarray; int off = AvARRAY(ary) - AvALLOC(ary); if (!PL_dbargs) { GV* tmpgv; PL_dbargs = GvAV(gv_AVadd(tmpgv = gv_fetchpv("DB::args", TRUE, SVt_PVAV))); GvMULTI_on(tmpgv); AvREAL_off(PL_dbargs); /* XXX Should be REIFY */ } if (AvMAX(PL_dbargs) < AvFILLp(ary) + off) av_extend(PL_dbargs, AvFILLp(ary) + off); Copy(AvALLOC(ary), AvARRAY(PL_dbargs), AvFILLp(ary) + 1 + off, SV*); AvFILLp(PL_dbargs) = AvFILLp(ary) + off; } /* XXX only hints propagated via op_private are currently * visible (others are not easily accessible, since they * use the global PL_hints) */ PUSHs(sv_2mortal(newSViv((I32)cx->blk_oldcop->op_private & HINT_PRIVATE_MASK))); RETURN; } STATIC I32 S_sortcv(pTHX_ SV *a, SV *b) { dTHR; I32 oldsaveix = PL_savestack_ix; I32 oldscopeix = PL_scopestack_ix; I32 result; GvSV(PL_firstgv) = a; GvSV(PL_secondgv) = b; PL_stack_sp = PL_stack_base; PL_op = PL_sortcop; CALLRUNOPS(aTHX); if (PL_stack_sp != PL_stack_base + 1) Perl_croak(aTHX_ "Sort subroutine didn't return single value"); if (!SvNIOKp(*PL_stack_sp)) Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value"); result = SvIV(*PL_stack_sp); while (PL_scopestack_ix > oldscopeix) { LEAVE; } leave_scope(oldsaveix); return result; } PP(pp_reset) { djSP; char *tmps; STRLEN n_a; if (MAXARG < 1) tmps = ""; else tmps = POPpx; sv_reset(tmps, PL_curcop->cop_stash); PUSHs(&PL_sv_yes); RETURN; } PP(pp_lineseq) { return NORMAL; } PP(pp_dbstate) { PL_curcop = (COP*)PL_op; TAINT_NOT; /* Each statement is presumed innocent */ PL_stack_sp = PL_stack_base + cxstack[cxstack_ix].blk_oldsp; FREETMPS; if (PL_op->op_private || SvIV(PL_DBsingle) || SvIV(PL_DBsignal) || SvIV(PL_DBtrace)) { djSP; register CV *cv; register PERL_CONTEXT *cx; I32 gimme = G_ARRAY; I32 hasargs; GV *gv; gv = PL_DBgv; cv = GvCV(gv); if (!cv) DIE(aTHX_ "No DB::DB routine defined"); if (CvDEPTH(cv) >= 1 && !(PL_debug & (1<<30))) /* don't do recursive DB::DB call */ return NORMAL; ENTER; SAVETMPS; SAVEI32(PL_debug); SAVESTACK_POS(); PL_debug = 0; hasargs = 0; SPAGAIN; push_return(PL_op->op_next); PUSHBLOCK(cx, CXt_SUB, SP); PUSHSUB(cx); CvDEPTH(cv)++; (void)SvREFCNT_inc(cv); SAVESPTR(PL_curpad); PL_curpad = AvARRAY((AV*)*av_fetch(CvPADLIST(cv),1,FALSE)); RETURNOP(CvSTART(cv)); } else return NORMAL; } PP(pp_scope) { return NORMAL; } PP(pp_enteriter) { djSP; dMARK; register PERL_CONTEXT *cx; I32 gimme = GIMME_V; SV **svp; ENTER; SAVETMPS; #ifdef USE_THREADS if (PL_op->op_flags & OPf_SPECIAL) { dTHR; svp = &THREADSV(PL_op->op_targ); /* per-thread variable */ SAVEGENERICSV(*svp); *svp = NEWSV(0,0); } else #endif /* USE_THREADS */ if (PL_op->op_targ) { svp = &PL_curpad[PL_op->op_targ]; /* "my" variable */ SAVESPTR(*svp); } else { svp = &GvSV((GV*)POPs); /* symbol table variable */ SAVEGENERICSV(*svp); *svp = NEWSV(0,0); } ENTER; PUSHBLOCK(cx, CXt_LOOP, SP); PUSHLOOP(cx, svp, MARK); if (PL_op->op_flags & OPf_STACKED) { cx->blk_loop.iterary = (AV*)SvREFCNT_inc(POPs); if (SvTYPE(cx->blk_loop.iterary) != SVt_PVAV) { dPOPss; if (SvNIOKp(sv) || !SvPOKp(sv) || (looks_like_number(sv) && *SvPVX(sv) != '0')) { if (SvNV(sv) < IV_MIN || SvNV((SV*)cx->blk_loop.iterary) >= IV_MAX) Perl_croak(aTHX_ "Range iterator outside integer range"); cx->blk_loop.iterix = SvIV(sv); cx->blk_loop.itermax = SvIV((SV*)cx->blk_loop.iterary); } else cx->blk_loop.iterlval = newSVsv(sv); } } else { cx->blk_loop.iterary = PL_curstack; AvFILLp(PL_curstack) = SP - PL_stack_base; cx->blk_loop.iterix = MARK - PL_stack_base; } RETURN; } PP(pp_enterloop) { djSP; register PERL_CONTEXT *cx; I32 gimme = GIMME_V; ENTER; SAVETMPS; ENTER; PUSHBLOCK(cx, CXt_LOOP, SP); PUSHLOOP(cx, 0, SP); RETURN; } PP(pp_leaveloop) { djSP; register PERL_CONTEXT *cx; struct block_loop cxloop; I32 gimme; SV **newsp; PMOP *newpm; SV **mark; POPBLOCK(cx,newpm); mark = newsp; POPLOOP1(cx); /* Delay POPLOOP2 until stack values are safe */ TAINT_NOT; if (gimme == G_VOID) ; /* do nothing */ else if (gimme == G_SCALAR) { if (mark < SP) *++newsp = sv_mortalcopy(*SP); else *++newsp = &PL_sv_undef; } else { while (mark < SP) { *++newsp = sv_mortalcopy(*++mark); TAINT_NOT; /* Each item is independent */ } } SP = newsp; PUTBACK; POPLOOP2(); /* Stack values are safe: release loop vars ... */ PL_curpm = newpm; /* ... and pop $1 et al */ LEAVE; LEAVE; return NORMAL; } PP(pp_return) { djSP; dMARK; I32 cxix; register PERL_CONTEXT *cx; struct block_sub cxsub; bool popsub2 = FALSE; I32 gimme; SV **newsp; PMOP *newpm; I32 optype = 0; if (PL_curstackinfo->si_type == PERLSI_SORT) { if (cxstack_ix == PL_sortcxix || dopoptosub(cxstack_ix) <= PL_sortcxix) { if (cxstack_ix > PL_sortcxix) dounwind(PL_sortcxix); AvARRAY(PL_curstack)[1] = *SP; PL_stack_sp = PL_stack_base + 1; return 0; } } cxix = dopoptosub(cxstack_ix); if (cxix < 0) DIE(aTHX_ "Can't return outside a subroutine"); if (cxix < cxstack_ix) dounwind(cxix); POPBLOCK(cx,newpm); switch (CxTYPE(cx)) { case CXt_SUB: POPSUB1(cx); /* Delay POPSUB2 until stack values are safe */ popsub2 = TRUE; break; case CXt_EVAL: POPEVAL(cx); if (AvFILLp(PL_comppad_name) >= 0) free_closures(); lex_end(); if (optype == OP_REQUIRE && (MARK == SP || (gimme == G_SCALAR && !SvTRUE(*SP))) ) { /* Unassume the success we assumed earlier. */ char *name = cx->blk_eval.old_name; (void)hv_delete(GvHVn(PL_incgv), name, strlen(name), G_DISCARD); DIE(aTHX_ "%s did not return a true value", name); } break; default: DIE(aTHX_ "panic: return"); } TAINT_NOT; if (gimme == G_SCALAR) { if (MARK < SP) { if (popsub2) { if (cxsub.cv && CvDEPTH(cxsub.cv) > 1) { if (SvTEMP(TOPs)) { *++newsp = SvREFCNT_inc(*SP); FREETMPS; sv_2mortal(*newsp); } else { FREETMPS; *++newsp = sv_mortalcopy(*SP); } } else *++newsp = (SvTEMP(*SP)) ? *SP : sv_mortalcopy(*SP); } else *++newsp = sv_mortalcopy(*SP); } else *++newsp = &PL_sv_undef; } else if (gimme == G_ARRAY) { while (++MARK <= SP) { *++newsp = (popsub2 && SvTEMP(*MARK)) ? *MARK : sv_mortalcopy(*MARK); TAINT_NOT; /* Each item is independent */ } } PL_stack_sp = newsp; /* Stack values are safe: */ if (popsub2) { POPSUB2(); /* release CV and @_ ... */ } PL_curpm = newpm; /* ... and pop $1 et al */ LEAVE; return pop_return(); } PP(pp_last) { djSP; I32 cxix; register PERL_CONTEXT *cx; struct block_loop cxloop; struct block_sub cxsub; I32 pop2 = 0; I32 gimme; I32 optype; OP *nextop; SV **newsp; PMOP *newpm; SV **mark = PL_stack_base + cxstack[cxstack_ix].blk_oldsp; if (PL_op->op_flags & OPf_SPECIAL) { cxix = dopoptoloop(cxstack_ix); if (cxix < 0) DIE(aTHX_ "Can't \"last\" outside a block"); } else { cxix = dopoptolabel(cPVOP->op_pv); if (cxix < 0) DIE(aTHX_ "Label not found for \"last %s\"", cPVOP->op_pv); } if (cxix < cxstack_ix) dounwind(cxix); POPBLOCK(cx,newpm); switch (CxTYPE(cx)) { case CXt_LOOP: POPLOOP1(cx); /* Delay POPLOOP2 until stack values are safe */ pop2 = CXt_LOOP; nextop = cxloop.last_op->op_next; break; case CXt_SUB: POPSUB1(cx); /* Delay POPSUB2 until stack values are safe */ pop2 = CXt_SUB; nextop = pop_return(); break; case CXt_EVAL: POPEVAL(cx); nextop = pop_return(); break; default: DIE(aTHX_ "panic: last"); } TAINT_NOT; if (gimme == G_SCALAR) { if (MARK < SP) *++newsp = ((pop2 == CXt_SUB) && SvTEMP(*SP)) ? *SP : sv_mortalcopy(*SP); else *++newsp = &PL_sv_undef; } else if (gimme == G_ARRAY) { while (++MARK <= SP) { *++newsp = ((pop2 == CXt_SUB) && SvTEMP(*MARK)) ? *MARK : sv_mortalcopy(*MARK); TAINT_NOT; /* Each item is independent */ } } SP = newsp; PUTBACK; /* Stack values are safe: */ switch (pop2) { case CXt_LOOP: POPLOOP2(); /* release loop vars ... */ LEAVE; break; case CXt_SUB: POPSUB2(); /* release CV and @_ ... */ break; } PL_curpm = newpm; /* ... and pop $1 et al */ LEAVE; return nextop; } PP(pp_next) { I32 cxix; register PERL_CONTEXT *cx; I32 oldsave; if (PL_op->op_flags & OPf_SPECIAL) { cxix = dopoptoloop(cxstack_ix); if (cxix < 0) DIE(aTHX_ "Can't \"next\" outside a block"); } else { cxix = dopoptolabel(cPVOP->op_pv); if (cxix < 0) DIE(aTHX_ "Label not found for \"next %s\"", cPVOP->op_pv); } if (cxix < cxstack_ix) dounwind(cxix); TOPBLOCK(cx); oldsave = PL_scopestack[PL_scopestack_ix - 1]; LEAVE_SCOPE(oldsave); return cx->blk_loop.next_op; } PP(pp_redo) { I32 cxix; register PERL_CONTEXT *cx; I32 oldsave; if (PL_op->op_flags & OPf_SPECIAL) { cxix = dopoptoloop(cxstack_ix); if (cxix < 0) DIE(aTHX_ "Can't \"redo\" outside a block"); } else { cxix = dopoptolabel(cPVOP->op_pv); if (cxix < 0) DIE(aTHX_ "Label not found for \"redo %s\"", cPVOP->op_pv); } if (cxix < cxstack_ix) dounwind(cxix); TOPBLOCK(cx); oldsave = PL_scopestack[PL_scopestack_ix - 1]; LEAVE_SCOPE(oldsave); return cx->blk_loop.redo_op; } STATIC OP * S_dofindlabel(pTHX_ OP *o, char *label, OP **opstack, OP **oplimit) { OP *kid; OP **ops = opstack; static char too_deep[] = "Target of goto is too deeply nested"; if (ops >= oplimit) Perl_croak(aTHX_ too_deep); if (o->op_type == OP_LEAVE || o->op_type == OP_SCOPE || o->op_type == OP_LEAVELOOP || o->op_type == OP_LEAVETRY) { *ops++ = cUNOPo->op_first; if (ops >= oplimit) Perl_croak(aTHX_ too_deep); } *ops = 0; if (o->op_flags & OPf_KIDS) { dTHR; /* First try all the kids at this level, since that's likeliest. */ for (kid = cUNOPo->op_first; kid; kid = kid->op_sibling) { if ((kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE) && kCOP->cop_label && strEQ(kCOP->cop_label, label)) return kid; } for (kid = cUNOPo->op_first; kid; kid = kid->op_sibling) { if (kid == PL_lastgotoprobe) continue; if ((kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE) && (ops == opstack || (ops[-1]->op_type != OP_NEXTSTATE && ops[-1]->op_type != OP_DBSTATE))) *ops++ = kid; if (o = dofindlabel(kid, label, ops, oplimit)) return o; } } *ops = 0; return 0; } PP(pp_dump) { return pp_goto(); /*NOTREACHED*/ } PP(pp_goto) { djSP; OP *retop = 0; I32 ix; register PERL_CONTEXT *cx; #define GOTO_DEPTH 64 OP *enterops[GOTO_DEPTH]; char *label; int do_dump = (PL_op->op_type == OP_DUMP); static char must_have_label[] = "goto must have label"; label = 0; if (PL_op->op_flags & OPf_STACKED) { SV *sv = POPs; STRLEN n_a; /* This egregious kludge implements goto &subroutine */ if (SvROK(sv) && SvTYPE(SvRV(sv)) == SVt_PVCV) { I32 cxix; register PERL_CONTEXT *cx; CV* cv = (CV*)SvRV(sv); SV** mark; I32 items = 0; I32 oldsave; int arg_was_real = 0; retry: if (!CvROOT(cv) && !CvXSUB(cv)) { GV *gv = CvGV(cv); GV *autogv; if (gv) { SV *tmpstr; /* autoloaded stub? */ if (cv != GvCV(gv) && (cv = GvCV(gv))) goto retry; autogv = gv_autoload4(GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv), FALSE); if (autogv && (cv = GvCV(autogv))) goto retry; tmpstr = sv_newmortal(); gv_efullname3(tmpstr, gv, Nullch); DIE(aTHX_ "Goto undefined subroutine &%s",SvPVX(tmpstr)); } DIE(aTHX_ "Goto undefined subroutine"); } /* First do some returnish stuff. */ cxix = dopoptosub(cxstack_ix); if (cxix < 0) DIE(aTHX_ "Can't goto subroutine outside a subroutine"); if (cxix < cxstack_ix) dounwind(cxix); TOPBLOCK(cx); if (CxTYPE(cx) == CXt_EVAL && cx->blk_eval.old_op_type == OP_ENTEREVAL) DIE(aTHX_ "Can't goto subroutine from an eval-string"); mark = PL_stack_sp; if (CxTYPE(cx) == CXt_SUB && cx->blk_sub.hasargs) { /* put @_ back onto stack */ AV* av = cx->blk_sub.argarray; items = AvFILLp(av) + 1; PL_stack_sp++; EXTEND(PL_stack_sp, items); /* @_ could have been extended. */ Copy(AvARRAY(av), PL_stack_sp, items, SV*); PL_stack_sp += items; #ifndef USE_THREADS SvREFCNT_dec(GvAV(PL_defgv)); GvAV(PL_defgv) = cx->blk_sub.savearray; #endif /* USE_THREADS */ if (AvREAL(av)) { arg_was_real = 1; AvREAL_off(av); /* so av_clear() won't clobber elts */ } av_clear(av); } else if (CvXSUB(cv)) { /* put GvAV(defgv) back onto stack */ AV* av; int i; #ifdef USE_THREADS av = (AV*)PL_curpad[0]; #else av = GvAV(PL_defgv); #endif items = AvFILLp(av) + 1; PL_stack_sp++; EXTEND(PL_stack_sp, items); /* @_ could have been extended. */ Copy(AvARRAY(av), PL_stack_sp, items, SV*); PL_stack_sp += items; } if (CxTYPE(cx) == CXt_SUB && !(CvDEPTH(cx->blk_sub.cv) = cx->blk_sub.olddepth)) SvREFCNT_dec(cx->blk_sub.cv); oldsave = PL_scopestack[PL_scopestack_ix - 1]; LEAVE_SCOPE(oldsave); /* Now do some callish stuff. */ SAVETMPS; if (CvXSUB(cv)) { #ifdef PERL_XSUB_OLDSTYLE if (CvOLDSTYLE(cv)) { I32 (*fp3)(int,int,int); while (SP > mark) { SP[1] = SP[0]; SP--; } fp3 = (I32(*)(int,int,int)))CvXSUB(cv; items = (*fp3)(CvXSUBANY(cv).any_i32, mark - PL_stack_base + 1, items); SP = PL_stack_base + items; } else #endif /* PERL_XSUB_OLDSTYLE */ { SV **newsp; I32 gimme; PL_stack_sp--; /* There is no cv arg. */ /* Push a mark for the start of arglist */ PUSHMARK(mark); (void)(*CvXSUB(cv))(aTHXo_ cv); /* Pop the current context like a decent sub should */ POPBLOCK(cx, PL_curpm); /* Do _not_ use PUTBACK, keep the XSUB's return stack! */ } LEAVE; return pop_return(); } else { AV* padlist = CvPADLIST(cv); SV** svp = AvARRAY(padlist); if (CxTYPE(cx) == CXt_EVAL) { PL_in_eval = cx->blk_eval.old_in_eval; PL_eval_root = cx->blk_eval.old_eval_root; cx->cx_type = CXt_SUB; cx->blk_sub.hasargs = 0; } cx->blk_sub.cv = cv; cx->blk_sub.olddepth = CvDEPTH(cv); CvDEPTH(cv)++; if (CvDEPTH(cv) < 2) (void)SvREFCNT_inc(cv); else { /* save temporaries on recursion? */ if (CvDEPTH(cv) == 100 && ckWARN(WARN_RECURSION)) sub_crush_depth(cv); if (CvDEPTH(cv) > AvFILLp(padlist)) { AV *newpad = newAV(); SV **oldpad = AvARRAY(svp[CvDEPTH(cv)-1]); I32 ix = AvFILLp((AV*)svp[1]); svp = AvARRAY(svp[0]); for ( ;ix > 0; ix--) { if (svp[ix] != &PL_sv_undef) { char *name = SvPVX(svp[ix]); if ((SvFLAGS(svp[ix]) & SVf_FAKE) || *name == '&') { /* outer lexical or anon code */ av_store(newpad, ix, SvREFCNT_inc(oldpad[ix]) ); } else { /* our own lexical */ if (*name == '@') av_store(newpad, ix, sv = (SV*)newAV()); else if (*name == '%') av_store(newpad, ix, sv = (SV*)newHV()); else av_store(newpad, ix, sv = NEWSV(0,0)); SvPADMY_on(sv); } } else { av_store(newpad, ix, sv = NEWSV(0,0)); SvPADTMP_on(sv); } } if (cx->blk_sub.hasargs) { AV* av = newAV(); av_extend(av, 0); av_store(newpad, 0, (SV*)av); AvFLAGS(av) = AVf_REIFY; } av_store(padlist, CvDEPTH(cv), (SV*)newpad); AvFILLp(padlist) = CvDEPTH(cv); svp = AvARRAY(padlist); } } #ifdef USE_THREADS if (!cx->blk_sub.hasargs) { AV* av = (AV*)PL_curpad[0]; items = AvFILLp(av) + 1; if (items) { /* Mark is at the end of the stack. */ EXTEND(SP, items); Copy(AvARRAY(av), SP + 1, items, SV*); SP += items; PUTBACK ; } } #endif /* USE_THREADS */ SAVESPTR(PL_curpad); PL_curpad = AvARRAY((AV*)svp[CvDEPTH(cv)]); #ifndef USE_THREADS if (cx->blk_sub.hasargs) #endif /* USE_THREADS */ { AV* av = (AV*)PL_curpad[0]; SV** ary; #ifndef USE_THREADS cx->blk_sub.savearray = GvAV(PL_defgv); GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av); #endif /* USE_THREADS */ cx->blk_sub.argarray = av; ++mark; if (items >= AvMAX(av) + 1) { ary = AvALLOC(av); if (AvARRAY(av) != ary) { AvMAX(av) += AvARRAY(av) - AvALLOC(av); SvPVX(av) = (char*)ary; } if (items >= AvMAX(av) + 1) { AvMAX(av) = items - 1; Renew(ary,items+1,SV*); AvALLOC(av) = ary; SvPVX(av) = (char*)ary; } } Copy(mark,AvARRAY(av),items,SV*); AvFILLp(av) = items - 1; /* preserve @_ nature */ if (arg_was_real) { AvREIFY_off(av); AvREAL_on(av); } while (items--) { if (*mark) SvTEMP_off(*mark); mark++; } } if (PERLDB_SUB) { /* Checking curstash breaks DProf. */ /* * We do not care about using sv to call CV; * it's for informational purposes only. */ SV *sv = GvSV(PL_DBsub); CV *gotocv; if (PERLDB_SUB_NN) { SvIVX(sv) = (IV)cv; /* Already upgraded, saved */ } else { save_item(sv); gv_efullname3(sv, CvGV(cv), Nullch); } if ( PERLDB_GOTO && (gotocv = get_cv("DB::goto", FALSE)) ) { PUSHMARK( PL_stack_sp ); call_sv((SV*)gotocv, G_SCALAR | G_NODEBUG); PL_stack_sp--; } } RETURNOP(CvSTART(cv)); } } else { label = SvPV(sv,n_a); if (!(do_dump || *label)) DIE(aTHX_ must_have_label); } } else if (PL_op->op_flags & OPf_SPECIAL) { if (! do_dump) DIE(aTHX_ must_have_label); } else label = cPVOP->op_pv; if (label && *label) { OP *gotoprobe = 0; /* find label */ PL_lastgotoprobe = 0; *enterops = 0; for (ix = cxstack_ix; ix >= 0; ix--) { cx = &cxstack[ix]; switch (CxTYPE(cx)) { case CXt_EVAL: gotoprobe = PL_eval_root; /* XXX not good for nested eval */ break; case CXt_LOOP: gotoprobe = cx->blk_oldcop->op_sibling; break; case CXt_SUBST: continue; case CXt_BLOCK: if (ix) gotoprobe = cx->blk_oldcop->op_sibling; else gotoprobe = PL_main_root; break; case CXt_SUB: if (CvDEPTH(cx->blk_sub.cv)) { gotoprobe = CvROOT(cx->blk_sub.cv); break; } /* FALL THROUGH */ case CXt_NULL: DIE(aTHX_ "Can't \"goto\" outside a block"); default: if (ix) DIE(aTHX_ "panic: goto"); gotoprobe = PL_main_root; break; } retop = dofindlabel(gotoprobe, label, enterops, enterops + GOTO_DEPTH); if (retop) break; PL_lastgotoprobe = gotoprobe; } if (!retop) DIE(aTHX_ "Can't find label %s", label); /* pop unwanted frames */ if (ix < cxstack_ix) { I32 oldsave; if (ix < 0) ix = 0; dounwind(ix); TOPBLOCK(cx); oldsave = PL_scopestack[PL_scopestack_ix]; LEAVE_SCOPE(oldsave); } /* push wanted frames */ if (*enterops && enterops[1]) { OP *oldop = PL_op; for (ix = 1; enterops[ix]; ix++) { PL_op = enterops[ix]; /* Eventually we may want to stack the needed arguments * for each op. For now, we punt on the hard ones. */ if (PL_op->op_type == OP_ENTERITER) DIE(aTHX_ "Can't \"goto\" into the middle of a foreach loop", label); (CALLOP->op_ppaddr)(aTHX); } PL_op = oldop; } } if (do_dump) { #ifdef VMS if (!retop) retop = PL_main_start; #endif PL_restartop = retop; PL_do_undump = TRUE; my_unexec(); PL_restartop = 0; /* hmm, must be GNU unexec().. */ PL_do_undump = FALSE; } RETURNOP(retop); } PP(pp_exit) { djSP; I32 anum; if (MAXARG < 1) anum = 0; else { anum = SvIVx(POPs); #ifdef VMSISH_EXIT if (anum == 1 && VMSISH_EXIT) anum = 0; #endif } my_exit(anum); PUSHs(&PL_sv_undef); RETURN; } #ifdef NOTYET PP(pp_nswitch) { djSP; double value = SvNVx(GvSV(cCOP->cop_gv)); register I32 match = I_32(value); if (value < 0.0) { if (((double)match) > value) --match; /* was fractional--truncate other way */ } match -= cCOP->uop.scop.scop_offset; if (match < 0) match = 0; else if (match > cCOP->uop.scop.scop_max) match = cCOP->uop.scop.scop_max; PL_op = cCOP->uop.scop.scop_next[match]; RETURNOP(PL_op); } PP(pp_cswitch) { djSP; register I32 match; if (PL_multiline) PL_op = PL_op->op_next; /* can't assume anything */ else { STRLEN n_a; match = *(SvPVx(GvSV(cCOP->cop_gv), n_a)) & 255; match -= cCOP->uop.scop.scop_offset; if (match < 0) match = 0; else if (match > cCOP->uop.scop.scop_max) match = cCOP->uop.scop.scop_max; PL_op = cCOP->uop.scop.scop_next[match]; } RETURNOP(PL_op); } #endif /* Eval. */ STATIC void S_save_lines(pTHX_ AV *array, SV *sv) { register char *s = SvPVX(sv); register char *send = SvPVX(sv) + SvCUR(sv); register char *t; register I32 line = 1; while (s && s < send) { SV *tmpstr = NEWSV(85,0); sv_upgrade(tmpstr, SVt_PVMG); t = strchr(s, '\n'); if (t) t++; else t = send; sv_setpvn(tmpstr, s, t - s); av_store(array, line++, tmpstr); s = t; } } STATIC void * S_docatch_body(pTHX_ va_list args) { CALLRUNOPS(aTHX); return NULL; } STATIC OP * S_docatch(pTHX_ OP *o) { dTHR; int ret; OP *oldop = PL_op; #ifdef DEBUGGING assert(CATCH_GET == TRUE); #endif PL_op = o; redo_body: CALLPROTECT(aTHX_ &ret, FUNC_NAME_TO_PTR(S_docatch_body)); switch (ret) { case 0: break; case 3: if (PL_restartop) { PL_op = PL_restartop; PL_restartop = 0; goto redo_body; } /* FALL THROUGH */ default: PL_op = oldop; JMPENV_JUMP(ret); /* NOTREACHED */ } PL_op = oldop; return Nullop; } OP * Perl_sv_compile_2op(pTHX_ SV *sv, OP** startop, char *code, AV** avp) /* sv Text to convert to OP tree. */ /* startop op_free() this to undo. */ /* code Short string id of the caller. */ { dSP; /* Make POPBLOCK work. */ PERL_CONTEXT *cx; SV **newsp; I32 gimme = 0; /* SUSPECT - INITIALZE TO WHAT? NI-S */ I32 optype; OP dummy; OP *oop = PL_op, *rop; char tmpbuf[TYPE_DIGITS(long) + 12 + 10]; char *safestr; ENTER; lex_start(sv); SAVETMPS; /* switch to eval mode */ if (PL_curcop == &PL_compiling) { SAVESPTR(PL_compiling.cop_stash); PL_compiling.cop_stash = PL_curstash; } SAVESPTR(PL_compiling.cop_filegv); SAVEI16(PL_compiling.cop_line); sprintf(tmpbuf, "_<(%.10s_eval %lu)", code, (unsigned long)++PL_evalseq); PL_compiling.cop_filegv = gv_fetchfile(tmpbuf+2); PL_compiling.cop_line = 1; /* XXX For Cs within BEGIN {} blocks, this ends up deleting the eval's FILEGV from the stash before gv_check() runs (i.e. before run-time proper). To work around the coredump that ensues, we always turn GvMULTI_on for any globals that were introduced within evals. See force_ident(). GSAR 96-10-12 */ safestr = savepv(tmpbuf); SAVEDELETE(PL_defstash, safestr, strlen(safestr)); SAVEHINTS(); #ifdef OP_IN_REGISTER PL_opsave = op; #else SAVEPPTR(PL_op); #endif PL_hints = 0; PL_op = &dummy; PL_op->op_type = OP_ENTEREVAL; PL_op->op_flags = 0; /* Avoid uninit warning. */ PUSHBLOCK(cx, CXt_EVAL, SP); PUSHEVAL(cx, 0, PL_compiling.cop_filegv); rop = doeval(G_SCALAR, startop); POPBLOCK(cx,PL_curpm); POPEVAL(cx); (*startop)->op_type = OP_NULL; (*startop)->op_ppaddr = PL_ppaddr[OP_NULL]; lex_end(); *avp = (AV*)SvREFCNT_inc(PL_comppad); LEAVE; if (PL_curcop == &PL_compiling) PL_compiling.op_private = PL_hints; #ifdef OP_IN_REGISTER op = PL_opsave; #endif return rop; } /* With USE_THREADS, eval_owner must be held on entry to doeval */ STATIC OP * S_doeval(pTHX_ int gimme, OP** startop) { dSP; OP *saveop = PL_op; HV *newstash; CV *caller; AV* comppadlist; I32 i; PL_in_eval = EVAL_INEVAL; PUSHMARK(SP); /* set up a scratch pad */ SAVEI32(PL_padix); SAVESPTR(PL_curpad); SAVESPTR(PL_comppad); SAVESPTR(PL_comppad_name); SAVEI32(PL_comppad_name_fill); SAVEI32(PL_min_intro_pending); SAVEI32(PL_max_intro_pending); caller = PL_compcv; for (i = cxstack_ix - 1; i >= 0; i--) { PERL_CONTEXT *cx = &cxstack[i]; if (CxTYPE(cx) == CXt_EVAL) break; else if (CxTYPE(cx) == CXt_SUB) { caller = cx->blk_sub.cv; break; } } SAVESPTR(PL_compcv); PL_compcv = (CV*)NEWSV(1104,0); sv_upgrade((SV *)PL_compcv, SVt_PVCV); CvEVAL_on(PL_compcv); #ifdef USE_THREADS CvOWNER(PL_compcv) = 0; New(666, CvMUTEXP(PL_compcv), 1, perl_mutex); MUTEX_INIT(CvMUTEXP(PL_compcv)); #endif /* USE_THREADS */ PL_comppad = newAV(); av_push(PL_comppad, Nullsv); PL_curpad = AvARRAY(PL_comppad); PL_comppad_name = newAV(); PL_comppad_name_fill = 0; PL_min_intro_pending = 0; PL_padix = 0; #ifdef USE_THREADS av_store(PL_comppad_name, 0, newSVpvn("@_", 2)); PL_curpad[0] = (SV*)newAV(); SvPADMY_on(PL_curpad[0]); /* XXX Needed? */ #endif /* USE_THREADS */ comppadlist = newAV(); AvREAL_off(comppadlist); av_store(comppadlist, 0, (SV*)PL_comppad_name); av_store(comppadlist, 1, (SV*)PL_comppad); CvPADLIST(PL_compcv) = comppadlist; if (!saveop || saveop->op_type != OP_REQUIRE) CvOUTSIDE(PL_compcv) = (CV*)SvREFCNT_inc(caller); SAVEFREESV(PL_compcv); /* make sure we compile in the right package */ newstash = PL_curcop->cop_stash; if (PL_curstash != newstash) { SAVESPTR(PL_curstash); PL_curstash = newstash; } SAVESPTR(PL_beginav); PL_beginav = newAV(); SAVEFREESV(PL_beginav); /* try to compile it */ PL_eval_root = Nullop; PL_error_count = 0; PL_curcop = &PL_compiling; PL_curcop->cop_arybase = 0; SvREFCNT_dec(PL_rs); PL_rs = newSVpvn("\n", 1); if (saveop && saveop->op_flags & OPf_SPECIAL) PL_in_eval |= EVAL_KEEPERR; else sv_setpv(ERRSV,""); if (yyparse() || PL_error_count || !PL_eval_root) { SV **newsp; I32 gimme; PERL_CONTEXT *cx; I32 optype = 0; /* Might be reset by POPEVAL. */ STRLEN n_a; PL_op = saveop; if (PL_eval_root) { op_free(PL_eval_root); PL_eval_root = Nullop; } SP = PL_stack_base + POPMARK; /* pop original mark */ if (!startop) { POPBLOCK(cx,PL_curpm); POPEVAL(cx); pop_return(); } lex_end(); LEAVE; if (optype == OP_REQUIRE) { char* msg = SvPVx(ERRSV, n_a); DIE(aTHX_ "%s", *msg ? msg : "Compilation failed in require"); } else if (startop) { char* msg = SvPVx(ERRSV, n_a); POPBLOCK(cx,PL_curpm); POPEVAL(cx); Perl_croak(aTHX_ "%sCompilation failed in regexp", (*msg ? msg : "Unknown error\n")); } SvREFCNT_dec(PL_rs); PL_rs = SvREFCNT_inc(PL_nrs); #ifdef USE_THREADS MUTEX_LOCK(&PL_eval_mutex); PL_eval_owner = 0; COND_SIGNAL(&PL_eval_cond); MUTEX_UNLOCK(&PL_eval_mutex); #endif /* USE_THREADS */ RETPUSHUNDEF; } SvREFCNT_dec(PL_rs); PL_rs = SvREFCNT_inc(PL_nrs); PL_compiling.cop_line = 0; if (startop) { *startop = PL_eval_root; SvREFCNT_dec(CvOUTSIDE(PL_compcv)); CvOUTSIDE(PL_compcv) = Nullcv; } else SAVEFREEOP(PL_eval_root); if (gimme & G_VOID) scalarvoid(PL_eval_root); else if (gimme & G_ARRAY) list(PL_eval_root); else scalar(PL_eval_root); DEBUG_x(dump_eval()); /* Register with debugger: */ if (PERLDB_INTER && saveop->op_type == OP_REQUIRE) { CV *cv = get_cv("DB::postponed", FALSE); if (cv) { dSP; PUSHMARK(SP); XPUSHs((SV*)PL_compiling.cop_filegv); PUTBACK; call_sv((SV*)cv, G_DISCARD); } } /* compiled okay, so do it */ CvDEPTH(PL_compcv) = 1; SP = PL_stack_base + POPMARK; /* pop original mark */ PL_op = saveop; /* The caller may need it. */ #ifdef USE_THREADS MUTEX_LOCK(&PL_eval_mutex); PL_eval_owner = 0; COND_SIGNAL(&PL_eval_cond); MUTEX_UNLOCK(&PL_eval_mutex); #endif /* USE_THREADS */ RETURNOP(PL_eval_start); } STATIC PerlIO * S_doopen_pmc(pTHX_ const char *name, const char *mode) { STRLEN namelen = strlen(name); PerlIO *fp; if (namelen > 3 && strEQ(name + namelen - 3, ".pm")) { SV *pmcsv = Perl_newSVpvf(aTHX_ "%s%c", name, 'c'); char *pmc = SvPV_nolen(pmcsv); Stat_t pmstat; Stat_t pmcstat; if (PerlLIO_stat(pmc, &pmcstat) < 0) { fp = PerlIO_open(name, mode); } else { if (PerlLIO_stat(name, &pmstat) < 0 || pmstat.st_mtime < pmcstat.st_mtime) { fp = PerlIO_open(pmc, mode); } else { fp = PerlIO_open(name, mode); } } SvREFCNT_dec(pmcsv); } else { fp = PerlIO_open(name, mode); } return fp; } PP(pp_require) { djSP; register PERL_CONTEXT *cx; SV *sv; char *name; STRLEN len; char *tryname; SV *namesv = Nullsv; SV** svp; I32 gimme = G_SCALAR; PerlIO *tryrsfp = 0; STRLEN n_a; sv = POPs; if (SvNIOKp(sv) && !SvPOKp(sv)) { if (Atof(PL_patchlevel) + 0.00000999 < SvNV(sv)) DIE(aTHX_ "Perl %s required--this is only version %s, stopped", SvPV(sv,n_a),PL_patchlevel); RETPUSHYES; } name = SvPV(sv, len); if (!(name && len > 0 && *name)) DIE(aTHX_ "Null filename used"); TAINT_PROPER("require"); if (PL_op->op_type == OP_REQUIRE && (svp = hv_fetch(GvHVn(PL_incgv), name, len, 0)) && *svp != &PL_sv_undef) RETPUSHYES; /* prepare to compile file */ if (*name == '/' || (*name == '.' && (name[1] == '/' || (name[1] == '.' && name[2] == '/'))) #ifdef DOSISH || (name[0] && name[1] == ':') #endif #ifdef WIN32 || (name[0] == '\\' && name[1] == '\\') /* UNC path */ #endif #ifdef VMS || (strchr(name,':') || ((*name == '[' || *name == '<') && (isALNUM(name[1]) || strchr("$-_]>",name[1])))) #endif ) { tryname = name; tryrsfp = doopen_pmc(name,PERL_SCRIPT_MODE); } else { AV *ar = GvAVn(PL_incgv); I32 i; #ifdef VMS char *unixname; if ((unixname = tounixspec(name, Nullch)) != Nullch) #endif { namesv = NEWSV(806, 0); for (i = 0; i <= AvFILL(ar); i++) { char *dir = SvPVx(*av_fetch(ar, i, TRUE), n_a); #ifdef VMS char *unixdir; if ((unixdir = tounixpath(dir, Nullch)) == Nullch) continue; sv_setpv(namesv, unixdir); sv_catpv(namesv, unixname); #else Perl_sv_setpvf(aTHX_ namesv, "%s/%s", dir, name); #endif TAINT_PROPER("require"); tryname = SvPVX(namesv); tryrsfp = doopen_pmc(tryname, PERL_SCRIPT_MODE); if (tryrsfp) { if (tryname[0] == '.' && tryname[1] == '/') tryname += 2; break; } } } } SAVESPTR(PL_compiling.cop_filegv); PL_compiling.cop_filegv = gv_fetchfile(tryrsfp ? tryname : name); SvREFCNT_dec(namesv); if (!tryrsfp) { if (PL_op->op_type == OP_REQUIRE) { char *msgstr = name; if (namesv) { /* did we lookup @INC? */ SV *msg = sv_2mortal(newSVpv(msgstr,0)); SV *dirmsgsv = NEWSV(0, 0); AV *ar = GvAVn(PL_incgv); I32 i; sv_catpvn(msg, " in @INC", 8); if (instr(SvPVX(msg), ".h ")) sv_catpv(msg, " (change .h to .ph maybe?)"); if (instr(SvPVX(msg), ".ph ")) sv_catpv(msg, " (did you run h2ph?)"); sv_catpv(msg, " (@INC contains:"); for (i = 0; i <= AvFILL(ar); i++) { char *dir = SvPVx(*av_fetch(ar, i, TRUE), n_a); Perl_sv_setpvf(aTHX_ dirmsgsv, " %s", dir); sv_catsv(msg, dirmsgsv); } sv_catpvn(msg, ")", 1); SvREFCNT_dec(dirmsgsv); msgstr = SvPV_nolen(msg); } DIE(aTHX_ "Can't locate %s", msgstr); } RETPUSHUNDEF; } else SETERRNO(0, SS$_NORMAL); /* Assume success here to prevent recursive requirement. */ (void)hv_store(GvHVn(PL_incgv), name, strlen(name), newSVsv(GvSV(PL_compiling.cop_filegv)), 0 ); ENTER; SAVETMPS; lex_start(sv_2mortal(newSVpvn("",0))); SAVEGENERICSV(PL_rsfp_filters); PL_rsfp_filters = Nullav; PL_rsfp = tryrsfp; name = savepv(name); SAVEFREEPV(name); SAVEHINTS(); PL_hints = 0; SAVEPPTR(PL_compiling.cop_warnings); PL_compiling.cop_warnings = ((PL_dowarn & G_WARN_ALL_ON) ? WARN_ALL : WARN_NONE); /* switch to eval mode */ push_return(PL_op->op_next); PUSHBLOCK(cx, CXt_EVAL, SP); PUSHEVAL(cx, name, PL_compiling.cop_filegv); SAVEI16(PL_compiling.cop_line); PL_compiling.cop_line = 0; PUTBACK; #ifdef USE_THREADS MUTEX_LOCK(&PL_eval_mutex); if (PL_eval_owner && PL_eval_owner != thr) while (PL_eval_owner) COND_WAIT(&PL_eval_cond, &PL_eval_mutex); PL_eval_owner = thr; MUTEX_UNLOCK(&PL_eval_mutex); #endif /* USE_THREADS */ return DOCATCH(doeval(G_SCALAR, NULL)); } PP(pp_dofile) { return pp_require(); } PP(pp_entereval) { djSP; register PERL_CONTEXT *cx; dPOPss; I32 gimme = GIMME_V, was = PL_sub_generation; char tmpbuf[TYPE_DIGITS(long) + 12]; char *safestr; STRLEN len; OP *ret; if (!SvPV(sv,len) || !len) RETPUSHUNDEF; TAINT_PROPER("eval"); ENTER; lex_start(sv); SAVETMPS; /* switch to eval mode */ SAVESPTR(PL_compiling.cop_filegv); sprintf(tmpbuf, "_<(eval %lu)", (unsigned long)++PL_evalseq); PL_compiling.cop_filegv = gv_fetchfile(tmpbuf+2); PL_compiling.cop_line = 1; /* XXX For Cs within BEGIN {} blocks, this ends up deleting the eval's FILEGV from the stash before gv_check() runs (i.e. before run-time proper). To work around the coredump that ensues, we always turn GvMULTI_on for any globals that were introduced within evals. See force_ident(). GSAR 96-10-12 */ safestr = savepv(tmpbuf); SAVEDELETE(PL_defstash, safestr, strlen(safestr)); SAVEHINTS(); PL_hints = PL_op->op_targ; SAVEPPTR(PL_compiling.cop_warnings); if (PL_compiling.cop_warnings != WARN_ALL && PL_compiling.cop_warnings != WARN_NONE){ PL_compiling.cop_warnings = newSVsv(PL_compiling.cop_warnings) ; SAVEFREESV(PL_compiling.cop_warnings) ; } push_return(PL_op->op_next); PUSHBLOCK(cx, (CXt_EVAL|CXp_REAL), SP); PUSHEVAL(cx, 0, PL_compiling.cop_filegv); /* prepare to compile string */ if (PERLDB_LINE && PL_curstash != PL_debstash) save_lines(GvAV(PL_compiling.cop_filegv), PL_linestr); PUTBACK; #ifdef USE_THREADS MUTEX_LOCK(&PL_eval_mutex); if (PL_eval_owner && PL_eval_owner != thr) while (PL_eval_owner) COND_WAIT(&PL_eval_cond, &PL_eval_mutex); PL_eval_owner = thr; MUTEX_UNLOCK(&PL_eval_mutex); #endif /* USE_THREADS */ ret = doeval(gimme, NULL); if (PERLDB_INTER && was != PL_sub_generation /* Some subs defined here. */ && ret != PL_op->op_next) { /* Successive compilation. */ strcpy(safestr, "_<(eval )"); /* Anything fake and short. */ } return DOCATCH(ret); } PP(pp_leaveeval) { djSP; register SV **mark; SV **newsp; PMOP *newpm; I32 gimme; register PERL_CONTEXT *cx; OP *retop; U8 save_flags = PL_op -> op_flags; I32 optype; POPBLOCK(cx,newpm); POPEVAL(cx); retop = pop_return(); TAINT_NOT; if (gimme == G_VOID) MARK = newsp; else if (gimme == G_SCALAR) { MARK = newsp + 1; if (MARK <= SP) { if (SvFLAGS(TOPs) & SVs_TEMP) *MARK = TOPs; else *MARK = sv_mortalcopy(TOPs); } else { MEXTEND(mark,0); *MARK = &PL_sv_undef; } } else { /* in case LEAVE wipes old return values */ for (mark = newsp + 1; mark <= SP; mark++) { if (!(SvFLAGS(*mark) & SVs_TEMP)) { *mark = sv_mortalcopy(*mark); TAINT_NOT; /* Each item is independent */ } } } PL_curpm = newpm; /* Don't pop $1 et al till now */ if (AvFILLp(PL_comppad_name) >= 0) free_closures(); #ifdef DEBUGGING assert(CvDEPTH(PL_compcv) == 1); #endif CvDEPTH(PL_compcv) = 0; lex_end(); if (optype == OP_REQUIRE && !(gimme == G_SCALAR ? SvTRUE(*SP) : SP > newsp)) { /* Unassume the success we assumed earlier. */ char *name = cx->blk_eval.old_name; (void)hv_delete(GvHVn(PL_incgv), name, strlen(name), G_DISCARD); retop = Perl_die(aTHX_ "%s did not return a true value", name); /* die_where() did LEAVE, or we won't be here */ } else { LEAVE; if (!(save_flags & OPf_SPECIAL)) sv_setpv(ERRSV,""); } RETURNOP(retop); } PP(pp_entertry) { djSP; register PERL_CONTEXT *cx; I32 gimme = GIMME_V; ENTER; SAVETMPS; push_return(cLOGOP->op_other->op_next); PUSHBLOCK(cx, CXt_EVAL, SP); PUSHEVAL(cx, 0, 0); PL_eval_root = PL_op; /* Only needed so that goto works right. */ PL_in_eval = EVAL_INEVAL; sv_setpv(ERRSV,""); PUTBACK; return DOCATCH(PL_op->op_next); } PP(pp_leavetry) { djSP; register SV **mark; SV **newsp; PMOP *newpm; I32 gimme; register PERL_CONTEXT *cx; I32 optype; POPBLOCK(cx,newpm); POPEVAL(cx); pop_return(); TAINT_NOT; if (gimme == G_VOID) SP = newsp; else if (gimme == G_SCALAR) { MARK = newsp + 1; if (MARK <= SP) { if (SvFLAGS(TOPs) & (SVs_PADTMP|SVs_TEMP)) *MARK = TOPs; else *MARK = sv_mortalcopy(TOPs); } else { MEXTEND(mark,0); *MARK = &PL_sv_undef; } SP = MARK; } else { /* in case LEAVE wipes old return values */ for (mark = newsp + 1; mark <= SP; mark++) { if (!(SvFLAGS(*mark) & (SVs_PADTMP|SVs_TEMP))) { *mark = sv_mortalcopy(*mark); TAINT_NOT; /* Each item is independent */ } } } PL_curpm = newpm; /* Don't pop $1 et al till now */ LEAVE; sv_setpv(ERRSV,""); RETURN; } STATIC void S_doparseform(pTHX_ SV *sv) { STRLEN len; register char *s = SvPV_force(sv, len); register char *send = s + len; register char *base; register I32 skipspaces = 0; bool noblank; bool repeat; bool postspace = FALSE; U16 *fops; register U16 *fpc; U16 *linepc; register I32 arg; bool ischop; if (len == 0) Perl_croak(aTHX_ "Null picture in formline"); New(804, fops, (send - s)*3+10, U16); /* Almost certainly too long... */ fpc = fops; if (s < send) { linepc = fpc; *fpc++ = FF_LINEMARK; noblank = repeat = FALSE; base = s; } while (s <= send) { switch (*s++) { default: skipspaces = 0; continue; case '~': if (*s == '~') { repeat = TRUE; *s = ' '; } noblank = TRUE; s[-1] = ' '; /* FALL THROUGH */ case ' ': case '\t': skipspaces++; continue; case '\n': case 0: arg = s - base; skipspaces++; arg -= skipspaces; if (arg) { if (postspace) *fpc++ = FF_SPACE; *fpc++ = FF_LITERAL; *fpc++ = arg; } postspace = FALSE; if (s <= send) skipspaces--; if (skipspaces) { *fpc++ = FF_SKIP; *fpc++ = skipspaces; } skipspaces = 0; if (s <= send) *fpc++ = FF_NEWLINE; if (noblank) { *fpc++ = FF_BLANK; if (repeat) arg = fpc - linepc + 1; else arg = 0; *fpc++ = arg; } if (s < send) { linepc = fpc; *fpc++ = FF_LINEMARK; noblank = repeat = FALSE; base = s; } else s++; continue; case '@': case '^': ischop = s[-1] == '^'; if (postspace) { *fpc++ = FF_SPACE; postspace = FALSE; } arg = (s - base) - 1; if (arg) { *fpc++ = FF_LITERAL; *fpc++ = arg; } base = s - 1; *fpc++ = FF_FETCH; if (*s == '*') { s++; *fpc++ = 0; *fpc++ = FF_LINEGLOB; } else if (*s == '#' || (*s == '.' && s[1] == '#')) { arg = ischop ? 512 : 0; base = s - 1; while (*s == '#') s++; if (*s == '.') { char *f; s++; f = s; while (*s == '#') s++; arg |= 256 + (s - f); } *fpc++ = s - base; /* fieldsize for FETCH */ *fpc++ = FF_DECIMAL; *fpc++ = arg; } else { I32 prespace = 0; bool ismore = FALSE; if (*s == '>') { while (*++s == '>') ; prespace = FF_SPACE; } else if (*s == '|') { while (*++s == '|') ; prespace = FF_HALFSPACE; postspace = TRUE; } else { if (*s == '<') while (*++s == '<') ; postspace = TRUE; } if (*s == '.' && s[1] == '.' && s[2] == '.') { s += 3; ismore = TRUE; } *fpc++ = s - base; /* fieldsize for FETCH */ *fpc++ = ischop ? FF_CHECKCHOP : FF_CHECKNL; if (prespace) *fpc++ = prespace; *fpc++ = FF_ITEM; if (ismore) *fpc++ = FF_MORE; if (ischop) *fpc++ = FF_CHOP; } base = s; skipspaces = 0; continue; } } *fpc++ = FF_END; arg = fpc - fops; { /* need to jump to the next word */ int z; z = WORD_ALIGN - SvCUR(sv) % WORD_ALIGN; SvGROW(sv, SvCUR(sv) + z + arg * sizeof(U16) + 4); s = SvPVX(sv) + SvCUR(sv) + z; } Copy(fops, s, arg, U16); Safefree(fops); sv_magic(sv, Nullsv, 'f', Nullch, 0); SvCOMPILED_on(sv); } /* * The rest of this file was derived from source code contributed * by Tom Horsley. * * NOTE: this code was derived from Tom Horsley's qsort replacement * and should not be confused with the original code. */ /* Copyright (C) Tom Horsley, 1997. All rights reserved. Permission granted to distribute under the same terms as perl which are (briefly): This program is free software; you can redistribute it and/or modify it under the terms of either: a) the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version, or b) the "Artistic License" which comes with this Kit. Details on the perl license can be found in the perl source code which may be located via the www.perl.com web page. This is the most wonderfulest possible qsort I can come up with (and still be mostly portable) My (limited) tests indicate it consistently does about 20% fewer calls to compare than does the qsort in the Visual C++ library, other vendors may vary. Some of the ideas in here can be found in "Algorithms" by Sedgewick, others I invented myself (or more likely re-invented since they seemed pretty obvious once I watched the algorithm operate for a while). Most of this code was written while watching the Marlins sweep the Giants in the 1997 National League Playoffs - no Braves fans allowed to use this code (just kidding :-). I realize that if I wanted to be true to the perl tradition, the only comment in this file would be something like: ...they shuffled back towards the rear of the line. 'No, not at the rear!' the slave-driver shouted. 'Three files up. And stay there... However, I really needed to violate that tradition just so I could keep track of what happens myself, not to mention some poor fool trying to understand this years from now :-). */ /* ********************************************************** Configuration */ #ifndef QSORT_ORDER_GUESS #define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */ #endif /* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for future processing - a good max upper bound is log base 2 of memory size (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can safely be smaller than that since the program is taking up some space and most operating systems only let you grab some subset of contiguous memory (not to mention that you are normally sorting data larger than 1 byte element size :-). */ #ifndef QSORT_MAX_STACK #define QSORT_MAX_STACK 32 #endif /* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort. Anything bigger and we use qsort. If you make this too small, the qsort will probably break (or become less efficient), because it doesn't expect the middle element of a partition to be the same as the right or left - you have been warned). */ #ifndef QSORT_BREAK_EVEN #define QSORT_BREAK_EVEN 6 #endif /* ************************************************************* Data Types */ /* hold left and right index values of a partition waiting to be sorted (the partition includes both left and right - right is NOT one past the end or anything like that). */ struct partition_stack_entry { int left; int right; #ifdef QSORT_ORDER_GUESS int qsort_break_even; #endif }; /* ******************************************************* Shorthand Macros */ /* Note that these macros will be used from inside the qsort function where we happen to know that the variable 'elt_size' contains the size of an array element and the variable 'temp' points to enough space to hold a temp element and the variable 'array' points to the array being sorted and 'compare' is the pointer to the compare routine. Also note that there are very many highly architecture specific ways these might be sped up, but this is simply the most generally portable code I could think of. */ /* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2 */ #ifdef PERL_OBJECT #define qsort_cmp(elt1, elt2) \ ((this->*compare)(array[elt1], array[elt2])) #else #define qsort_cmp(elt1, elt2) \ ((*compare)(aTHX_ array[elt1], array[elt2])) #endif #ifdef QSORT_ORDER_GUESS #define QSORT_NOTICE_SWAP swapped++; #else #define QSORT_NOTICE_SWAP #endif /* swaps contents of array elements elt1, elt2. */ #define qsort_swap(elt1, elt2) \ STMT_START { \ QSORT_NOTICE_SWAP \ temp = array[elt1]; \ array[elt1] = array[elt2]; \ array[elt2] = temp; \ } STMT_END /* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets elt3 and elt3 gets elt1. */ #define qsort_rotate(elt1, elt2, elt3) \ STMT_START { \ QSORT_NOTICE_SWAP \ temp = array[elt1]; \ array[elt1] = array[elt2]; \ array[elt2] = array[elt3]; \ array[elt3] = temp; \ } STMT_END /* ************************************************************ Debug stuff */ #ifdef QSORT_DEBUG static void break_here() { return; /* good place to set a breakpoint */ } #define qsort_assert(t) (void)( (t) || (break_here(), 0) ) static void doqsort_all_asserts( void * array, size_t num_elts, size_t elt_size, int (*compare)(const void * elt1, const void * elt2), int pc_left, int pc_right, int u_left, int u_right) { int i; qsort_assert(pc_left <= pc_right); qsort_assert(u_right < pc_left); qsort_assert(pc_right < u_left); for (i = u_right + 1; i < pc_left; ++i) { qsort_assert(qsort_cmp(i, pc_left) < 0); } for (i = pc_left; i < pc_right; ++i) { qsort_assert(qsort_cmp(i, pc_right) == 0); } for (i = pc_right + 1; i < u_left; ++i) { qsort_assert(qsort_cmp(pc_right, i) < 0); } } #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \ doqsort_all_asserts(array, num_elts, elt_size, compare, \ PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) #else #define qsort_assert(t) ((void)0) #define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0) #endif /* ****************************************************************** qsort */ STATIC void S_qsortsv(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare) { register SV * temp; struct partition_stack_entry partition_stack[QSORT_MAX_STACK]; int next_stack_entry = 0; int part_left; int part_right; #ifdef QSORT_ORDER_GUESS int qsort_break_even; int swapped; #endif /* Make sure we actually have work to do. */ if (num_elts <= 1) { return; } /* Setup the initial partition definition and fall into the sorting loop */ part_left = 0; part_right = (int)(num_elts - 1); #ifdef QSORT_ORDER_GUESS qsort_break_even = QSORT_BREAK_EVEN; #else #define qsort_break_even QSORT_BREAK_EVEN #endif for ( ; ; ) { if ((part_right - part_left) >= qsort_break_even) { /* OK, this is gonna get hairy, so lets try to document all the concepts and abbreviations and variables and what they keep track of: pc: pivot chunk - the set of array elements we accumulate in the middle of the partition, all equal in value to the original pivot element selected. The pc is defined by: pc_left - the leftmost array index of the pc pc_right - the rightmost array index of the pc we start with pc_left == pc_right and only one element in the pivot chunk (but it can grow during the scan). u: uncompared elements - the set of elements in the partition we have not yet compared to the pivot value. There are two uncompared sets during the scan - one to the left of the pc and one to the right. u_right - the rightmost index of the left side's uncompared set u_left - the leftmost index of the right side's uncompared set The leftmost index of the left sides's uncompared set doesn't need its own variable because it is always defined by the leftmost edge of the whole partition (part_left). The same goes for the rightmost edge of the right partition (part_right). We know there are no uncompared elements on the left once we get u_right < part_left and no uncompared elements on the right once u_left > part_right. When both these conditions are met, we have completed the scan of the partition. Any elements which are between the pivot chunk and the uncompared elements should be less than the pivot value on the left side and greater than the pivot value on the right side (in fact, the goal of the whole algorithm is to arrange for that to be true and make the groups of less-than and greater-then elements into new partitions to sort again). As you marvel at the complexity of the code and wonder why it has to be so confusing. Consider some of the things this level of confusion brings: Once I do a compare, I squeeze every ounce of juice out of it. I never do compare calls I don't have to do, and I certainly never do redundant calls. I also never swap any elements unless I can prove there is a good reason. Many sort algorithms will swap a known value with an uncompared value just to get things in the right place (or avoid complexity :-), but that uncompared value, once it gets compared, may then have to be swapped again. A lot of the complexity of this code is due to the fact that it never swaps anything except compared values, and it only swaps them when the compare shows they are out of position. */ int pc_left, pc_right; int u_right, u_left; int s; pc_left = ((part_left + part_right) / 2); pc_right = pc_left; u_right = pc_left - 1; u_left = pc_right + 1; /* Qsort works best when the pivot value is also the median value in the partition (unfortunately you can't find the median value without first sorting :-), so to give the algorithm a helping hand, we pick 3 elements and sort them and use the median value of that tiny set as the pivot value. Some versions of qsort like to use the left middle and right as the 3 elements to sort so they can insure the ends of the partition will contain values which will stop the scan in the compare loop, but when you have to call an arbitrarily complex routine to do a compare, its really better to just keep track of array index values to know when you hit the edge of the partition and avoid the extra compare. An even better reason to avoid using a compare call is the fact that you can drop off the edge of the array if someone foolishly provides you with an unstable compare function that doesn't always provide consistent results. So, since it is simpler for us to compare the three adjacent elements in the middle of the partition, those are the ones we pick here (conveniently pointed at by u_right, pc_left, and u_left). The values of the left, center, and right elements are refered to as l c and r in the following comments. */ #ifdef QSORT_ORDER_GUESS swapped = 0; #endif s = qsort_cmp(u_right, pc_left); if (s < 0) { /* l < c */ s = qsort_cmp(pc_left, u_left); /* if l < c, c < r - already in order - nothing to do */ if (s == 0) { /* l < c, c == r - already in order, pc grows */ ++pc_right; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else if (s > 0) { /* l < c, c > r - need to know more */ s = qsort_cmp(u_right, u_left); if (s < 0) { /* l < c, c > r, l < r - swap c & r to get ordered */ qsort_swap(pc_left, u_left); qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else if (s == 0) { /* l < c, c > r, l == r - swap c&r, grow pc */ qsort_swap(pc_left, u_left); --pc_left; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else { /* l < c, c > r, l > r - make lcr into rlc to get ordered */ qsort_rotate(pc_left, u_right, u_left); qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } } } else if (s == 0) { /* l == c */ s = qsort_cmp(pc_left, u_left); if (s < 0) { /* l == c, c < r - already in order, grow pc */ --pc_left; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else if (s == 0) { /* l == c, c == r - already in order, grow pc both ways */ --pc_left; ++pc_right; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else { /* l == c, c > r - swap l & r, grow pc */ qsort_swap(u_right, u_left); ++pc_right; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } } else { /* l > c */ s = qsort_cmp(pc_left, u_left); if (s < 0) { /* l > c, c < r - need to know more */ s = qsort_cmp(u_right, u_left); if (s < 0) { /* l > c, c < r, l < r - swap l & c to get ordered */ qsort_swap(u_right, pc_left); qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else if (s == 0) { /* l > c, c < r, l == r - swap l & c, grow pc */ qsort_swap(u_right, pc_left); ++pc_right; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else { /* l > c, c < r, l > r - rotate lcr into crl to order */ qsort_rotate(u_right, pc_left, u_left); qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } } else if (s == 0) { /* l > c, c == r - swap ends, grow pc */ qsort_swap(u_right, u_left); --pc_left; qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } else { /* l > c, c > r - swap ends to get in order */ qsort_swap(u_right, u_left); qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1); } } /* We now know the 3 middle elements have been compared and arranged in the desired order, so we can shrink the uncompared sets on both sides */ --u_right; ++u_left; qsort_all_asserts(pc_left, pc_right, u_left, u_right); /* The above massive nested if was the simple part :-). We now have the middle 3 elements ordered and we need to scan through the uncompared sets on either side, swapping elements that are on the wrong side or simply shuffling equal elements around to get all equal elements into the pivot chunk. */ for ( ; ; ) { int still_work_on_left; int still_work_on_right; /* Scan the uncompared values on the left. If I find a value equal to the pivot value, move it over so it is adjacent to the pivot chunk and expand the pivot chunk. If I find a value less than the pivot value, then just leave it - its already on the correct side of the partition. If I find a greater value, then stop the scan. */ while (still_work_on_left = (u_right >= part_left)) { s = qsort_cmp(u_right, pc_left); if (s < 0) { --u_right; } else if (s == 0) { --pc_left; if (pc_left != u_right) { qsort_swap(u_right, pc_left); } --u_right; } else { break; } qsort_assert(u_right < pc_left); qsort_assert(pc_left <= pc_right); qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0); qsort_assert(qsort_cmp(pc_left, pc_right) == 0); } /* Do a mirror image scan of uncompared values on the right */ while (still_work_on_right = (u_left <= part_right)) { s = qsort_cmp(pc_right, u_left); if (s < 0) { ++u_left; } else if (s == 0) { ++pc_right; if (pc_right != u_left) { qsort_swap(pc_right, u_left); } ++u_left; } else { break; } qsort_assert(u_left > pc_right); qsort_assert(pc_left <= pc_right); qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0); qsort_assert(qsort_cmp(pc_left, pc_right) == 0); } if (still_work_on_left) { /* I know I have a value on the left side which needs to be on the right side, but I need to know more to decide exactly the best thing to do with it. */ if (still_work_on_right) { /* I know I have values on both side which are out of position. This is a big win because I kill two birds with one swap (so to speak). I can advance the uncompared pointers on both sides after swapping both of them into the right place. */ qsort_swap(u_right, u_left); --u_right; ++u_left; qsort_all_asserts(pc_left, pc_right, u_left, u_right); } else { /* I have an out of position value on the left, but the right is fully scanned, so I "slide" the pivot chunk and any less-than values left one to make room for the greater value over on the right. If the out of position value is immediately adjacent to the pivot chunk (there are no less-than values), I can do that with a swap, otherwise, I have to rotate one of the less than values into the former position of the out of position value and the right end of the pivot chunk into the left end (got all that?). */ --pc_left; if (pc_left == u_right) { qsort_swap(u_right, pc_right); qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1); } else { qsort_rotate(u_right, pc_left, pc_right); qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1); } --pc_right; --u_right; } } else if (still_work_on_right) { /* Mirror image of complex case above: I have an out of position value on the right, but the left is fully scanned, so I need to shuffle things around to make room for the right value on the left. */ ++pc_right; if (pc_right == u_left) { qsort_swap(u_left, pc_left); qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right); } else { qsort_rotate(pc_right, pc_left, u_left); qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right); } ++pc_left; ++u_left; } else { /* No more scanning required on either side of partition, break out of loop and figure out next set of partitions */ break; } } /* The elements in the pivot chunk are now in the right place. They will never move or be compared again. All I have to do is decide what to do with the stuff to the left and right of the pivot chunk. Notes on the QSORT_ORDER_GUESS ifdef code: 1. If I just built these partitions without swapping any (or very many) elements, there is a chance that the elements are already ordered properly (being properly ordered will certainly result in no swapping, but the converse can't be proved :-). 2. A (properly written) insertion sort will run faster on already ordered data than qsort will. 3. Perhaps there is some way to make a good guess about switching to an insertion sort earlier than partition size 6 (for instance - we could save the partition size on the stack and increase the size each time we find we didn't swap, thus switching to insertion sort earlier for partitions with a history of not swapping). 4. Naturally, if I just switch right away, it will make artificial benchmarks with pure ascending (or descending) data look really good, but is that a good reason in general? Hard to say... */ #ifdef QSORT_ORDER_GUESS if (swapped < 3) { #if QSORT_ORDER_GUESS == 1 qsort_break_even = (part_right - part_left) + 1; #endif #if QSORT_ORDER_GUESS == 2 qsort_break_even *= 2; #endif #if QSORT_ORDER_GUESS == 3 int prev_break = qsort_break_even; qsort_break_even *= qsort_break_even; if (qsort_break_even < prev_break) { qsort_break_even = (part_right - part_left) + 1; } #endif } else { qsort_break_even = QSORT_BREAK_EVEN; } #endif if (part_left < pc_left) { /* There are elements on the left which need more processing. Check the right as well before deciding what to do. */ if (pc_right < part_right) { /* We have two partitions to be sorted. Stack the biggest one and process the smallest one on the next iteration. This minimizes the stack height by insuring that any additional stack entries must come from the smallest partition which (because it is smallest) will have the fewest opportunities to generate additional stack entries. */ if ((part_right - pc_right) > (pc_left - part_left)) { /* stack the right partition, process the left */ partition_stack[next_stack_entry].left = pc_right + 1; partition_stack[next_stack_entry].right = part_right; #ifdef QSORT_ORDER_GUESS partition_stack[next_stack_entry].qsort_break_even = qsort_break_even; #endif part_right = pc_left - 1; } else { /* stack the left partition, process the right */ partition_stack[next_stack_entry].left = part_left; partition_stack[next_stack_entry].right = pc_left - 1; #ifdef QSORT_ORDER_GUESS partition_stack[next_stack_entry].qsort_break_even = qsort_break_even; #endif part_left = pc_right + 1; } qsort_assert(next_stack_entry < QSORT_MAX_STACK); ++next_stack_entry; } else { /* The elements on the left are the only remaining elements that need sorting, arrange for them to be processed as the next partition. */ part_right = pc_left - 1; } } else if (pc_right < part_right) { /* There is only one chunk on the right to be sorted, make it the new partition and loop back around. */ part_left = pc_right + 1; } else { /* This whole partition wound up in the pivot chunk, so we need to get a new partition off the stack. */ if (next_stack_entry == 0) { /* the stack is empty - we are done */ break; } --next_stack_entry; part_left = partition_stack[next_stack_entry].left; part_right = partition_stack[next_stack_entry].right; #ifdef QSORT_ORDER_GUESS qsort_break_even = partition_stack[next_stack_entry].qsort_break_even; #endif } } else { /* This partition is too small to fool with qsort complexity, just do an ordinary insertion sort to minimize overhead. */ int i; /* Assume 1st element is in right place already, and start checking at 2nd element to see where it should be inserted. */ for (i = part_left + 1; i <= part_right; ++i) { int j; /* Scan (backwards - just in case 'i' is already in right place) through the elements already sorted to see if the ith element belongs ahead of one of them. */ for (j = i - 1; j >= part_left; --j) { if (qsort_cmp(i, j) >= 0) { /* i belongs right after j */ break; } } ++j; if (j != i) { /* Looks like we really need to move some things */ int k; temp = array[i]; for (k = i - 1; k >= j; --k) array[k + 1] = array[k]; array[j] = temp; } } /* That partition is now sorted, grab the next one, or get out of the loop if there aren't any more. */ if (next_stack_entry == 0) { /* the stack is empty - we are done */ break; } --next_stack_entry; part_left = partition_stack[next_stack_entry].left; part_right = partition_stack[next_stack_entry].right; #ifdef QSORT_ORDER_GUESS qsort_break_even = partition_stack[next_stack_entry].qsort_break_even; #endif } } /* Believe it or not, the array is sorted at this point! */ }