#!perl -w use 5.015; use strict; use warnings; use Unicode::UCD qw(prop_aliases prop_values prop_value_aliases prop_invlist prop_invmap search_invlist ); require 'regen/regen_lib.pl'; require 'regen/charset_translations.pl'; # This program outputs charclass_invlists.h, which contains various inversion # lists in the form of C arrays that are to be used as-is for inversion lists. # Thus, the lists it contains are essentially pre-compiled, and need only a # light-weight fast wrapper to make them usable at run-time. # As such, this code knows about the internal structure of these lists, and # any change made to that has to be done here as well. A random number stored # in the headers is used to minimize the possibility of things getting # out-of-sync, or the wrong data structure being passed. Currently that # random number is: # charclass_invlists.h now also has a partial implementation of inversion # maps; enough to generate tables for the line break properties, such as GCB my $VERSION_DATA_STRUCTURE_TYPE = 148565664; # integer or float my $numeric_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /ax; # Matches valid C language enum names: begins with ASCII alphabetic, then any # ASCII \w my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax; my $out_fh = open_new('charclass_invlists.h', '>', {style => '*', by => $0, from => "Unicode::UCD"}); my $in_file_pound_if = 0; my $max_hdr_len = 3; # In headings, how wide a name is allowed? print $out_fh "/* See the generating file for comments */\n\n"; # The symbols generated by this program are all currently defined only in a # single dot c each. The code knows where most of them go, but this hash # gives overrides for the exceptions to the typical place my %exceptions_to_where_to_define = ( NonL1_Perl_Non_Final_Folds => 'PERL_IN_REGCOMP_C', AboveLatin1 => 'PERL_IN_REGCOMP_C', Latin1 => 'PERL_IN_REGCOMP_C', UpperLatin1 => 'PERL_IN_REGCOMP_C', _Perl_Any_Folds => 'PERL_IN_REGCOMP_C', _Perl_Folds_To_Multi_Char => 'PERL_IN_REGCOMP_C', _Perl_IDCont => 'PERL_IN_UTF8_C', _Perl_IDStart => 'PERL_IN_UTF8_C', ); # This hash contains the properties with enums that have hard-coded references # to them in C code. It is neeed to make sure that if perl is compiled # with an older Unicode data set, that all the enum values the code is # expecting will still be in the enum typedef. Thus the code doesn't have to # change. The Unicode version won't have any code points that have the enum # values not in that version, so the code that handles them will not get # exercised. This is far better than having to #ifdef things. The names here # should be the long names of the respective property values. The reason for # this is because regexec.c uses them as case labels, and the long name is # generally more understandable than the short. my %hard_coded_enums = ( gcb => [ 'Control', 'CR', 'E_Base', 'E_Base_GAZ', 'E_Modifier', 'Extend', 'Glue_After_Zwj', 'L', 'LF', 'LV', 'LVT', 'Other', 'Prepend', 'Regional_Indicator', 'SpacingMark', 'T', 'V', 'ZWJ', ], lb => [ 'Alphabetic', 'Break_After', 'Break_Before', 'Break_Both', 'Break_Symbols', 'Carriage_Return', 'Close_Parenthesis', 'Close_Punctuation', 'Combining_Mark', 'Contingent_Break', 'E_Base', 'E_Modifier', 'Exclamation', 'Glue', 'H2', 'H3', 'Hebrew_Letter', 'Hyphen', 'Ideographic', 'Infix_Numeric', 'Inseparable', 'JL', 'JT', 'JV', 'Line_Feed', 'Mandatory_Break', 'Next_Line', 'Nonstarter', 'Numeric', 'Open_Punctuation', 'Postfix_Numeric', 'Prefix_Numeric', 'Quotation', 'Regional_Indicator', 'Space', 'Word_Joiner', 'ZWJ', 'ZWSpace', ], sb => [ 'ATerm', 'Close', 'CR', 'Extend', 'Format', 'LF', 'Lower', 'Numeric', 'OLetter', 'Other', 'SContinue', 'Sep', 'Sp', 'STerm', 'Upper', ], wb => [ 'ALetter', 'CR', 'Double_Quote', 'E_Base', 'E_Base_GAZ', 'E_Modifier', 'Extend', 'ExtendNumLet', 'Format', 'Glue_After_Zwj', 'Hebrew_Letter', 'Katakana', 'LF', 'MidLetter', 'MidNum', 'MidNumLet', 'Newline', 'Numeric', 'Other', 'Perl_Tailored_HSpace', 'Regional_Indicator', 'Single_Quote', 'ZWJ', ], ); my %gcb_enums; my @gcb_short_enums; my %gcb_abbreviations; my %lb_enums; my @lb_short_enums; my %lb_abbreviations; my %wb_enums; my @wb_short_enums; my %wb_abbreviations; my @a2n; sub uniques { # Returns non-duplicated input values. From "Perl Best Practices: # Encapsulated Cleverness". p. 455 in first edition. my %seen; return grep { ! $seen{$_}++ } @_; } sub a2n($) { my $cp = shift; # Returns the input Unicode code point translated to native. return $cp if $cp !~ $numeric_re || $cp > 255; return $a2n[$cp]; } sub end_file_pound_if { if ($in_file_pound_if) { print $out_fh "\n#endif\t/* $in_file_pound_if */\n"; $in_file_pound_if = 0; } } sub switch_pound_if ($$) { my $name = shift; my $new_pound_if = shift; # Switch to new #if given by the 2nd argument. If there is an override # for this, it instead switches to that. The 1st argument is the # static's name, used to look up the overrides if (exists $exceptions_to_where_to_define{$name}) { $new_pound_if = $exceptions_to_where_to_define{$name}; } # Exit current #if if the new one is different from the old if ($in_file_pound_if && $in_file_pound_if !~ /$new_pound_if/) { end_file_pound_if; } # Enter new #if, if not already in it. if (! $in_file_pound_if) { $in_file_pound_if = "defined($new_pound_if)"; print $out_fh "\n#if $in_file_pound_if\n"; } } sub output_invlist ($$;$) { my $name = shift; my $invlist = shift; # Reference to inversion list array my $charset = shift // ""; # name of character set for comment die "No inversion list for $name" unless defined $invlist && ref $invlist eq 'ARRAY'; # Output the inversion list $invlist using the name $name for it. # It is output in the exact internal form for inversion lists. # Is the last element of the header 0, or 1 ? my $zero_or_one = 0; if (@$invlist && $invlist->[0] != 0) { unshift @$invlist, 0; $zero_or_one = 1; } my $count = @$invlist; switch_pound_if ($name, 'PERL_IN_PERL_C'); print $out_fh "\nstatic const UV ${name}_invlist[] = {"; print $out_fh " /* for $charset */" if $charset; print $out_fh "\n"; print $out_fh "\t$count,\t/* Number of elements */\n"; print $out_fh "\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */\n"; print $out_fh "\t", $zero_or_one, ",\t/* 0 if the list starts at 0;", "\n\t\t 1 if it starts at the element beyond 0 */\n"; # The main body are the UVs passed in to this routine. Do the final # element separately for my $i (0 .. @$invlist - 1) { printf $out_fh "\t0x%X", $invlist->[$i]; print $out_fh "," if $i < @$invlist - 1; print $out_fh "\n"; } print $out_fh "};\n"; } sub output_invmap ($$$$$$$) { my $name = shift; my $invmap = shift; # Reference to inversion map array my $prop_name = shift; my $input_format = shift; # The inversion map's format my $default = shift; # The property value for code points who # otherwise don't have a value specified. my $extra_enums = shift; # comma-separated list of our additions to the # property's standard possible values my $charset = shift // ""; # name of character set for comment # Output the inversion map $invmap for property $prop_name, but use $name # as the actual data structure's name. my $count = @$invmap; my $output_format; my $declaration_type; my %enums; my $name_prefix; if ($input_format eq 's') { my $orig_prop_name = $prop_name; $prop_name = (prop_aliases($prop_name))[1] // $prop_name =~ s/^_Perl_//r; # Get full name my $short_name = (prop_aliases($prop_name))[0] // $prop_name; my @enums; if ($orig_prop_name eq $prop_name) { @enums = prop_values($prop_name); } else { @enums = uniques(@$invmap); } if (! @enums) { die "Only enum properties are currently handled; '$prop_name' isn't one"; } else { my @expected_enums = @{$hard_coded_enums{lc $short_name}}; my @canonical_input_enums; if (@expected_enums) { if (@expected_enums < @enums) { die 'You need to update %hard_coded_enums to reflect new' . " entries in this Unicode version\n" . "Expected: " . join(", ", sort @expected_enums) . "\n" . " Got: " . join(", ", sort @enums); } if (! defined prop_aliases($prop_name)) { # Convert the input enums into canonical form and # save for use below @canonical_input_enums = map { lc ($_ =~ s/_//gr) } @enums; } @enums = sort @expected_enums; } # The internal enums come last, and in the order specified my @extras; if ($extra_enums ne "") { @extras = split /,/, $extra_enums; push @enums, @extras; } # Assign a value to each element of the enum. The default # value always gets 0; the others are arbitrarily assigned. my $enum_val = 0; my $canonical_default = prop_value_aliases($prop_name, $default); $default = $canonical_default if defined $canonical_default; $enums{$default} = $enum_val++; for my $enum (@enums) { $enums{$enum} = $enum_val++ unless exists $enums{$enum}; } # Calculate the enum values for certain properties like # _Perl_GCB and _Perl_LB, because we output special tables for # them. if ($name =~ / ^ _Perl_ (?: GCB | LB | WB ) $ /x) { # We use string evals to allow the same code to work on # all tables we're doing. my $type = lc $prop_name; # We use lowercase single letter names for any property # values not in the release of Unicode being compiled now. my $placeholder = "a"; # Skip if we've already done this code, which populated # this hash if (eval "! \%${type}_enums") { # For each enum ... foreach my $enum (sort keys %enums) { my $value = $enums{$enum}; my $short; my $abbreviated_from; # Special case this wb property value to make the # name more clear if ($enum eq 'Perl_Tailored_HSpace') { $short = 'hs'; $abbreviated_from = $enum; } elsif (grep { $_ eq $enum } @extras) { # The 'short' name for one of the property # values added by this file is just the # lowercase of it $short = lc $enum; } elsif (grep {$_ eq lc ( $enum =~ s/_//gr) } @canonical_input_enums) { # On Unicode versions that predate the # official property, we have set up this array # to be the canonical form of each enum in the # substitute property. If the enum we're # looking at is canonically the same as one of # these, use its name instead of generating a # placeholder one in the next clause (which # will happen because prop_value_aliases() # will fail because it only works on official # properties) $short = $enum; } else { # Use the official short name for the other # property values, which should all be # official ones. ($short) = prop_value_aliases($type, $enum); # But create a placeholder for ones not in # this Unicode version. $short = $placeholder++ unless defined $short; } # If our short name is too long, or we already # know that the name is an abbreviation, truncate # to make sure it's short enough, and remember # that we did this so we can later place in a # comment in the generated file if ( $abbreviated_from || length $short > $max_hdr_len) { $short = substr($short, 0, $max_hdr_len); $abbreviated_from = $enum unless $abbreviated_from; # If the name we are to display conflicts, try # another. while (eval "exists \$${type}_abbreviations{$short}") { die $@ if $@; $short++; } eval "\$${type}_abbreviations{$short} = '$enum'"; die $@ if $@; } # Remember the mapping from the property value # (enum) name to its value. eval "\$${type}_enums{$enum} = $value"; die $@ if $@; # Remember the inverse mapping to the short name # so that we can properly label the generated # table's rows and columns eval "\$${type}_short_enums[$value] = '$short'"; die $@ if $@; } } } } # Inversion map stuff is currently used only by regexec switch_pound_if($name, 'PERL_IN_REGEXEC_C'); { # The short names tend to be two lower case letters, but it looks # better for those if they are upper. XXX $short_name = uc($short_name) if length($short_name) < 3 || substr($short_name, 0, 1) =~ /[[:lower:]]/; $name_prefix = "${short_name}_"; my $enum_count = keys %enums; print $out_fh "\n#define ${name_prefix}ENUM_COUNT ", scalar keys %enums, "\n"; print $out_fh "\ntypedef enum {\n"; my @enum_list; foreach my $enum (keys %enums) { $enum_list[$enums{$enum}] = $enum; } foreach my $i (0 .. @enum_list - 1) { my $name = $enum_list[$i]; print $out_fh "\t${name_prefix}$name = $i"; print $out_fh "," if $i < $enum_count - 1; print $out_fh "\n"; } $declaration_type = "${name_prefix}enum"; print $out_fh "} $declaration_type;\n"; $output_format = "${name_prefix}%s"; } } else { die "'$input_format' invmap() format for '$prop_name' unimplemented"; } die "No inversion map for $prop_name" unless defined $invmap && ref $invmap eq 'ARRAY' && $count; print $out_fh "\nstatic const $declaration_type ${name}_invmap[] = {"; print $out_fh " /* for $charset */" if $charset; print $out_fh "\n"; # The main body are the scalars passed in to this routine. for my $i (0 .. $count - 1) { my $element = $invmap->[$i]; my $full_element_name = prop_value_aliases($prop_name, $element); $element = $full_element_name if defined $full_element_name; $element = $name_prefix . $element; print $out_fh "\t$element"; print $out_fh "," if $i < $count - 1; print $out_fh "\n"; } print $out_fh "};\n"; } sub mk_invlist_from_sorted_cp_list { # Returns an inversion list constructed from the sorted input array of # code points my $list_ref = shift; return unless @$list_ref; # Initialize to just the first element my @invlist = ( $list_ref->[0], $list_ref->[0] + 1); # For each succeeding element, if it extends the previous range, adjust # up, otherwise add it. for my $i (1 .. @$list_ref - 1) { if ($invlist[-1] == $list_ref->[$i]) { $invlist[-1]++; } else { push @invlist, $list_ref->[$i], $list_ref->[$i] + 1; } } return @invlist; } # Read in the Case Folding rules, and construct arrays of code points for the # properties we need. my ($cp_ref, $folds_ref, $format) = prop_invmap("Case_Folding"); die "Could not find inversion map for Case_Folding" unless defined $format; die "Incorrect format '$format' for Case_Folding inversion map" unless $format eq 'al' || $format eq 'a'; my @has_multi_char_fold; my @is_non_final_fold; for my $i (0 .. @$folds_ref - 1) { next unless ref $folds_ref->[$i]; # Skip single-char folds push @has_multi_char_fold, $cp_ref->[$i]; # Add to the non-finals list each code point that is in a non-final # position for my $j (0 .. @{$folds_ref->[$i]} - 2) { push @is_non_final_fold, $folds_ref->[$i][$j] unless grep { $folds_ref->[$i][$j] == $_ } @is_non_final_fold; } } sub _Perl_Non_Final_Folds { @is_non_final_fold = sort { $a <=> $b } @is_non_final_fold; return mk_invlist_from_sorted_cp_list(\@is_non_final_fold); } sub prop_name_for_cmp ($) { # Sort helper my $name = shift; # Returns the input lowercased, with non-alphas removed, as well as # everything starting with a comma $name =~ s/,.*//; $name =~ s/[[:^alpha:]]//g; return lc $name; } sub UpperLatin1 { return mk_invlist_from_sorted_cp_list([ 128 .. 255 ]); } sub output_table_common { # Common subroutine to actually output the generated rules table. my ($property, $table_value_defines_ref, $table_ref, $names_ref, $abbreviations_ref) = @_; my $size = @$table_ref; # Output the #define list, sorted by numeric value if ($table_value_defines_ref) { my $max_name_length = 0; my @defines; # Put in order, and at the same time find the longest name while (my ($enum, $value) = each %$table_value_defines_ref) { $defines[$value] = $enum; my $length = length $enum; $max_name_length = $length if $length > $max_name_length; } print $out_fh "\n"; # Output, so that the values are vertically aligned in a column after # the longest name foreach my $i (0 .. @defines - 1) { next unless defined $defines[$i]; printf $out_fh "#define %-*s %2d\n", $max_name_length, $defines[$i], $i; } } my $column_width = 2; # We currently allow 2 digits for the number # If the maximum value in the table is 1, it can be a bool. (Being above # a U8 is not currently handled my $max_element = 0; for my $i (0 .. $size - 1) { for my $j (0 .. $size - 1) { next if $max_element >= $table_ref->[$i][$j]; $max_element = $table_ref->[$i][$j]; } } die "Need wider table column width given '$max_element" if length $max_element > $column_width; my $table_type = ($max_element == 1) ? 'bool' : 'U8'; # If a name is longer than the width set aside for a column, its column # needs to have increased spacing so that the name doesn't get truncated # nor run into an adjacent column my @spacers; # If we are being compiled on a Unicode version earlier than that which # this file was designed for, it may be that some of the property values # aren't in the current release, and so would be undefined if we didn't # define them ourselves. Earlier code has done this, making them # lowercase characters of length one. We look to see if any exist, so # that we can add an annotation to the output table my $has_placeholder = 0; for my $i (0 .. $size - 1) { no warnings 'numeric'; $has_placeholder = 1 if $names_ref->[$i] =~ / ^ [[:lower:]] $ /ax; $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width); } print $out_fh "\nstatic const $table_type ${property}_table[$size][$size] = {\n"; # Calculate the column heading line my $header_line = "/* " . (" " x $max_hdr_len) # We let the row heading meld to # the '*/' for those that are at # the max . " " x 3; # Space for '*/ ' # Now each column for my $i (0 .. $size - 1) { $header_line .= sprintf "%s%*s", $spacers[$i], $column_width + 1, # 1 for the ',' $names_ref->[$i]; } $header_line .= " */\n"; # If we have annotations, output it now. if ($has_placeholder || scalar %$abbreviations_ref) { my $text = ""; foreach my $abbr (sort keys %$abbreviations_ref) { $text .= "; " if $text; $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'"; } if ($has_placeholder) { $text .= "; other " if $text; $text .= "lowercase names are placeholders for" . " property values not defined until a later Unicode" . " release, so are irrelevant in this one, as they are" . " not assigned to any code points"; } my $indent = " " x 3; $text = $indent . "/* $text */"; # Wrap the text so that it is no wider than the table, which the # header line gives. my $output_width = length $header_line; while (length $text > $output_width) { my $cur_line = substr($text, 0, $output_width); # Find the first blank back from the right end to wrap at. for (my $i = $output_width -1; $i > 0; $i--) { if (substr($text, $i, 1) eq " ") { print $out_fh substr($text, 0, $i), "\n"; # Set so will look at just the remaining tail (which will # be indented and have a '*' after the indent $text = $indent . " * " . substr($text, $i + 1); last; } } } # And any remaining print $out_fh $text, "\n" if $text; } # We calculated the header line earlier just to get its width so that we # could make sure the annotations fit into that. print $out_fh $header_line; # Now output the bulk of the table. for my $i (0 .. $size - 1) { # First the row heading. printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i]; print $out_fh "{"; # Then the brace for this row # Then each column for my $j (0 .. $size -1) { print $out_fh $spacers[$j]; printf $out_fh "%*d", $column_width, $table_ref->[$i][$j]; print $out_fh "," if $j < $size - 1; } print $out_fh " }"; print $out_fh "," if $i < $size - 1; print $out_fh "\n"; } print $out_fh "};\n"; } sub output_GCB_table() { # Create and output the pair table for use in determining Grapheme Cluster # Breaks, given in http://www.unicode.org/reports/tr29/. my %gcb_actions = ( GCB_NOBREAK => 0, GCB_BREAKABLE => 1, GCB_RI_then_RI => 2, # Rules 12 and 13 GCB_EX_then_EM => 3, # Rule 10 ); # The table is constructed in reverse order of the rules, to make the # lower-numbered, higher priority ones override the later ones, as the # algorithm stops at the earliest matching rule my @gcb_table; my $table_size = @gcb_short_enums; # Otherwise, break everywhere. # GB99 Any ÷ Any for my $i (0 .. $table_size - 1) { for my $j (0 .. $table_size - 1) { $gcb_table[$i][$j] = 1; } } # Do not break within emoji flag sequences. That is, do not break between # regional indicator (RI) symbols if there is an odd number of RI # characters before the break point. Must be resolved in runtime code. # # GB12 ^ (RI RI)* RI × RI # GB13 [^RI] (RI RI)* RI × RI $gcb_table[$gcb_enums{'Regional_Indicator'}] [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI}; # Do not break within emoji modifier sequences or emoji zwj sequences. # GB11 ZWJ × ( Glue_After_Zwj | E_Base_GAZ ) $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0; $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0; # GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}] = $gcb_actions{GCB_EX_then_EM}; $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0; $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0; # Do not break before extending characters or ZWJ. # Do not break before SpacingMarks, or after Prepend characters. # GB9b Prepend × # GB9a × SpacingMark # GB9 × ( Extend | ZWJ ) for my $i (0 .. @gcb_table - 1) { $gcb_table[$gcb_enums{'Prepend'}][$i] = 0; $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0; $gcb_table[$i][$gcb_enums{'Extend'}] = 0; $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0; } # Do not break Hangul syllable sequences. # GB8 ( LVT | T) × T $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0; $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0; # GB7 ( LV | V ) × ( V | T ) $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0; $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0; $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0; $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0; # GB6 L × ( L | V | LV | LVT ) $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0; $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0; $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0; $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0; # Do not break between a CR and LF. Otherwise, break before and after # controls. # GB5 ÷ ( Control | CR | LF ) # GB4 ( Control | CR | LF ) ÷ for my $i (0 .. @gcb_table - 1) { $gcb_table[$i][$gcb_enums{'Control'}] = 1; $gcb_table[$i][$gcb_enums{'CR'}] = 1; $gcb_table[$i][$gcb_enums{'LF'}] = 1; $gcb_table[$gcb_enums{'Control'}][$i] = 1; $gcb_table[$gcb_enums{'CR'}][$i] = 1; $gcb_table[$gcb_enums{'LF'}][$i] = 1; } # GB3 CR × LF $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0; # Break at the start and end of text, unless the text is empty # GB1 sot ÷ # GB2 ÷ eot for my $i (0 .. @gcb_table - 1) { $gcb_table[$i][$gcb_enums{'EDGE'}] = 1; $gcb_table[$gcb_enums{'EDGE'}][$i] = 1; } $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0; output_table_common('GCB', \%gcb_actions, \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations); } sub output_LB_table() { # Create and output the enums, #defines, and pair table for use in # determining Line Breaks. This uses the default line break algorithm, # given in http://www.unicode.org/reports/tr14/, but tailored by example 7 # in that page, as the Unicode-furnished tests assume that tailoring. # The result is really just true or false. But we follow along with tr14, # creating a rule which is false for something like X SP* X. That gets # encoding 2. The rest of the actions are synthetic ones that indicate # some context handling is required. These each are added to the # underlying 0, 1, or 2, instead of replacing them, so that the underlying # value can be retrieved. Actually only rules from 7 through 18 (which # are the ones where space matter) are possible to have 2 added to them. # The others below add just 0 or 1. It might be possible for one # synthetic rule to be added to another, yielding a larger value. This # doesn't happen in the Unicode 8.0 rule set, and as you can see from the # names of the middle grouping below, it is impossible for that to occur # for them because they all start with mutually exclusive classes. That # the final rule can't be added to any of the others isn't obvious from # its name, so it is assigned a power of 2 higher than the others can get # to so any addition would preserve all data. (And the code will reach an # assert(0) on debugging builds should this happen.) my %lb_actions = ( LB_NOBREAK => 0, LB_BREAKABLE => 1, LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2, LB_CM_ZWJ_foo => 3, # Rule 9 LB_SP_foo => 6, # Rule 18 LB_PR_or_PO_then_OP_or_HY => 9, # Rule 25 LB_SY_or_IS_then_various => 11, # Rule 25 LB_HY_or_BA_then_foo => 13, # Rule 21 LB_RI_then_RI => 15, # Rule 30a LB_various_then_PO_or_PR => (1<<5), # Rule 25 ); # Construct the LB pair table. This is based on the rules in # http://www.unicode.org/reports/tr14/, but modified as those rules are # designed for someone taking a string of text and sequentially going # through it to find the break opportunities, whereas, Perl requires # determining if a given random spot is a break opportunity, without # knowing all the entire string before it. # # The table is constructed in reverse order of the rules, to make the # lower-numbered, higher priority ones override the later ones, as the # algorithm stops at the earliest matching rule my @lb_table; my $table_size = @lb_short_enums; # LB31. Break everywhere else for my $i (0 .. $table_size - 1) { for my $j (0 .. $table_size - 1) { $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'}; } } # LB30b Do not break between an emoji base and an emoji modifier. # EB × EM $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}] = $lb_actions{'LB_NOBREAK'}; # LB30a Break between two regional indicator symbols if and only if there # are an even number of regional indicators preceding the position of the # break. # sot (RI RI)* RI × RI # [^RI] (RI RI)* RI × RI $lb_table[$lb_enums{'Regional_Indicator'}] [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'}; # LB30 Do not break between letters, numbers, or ordinary symbols and # opening or closing parentheses. # (AL | HL | NU) × OP $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}] = $lb_actions{'LB_NOBREAK'}; # CP × (AL | HL | NU) $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”). # IS × (AL | HL) $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; # LB28 Do not break between alphabetics (“at”). # (AL | HL) × (AL | HL) $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; # LB27 Treat a Korean Syllable Block the same as ID. # (JL | JV | JT | H2 | H3) × IN $lb_table[$lb_enums{'JL'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JV'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JT'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H2'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H3'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; # (JL | JV | JT | H2 | H3) × PO $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; # PR × (JL | JV | JT | H2 | H3) $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'}; # LB26 Do not break a Korean syllable. # JL × (JL | JV | H2 | H3) $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'}; # (JV | H2) × (JV | JT) $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; # (JT | H3) × JT $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; # LB25 Do not break between the following pairs of classes relevant to # numbers, as tailored by example 7 in # http://www.unicode.org/reports/tr14/#Examples # We follow that tailoring because Unicode's test cases expect it # (PR | PO) × ( OP | HY )? NU $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; # Given that (OP | HY )? is optional, we have to test for it in code. # We add in the action (instead of overriding) for this, so that in # the code we can recover the underlying break value. $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}] += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}] += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}] += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}] += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; # ( OP | HY ) × NU $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP ) # which can be rewritten as: # NU (SY | IS)* × (NU | SY | IS | CL | CP ) $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}] = $lb_actions{'LB_NOBREAK'}; # Like earlier where we have to test in code, we add in the action so # that we can recover the underlying values. This is done in rules # below, as well. The code assumes that we haven't added 2 actions. # Shoul a later Unicode release break that assumption, then tests # should start failing. $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}] += $lb_actions{'LB_SY_or_IS_then_various'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}] += $lb_actions{'LB_SY_or_IS_then_various'}; # NU (NU | SY | IS)* (CL | CP)? × (PO | PR) # which can be rewritten as: # NU (SY | IS)* (CL | CP)? × (PO | PR) $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}] += $lb_actions{'LB_various_then_PO_or_PR'}; # LB24 Do not break between numeric prefix/postfix and letters, or between # letters and prefix/postfix. # (PR | PO) × (AL | HL) $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; # (AL | HL) × (PR | PO) $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; # LB23a Do not break between numeric prefixes and ideographs, or between # ideographs and numeric postfixes. # PR × (ID | EB | EM) $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}] = $lb_actions{'LB_NOBREAK'}; # (ID | EB | EM) × PO $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; # LB23 Do not break between digits and letters # (AL | HL) × NU $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}] = $lb_actions{'LB_NOBREAK'}; # NU × (AL | HL) $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; # LB22 Do not break between two ellipses, or between letters, numbers or # exclamations and ellipsis. # (AL | HL) × IN $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; # Exclamation × IN $lb_table[$lb_enums{'Exclamation'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; # (ID | EB | EM) × IN $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; # IN × IN $lb_table[$lb_enums{'Inseparable'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; # NU × IN $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; # LB21b Don’t break between Solidus and Hebrew letters. # SY × HL $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}] = $lb_actions{'LB_NOBREAK'}; # LB21a Don't break after Hebrew + Hyphen. # HL (HY | BA) × for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'Hyphen'}][$i] += $lb_actions{'LB_HY_or_BA_then_foo'}; $lb_table[$lb_enums{'Break_After'}][$i] += $lb_actions{'LB_HY_or_BA_then_foo'}; } # LB21 Do not break before hyphen-minus, other hyphens, fixed-width # spaces, small kana, and other non-starters, or after acute accents. # × BA # × HY # × NS # BB × for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'}; } # LB20 Break before and after unresolved CB. # ÷ CB # CB ÷ # Conditional breaks should be resolved external to the line breaking # rules. However, the default action is to treat unresolved CB as breaking # before and after. for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'Contingent_Break'}] = $lb_actions{'LB_BREAKABLE'}; $lb_table[$lb_enums{'Contingent_Break'}][$i] = $lb_actions{'LB_BREAKABLE'}; } # LB19 Do not break before or after quotation marks, such as ‘ ” ’. # × QU # QU × for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'}; } # LB18 Break after spaces # SP ÷ for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'}; } # LB17 Do not break within ‘——’, even with intervening spaces. # B2 SP* × B2 $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; # LB16 Do not break between closing punctuation and a nonstarter even with # intervening spaces. # (CL | CP) SP* × NS $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; # LB15 Do not break within ‘”[’, even with intervening spaces. # QU SP* × OP $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; # LB14 Do not break after ‘[’, even after spaces. # OP SP* × for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'Open_Punctuation'}][$i] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; } # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples # [^NU] × CL # [^NU] × CP # × EX # [^NU] × IS # [^NU] × SY for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'Exclamation'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; next if $i == $lb_enums{'Numeric'}; $lb_table[$i][$lb_enums{'Close_Punctuation'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; $lb_table[$i][$lb_enums{'Close_Parenthesis'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; $lb_table[$i][$lb_enums{'Infix_Numeric'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; $lb_table[$i][$lb_enums{'Break_Symbols'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; } # LB12a Do not break before NBSP and related characters, except after # spaces and hyphens. # [^SP BA HY] × GL for my $i (0 .. @lb_table - 1) { next if $i == $lb_enums{'Space'} || $i == $lb_enums{'Break_After'} || $i == $lb_enums{'Hyphen'}; # We don't break, but if a property above has said don't break even # with space between, don't override that (also in the next few rules) next if $lb_table[$i][$lb_enums{'Glue'}] == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'}; } # LB12 Do not break after NBSP and related characters. # GL × for my $i (0 .. @lb_table - 1) { next if $lb_table[$lb_enums{'Glue'}][$i] == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'}; } # LB11 Do not break before or after Word joiner and related characters. # × WJ # WJ × for my $i (0 .. @lb_table - 1) { if ($lb_table[$i][$lb_enums{'Word_Joiner'}] != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) { $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'}; } if ($lb_table[$lb_enums{'Word_Joiner'}][$i] != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) { $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'}; } } # Special case this here to avoid having to do a special case in the code, # by making this the same as other things with a SP in front of them that # don't break, we avoid an extra test $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; # LB9 and LB10 are done in the same loop # # LB9 Do not break a combining character sequence; treat it as if it has # the line breaking class of the base character in all of the # higher-numbered rules. Treat ZWJ as if it were CM # Treat X (CM|ZWJ)* as if it were X. # where X is any line break class except BK, CR, LF, NL, SP, or ZW. # LB10 Treat any remaining combining mark or ZWJ as AL. This catches the # case where a CM or ZWJ is the first character on the line or follows SP, # BK, CR, LF, NL, or ZW. for my $i (0 .. @lb_table - 1) { # When the CM or ZWJ is the first in the pair, we don't know without # looking behind whether the CM or ZWJ is going to attach to an # earlier character, or not. So have to figure this out at runtime in # the code $lb_table[$lb_enums{'Combining_Mark'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'}; $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'}; if ( $i == $lb_enums{'Mandatory_Break'} || $i == $lb_enums{'EDGE'} || $i == $lb_enums{'Carriage_Return'} || $i == $lb_enums{'Line_Feed'} || $i == $lb_enums{'Next_Line'} || $i == $lb_enums{'Space'} || $i == $lb_enums{'ZWSpace'}) { # For these classes, a following CM doesn't combine, and should do # whatever 'Alphabetic' would do. $lb_table[$i][$lb_enums{'Combining_Mark'}] = $lb_table[$i][$lb_enums{'Alphabetic'}]; $lb_table[$i][$lb_enums{'ZWJ'}] = $lb_table[$i][$lb_enums{'Alphabetic'}]; } else { # For these classes, the CM or ZWJ combines, so doesn't break, # inheriting the type of nobreak from the master character. if ($lb_table[$i][$lb_enums{'Combining_Mark'}] != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) { $lb_table[$i][$lb_enums{'Combining_Mark'}] = $lb_actions{'LB_NOBREAK'}; } if ($lb_table[$i][$lb_enums{'ZWJ'}] != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) { $lb_table[$i][$lb_enums{'ZWJ'}] = $lb_actions{'LB_NOBREAK'}; } } } # LB8a Do not break between a zero width joiner and an ideograph, emoji # base or emoji modifier. This rule prevents breaks within emoji joiner # sequences. # ZWJ × (ID | EB | EM) $lb_table[$lb_enums{'ZWJ'}][$lb_enums{'Ideographic'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'ZWJ'}][$lb_enums{'E_Base'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$lb_enums{'ZWJ'}][$lb_enums{'E_Modifier'}] = $lb_actions{'LB_NOBREAK'}; # LB8 Break before any character following a zero-width space, even if one # or more spaces intervene. # ZW SP* ÷ for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'}; } # Because of LB8-10, we need to look at context for "SP x", and this must # be done in the code. So override the existing rules for that, by adding # a constant to get new rules that tell the code it needs to look at # context. By adding this action instead of replacing the existing one, # we can get back to the original rule if necessary. for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'}; } # LB7 Do not break before spaces or zero width space. # × SP # × ZW for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'}; } # LB6 Do not break before hard line breaks. # × ( BK | CR | LF | NL ) for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'}; $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'}; } # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks. # CR × LF # CR ! # LF ! # NL ! for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'Carriage_Return'}][$i] = $lb_actions{'LB_BREAKABLE'}; $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'}; $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'}; } $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'}; # LB4 Always break after hard line breaks. # BK ! for my $i (0 .. @lb_table - 1) { $lb_table[$lb_enums{'Mandatory_Break'}][$i] = $lb_actions{'LB_BREAKABLE'}; } # LB3 Always break at the end of text. # ! eot # LB2 Never break at the start of text. # sot × for my $i (0 .. @lb_table - 1) { $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'}; $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'}; } # LB1 Assign a line breaking class to each code point of the input. # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes # depending on criteria outside the scope of this algorithm. # # In the absence of such criteria all characters with a specific # combination of original class and General_Category property value are # resolved as follows: # Original Resolved General_Category # AI, SG, XX AL Any # SA CM Only Mn or Mc # SA AL Any except Mn and Mc # CJ NS Any # # This is done in mktables, so we never see any of the remapped-from # classes. output_table_common('LB', \%lb_actions, \@lb_table, \@lb_short_enums, \%lb_abbreviations); } sub output_WB_table() { # Create and output the enums, #defines, and pair table for use in # determining Word Breaks, given in http://www.unicode.org/reports/tr29/. # This uses the same mechanism in the other bounds tables generated by # this file. The actions that could override a 0 or 1 are added to those # numbers; the actions that clearly don't depend on the underlying rule # simply overwrite my %wb_actions = ( WB_NOBREAK => 0, WB_BREAKABLE => 1, WB_hs_then_hs => 2, WB_Ex_or_FO_or_ZWJ_then_foo => 3, WB_DQ_then_HL => 4, WB_HL_then_DQ => 6, WB_LE_or_HL_then_MB_or_ML_or_SQ => 8, WB_MB_or_ML_or_SQ_then_LE_or_HL => 10, WB_MB_or_MN_or_SQ_then_NU => 12, WB_NU_then_MB_or_MN_or_SQ => 14, WB_RI_then_RI => 16, ); # Construct the WB pair table. # The table is constructed in reverse order of the rules, to make the # lower-numbered, higher priority ones override the later ones, as the # algorithm stops at the earliest matching rule my @wb_table; my $table_size = @wb_short_enums - 1; # -1 because we don't use UNKNOWN # Otherwise, break everywhere (including around ideographs). # WB99 Any ÷ Any for my $i (0 .. $table_size - 1) { for my $j (0 .. $table_size - 1) { $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'}; } } # Do not break within emoji flag sequences. That is, do not break between # regional indicator (RI) symbols if there is an odd number of RI # characters before the break point. # WB16 [^RI] (RI RI)* RI × RI # WB15 ^ (RI RI)* RI × RI $wb_table[$wb_enums{'Regional_Indicator'}] [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'}; # Do not break within emoji modifier sequences. # WB14 ( E_Base | EBG ) × E_Modifier $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}] = $wb_actions{'WB_NOBREAK'}; # Do not break from extenders. # WB13b ExtendNumLet × (ALetter | Hebrew_Letter | Numeric | Katakana) $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}] = $wb_actions{'WB_NOBREAK'}; # WB13a (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet) # × # ExtendNumLet $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}] = $wb_actions{'WB_NOBREAK'}; # Do not break between Katakana. # WB13 Katakana × Katakana $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}] = $wb_actions{'WB_NOBREAK'}; # Do not break within sequences, such as “3.2” or “3,456.789”. # WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}] += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'}; $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}] += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'}; $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}] += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'}; # WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}] += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'}; $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}] += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'}; $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}] += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'}; # Do not break within sequences of digits, or digits adjacent to letters # (“3a”, or “A3”). # WB10 Numeric × (ALetter | Hebrew_Letter) $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}] = $wb_actions{'WB_NOBREAK'}; # WB9 (ALetter | Hebrew_Letter) × Numeric $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}] = $wb_actions{'WB_NOBREAK'}; # WB8 Numeric × Numeric $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}] = $wb_actions{'WB_NOBREAK'}; # Do not break letters across certain punctuation. # WB7c Hebrew_Letter Double_Quote × Hebrew_Letter $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}] += $wb_actions{'WB_DQ_then_HL'}; # WB7b Hebrew_Letter × Double_Quote Hebrew_Letter $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}] += $wb_actions{'WB_HL_then_DQ'}; # WB7a Hebrew_Letter × Single_Quote $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}] = $wb_actions{'WB_NOBREAK'}; # WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote) # × (ALetter | Hebrew_Letter) $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}] += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}] += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}] += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}] += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}] += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}] += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; # WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet # | Single_Quote) (ALetter | Hebrew_Letter) $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}] += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}] += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}] += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}] += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}] += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}] += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; # Do not break between most letters. # WB5 (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}] = $wb_actions{'WB_NOBREAK'}; # Ignore Format and Extend characters, except after sot, CR, LF, and # Newline. This also has the effect of: Any × (Format | Extend | ZWJ) # WB4 X (Extend | Format | ZWJ)* → X for my $i (0 .. @wb_table - 1) { $wb_table[$wb_enums{'Extend'}][$i] = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'}; $wb_table[$wb_enums{'Format'}][$i] = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'}; $wb_table[$wb_enums{'ZWJ'}][$i] = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'}; } for my $i (0 .. @wb_table - 1) { $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$i][$wb_enums{'ZWJ'}] = $wb_actions{'WB_NOBREAK'}; } # Implied is that these attach to the character before them, except for # the characters that mark the end of a region of text. The rules below # override the ones set up here, for all the characters that need # overriding. for my $i (0 .. @wb_table - 1) { $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'}; } # Do not break within emoji zwj sequences. # WB3c ZWJ × ( Glue_After_Zwj | EBG ) $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}] = $wb_actions{'WB_NOBREAK'}; # Break before and after white space # WB3b ÷ (Newline | CR | LF) # WB3a (Newline | CR | LF) ÷ # et. al. for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') { for my $j (0 .. @wb_table - 1) { $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'}; $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'}; } } # But do not break within white space. # WB3 CR × LF # et.al. for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') { for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') { $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'}; } } # And do not break horizontal space followed by Extend or Format or ZWJ $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}] = $wb_actions{'WB_NOBREAK'}; $wb_table[$wb_enums{'Perl_Tailored_HSpace'}] [$wb_enums{'Perl_Tailored_HSpace'}] = $wb_actions{'WB_hs_then_hs'}; # Break at the start and end of text, unless the text is empty # WB2 Any ÷ eot # WB1 sot ÷ Any for my $i (0 .. @wb_table - 1) { $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'}; $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'}; } $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0; output_table_common('WB', \%wb_actions, \@wb_table, \@wb_short_enums, \%wb_abbreviations); } output_invlist("Latin1", [ 0, 256 ]); output_invlist("AboveLatin1", [ 256 ]); end_file_pound_if; # We construct lists for all the POSIX and backslash sequence character # classes in two forms: # 1) ones which match only in the ASCII range # 2) ones which match either in the Latin1 range, or the entire Unicode range # # These get compiled in, and hence affect the memory footprint of every Perl # program, even those not using Unicode. To minimize the size, currently # the Latin1 version is generated for the beyond ASCII range except for those # lists that are quite small for the entire range, such as for \s, which is 22 # UVs long plus 4 UVs (currently) for the header. # # To save even more memory, the ASCII versions could be derived from the # larger ones at runtime, saving some memory (minus the expense of the machine # instructions to do so), but these are all small anyway, so their total is # about 100 UVs. # # In the list of properties below that get generated, the L1 prefix is a fake # property that means just the Latin1 range of the full property (whose name # has an X prefix instead of L1). # # An initial & means to use the subroutine from this file instead of an # official inversion list. for my $charset (get_supported_code_pages()) { print $out_fh "\n" . get_conditional_compile_line_start($charset); @a2n = @{get_a2n($charset)}; no warnings 'qw'; # Ignore non-alpha in sort for my $prop (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw( ASCII Cased VertSpace XPerlSpace XPosixAlnum XPosixAlpha XPosixBlank XPosixCntrl XPosixDigit XPosixGraph XPosixLower XPosixPrint XPosixPunct XPosixSpace XPosixUpper XPosixWord XPosixXDigit _Perl_Any_Folds &NonL1_Perl_Non_Final_Folds _Perl_Folds_To_Multi_Char &UpperLatin1 _Perl_IDStart _Perl_IDCont _Perl_GCB,EDGE _Perl_LB,EDGE _Perl_SB,EDGE _Perl_WB,EDGE,UNKNOWN ) ) { # For the Latin1 properties, we change to use the eXtended version of the # base property, then go through the result and get rid of everything not # in Latin1 (above 255). Actually, we retain the element for the range # that crosses the 255/256 boundary if it is one that matches the # property. For example, in the Word property, there is a range of code # points that start at U+00F8 and goes through U+02C1. Instead of # artificially cutting that off at 256 because 256 is the first code point # above Latin1, we let the range go to its natural ending. That gives us # extra information with no added space taken. But if the range that # crosses the boundary is one that doesn't match the property, we don't # start a new range above 255, as that could be construed as going to # infinity. For example, the Upper property doesn't include the character # at 255, but does include the one at 256. We don't include the 256 one. my $prop_name = $prop; my $is_local_sub = $prop_name =~ s/^&//; my $extra_enums = ""; $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x; my $lookup_prop = $prop_name; my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/ or $lookup_prop =~ s/^L1//); my $nonl1_only = 0; $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only; ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x; my @invlist; my @invmap; my $map_format; my $map_default; my $maps_to_code_point; my $to_adjust; if ($is_local_sub) { @invlist = eval $lookup_prop; die $@ if $@; } else { @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok'); if (! @invlist) { # If couldn't find a non-empty inversion list, see if it is # instead an inversion map my ($list_ref, $map_ref, $format, $default) = prop_invmap($lookup_prop, '_perl_core_internal_ok'); if (! $list_ref) { # An empty return here could mean an unknown property, or # merely that the original inversion list is empty. Call # in scalar context to differentiate my $count = prop_invlist($lookup_prop, '_perl_core_internal_ok'); die "Could not find inversion list for '$lookup_prop'" unless defined $count; } else { @invlist = @$list_ref; @invmap = @$map_ref; $map_format = $format; $map_default = $default; $maps_to_code_point = $map_format =~ /x/; $to_adjust = $map_format =~ /a/; } } } # Short-circuit an empty inversion list. if (! @invlist) { output_invlist($prop_name, \@invlist, $charset); next; } # Re-order the Unicode code points to native ones for this platform. # This is only needed for code points below 256, because native code # points are only in that range. For inversion maps of properties # where the mappings are adjusted (format =~ /a/), this reordering # could mess up the adjustment pattern that was in the input, so that # has to be dealt with. # # And inversion maps that map to code points need to eventually have # all those code points remapped to native, and it's better to do that # here, going through the whole list not just those below 256. This # is because some inversion maps have adjustments (format =~ /a/) # which may be affected by the reordering. This code needs to be done # both for when we are translating the inversion lists for < 256, and # for the inversion maps for everything. By doing both in this loop, # we can share that code. # # So, we go through everything for an inversion map to code points; # otherwise, we can skip any remapping at all if we are going to # output only the above-Latin1 values, or if the range spans the whole # of 0..256, as the remap will also include all of 0..256 (256 not # 255 because a re-ordering could cause 256 to need to be in the same # range as 255.) if ((@invmap && $maps_to_code_point) || (! $nonl1_only || ($invlist[0] < 256 && ! ($invlist[0] == 0 && $invlist[1] > 256)))) { if (! @invmap) { # Straight inversion list # Look at all the ranges that start before 257. my @latin1_list; while (@invlist) { last if $invlist[0] > 256; my $upper = @invlist > 1 ? $invlist[1] - 1 # In range # To infinity. You may want to stop much much # earlier; going this high may expose perl # deficiencies with very large numbers. : $Unicode::UCD::MAX_CP; for my $j ($invlist[0] .. $upper) { push @latin1_list, a2n($j); } shift @invlist; # Shift off the range that's in the list shift @invlist; # Shift off the range not in the list } # Here @invlist contains all the ranges in the original that start # at code points above 256, and @latin1_list contains all the # native code points for ranges that start with a Unicode code # point below 257. We sort the latter and convert it to inversion # list format. Then simply prepend it to the list of the higher # code points. @latin1_list = sort { $a <=> $b } @latin1_list; @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list); unshift @invlist, @latin1_list; } else { # Is an inversion map # This is a similar procedure as plain inversion list, but has # multiple buckets. A plain inversion list just has two # buckets, 1) 'in' the list; and 2) 'not' in the list, and we # pretty much can ignore the 2nd bucket, as it is completely # defined by the 1st. But here, what we do is create buckets # which contain the code points that map to each, translated # to native and turned into an inversion list. Thus each # bucket is an inversion list of native code points that map # to it or don't map to it. We use these to create an # inversion map for the whole property. # As mentioned earlier, we use this procedure to not just # remap the inversion list to native values, but also the maps # of code points to native ones. In the latter case we have # to look at the whole of the inversion map (or at least to # above Unicode; as the maps of code points above that should # all be to the default). my $upper_limit = ($maps_to_code_point) ? 0x10FFFF : 256; my %mapped_lists; # A hash whose keys are the buckets. while (@invlist) { last if $invlist[0] > $upper_limit; # This shouldn't actually happen, as prop_invmap() returns # an extra element at the end that is beyond $upper_limit die "inversion map that extends to infinity is unimplemented" unless @invlist > 1; my $bucket; # A hash key can't be a ref (we are only expecting arrays # of scalars here), so convert any such to a string that # will be converted back later (using a vertical tab as # the separator). Even if the mapping is to code points, # we don't translate to native here because the code # output_map() calls to output these arrays assumes the # input is Unicode, not native. if (ref $invmap[0]) { $bucket = join "\cK", @{$invmap[0]}; } elsif ($maps_to_code_point && $invmap[0] =~ $numeric_re) { # Do convert to native for maps to single code points. # There are some properties that have a few outlier # maps that aren't code points, so the above test # skips those. $bucket = a2n($invmap[0]); } else { $bucket = $invmap[0]; } # We now have the bucket that all code points in the range # map to, though possibly they need to be adjusted. Go # through the range and put each translated code point in # it into its bucket. my $base_map = $invmap[0]; for my $j ($invlist[0] .. $invlist[1] - 1) { if ($to_adjust # The 1st code point doesn't need adjusting && $j > $invlist[0] # Skip any non-numeric maps: these are outliers # that aren't code points. && $base_map =~ $numeric_re # 'ne' because the default can be a string && $base_map ne $map_default) { # We adjust, by incrementing each the bucket and # the map. For code point maps, translate to # native $base_map++; $bucket = ($maps_to_code_point) ? a2n($base_map) : $base_map; } # Add the native code point to the bucket for the # current map push @{$mapped_lists{$bucket}}, a2n($j); } # End of loop through all code points in the range # Get ready for the next range shift @invlist; shift @invmap; } # End of loop through all ranges in the map. # Here, @invlist and @invmap retain all the ranges from the # originals that start with code points above $upper_limit. # Each bucket in %mapped_lists contains all the code points # that map to that bucket. If the bucket is for a map to a # single code point is a single code point, the bucket has # been converted to native. If something else (including # multiple code points), no conversion is done. # # Now we recreate the inversion map into %xlated, but this # time for the native character set. my %xlated; foreach my $bucket (keys %mapped_lists) { # Sort and convert this bucket to an inversion list. The # result will be that ranges that start with even-numbered # indexes will be for code points that map to this bucket; # odd ones map to some other bucket, and are discarded # below. @{$mapped_lists{$bucket}} = sort{ $a <=> $b} @{$mapped_lists{$bucket}}; @{$mapped_lists{$bucket}} = mk_invlist_from_sorted_cp_list(\@{$mapped_lists{$bucket}}); # Add each even-numbered range in the bucket to %xlated; # so that the keys of %xlated become the range start code # points, and the values are their corresponding maps. while (@{$mapped_lists{$bucket}}) { my $range_start = $mapped_lists{$bucket}->[0]; if ($bucket =~ /\cK/) { @{$xlated{$range_start}} = split /\cK/, $bucket; } else { $xlated{$range_start} = $bucket; } shift @{$mapped_lists{$bucket}}; # Discard odd ranges shift @{$mapped_lists{$bucket}}; # Get ready for next # iteration } } # End of loop through all the buckets. # Here %xlated's keys are the range starts of all the code # points in the inversion map. Construct an inversion list # from them. my @new_invlist = sort { $a <=> $b } keys %xlated; # If the list is adjusted, we want to munge this list so that # we only have one entry for where consecutive code points map # to consecutive values. We just skip the subsequent entries # where this is the case. if ($to_adjust) { my @temp; for my $i (0 .. @new_invlist - 1) { next if $i > 0 && $new_invlist[$i-1] + 1 == $new_invlist[$i] && $xlated{$new_invlist[$i-1]} =~ $numeric_re && $xlated{$new_invlist[$i]} =~ $numeric_re && $xlated{$new_invlist[$i-1]} + 1 == $xlated{$new_invlist[$i]}; push @temp, $new_invlist[$i]; } @new_invlist = @temp; } # The inversion map comes from %xlated's values. We can # unshift each onto the front of the untouched portion, in # reverse order of the portion we did process. foreach my $start (reverse @new_invlist) { unshift @invmap, $xlated{$start}; } # Finally prepend the inversion list we have just constructed to the # one that contains anything we didn't process. unshift @invlist, @new_invlist; } } # prop_invmap() returns an extra final entry, which we can now # discard. if (@invmap) { pop @invlist; pop @invmap; } if ($l1_only) { die "Unimplemented to do a Latin-1 only inversion map" if @invmap; for my $i (0 .. @invlist - 1 - 1) { if ($invlist[$i] > 255) { # In an inversion list, even-numbered elements give the code # points that begin ranges that match the property; # odd-numbered give ones that begin ranges that don't match. # If $i is odd, we are at the first code point above 255 that # doesn't match, which means the range it is ending does # match, and crosses the 255/256 boundary. We want to include # this ending point, so increment $i, so the splice below # includes it. Conversely, if $i is even, it is the first # code point above 255 that matches, which means there was no # matching range that crossed the boundary, and we don't want # to include this code point, so splice before it. $i++ if $i % 2 != 0; # Remove everything past this. splice @invlist, $i; splice @invmap, $i if @invmap; last; } } } elsif ($nonl1_only) { my $found_nonl1 = 0; for my $i (0 .. @invlist - 1 - 1) { next if $invlist[$i] < 256; # Here, we have the first element in the array that indicates an # element above Latin1. Get rid of all previous ones. splice @invlist, 0, $i; splice @invmap, 0, $i if @invmap; # If this one's index is not divisible by 2, it means that this # element is inverting away from being in the list, which means # all code points from 256 to this one are in this list (or # map to the default for inversion maps) if ($i % 2 != 0) { unshift @invlist, 256; unshift @invmap, $map_default if @invmap; } $found_nonl1 = 1; last; } die "No non-Latin1 code points in $lookup_prop" unless $found_nonl1; } output_invlist($prop_name, \@invlist, $charset); output_invmap($prop_name, \@invmap, $lookup_prop, $map_format, $map_default, $extra_enums, $charset) if @invmap; } end_file_pound_if; print $out_fh "\n" . get_conditional_compile_line_end(); } switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C'); output_GCB_table(); output_LB_table(); output_WB_table(); end_file_pound_if; my $sources_list = "lib/unicore/mktables.lst"; my @sources = ($0, qw(lib/unicore/mktables lib/Unicode/UCD.pm regen/charset_translations.pl )); { # Depend on mktables’ own sources. It’s a shorter list of files than # those that Unicode::UCD uses. if (! open my $mktables_list, $sources_list) { # This should force a rebuild once $sources_list exists push @sources, $sources_list; } else { while(<$mktables_list>) { last if /===/; chomp; push @sources, "lib/unicore/$_" if /^[^#]/; } } } read_only_bottom_close_and_rename($out_fh, \@sources);