/* regexec.c */ /* * One Ring to rule them all, One Ring to find them & * [p.v of _The Lord of the Rings_, opening poem] * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"] * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"] */ /* This file contains functions for executing a regular expression. See * also regcomp.c which funnily enough, contains functions for compiling * a regular expression. * * This file is also copied at build time to ext/re/re_exec.c, where * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT. * This causes the main functions to be compiled under new names and with * debugging support added, which makes "use re 'debug'" work. */ /* NOTE: this is derived from Henry Spencer's regexp code, and should not * confused with the original package (see point 3 below). Thanks, Henry! */ /* Additional note: this code is very heavily munged from Henry's version * in places. In some spots I've traded clarity for efficiency, so don't * blame Henry for some of the lack of readability. */ /* The names of the functions have been changed from regcomp and * regexec to pregcomp and pregexec in order to avoid conflicts * with the POSIX routines of the same names. */ #ifdef PERL_EXT_RE_BUILD #include "re_top.h" #endif /* * pregcomp and pregexec -- regsub and regerror are not used in perl * * Copyright (c) 1986 by University of Toronto. * Written by Henry Spencer. Not derived from licensed software. * * Permission is granted to anyone to use this software for any * purpose on any computer system, and to redistribute it freely, * subject to the following restrictions: * * 1. The author is not responsible for the consequences of use of * this software, no matter how awful, even if they arise * from defects in it. * * 2. The origin of this software must not be misrepresented, either * by explicit claim or by omission. * * 3. Altered versions must be plainly marked as such, and must not * be misrepresented as being the original software. * **** Alterations to Henry's code are... **** **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 **** by Larry Wall and others **** **** You may distribute under the terms of either the GNU General Public **** License or the Artistic License, as specified in the README file. * * Beware that some of this code is subtly aware of the way operator * precedence is structured in regular expressions. Serious changes in * regular-expression syntax might require a total rethink. */ #include "EXTERN.h" #define PERL_IN_REGEXEC_C #include "perl.h" #ifdef PERL_IN_XSUB_RE # include "re_comp.h" #else # include "regcomp.h" #endif #define RF_tainted 1 /* tainted information used? */ #define RF_warned 2 /* warned about big count? */ #define RF_utf8 8 /* Pattern contains multibyte chars? */ #define UTF_PATTERN ((PL_reg_flags & RF_utf8) != 0) #define RS_init 1 /* eval environment created */ #define RS_set 2 /* replsv value is set */ #ifndef STATIC #define STATIC static #endif /* Valid for non-utf8 strings, non-ANYOFV nodes only: avoids the reginclass * call if there are no complications: i.e., if everything matchable is * straight forward in the bitmap */ #define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,0,0) \ : ANYOF_BITMAP_TEST(p,*(c))) /* * Forwards. */ #define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv)) #define CHR_DIST(a,b) (PL_reg_match_utf8 ? utf8_distance(a,b) : a - b) #define HOPc(pos,off) \ (char *)(PL_reg_match_utf8 \ ? reghop3((U8*)pos, off, (U8*)(off >= 0 ? PL_regeol : PL_bostr)) \ : (U8*)(pos + off)) #define HOPBACKc(pos, off) \ (char*)(PL_reg_match_utf8\ ? reghopmaybe3((U8*)pos, -off, (U8*)PL_bostr) \ : (pos - off >= PL_bostr) \ ? (U8*)pos - off \ : NULL) #define HOP3(pos,off,lim) (PL_reg_match_utf8 ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off)) #define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim)) /* these are unrolled below in the CCC_TRY_XXX defined */ #define LOAD_UTF8_CHARCLASS(class,str) STMT_START { \ if (!CAT2(PL_utf8_,class)) { bool ok; ENTER; save_re_context(); ok=CAT2(is_utf8_,class)((const U8*)str); assert(ok); LEAVE; } } STMT_END /* Doesn't do an assert to verify that is correct */ #define LOAD_UTF8_CHARCLASS_NO_CHECK(class) STMT_START { \ if (!CAT2(PL_utf8_,class)) { bool throw_away; ENTER; save_re_context(); throw_away = CAT2(is_utf8_,class)((const U8*)" "); LEAVE; } } STMT_END #define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS(alnum,"a") #define LOAD_UTF8_CHARCLASS_DIGIT() LOAD_UTF8_CHARCLASS(digit,"0") #define LOAD_UTF8_CHARCLASS_SPACE() LOAD_UTF8_CHARCLASS(space," ") #define LOAD_UTF8_CHARCLASS_GCB() /* Grapheme cluster boundaries */ \ LOAD_UTF8_CHARCLASS(X_begin, " "); \ LOAD_UTF8_CHARCLASS(X_non_hangul, "A"); \ /* These are utf8 constants, and not utf-ebcdic constants, so the \ * assert should likely and hopefully fail on an EBCDIC machine */ \ LOAD_UTF8_CHARCLASS(X_extend, "\xcc\x80"); /* U+0300 */ \ \ /* No asserts are done for these, in case called on an early \ * Unicode version in which they map to nothing */ \ LOAD_UTF8_CHARCLASS_NO_CHECK(X_prepend);/* U+0E40 "\xe0\xb9\x80" */ \ LOAD_UTF8_CHARCLASS_NO_CHECK(X_L); /* U+1100 "\xe1\x84\x80" */ \ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV); /* U+AC00 "\xea\xb0\x80" */ \ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LVT); /* U+AC01 "\xea\xb0\x81" */ \ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV_LVT_V);/* U+AC01 "\xea\xb0\x81" */\ LOAD_UTF8_CHARCLASS_NO_CHECK(X_T); /* U+11A8 "\xe1\x86\xa8" */ \ LOAD_UTF8_CHARCLASS_NO_CHECK(X_V) /* U+1160 "\xe1\x85\xa0" */ /* We dont use PERL_LEGACY_UNICODE_CHARCLASS_MAPPINGS as the direct test so that it is possible to override the option here without having to rebuild the entire core. as we are required to do if we change regcomp.h which is where PERL_LEGACY_UNICODE_CHARCLASS_MAPPINGS is defined. */ #if PERL_LEGACY_UNICODE_CHARCLASS_MAPPINGS #define BROKEN_UNICODE_CHARCLASS_MAPPINGS #endif #ifdef BROKEN_UNICODE_CHARCLASS_MAPPINGS #define LOAD_UTF8_CHARCLASS_PERL_WORD() LOAD_UTF8_CHARCLASS_ALNUM() #define LOAD_UTF8_CHARCLASS_PERL_SPACE() LOAD_UTF8_CHARCLASS_SPACE() #define LOAD_UTF8_CHARCLASS_POSIX_DIGIT() LOAD_UTF8_CHARCLASS_DIGIT() #define RE_utf8_perl_word PL_utf8_alnum #define RE_utf8_perl_space PL_utf8_space #define RE_utf8_posix_digit PL_utf8_digit #define perl_word alnum #define perl_space space #define posix_digit digit #else #define LOAD_UTF8_CHARCLASS_PERL_WORD() LOAD_UTF8_CHARCLASS(perl_word,"a") #define LOAD_UTF8_CHARCLASS_PERL_SPACE() LOAD_UTF8_CHARCLASS(perl_space," ") #define LOAD_UTF8_CHARCLASS_POSIX_DIGIT() LOAD_UTF8_CHARCLASS(posix_digit,"0") #define RE_utf8_perl_word PL_utf8_perl_word #define RE_utf8_perl_space PL_utf8_perl_space #define RE_utf8_posix_digit PL_utf8_posix_digit #endif #define PLACEHOLDER /* Something for the preprocessor to grab onto */ /* The actual code for CCC_TRY, which uses several variables from the routine * it's callable from. It is designed to be the bulk of a case statement. * FUNC is the macro or function to call on non-utf8 targets that indicate if * nextchr matches the class. * UTF8_TEST is the whole test string to use for utf8 targets * LOAD is what to use to test, and if not present to load in the swash for the * class * POS_OR_NEG is either empty or ! to complement the results of FUNC or * UTF8_TEST test. * The logic is: Fail if we're at the end-of-string; otherwise if the target is * utf8 and a variant, load the swash if necessary and test using the utf8 * test. Advance to the next character if test is ok, otherwise fail; If not * utf8 or an invariant under utf8, use the non-utf8 test, and fail if it * fails, or advance to the next character */ #define _CCC_TRY_CODE(POS_OR_NEG, FUNC, UTF8_TEST, CLASS, STR) \ if (locinput >= PL_regeol) { \ sayNO; \ } \ if (utf8_target && UTF8_IS_CONTINUED(nextchr)) { \ LOAD_UTF8_CHARCLASS(CLASS, STR); \ if (POS_OR_NEG (UTF8_TEST)) { \ sayNO; \ } \ locinput += PL_utf8skip[nextchr]; \ nextchr = UCHARAT(locinput); \ break; \ } \ if (POS_OR_NEG (FUNC(nextchr))) { \ sayNO; \ } \ nextchr = UCHARAT(++locinput); \ break; /* Handle the non-locale cases for a character class and its complement. It * calls _CCC_TRY_CODE with a ! to complement the test for the character class. * This is because that code fails when the test succeeds, so we want to have * the test fail so that the code succeeds. The swash is stored in a * predictable PL_ place */ #define _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, \ CLASS, STR) \ case NAME: \ _CCC_TRY_CODE( !, FUNC, \ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \ (U8*)locinput, TRUE)), \ CLASS, STR) \ case NNAME: \ _CCC_TRY_CODE( PLACEHOLDER , FUNC, \ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \ (U8*)locinput, TRUE)), \ CLASS, STR) \ /* Generate the case statements for both locale and non-locale character * classes in regmatch for classes that don't have special unicode semantics. * Locales don't use an immediate swash, but an intermediary special locale * function that is called on the pointer to the current place in the input * string. That function will resolve to needing the same swash. One might * think that because we don't know what the locale will match, we shouldn't * check with the swash loading function that it loaded properly; ie, that we * should use LOAD_UTF8_CHARCLASS_NO_CHECK for those, but what is passed to the * regular LOAD_UTF8_CHARCLASS is in non-locale terms, and so locale is * irrelevant here */ #define CCC_TRY(NAME, NNAME, FUNC, \ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \ NAMEA, NNAMEA, FUNCA, \ CLASS, STR) \ case NAMEL: \ PL_reg_flags |= RF_tainted; \ _CCC_TRY_CODE( !, LCFUNC, LCFUNC_utf8((U8*)locinput), CLASS, STR) \ case NNAMEL: \ PL_reg_flags |= RF_tainted; \ _CCC_TRY_CODE( PLACEHOLDER, LCFUNC, LCFUNC_utf8((U8*)locinput), \ CLASS, STR) \ case NAMEA: \ if (locinput >= PL_regeol || ! FUNCA(nextchr)) { \ sayNO; \ } \ /* Matched a utf8-invariant, so don't have to worry about utf8 */ \ nextchr = UCHARAT(++locinput); \ break; \ case NNAMEA: \ if (locinput >= PL_regeol || FUNCA(nextchr)) { \ sayNO; \ } \ if (utf8_target) { \ locinput += PL_utf8skip[nextchr]; \ nextchr = UCHARAT(locinput); \ } \ else { \ nextchr = UCHARAT(++locinput); \ } \ break; \ /* Generate the non-locale cases */ \ _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, CLASS, STR) /* This is like CCC_TRY, but has an extra set of parameters for generating case * statements to handle separate Unicode semantics nodes */ #define CCC_TRY_U(NAME, NNAME, FUNC, \ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \ NAMEU, NNAMEU, FUNCU, \ NAMEA, NNAMEA, FUNCA, \ CLASS, STR) \ CCC_TRY(NAME, NNAME, FUNC, \ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \ NAMEA, NNAMEA, FUNCA, \ CLASS, STR) \ _CCC_TRY_NONLOCALE(NAMEU, NNAMEU, FUNCU, CLASS, STR) /* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */ /* for use after a quantifier and before an EXACT-like node -- japhy */ /* it would be nice to rework regcomp.sym to generate this stuff. sigh * * NOTE that *nothing* that affects backtracking should be in here, specifically * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a * node that is in between two EXACT like nodes when ascertaining what the required * "follow" character is. This should probably be moved to regex compile time * although it may be done at run time beause of the REF possibility - more * investigation required. -- demerphq */ #define JUMPABLE(rn) ( \ OP(rn) == OPEN || \ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \ OP(rn) == EVAL || \ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \ OP(rn) == PLUS || OP(rn) == MINMOD || \ OP(rn) == KEEPS || \ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \ ) #define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT) #define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF ) #if 0 /* Currently these are only used when PL_regkind[OP(rn)] == EXACT so we don't need this definition. */ #define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF ) #define IS_TEXTF(rn) ( (OP(rn)==EXACTFU || OP(rn)==EXACTF) || OP(rn)==REFF || OP(rn)==NREFF ) #define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL ) #else /* ... so we use this as its faster. */ #define IS_TEXT(rn) ( OP(rn)==EXACT ) #define IS_TEXTFU(rn) ( OP(rn)==EXACTFU ) #define IS_TEXTF(rn) ( OP(rn)==EXACTF ) #define IS_TEXTFL(rn) ( OP(rn)==EXACTFL ) #endif /* Search for mandatory following text node; for lookahead, the text must follow but for lookbehind (rn->flags != 0) we skip to the next step. */ #define FIND_NEXT_IMPT(rn) STMT_START { \ while (JUMPABLE(rn)) { \ const OPCODE type = OP(rn); \ if (type == SUSPEND || PL_regkind[type] == CURLY) \ rn = NEXTOPER(NEXTOPER(rn)); \ else if (type == PLUS) \ rn = NEXTOPER(rn); \ else if (type == IFMATCH) \ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \ else rn += NEXT_OFF(rn); \ } \ } STMT_END static void restore_pos(pTHX_ void *arg); #define REGCP_PAREN_ELEMS 4 #define REGCP_OTHER_ELEMS 5 #define REGCP_FRAME_ELEMS 1 /* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and * are needed for the regexp context stack bookkeeping. */ STATIC CHECKPOINT S_regcppush(pTHX_ I32 parenfloor) { dVAR; const int retval = PL_savestack_ix; const int paren_elems_to_push = (PL_regsize - parenfloor) * REGCP_PAREN_ELEMS; const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS; const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT; int p; GET_RE_DEBUG_FLAGS_DECL; if (paren_elems_to_push < 0) Perl_croak(aTHX_ "panic: paren_elems_to_push < 0"); if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems) Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf " out of range (%lu-%ld)", total_elems, (unsigned long)PL_regsize, (long)parenfloor); SSGROW(total_elems + REGCP_FRAME_ELEMS); for (p = PL_regsize; p > parenfloor; p--) { /* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */ SSPUSHINT(PL_regoffs[p].end); SSPUSHINT(PL_regoffs[p].start); SSPUSHPTR(PL_reg_start_tmp[p]); SSPUSHINT(p); DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, " saving \\%"UVuf" %"IVdf"(%"IVdf")..%"IVdf"\n", (UV)p, (IV)PL_regoffs[p].start, (IV)(PL_reg_start_tmp[p] - PL_bostr), (IV)PL_regoffs[p].end )); } /* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */ SSPUSHPTR(PL_regoffs); SSPUSHINT(PL_regsize); SSPUSHINT(*PL_reglastparen); SSPUSHINT(*PL_reglastcloseparen); SSPUSHPTR(PL_reginput); SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */ return retval; } /* These are needed since we do not localize EVAL nodes: */ #define REGCP_SET(cp) \ DEBUG_STATE_r( \ PerlIO_printf(Perl_debug_log, \ " Setting an EVAL scope, savestack=%"IVdf"\n", \ (IV)PL_savestack_ix)); \ cp = PL_savestack_ix #define REGCP_UNWIND(cp) \ DEBUG_STATE_r( \ if (cp != PL_savestack_ix) \ PerlIO_printf(Perl_debug_log, \ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \ (IV)(cp), (IV)PL_savestack_ix)); \ regcpblow(cp) STATIC char * S_regcppop(pTHX_ const regexp *rex) { dVAR; UV i; char *input; GET_RE_DEBUG_FLAGS_DECL; PERL_ARGS_ASSERT_REGCPPOP; /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */ i = SSPOPUV; assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */ input = (char *) SSPOPPTR; *PL_reglastcloseparen = SSPOPINT; *PL_reglastparen = SSPOPINT; PL_regsize = SSPOPINT; PL_regoffs=(regexp_paren_pair *) SSPOPPTR; i -= REGCP_OTHER_ELEMS; /* Now restore the parentheses context. */ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) { I32 tmps; U32 paren = (U32)SSPOPINT; PL_reg_start_tmp[paren] = (char *) SSPOPPTR; PL_regoffs[paren].start = SSPOPINT; tmps = SSPOPINT; if (paren <= *PL_reglastparen) PL_regoffs[paren].end = tmps; DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log, " restoring \\%"UVuf" to %"IVdf"(%"IVdf")..%"IVdf"%s\n", (UV)paren, (IV)PL_regoffs[paren].start, (IV)(PL_reg_start_tmp[paren] - PL_bostr), (IV)PL_regoffs[paren].end, (paren > *PL_reglastparen ? "(no)" : "")); ); } DEBUG_BUFFERS_r( if (*PL_reglastparen + 1 <= rex->nparens) { PerlIO_printf(Perl_debug_log, " restoring \\%"IVdf"..\\%"IVdf" to undef\n", (IV)(*PL_reglastparen + 1), (IV)rex->nparens); } ); #if 1 /* It would seem that the similar code in regtry() * already takes care of this, and in fact it is in * a better location to since this code can #if 0-ed out * but the code in regtry() is needed or otherwise tests * requiring null fields (pat.t#187 and split.t#{13,14} * (as of patchlevel 7877) will fail. Then again, * this code seems to be necessary or otherwise * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/ * --jhi updated by dapm */ for (i = *PL_reglastparen + 1; i <= rex->nparens; i++) { if (i > PL_regsize) PL_regoffs[i].start = -1; PL_regoffs[i].end = -1; } #endif return input; } #define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */ /* * pregexec and friends */ #ifndef PERL_IN_XSUB_RE /* - pregexec - match a regexp against a string */ I32 Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, register char *strend, char *strbeg, I32 minend, SV *screamer, U32 nosave) /* strend: pointer to null at end of string */ /* strbeg: real beginning of string */ /* minend: end of match must be >=minend after stringarg. */ /* nosave: For optimizations. */ { PERL_ARGS_ASSERT_PREGEXEC; return regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL, nosave ? 0 : REXEC_COPY_STR); } #endif /* * Need to implement the following flags for reg_anch: * * USE_INTUIT_NOML - Useful to call re_intuit_start() first * USE_INTUIT_ML * INTUIT_AUTORITATIVE_NOML - Can trust a positive answer * INTUIT_AUTORITATIVE_ML * INTUIT_ONCE_NOML - Intuit can match in one location only. * INTUIT_ONCE_ML * * Another flag for this function: SECOND_TIME (so that float substrs * with giant delta may be not rechecked). */ /* Assumptions: if ANCH_GPOS, then strpos is anchored. XXXX Check GPOS logic */ /* If SCREAM, then SvPVX_const(sv) should be compatible with strpos and strend. Otherwise, only SvCUR(sv) is used to get strbeg. */ /* XXXX We assume that strpos is strbeg unless sv. */ /* XXXX Some places assume that there is a fixed substring. An update may be needed if optimizer marks as "INTUITable" RExen without fixed substrings. Similarly, it is assumed that lengths of all the strings are no more than minlen, thus they cannot come from lookahead. (Or minlen should take into account lookahead.) NOTE: Some of this comment is not correct. minlen does now take account of lookahead/behind. Further research is required. -- demerphq */ /* A failure to find a constant substring means that there is no need to make an expensive call to REx engine, thus we celebrate a failure. Similarly, finding a substring too deep into the string means that less calls to regtry() should be needed. REx compiler's optimizer found 4 possible hints: a) Anchored substring; b) Fixed substring; c) Whether we are anchored (beginning-of-line or \G); d) First node (of those at offset 0) which may distinguish positions; We use a)b)d) and multiline-part of c), and try to find a position in the string which does not contradict any of them. */ /* Most of decisions we do here should have been done at compile time. The nodes of the REx which we used for the search should have been deleted from the finite automaton. */ char * Perl_re_intuit_start(pTHX_ REGEXP * const rx, SV *sv, char *strpos, char *strend, const U32 flags, re_scream_pos_data *data) { dVAR; struct regexp *const prog = (struct regexp *)SvANY(rx); register I32 start_shift = 0; /* Should be nonnegative! */ register I32 end_shift = 0; register char *s; register SV *check; char *strbeg; char *t; const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */ I32 ml_anch; register char *other_last = NULL; /* other substr checked before this */ char *check_at = NULL; /* check substr found at this pos */ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE; RXi_GET_DECL(prog,progi); #ifdef DEBUGGING const char * const i_strpos = strpos; #endif GET_RE_DEBUG_FLAGS_DECL; PERL_ARGS_ASSERT_RE_INTUIT_START; RX_MATCH_UTF8_set(rx,utf8_target); if (RX_UTF8(rx)) { PL_reg_flags |= RF_utf8; } DEBUG_EXECUTE_r( debug_start_match(rx, utf8_target, strpos, strend, sv ? "Guessing start of match in sv for" : "Guessing start of match in string for"); ); /* CHR_DIST() would be more correct here but it makes things slow. */ if (prog->minlen > strend - strpos) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too short... [re_intuit_start]\n")); goto fail; } strbeg = (sv && SvPOK(sv)) ? strend - SvCUR(sv) : strpos; PL_regeol = strend; if (utf8_target) { if (!prog->check_utf8 && prog->check_substr) to_utf8_substr(prog); check = prog->check_utf8; } else { if (!prog->check_substr && prog->check_utf8) to_byte_substr(prog); check = prog->check_substr; } if (check == &PL_sv_undef) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Non-utf8 string cannot match utf8 check string\n")); goto fail; } if (prog->extflags & RXf_ANCH) { /* Match at beg-of-str or after \n */ ml_anch = !( (prog->extflags & RXf_ANCH_SINGLE) || ( (prog->extflags & RXf_ANCH_BOL) && !multiline ) ); /* Check after \n? */ if (!ml_anch) { if ( !(prog->extflags & RXf_ANCH_GPOS) /* Checked by the caller */ && !(prog->intflags & PREGf_IMPLICIT) /* not a real BOL */ /* SvCUR is not set on references: SvRV and SvPVX_const overlap */ && sv && !SvROK(sv) && (strpos != strbeg)) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not at start...\n")); goto fail; } if (prog->check_offset_min == prog->check_offset_max && !(prog->extflags & RXf_CANY_SEEN)) { /* Substring at constant offset from beg-of-str... */ I32 slen; s = HOP3c(strpos, prog->check_offset_min, strend); if (SvTAIL(check)) { slen = SvCUR(check); /* >= 1 */ if ( strend - s > slen || strend - s < slen - 1 || (strend - s == slen && strend[-1] != '\n')) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too long...\n")); goto fail_finish; } /* Now should match s[0..slen-2] */ slen--; if (slen && (*SvPVX_const(check) != *s || (slen > 1 && memNE(SvPVX_const(check), s, slen)))) { report_neq: DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String not equal...\n")); goto fail_finish; } } else if (*SvPVX_const(check) != *s || ((slen = SvCUR(check)) > 1 && memNE(SvPVX_const(check), s, slen))) goto report_neq; check_at = s; goto success_at_start; } } /* Match is anchored, but substr is not anchored wrt beg-of-str. */ s = strpos; start_shift = prog->check_offset_min; /* okay to underestimate on CC */ end_shift = prog->check_end_shift; if (!ml_anch) { const I32 end = prog->check_offset_max + CHR_SVLEN(check) - (SvTAIL(check) != 0); const I32 eshift = CHR_DIST((U8*)strend, (U8*)s) - end; if (end_shift < eshift) end_shift = eshift; } } else { /* Can match at random position */ ml_anch = 0; s = strpos; start_shift = prog->check_offset_min; /* okay to underestimate on CC */ end_shift = prog->check_end_shift; /* end shift should be non negative here */ } #ifdef QDEBUGGING /* 7/99: reports of failure (with the older version) */ if (end_shift < 0) Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ", (IV)end_shift, RX_PRECOMP(prog)); #endif restart: /* Find a possible match in the region s..strend by looking for the "check" substring in the region corrected by start/end_shift. */ { I32 srch_start_shift = start_shift; I32 srch_end_shift = end_shift; if (srch_start_shift < 0 && strbeg - s > srch_start_shift) { srch_end_shift -= ((strbeg - s) - srch_start_shift); srch_start_shift = strbeg - s; } DEBUG_OPTIMISE_MORE_r({ PerlIO_printf(Perl_debug_log, "Check offset min: %"IVdf" Start shift: %"IVdf" End shift %"IVdf" Real End Shift: %"IVdf"\n", (IV)prog->check_offset_min, (IV)srch_start_shift, (IV)srch_end_shift, (IV)prog->check_end_shift); }); if (flags & REXEC_SCREAM) { I32 p = -1; /* Internal iterator of scream. */ I32 * const pp = data ? data->scream_pos : &p; if (PL_screamfirst[BmRARE(check)] >= 0 || ( BmRARE(check) == '\n' && (BmPREVIOUS(check) == SvCUR(check) - 1) && SvTAIL(check) )) s = screaminstr(sv, check, srch_start_shift + (s - strbeg), srch_end_shift, pp, 0); else goto fail_finish; /* we may be pointing at the wrong string */ if (s && RXp_MATCH_COPIED(prog)) s = strbeg + (s - SvPVX_const(sv)); if (data) *data->scream_olds = s; } else { U8* start_point; U8* end_point; if (prog->extflags & RXf_CANY_SEEN) { start_point= (U8*)(s + srch_start_shift); end_point= (U8*)(strend - srch_end_shift); } else { start_point= HOP3(s, srch_start_shift, srch_start_shift < 0 ? strbeg : strend); end_point= HOP3(strend, -srch_end_shift, strbeg); } DEBUG_OPTIMISE_MORE_r({ PerlIO_printf(Perl_debug_log, "fbm_instr len=%d str=<%.*s>\n", (int)(end_point - start_point), (int)(end_point - start_point) > 20 ? 20 : (int)(end_point - start_point), start_point); }); s = fbm_instr( start_point, end_point, check, multiline ? FBMrf_MULTILINE : 0); } } /* Update the count-of-usability, remove useless subpatterns, unshift s. */ DEBUG_EXECUTE_r({ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), SvPVX_const(check), RE_SV_DUMPLEN(check), 30); PerlIO_printf(Perl_debug_log, "%s %s substr %s%s%s", (s ? "Found" : "Did not find"), (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) ? "anchored" : "floating"), quoted, RE_SV_TAIL(check), (s ? " at offset " : "...\n") ); }); if (!s) goto fail_finish; /* Finish the diagnostic message */ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%ld...\n", (long)(s - i_strpos)) ); /* XXX dmq: first branch is for positive lookbehind... Our check string is offset from the beginning of the pattern. So we need to do any stclass tests offset forward from that point. I think. :-( */ check_at=s; /* Got a candidate. Check MBOL anchoring, and the *other* substr. Start with the other substr. XXXX no SCREAM optimization yet - and a very coarse implementation XXXX /ttx+/ results in anchored="ttx", floating="x". floating will *always* match. Probably should be marked during compile... Probably it is right to do no SCREAM here... */ if (utf8_target ? (prog->float_utf8 && prog->anchored_utf8) : (prog->float_substr && prog->anchored_substr)) { /* Take into account the "other" substring. */ /* XXXX May be hopelessly wrong for UTF... */ if (!other_last) other_last = strpos; if (check == (utf8_target ? prog->float_utf8 : prog->float_substr)) { do_other_anchored: { char * const last = HOP3c(s, -start_shift, strbeg); char *last1, *last2; char * const saved_s = s; SV* must; t = s - prog->check_offset_max; if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */ && (!utf8_target || ((t = (char*)reghopmaybe3((U8*)s, -(prog->check_offset_max), (U8*)strpos)) && t > strpos))) NOOP; else t = strpos; t = HOP3c(t, prog->anchored_offset, strend); if (t < other_last) /* These positions already checked */ t = other_last; last2 = last1 = HOP3c(strend, -prog->minlen, strbeg); if (last < last1) last1 = last; /* XXXX It is not documented what units *_offsets are in. We assume bytes, but this is clearly wrong. Meaning this code needs to be carefully reviewed for errors. dmq. */ /* On end-of-str: see comment below. */ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr; if (must == &PL_sv_undef) { s = (char*)NULL; DEBUG_r(must = prog->anchored_utf8); /* for debug */ } else s = fbm_instr( (unsigned char*)t, HOP3(HOP3(last1, prog->anchored_offset, strend) + SvCUR(must), -(SvTAIL(must)!=0), strbeg), must, multiline ? FBMrf_MULTILINE : 0 ); DEBUG_EXECUTE_r({ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), SvPVX_const(must), RE_SV_DUMPLEN(must), 30); PerlIO_printf(Perl_debug_log, "%s anchored substr %s%s", (s ? "Found" : "Contradicts"), quoted, RE_SV_TAIL(must)); }); if (!s) { if (last1 >= last2) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, ", giving up...\n")); goto fail_finish; } DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, ", trying floating at offset %ld...\n", (long)(HOP3c(saved_s, 1, strend) - i_strpos))); other_last = HOP3c(last1, prog->anchored_offset+1, strend); s = HOP3c(last, 1, strend); goto restart; } else { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n", (long)(s - i_strpos))); t = HOP3c(s, -prog->anchored_offset, strbeg); other_last = HOP3c(s, 1, strend); s = saved_s; if (t == strpos) goto try_at_start; goto try_at_offset; } } } else { /* Take into account the floating substring. */ char *last, *last1; char * const saved_s = s; SV* must; t = HOP3c(s, -start_shift, strbeg); last1 = last = HOP3c(strend, -prog->minlen + prog->float_min_offset, strbeg); if (CHR_DIST((U8*)last, (U8*)t) > prog->float_max_offset) last = HOP3c(t, prog->float_max_offset, strend); s = HOP3c(t, prog->float_min_offset, strend); if (s < other_last) s = other_last; /* XXXX It is not documented what units *_offsets are in. Assume bytes. */ must = utf8_target ? prog->float_utf8 : prog->float_substr; /* fbm_instr() takes into account exact value of end-of-str if the check is SvTAIL(ed). Since false positives are OK, and end-of-str is not later than strend we are OK. */ if (must == &PL_sv_undef) { s = (char*)NULL; DEBUG_r(must = prog->float_utf8); /* for debug message */ } else s = fbm_instr((unsigned char*)s, (unsigned char*)last + SvCUR(must) - (SvTAIL(must)!=0), must, multiline ? FBMrf_MULTILINE : 0); DEBUG_EXECUTE_r({ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), SvPVX_const(must), RE_SV_DUMPLEN(must), 30); PerlIO_printf(Perl_debug_log, "%s floating substr %s%s", (s ? "Found" : "Contradicts"), quoted, RE_SV_TAIL(must)); }); if (!s) { if (last1 == last) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, ", giving up...\n")); goto fail_finish; } DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, ", trying anchored starting at offset %ld...\n", (long)(saved_s + 1 - i_strpos))); other_last = last; s = HOP3c(t, 1, strend); goto restart; } else { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n", (long)(s - i_strpos))); other_last = s; /* Fix this later. --Hugo */ s = saved_s; if (t == strpos) goto try_at_start; goto try_at_offset; } } } t= (char*)HOP3( s, -prog->check_offset_max, (prog->check_offset_max<0) ? strend : strpos); DEBUG_OPTIMISE_MORE_r( PerlIO_printf(Perl_debug_log, "Check offset min:%"IVdf" max:%"IVdf" S:%"IVdf" t:%"IVdf" D:%"IVdf" end:%"IVdf"\n", (IV)prog->check_offset_min, (IV)prog->check_offset_max, (IV)(s-strpos), (IV)(t-strpos), (IV)(t-s), (IV)(strend-strpos) ) ); if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */ && (!utf8_target || ((t = (char*)reghopmaybe3((U8*)s, -prog->check_offset_max, (U8*) ((prog->check_offset_max<0) ? strend : strpos))) && t > strpos))) { /* Fixed substring is found far enough so that the match cannot start at strpos. */ try_at_offset: if (ml_anch && t[-1] != '\n') { /* Eventually fbm_*() should handle this, but often anchored_offset is not 0, so this check will not be wasted. */ /* XXXX In the code below we prefer to look for "^" even in presence of anchored substrings. And we search even beyond the found float position. These pessimizations are historical artefacts only. */ find_anchor: while (t < strend - prog->minlen) { if (*t == '\n') { if (t < check_at - prog->check_offset_min) { if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) { /* Since we moved from the found position, we definitely contradict the found anchored substr. Due to the above check we do not contradict "check" substr. Thus we can arrive here only if check substr is float. Redo checking for "other"=="fixed". */ strpos = t + 1; DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld, rescanning for anchored from offset %ld...\n", PL_colors[0], PL_colors[1], (long)(strpos - i_strpos), (long)(strpos - i_strpos + prog->anchored_offset))); goto do_other_anchored; } /* We don't contradict the found floating substring. */ /* XXXX Why not check for STCLASS? */ s = t + 1; DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld...\n", PL_colors[0], PL_colors[1], (long)(s - i_strpos))); goto set_useful; } /* Position contradicts check-string */ /* XXXX probably better to look for check-string than for "\n", so one should lower the limit for t? */ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m, restarting lookup for check-string at offset %ld...\n", PL_colors[0], PL_colors[1], (long)(t + 1 - i_strpos))); other_last = strpos = s = t + 1; goto restart; } t++; } DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Did not find /%s^%s/m...\n", PL_colors[0], PL_colors[1])); goto fail_finish; } else { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Starting position does not contradict /%s^%s/m...\n", PL_colors[0], PL_colors[1])); } s = t; set_useful: ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */ } else { /* The found string does not prohibit matching at strpos, - no optimization of calling REx engine can be performed, unless it was an MBOL and we are not after MBOL, or a future STCLASS check will fail this. */ try_at_start: /* Even in this situation we may use MBOL flag if strpos is offset wrt the start of the string. */ if (ml_anch && sv && !SvROK(sv) /* See prev comment on SvROK */ && (strpos != strbeg) && strpos[-1] != '\n' /* May be due to an implicit anchor of m{.*foo} */ && !(prog->intflags & PREGf_IMPLICIT)) { t = strpos; goto find_anchor; } DEBUG_EXECUTE_r( if (ml_anch) PerlIO_printf(Perl_debug_log, "Position at offset %ld does not contradict /%s^%s/m...\n", (long)(strpos - i_strpos), PL_colors[0], PL_colors[1]); ); success_at_start: if (!(prog->intflags & PREGf_NAUGHTY) /* XXXX If strpos moved? */ && (utf8_target ? ( prog->check_utf8 /* Could be deleted already */ && --BmUSEFUL(prog->check_utf8) < 0 && (prog->check_utf8 == prog->float_utf8) ) : ( prog->check_substr /* Could be deleted already */ && --BmUSEFUL(prog->check_substr) < 0 && (prog->check_substr == prog->float_substr) ))) { /* If flags & SOMETHING - do not do it many times on the same match */ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "... Disabling check substring...\n")); /* XXX Does the destruction order has to change with utf8_target? */ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr); SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8); prog->check_substr = prog->check_utf8 = NULL; /* disable */ prog->float_substr = prog->float_utf8 = NULL; /* clear */ check = NULL; /* abort */ s = strpos; /* XXXX If the check string was an implicit check MBOL, then we need to unset the relevant flag see http://bugs.activestate.com/show_bug.cgi?id=87173 */ if (prog->intflags & PREGf_IMPLICIT) prog->extflags &= ~RXf_ANCH_MBOL; /* XXXX This is a remnant of the old implementation. It looks wasteful, since now INTUIT can use many other heuristics. */ prog->extflags &= ~RXf_USE_INTUIT; /* XXXX What other flags might need to be cleared in this branch? */ } else s = strpos; } /* Last resort... */ /* XXXX BmUSEFUL already changed, maybe multiple change is meaningful... */ /* trie stclasses are too expensive to use here, we are better off to leave it to regmatch itself */ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) { /* minlen == 0 is possible if regstclass is \b or \B, and the fixed substr is ''$. Since minlen is already taken into account, s+1 is before strend; accidentally, minlen >= 1 guaranties no false positives at s + 1 even for \b or \B. But (minlen? 1 : 0) below assumes that regstclass does not come from lookahead... */ /* If regstclass takes bytelength more than 1: If charlength==1, OK. This leaves EXACTF-ish only, which are dealt with in find_byclass(). */ const U8* const str = (U8*)STRING(progi->regstclass); const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT ? CHR_DIST(str+STR_LEN(progi->regstclass), str) : 1); char * endpos; if (prog->anchored_substr || prog->anchored_utf8 || ml_anch) endpos= HOP3c(s, (prog->minlen ? cl_l : 0), strend); else if (prog->float_substr || prog->float_utf8) endpos= HOP3c(HOP3c(check_at, -start_shift, strbeg), cl_l, strend); else endpos= strend; DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "start_shift: %"IVdf" check_at: %"IVdf" s: %"IVdf" endpos: %"IVdf"\n", (IV)start_shift, (IV)(check_at - strbeg), (IV)(s - strbeg), (IV)(endpos - strbeg))); t = s; s = find_byclass(prog, progi->regstclass, s, endpos, NULL); if (!s) { #ifdef DEBUGGING const char *what = NULL; #endif if (endpos == strend) { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "Could not match STCLASS...\n") ); goto fail; } DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "This position contradicts STCLASS...\n") ); if ((prog->extflags & RXf_ANCH) && !ml_anch) goto fail; /* Contradict one of substrings */ if (prog->anchored_substr || prog->anchored_utf8) { if ((utf8_target ? prog->anchored_utf8 : prog->anchored_substr) == check) { DEBUG_EXECUTE_r( what = "anchored" ); hop_and_restart: s = HOP3c(t, 1, strend); if (s + start_shift + end_shift > strend) { /* XXXX Should be taken into account earlier? */ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "Could not match STCLASS...\n") ); goto fail; } if (!check) goto giveup; DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "Looking for %s substr starting at offset %ld...\n", what, (long)(s + start_shift - i_strpos)) ); goto restart; } /* Have both, check_string is floating */ if (t + start_shift >= check_at) /* Contradicts floating=check */ goto retry_floating_check; /* Recheck anchored substring, but not floating... */ s = check_at; if (!check) goto giveup; DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "Looking for anchored substr starting at offset %ld...\n", (long)(other_last - i_strpos)) ); goto do_other_anchored; } /* Another way we could have checked stclass at the current position only: */ if (ml_anch) { s = t = t + 1; if (!check) goto giveup; DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "Looking for /%s^%s/m starting at offset %ld...\n", PL_colors[0], PL_colors[1], (long)(t - i_strpos)) ); goto try_at_offset; } if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) /* Could have been deleted */ goto fail; /* Check is floating substring. */ retry_floating_check: t = check_at - start_shift; DEBUG_EXECUTE_r( what = "floating" ); goto hop_and_restart; } if (t != s) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "By STCLASS: moving %ld --> %ld\n", (long)(t - i_strpos), (long)(s - i_strpos)) ); } else { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Does not contradict STCLASS...\n"); ); } } giveup: DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s%s:%s match at offset %ld\n", PL_colors[4], (check ? "Guessed" : "Giving up"), PL_colors[5], (long)(s - i_strpos)) ); return s; fail_finish: /* Substring not found */ if (prog->check_substr || prog->check_utf8) /* could be removed already */ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */ fail: DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n", PL_colors[4], PL_colors[5])); return NULL; } #define DECL_TRIE_TYPE(scan) \ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold } \ trie_type = (scan->flags != EXACT) \ ? (utf8_target ? trie_utf8_fold : (UTF_PATTERN ? trie_latin_utf8_fold : trie_plain)) \ : (utf8_target ? trie_utf8 : trie_plain) #define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, \ uvc, charid, foldlen, foldbuf, uniflags) STMT_START { \ switch (trie_type) { \ case trie_utf8_fold: \ if ( foldlen>0 ) { \ uvc = utf8n_to_uvuni( uscan, UTF8_MAXLEN, &len, uniflags ); \ foldlen -= len; \ uscan += len; \ len=0; \ } else { \ uvc = utf8n_to_uvuni( (U8*)uc, UTF8_MAXLEN, &len, uniflags ); \ uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \ foldlen -= UNISKIP( uvc ); \ uscan = foldbuf + UNISKIP( uvc ); \ } \ break; \ case trie_latin_utf8_fold: \ if ( foldlen>0 ) { \ uvc = utf8n_to_uvuni( uscan, UTF8_MAXLEN, &len, uniflags ); \ foldlen -= len; \ uscan += len; \ len=0; \ } else { \ len = 1; \ uvc = to_uni_fold( *(U8*)uc, foldbuf, &foldlen ); \ foldlen -= UNISKIP( uvc ); \ uscan = foldbuf + UNISKIP( uvc ); \ } \ break; \ case trie_utf8: \ uvc = utf8n_to_uvuni( (U8*)uc, UTF8_MAXLEN, &len, uniflags ); \ break; \ case trie_plain: \ uvc = (UV)*uc; \ len = 1; \ } \ if (uvc < 256) { \ charid = trie->charmap[ uvc ]; \ } \ else { \ charid = 0; \ if (widecharmap) { \ SV** const svpp = hv_fetch(widecharmap, \ (char*)&uvc, sizeof(UV), 0); \ if (svpp) \ charid = (U16)SvIV(*svpp); \ } \ } \ } STMT_END #define REXEC_FBC_EXACTISH_SCAN(CoNd) \ STMT_START { \ while (s <= e) { \ if ( (CoNd) \ && (ln == 1 || folder(s, pat_string, ln)) \ && (!reginfo || regtry(reginfo, &s)) ) \ goto got_it; \ s++; \ } \ } STMT_END #define REXEC_FBC_UTF8_SCAN(CoDe) \ STMT_START { \ while (s + (uskip = UTF8SKIP(s)) <= strend) { \ CoDe \ s += uskip; \ } \ } STMT_END #define REXEC_FBC_SCAN(CoDe) \ STMT_START { \ while (s < strend) { \ CoDe \ s++; \ } \ } STMT_END #define REXEC_FBC_UTF8_CLASS_SCAN(CoNd) \ REXEC_FBC_UTF8_SCAN( \ if (CoNd) { \ if (tmp && (!reginfo || regtry(reginfo, &s))) \ goto got_it; \ else \ tmp = doevery; \ } \ else \ tmp = 1; \ ) #define REXEC_FBC_CLASS_SCAN(CoNd) \ REXEC_FBC_SCAN( \ if (CoNd) { \ if (tmp && (!reginfo || regtry(reginfo, &s))) \ goto got_it; \ else \ tmp = doevery; \ } \ else \ tmp = 1; \ ) #define REXEC_FBC_TRYIT \ if ((!reginfo || regtry(reginfo, &s))) \ goto got_it #define REXEC_FBC_CSCAN(CoNdUtF8,CoNd) \ if (utf8_target) { \ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \ } \ else { \ REXEC_FBC_CLASS_SCAN(CoNd); \ } #define REXEC_FBC_CSCAN_PRELOAD(UtFpReLoAd,CoNdUtF8,CoNd) \ if (utf8_target) { \ UtFpReLoAd; \ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \ } \ else { \ REXEC_FBC_CLASS_SCAN(CoNd); \ } #define REXEC_FBC_CSCAN_TAINT(CoNdUtF8,CoNd) \ PL_reg_flags |= RF_tainted; \ if (utf8_target) { \ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \ } \ else { \ REXEC_FBC_CLASS_SCAN(CoNd); \ } #define DUMP_EXEC_POS(li,s,doutf8) \ dump_exec_pos(li,s,(PL_regeol),(PL_bostr),(PL_reg_starttry),doutf8) #define UTF8_NOLOAD(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \ tmp = TEST_NON_UTF8(tmp); \ REXEC_FBC_UTF8_SCAN( \ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \ tmp = !tmp; \ IF_SUCCESS; \ } \ else { \ IF_FAIL; \ } \ ); \ #define UTF8_LOAD(TeSt1_UtF8, TeSt2_UtF8, IF_SUCCESS, IF_FAIL) \ if (s == PL_bostr) { \ tmp = '\n'; \ } \ else { \ U8 * const r = reghop3((U8*)s, -1, (U8*)PL_bostr); \ tmp = utf8n_to_uvchr(r, UTF8SKIP(r), 0, UTF8_ALLOW_DEFAULT); \ } \ tmp = TeSt1_UtF8; \ LOAD_UTF8_CHARCLASS_ALNUM(); \ REXEC_FBC_UTF8_SCAN( \ if (tmp == ! (TeSt2_UtF8)) { \ tmp = !tmp; \ IF_SUCCESS; \ } \ else { \ IF_FAIL; \ } \ ); \ /* The only difference between the BOUND and NBOUND cases is that * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in * NBOUND. This is accomplished by passing it in either the if or else clause, * with the other one being empty */ #define FBC_BOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER) #define FBC_BOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER) #define FBC_NBOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT) #define FBC_NBOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT) /* Common to the BOUND and NBOUND cases. Unfortunately the UTF8 tests need to * be passed in completely with the variable name being tested, which isn't * such a clean interface, but this is easier to read than it was before. We * are looking for the boundary (or non-boundary between a word and non-word * character. The utf8 and non-utf8 cases have the same logic, but the details * must be different. Find the "wordness" of the character just prior to this * one, and compare it with the wordness of this one. If they differ, we have * a boundary. At the beginning of the string, pretend that the previous * character was a new-line */ #define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \ if (utf8_target) { \ UTF8_CODE \ } \ else { /* Not utf8 */ \ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \ tmp = TEST_NON_UTF8(tmp); \ REXEC_FBC_SCAN( \ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \ tmp = !tmp; \ IF_SUCCESS; \ } \ else { \ IF_FAIL; \ } \ ); \ } \ if ((!prog->minlen && tmp) && (!reginfo || regtry(reginfo, &s))) \ goto got_it; /* We know what class REx starts with. Try to find this position... */ /* if reginfo is NULL, its a dryrun */ /* annoyingly all the vars in this routine have different names from their counterparts in regmatch. /grrr */ STATIC char * S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s, const char *strend, regmatch_info *reginfo) { dVAR; const I32 doevery = (prog->intflags & PREGf_SKIP) == 0; char *pat_string; /* The pattern's exactish string */ char *pat_end; /* ptr to end char of pat_string */ re_fold_t folder; /* Function for computing non-utf8 folds */ const U8 *fold_array; /* array for folding ords < 256 */ STRLEN ln; STRLEN lnc; register STRLEN uskip; U8 c1; U8 c2; char *e; register I32 tmp = 1; /* Scratch variable? */ register const bool utf8_target = PL_reg_match_utf8; UV utf8_fold_flags; RXi_GET_DECL(prog,progi); PERL_ARGS_ASSERT_FIND_BYCLASS; /* We know what class it must start with. */ switch (OP(c)) { case ANYOFV: case ANYOF: if (utf8_target || OP(c) == ANYOFV) { STRLEN inclasslen = strend - s; REXEC_FBC_UTF8_CLASS_SCAN( reginclass(prog, c, (U8*)s, &inclasslen, utf8_target)); } else { while (s < strend) { STRLEN skip = 1; if (REGINCLASS(prog, c, (U8*)s) || (ANYOF_FOLD_SHARP_S(c, s, strend) && /* The assignment of 2 is intentional: * for the folded sharp s, the skip is 2. */ (skip = SHARP_S_SKIP))) { if (tmp && (!reginfo || regtry(reginfo, &s))) goto got_it; else tmp = doevery; } else tmp = 1; s += skip; } } break; case CANY: REXEC_FBC_SCAN( if (tmp && (!reginfo || regtry(reginfo, &s))) goto got_it; else tmp = doevery; ); break; case EXACTFU: if (UTF_PATTERN || utf8_target) { utf8_fold_flags = 0; goto do_exactf_utf8; } fold_array = PL_fold_latin1; folder = foldEQ_latin1; /* XXX This uses the full utf8 fold because if the pattern contains * 'ss' it could match LATIN_SMALL_LETTER SHARP_S in the string. * There could be a new node type, say EXACTFU_SS, which is * generated by regcomp only if there is an 'ss', and then every * other case could goto do_exactf_non_utf8;*/ goto do_exactf_utf8; case EXACTF: if (UTF_PATTERN || utf8_target) { utf8_fold_flags = 0; goto do_exactf_utf8; } fold_array = PL_fold; folder = foldEQ; goto do_exactf_non_utf8; case EXACTFL: if (UTF_PATTERN || utf8_target) { utf8_fold_flags = 0; /* XXX, add new flag for locale */ goto do_exactf_utf8; } fold_array = PL_fold_locale; folder = foldEQ_locale; /* FALL THROUGH */ do_exactf_non_utf8: /* Neither pattern nor string are UTF8 */ /* The idea in the non-utf8 EXACTF* cases is to first find the * first character of the EXACTF* node and then, if necessary, * case-insensitively compare the full text of the node. c1 is the * first character. c2 is its fold. This logic will not work for * Unicode semantics and the german sharp ss, which hence should * not be compiled into a node that gets here. */ pat_string = STRING(c); ln = STR_LEN(c); /* length to match in octets/bytes */ e = HOP3c(strend, -((I32)ln), s); if (!reginfo && e < s) { e = s; /* Due to minlen logic of intuit() */ } c1 = *pat_string; c2 = fold_array[c1]; if (c1 == c2) { /* If char and fold are the same */ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1); } else { REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2); } break; do_exactf_utf8: /* If one of the operands is in utf8, we can't use the simpler * folding above, due to the fact that many different characters * can have the same fold, or portion of a fold, or different- * length fold */ pat_string = STRING(c); ln = STR_LEN(c); /* length to match in octets/bytes */ pat_end = pat_string + ln; lnc = (UTF_PATTERN) /* length to match in characters */ ? utf8_length((U8 *) pat_string, (U8 *) pat_end) : ln; e = HOP3c(strend, -((I32)lnc), s); if (!reginfo && e < s) { e = s; /* Due to minlen logic of intuit() */ } while (s <= e) { char *my_strend= (char *)strend; if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target, pat_string, NULL, ln, cBOOL(UTF_PATTERN), utf8_fold_flags) && (!reginfo || regtry(reginfo, &s)) ) { goto got_it; } s += UTF8SKIP(s); } break; case BOUNDL: PL_reg_flags |= RF_tainted; FBC_BOUND(isALNUM_LC, isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)), isALNUM_LC_utf8((U8*)s)); break; case NBOUNDL: PL_reg_flags |= RF_tainted; FBC_NBOUND(isALNUM_LC, isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)), isALNUM_LC_utf8((U8*)s)); break; case BOUND: FBC_BOUND(isWORDCHAR, isALNUM_uni(tmp), cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target))); break; case BOUNDA: FBC_BOUND_NOLOAD(isWORDCHAR_A, isWORDCHAR_A(tmp), isWORDCHAR_A((U8*)s)); break; case NBOUND: FBC_NBOUND(isWORDCHAR, isALNUM_uni(tmp), cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target))); break; case NBOUNDA: FBC_NBOUND_NOLOAD(isWORDCHAR_A, isWORDCHAR_A(tmp), isWORDCHAR_A((U8*)s)); break; case BOUNDU: FBC_BOUND(isWORDCHAR_L1, isALNUM_uni(tmp), cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target))); break; case NBOUNDU: FBC_NBOUND(isWORDCHAR_L1, isALNUM_uni(tmp), cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target))); break; case ALNUML: REXEC_FBC_CSCAN_TAINT( isALNUM_LC_utf8((U8*)s), isALNUM_LC(*s) ); break; case ALNUMU: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_WORD(), swash_fetch(RE_utf8_perl_word,(U8*)s, utf8_target), isWORDCHAR_L1((U8) *s) ); break; case ALNUM: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_WORD(), swash_fetch(RE_utf8_perl_word,(U8*)s, utf8_target), isWORDCHAR((U8) *s) ); break; case ALNUMA: /* Don't need to worry about utf8, as it can match only a single * byte invariant character */ REXEC_FBC_CLASS_SCAN( isWORDCHAR_A(*s)); break; case NALNUMU: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_WORD(), swash_fetch(RE_utf8_perl_word,(U8*)s, utf8_target), ! isWORDCHAR_L1((U8) *s) ); break; case NALNUM: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_WORD(), !swash_fetch(RE_utf8_perl_word, (U8*)s, utf8_target), ! isALNUM(*s) ); break; case NALNUMA: REXEC_FBC_CSCAN( !isWORDCHAR_A(*s), !isWORDCHAR_A(*s) ); break; case NALNUML: REXEC_FBC_CSCAN_TAINT( !isALNUM_LC_utf8((U8*)s), !isALNUM_LC(*s) ); break; case SPACEU: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_SPACE(), *s == ' ' || swash_fetch(RE_utf8_perl_space,(U8*)s, utf8_target), isSPACE_L1((U8) *s) ); break; case SPACE: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_SPACE(), *s == ' ' || swash_fetch(RE_utf8_perl_space,(U8*)s, utf8_target), isSPACE((U8) *s) ); break; case SPACEA: /* Don't need to worry about utf8, as it can match only a single * byte invariant character */ REXEC_FBC_CLASS_SCAN( isSPACE_A(*s)); break; case SPACEL: REXEC_FBC_CSCAN_TAINT( isSPACE_LC_utf8((U8*)s), isSPACE_LC(*s) ); break; case NSPACEU: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_SPACE(), !( *s == ' ' || swash_fetch(RE_utf8_perl_space,(U8*)s, utf8_target)), ! isSPACE_L1((U8) *s) ); break; case NSPACE: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_PERL_SPACE(), !(*s == ' ' || swash_fetch(RE_utf8_perl_space,(U8*)s, utf8_target)), ! isSPACE((U8) *s) ); break; case NSPACEA: REXEC_FBC_CSCAN( !isSPACE_A(*s), !isSPACE_A(*s) ); break; case NSPACEL: REXEC_FBC_CSCAN_TAINT( !isSPACE_LC_utf8((U8*)s), !isSPACE_LC(*s) ); break; case DIGIT: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_POSIX_DIGIT(), swash_fetch(RE_utf8_posix_digit,(U8*)s, utf8_target), isDIGIT(*s) ); break; case DIGITA: /* Don't need to worry about utf8, as it can match only a single * byte invariant character */ REXEC_FBC_CLASS_SCAN( isDIGIT_A(*s)); break; case DIGITL: REXEC_FBC_CSCAN_TAINT( isDIGIT_LC_utf8((U8*)s), isDIGIT_LC(*s) ); break; case NDIGIT: REXEC_FBC_CSCAN_PRELOAD( LOAD_UTF8_CHARCLASS_POSIX_DIGIT(), !swash_fetch(RE_utf8_posix_digit,(U8*)s, utf8_target), !isDIGIT(*s) ); break; case NDIGITA: REXEC_FBC_CSCAN( !isDIGIT_A(*s), !isDIGIT_A(*s) ); break; case NDIGITL: REXEC_FBC_CSCAN_TAINT( !isDIGIT_LC_utf8((U8*)s), !isDIGIT_LC(*s) ); break; case LNBREAK: REXEC_FBC_CSCAN( is_LNBREAK_utf8(s), is_LNBREAK_latin1(s) ); break; case VERTWS: REXEC_FBC_CSCAN( is_VERTWS_utf8(s), is_VERTWS_latin1(s) ); break; case NVERTWS: REXEC_FBC_CSCAN( !is_VERTWS_utf8(s), !is_VERTWS_latin1(s) ); break; case HORIZWS: REXEC_FBC_CSCAN( is_HORIZWS_utf8(s), is_HORIZWS_latin1(s) ); break; case NHORIZWS: REXEC_FBC_CSCAN( !is_HORIZWS_utf8(s), !is_HORIZWS_latin1(s) ); break; case AHOCORASICKC: case AHOCORASICK: { DECL_TRIE_TYPE(c); /* what trie are we using right now */ reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ]; reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ]; HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]); const char *last_start = strend - trie->minlen; #ifdef DEBUGGING const char *real_start = s; #endif STRLEN maxlen = trie->maxlen; SV *sv_points; U8 **points; /* map of where we were in the input string when reading a given char. For ASCII this is unnecessary overhead as the relationship is always 1:1, but for Unicode, especially case folded Unicode this is not true. */ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; U8 *bitmap=NULL; GET_RE_DEBUG_FLAGS_DECL; /* We can't just allocate points here. We need to wrap it in * an SV so it gets freed properly if there is a croak while * running the match */ ENTER; SAVETMPS; sv_points=newSV(maxlen * sizeof(U8 *)); SvCUR_set(sv_points, maxlen * sizeof(U8 *)); SvPOK_on(sv_points); sv_2mortal(sv_points); points=(U8**)SvPV_nolen(sv_points ); if ( trie_type != trie_utf8_fold && (trie->bitmap || OP(c)==AHOCORASICKC) ) { if (trie->bitmap) bitmap=(U8*)trie->bitmap; else bitmap=(U8*)ANYOF_BITMAP(c); } /* this is the Aho-Corasick algorithm modified a touch to include special handling for long "unknown char" sequences. The basic idea being that we use AC as long as we are dealing with a possible matching char, when we encounter an unknown char (and we have not encountered an accepting state) we scan forward until we find a legal starting char. AC matching is basically that of trie matching, except that when we encounter a failing transition, we fall back to the current states "fail state", and try the current char again, a process we repeat until we reach the root state, state 1, or a legal transition. If we fail on the root state then we can either terminate if we have reached an accepting state previously, or restart the entire process from the beginning if we have not. */ while (s <= last_start) { const U32 uniflags = UTF8_ALLOW_DEFAULT; U8 *uc = (U8*)s; U16 charid = 0; U32 base = 1; U32 state = 1; UV uvc = 0; STRLEN len = 0; STRLEN foldlen = 0; U8 *uscan = (U8*)NULL; U8 *leftmost = NULL; #ifdef DEBUGGING U32 accepted_word= 0; #endif U32 pointpos = 0; while ( state && uc <= (U8*)strend ) { int failed=0; U32 word = aho->states[ state ].wordnum; if( state==1 ) { if ( bitmap ) { DEBUG_TRIE_EXECUTE_r( if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { dump_exec_pos( (char *)uc, c, strend, real_start, (char *)uc, utf8_target ); PerlIO_printf( Perl_debug_log, " Scanning for legal start char...\n"); } ); if (utf8_target) { while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { uc += UTF8SKIP(uc); } } else { while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { uc++; } } s= (char *)uc; } if (uc >(U8*)last_start) break; } if ( word ) { U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ]; if (!leftmost || lpos < leftmost) { DEBUG_r(accepted_word=word); leftmost= lpos; } if (base==0) break; } points[pointpos++ % maxlen]= uc; REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags); DEBUG_TRIE_EXECUTE_r({ dump_exec_pos( (char *)uc, c, strend, real_start, s, utf8_target ); PerlIO_printf(Perl_debug_log, " Charid:%3u CP:%4"UVxf" ", charid, uvc); }); do { #ifdef DEBUGGING word = aho->states[ state ].wordnum; #endif base = aho->states[ state ].trans.base; DEBUG_TRIE_EXECUTE_r({ if (failed) dump_exec_pos( (char *)uc, c, strend, real_start, s, utf8_target ); PerlIO_printf( Perl_debug_log, "%sState: %4"UVxf", word=%"UVxf, failed ? " Fail transition to " : "", (UV)state, (UV)word); }); if ( base ) { U32 tmp; I32 offset; if (charid && ( ((offset = base + charid - 1 - trie->uniquecharcount)) >= 0) && ((U32)offset < trie->lasttrans) && trie->trans[offset].check == state && (tmp=trie->trans[offset].next)) { DEBUG_TRIE_EXECUTE_r( PerlIO_printf( Perl_debug_log," - legal\n")); state = tmp; break; } else { DEBUG_TRIE_EXECUTE_r( PerlIO_printf( Perl_debug_log," - fail\n")); failed = 1; state = aho->fail[state]; } } else { /* we must be accepting here */ DEBUG_TRIE_EXECUTE_r( PerlIO_printf( Perl_debug_log," - accepting\n")); failed = 1; break; } } while(state); uc += len; if (failed) { if (leftmost) break; if (!state) state = 1; } } if ( aho->states[ state ].wordnum ) { U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ]; if (!leftmost || lpos < leftmost) { DEBUG_r(accepted_word=aho->states[ state ].wordnum); leftmost = lpos; } } if (leftmost) { s = (char*)leftmost; DEBUG_TRIE_EXECUTE_r({ PerlIO_printf( Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n", (UV)accepted_word, (IV)(s - real_start) ); }); if (!reginfo || regtry(reginfo, &s)) { FREETMPS; LEAVE; goto got_it; } s = HOPc(s,1); DEBUG_TRIE_EXECUTE_r({ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n"); }); } else { DEBUG_TRIE_EXECUTE_r( PerlIO_printf( Perl_debug_log,"No match.\n")); break; } } FREETMPS; LEAVE; } break; default: Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c)); break; } return 0; got_it: return s; } /* - regexec_flags - match a regexp against a string */ I32 Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, register char *strend, char *strbeg, I32 minend, SV *sv, void *data, U32 flags) /* strend: pointer to null at end of string */ /* strbeg: real beginning of string */ /* minend: end of match must be >=minend after stringarg. */ /* data: May be used for some additional optimizations. Currently its only used, with a U32 cast, for transmitting the ganch offset when doing a /g match. This will change */ /* nosave: For optimizations. */ { dVAR; struct regexp *const prog = (struct regexp *)SvANY(rx); /*register*/ char *s; register regnode *c; /*register*/ char *startpos = stringarg; I32 minlen; /* must match at least this many chars */ I32 dontbother = 0; /* how many characters not to try at end */ I32 end_shift = 0; /* Same for the end. */ /* CC */ I32 scream_pos = -1; /* Internal iterator of scream. */ char *scream_olds = NULL; const bool utf8_target = cBOOL(DO_UTF8(sv)); I32 multiline; RXi_GET_DECL(prog,progi); regmatch_info reginfo; /* create some info to pass to regtry etc */ regexp_paren_pair *swap = NULL; GET_RE_DEBUG_FLAGS_DECL; PERL_ARGS_ASSERT_REGEXEC_FLAGS; PERL_UNUSED_ARG(data); /* Be paranoid... */ if (prog == NULL || startpos == NULL) { Perl_croak(aTHX_ "NULL regexp parameter"); return 0; } multiline = prog->extflags & RXf_PMf_MULTILINE; reginfo.prog = rx; /* Yes, sorry that this is confusing. */ RX_MATCH_UTF8_set(rx, utf8_target); DEBUG_EXECUTE_r( debug_start_match(rx, utf8_target, startpos, strend, "Matching"); ); minlen = prog->minlen; if (strend - startpos < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too short [regexec_flags]...\n")); goto phooey; } /* Check validity of program. */ if (UCHARAT(progi->program) != REG_MAGIC) { Perl_croak(aTHX_ "corrupted regexp program"); } PL_reg_flags = 0; PL_reg_eval_set = 0; PL_reg_maxiter = 0; if (RX_UTF8(rx)) PL_reg_flags |= RF_utf8; /* Mark beginning of line for ^ and lookbehind. */ reginfo.bol = startpos; /* XXX not used ??? */ PL_bostr = strbeg; reginfo.sv = sv; /* Mark end of line for $ (and such) */ PL_regeol = strend; /* see how far we have to get to not match where we matched before */ reginfo.till = startpos+minend; /* If there is a "must appear" string, look for it. */ s = startpos; if (prog->extflags & RXf_GPOS_SEEN) { /* Need to set reginfo->ganch */ MAGIC *mg; if (flags & REXEC_IGNOREPOS){ /* Means: check only at start */ reginfo.ganch = startpos + prog->gofs; DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log, "GPOS IGNOREPOS: reginfo.ganch = startpos + %"UVxf"\n",(UV)prog->gofs)); } else if (sv && SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv) && (mg = mg_find(sv, PERL_MAGIC_regex_global)) && mg->mg_len >= 0) { reginfo.ganch = strbeg + mg->mg_len; /* Defined pos() */ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log, "GPOS MAGIC: reginfo.ganch = strbeg + %"IVdf"\n",(IV)mg->mg_len)); if (prog->extflags & RXf_ANCH_GPOS) { if (s > reginfo.ganch) goto phooey; s = reginfo.ganch - prog->gofs; DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log, "GPOS ANCH_GPOS: s = ganch - %"UVxf"\n",(UV)prog->gofs)); if (s < strbeg) goto phooey; } } else if (data) { reginfo.ganch = strbeg + PTR2UV(data); DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log, "GPOS DATA: reginfo.ganch= strbeg + %"UVxf"\n",PTR2UV(data))); } else { /* pos() not defined */ reginfo.ganch = strbeg; DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log, "GPOS: reginfo.ganch = strbeg\n")); } } if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) { /* We have to be careful. If the previous successful match was from this regex we don't want a subsequent partially successful match to clobber the old results. So when we detect this possibility we add a swap buffer to the re, and switch the buffer each match. If we fail we switch it back, otherwise we leave it swapped. */ swap = prog->offs; /* do we need a save destructor here for eval dies? */ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair); } if (!(flags & REXEC_CHECKED) && (prog->check_substr != NULL || prog->check_utf8 != NULL)) { re_scream_pos_data d; d.scream_olds = &scream_olds; d.scream_pos = &scream_pos; s = re_intuit_start(rx, sv, s, strend, flags, &d); if (!s) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not present...\n")); goto phooey; /* not present */ } } /* Simplest case: anchored match need be tried only once. */ /* [unless only anchor is BOL and multiline is set] */ if (prog->extflags & (RXf_ANCH & ~RXf_ANCH_GPOS)) { if (s == startpos && regtry(®info, &startpos)) goto got_it; else if (multiline || (prog->intflags & PREGf_IMPLICIT) || (prog->extflags & RXf_ANCH_MBOL)) /* XXXX SBOL? */ { char *end; if (minlen) dontbother = minlen - 1; end = HOP3c(strend, -dontbother, strbeg) - 1; /* for multiline we only have to try after newlines */ if (prog->check_substr || prog->check_utf8) { /* because of the goto we can not easily reuse the macros for bifurcating the unicode/non-unicode match modes here like we do elsewhere - demerphq */ if (utf8_target) { if (s == startpos) goto after_try_utf8; while (1) { if (regtry(®info, &s)) { goto got_it; } after_try_utf8: if (s > end) { goto phooey; } if (prog->extflags & RXf_USE_INTUIT) { s = re_intuit_start(rx, sv, s + UTF8SKIP(s), strend, flags, NULL); if (!s) { goto phooey; } } else { s += UTF8SKIP(s); } } } /* end search for check string in unicode */ else { if (s == startpos) { goto after_try_latin; } while (1) { if (regtry(®info, &s)) { goto got_it; } after_try_latin: if (s > end) { goto phooey; } if (prog->extflags & RXf_USE_INTUIT) { s = re_intuit_start(rx, sv, s + 1, strend, flags, NULL); if (!s) { goto phooey; } } else { s++; } } } /* end search for check string in latin*/ } /* end search for check string */ else { /* search for newline */ if (s > startpos) { /*XXX: The s-- is almost definitely wrong here under unicode - demeprhq*/ s--; } /* We can use a more efficient search as newlines are the same in unicode as they are in latin */ while (s < end) { if (*s++ == '\n') { /* don't need PL_utf8skip here */ if (regtry(®info, &s)) goto got_it; } } } /* end search for newline */ } /* end anchored/multiline check string search */ goto phooey; } else if (RXf_GPOS_CHECK == (prog->extflags & RXf_GPOS_CHECK)) { /* the warning about reginfo.ganch being used without initialization is bogus -- we set it above, when prog->extflags & RXf_GPOS_SEEN and we only enter this block when the same bit is set. */ char *tmp_s = reginfo.ganch - prog->gofs; if (tmp_s >= strbeg && regtry(®info, &tmp_s)) goto got_it; goto phooey; } /* Messy cases: unanchored match. */ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) { /* we have /x+whatever/ */ /* it must be a one character string (XXXX Except UTF_PATTERN?) */ char ch; #ifdef DEBUGGING int did_match = 0; #endif if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)) utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog); ch = SvPVX_const(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)[0]; if (utf8_target) { REXEC_FBC_SCAN( if (*s == ch) { DEBUG_EXECUTE_r( did_match = 1 ); if (regtry(®info, &s)) goto got_it; s += UTF8SKIP(s); while (s < strend && *s == ch) s += UTF8SKIP(s); } ); } else { REXEC_FBC_SCAN( if (*s == ch) { DEBUG_EXECUTE_r( did_match = 1 ); if (regtry(®info, &s)) goto got_it; s++; while (s < strend && *s == ch) s++; } ); } DEBUG_EXECUTE_r(if (!did_match) PerlIO_printf(Perl_debug_log, "Did not find anchored character...\n") ); } else if (prog->anchored_substr != NULL || prog->anchored_utf8 != NULL || ((prog->float_substr != NULL || prog->float_utf8 != NULL) && prog->float_max_offset < strend - s)) { SV *must; I32 back_max; I32 back_min; char *last; char *last1; /* Last position checked before */ #ifdef DEBUGGING int did_match = 0; #endif if (prog->anchored_substr || prog->anchored_utf8) { if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)) utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog); must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr; back_max = back_min = prog->anchored_offset; } else { if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog); must = utf8_target ? prog->float_utf8 : prog->float_substr; back_max = prog->float_max_offset; back_min = prog->float_min_offset; } if (must == &PL_sv_undef) /* could not downgrade utf8 check substring, so must fail */ goto phooey; if (back_min<0) { last = strend; } else { last = HOP3c(strend, /* Cannot start after this */ -(I32)(CHR_SVLEN(must) - (SvTAIL(must) != 0) + back_min), strbeg); } if (s > PL_bostr) last1 = HOPc(s, -1); else last1 = s - 1; /* bogus */ /* XXXX check_substr already used to find "s", can optimize if check_substr==must. */ scream_pos = -1; dontbother = end_shift; strend = HOPc(strend, -dontbother); while ( (s <= last) && ((flags & REXEC_SCREAM) ? (s = screaminstr(sv, must, HOP3c(s, back_min, (back_min<0 ? strbeg : strend)) - strbeg, end_shift, &scream_pos, 0)) : (s = fbm_instr((unsigned char*)HOP3(s, back_min, (back_min<0 ? strbeg : strend)), (unsigned char*)strend, must, multiline ? FBMrf_MULTILINE : 0))) ) { /* we may be pointing at the wrong string */ if ((flags & REXEC_SCREAM) && RXp_MATCH_COPIED(prog)) s = strbeg + (s - SvPVX_const(sv)); DEBUG_EXECUTE_r( did_match = 1 ); if (HOPc(s, -back_max) > last1) { last1 = HOPc(s, -back_min); s = HOPc(s, -back_max); } else { char * const t = (last1 >= PL_bostr) ? HOPc(last1, 1) : last1 + 1; last1 = HOPc(s, -back_min); s = t; } if (utf8_target) { while (s <= last1) { if (regtry(®info, &s)) goto got_it; s += UTF8SKIP(s); } } else { while (s <= last1) { if (regtry(®info, &s)) goto got_it; s++; } } } DEBUG_EXECUTE_r(if (!did_match) { RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), SvPVX_const(must), RE_SV_DUMPLEN(must), 30); PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n", ((must == prog->anchored_substr || must == prog->anchored_utf8) ? "anchored" : "floating"), quoted, RE_SV_TAIL(must)); }); goto phooey; } else if ( (c = progi->regstclass) ) { if (minlen) { const OPCODE op = OP(progi->regstclass); /* don't bother with what can't match */ if (PL_regkind[op] != EXACT && op != CANY && PL_regkind[op] != TRIE) strend = HOPc(strend, -(minlen - 1)); } DEBUG_EXECUTE_r({ SV * const prop = sv_newmortal(); regprop(prog, prop, c); { RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1), s,strend-s,60); PerlIO_printf(Perl_debug_log, "Matching stclass %.*s against %s (%d bytes)\n", (int)SvCUR(prop), SvPVX_const(prop), quoted, (int)(strend - s)); } }); if (find_byclass(prog, c, s, strend, ®info)) goto got_it; DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n")); } else { dontbother = 0; if (prog->float_substr != NULL || prog->float_utf8 != NULL) { /* Trim the end. */ char *last; SV* float_real; if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog); float_real = utf8_target ? prog->float_utf8 : prog->float_substr; if (flags & REXEC_SCREAM) { last = screaminstr(sv, float_real, s - strbeg, end_shift, &scream_pos, 1); /* last one */ if (!last) last = scream_olds; /* Only one occurrence. */ /* we may be pointing at the wrong string */ else if (RXp_MATCH_COPIED(prog)) s = strbeg + (s - SvPVX_const(sv)); } else { STRLEN len; const char * const little = SvPV_const(float_real, len); if (SvTAIL(float_real)) { if (memEQ(strend - len + 1, little, len - 1)) last = strend - len + 1; else if (!multiline) last = memEQ(strend - len, little, len) ? strend - len : NULL; else goto find_last; } else { find_last: if (len) last = rninstr(s, strend, little, little + len); else last = strend; /* matching "$" */ } } if (last == NULL) { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%sCan't trim the tail, match fails (should not happen)%s\n", PL_colors[4], PL_colors[5])); goto phooey; /* Should not happen! */ } dontbother = strend - last + prog->float_min_offset; } if (minlen && (dontbother < minlen)) dontbother = minlen - 1; strend -= dontbother; /* this one's always in bytes! */ /* We don't know much -- general case. */ if (utf8_target) { for (;;) { if (regtry(®info, &s)) goto got_it; if (s >= strend) break; s += UTF8SKIP(s); }; } else { do { if (regtry(®info, &s)) goto got_it; } while (s++ < strend); } } /* Failure. */ goto phooey; got_it: Safefree(swap); RX_MATCH_TAINTED_set(rx, PL_reg_flags & RF_tainted); if (PL_reg_eval_set) restore_pos(aTHX_ prog); if (RXp_PAREN_NAMES(prog)) (void)hv_iterinit(RXp_PAREN_NAMES(prog)); /* make sure $`, $&, $', and $digit will work later */ if ( !(flags & REXEC_NOT_FIRST) ) { RX_MATCH_COPY_FREE(rx); if (flags & REXEC_COPY_STR) { const I32 i = PL_regeol - startpos + (stringarg - strbeg); #ifdef PERL_OLD_COPY_ON_WRITE if ((SvIsCOW(sv) || (SvFLAGS(sv) & CAN_COW_MASK) == CAN_COW_FLAGS)) { if (DEBUG_C_TEST) { PerlIO_printf(Perl_debug_log, "Copy on write: regexp capture, type %d\n", (int) SvTYPE(sv)); } prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv); prog->subbeg = (char *)SvPVX_const(prog->saved_copy); assert (SvPOKp(prog->saved_copy)); } else #endif { RX_MATCH_COPIED_on(rx); s = savepvn(strbeg, i); prog->subbeg = s; } prog->sublen = i; } else { prog->subbeg = strbeg; prog->sublen = PL_regeol - strbeg; /* strend may have been modified */ } } return 1; phooey: DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n", PL_colors[4], PL_colors[5])); if (PL_reg_eval_set) restore_pos(aTHX_ prog); if (swap) { /* we failed :-( roll it back */ Safefree(prog->offs); prog->offs = swap; } return 0; } /* - regtry - try match at specific point */ STATIC I32 /* 0 failure, 1 success */ S_regtry(pTHX_ regmatch_info *reginfo, char **startpos) { dVAR; CHECKPOINT lastcp; REGEXP *const rx = reginfo->prog; regexp *const prog = (struct regexp *)SvANY(rx); RXi_GET_DECL(prog,progi); GET_RE_DEBUG_FLAGS_DECL; PERL_ARGS_ASSERT_REGTRY; reginfo->cutpoint=NULL; if ((prog->extflags & RXf_EVAL_SEEN) && !PL_reg_eval_set) { MAGIC *mg; PL_reg_eval_set = RS_init; DEBUG_EXECUTE_r(DEBUG_s( PerlIO_printf(Perl_debug_log, " setting stack tmpbase at %"IVdf"\n", (IV)(PL_stack_sp - PL_stack_base)); )); SAVESTACK_CXPOS(); cxstack[cxstack_ix].blk_oldsp = PL_stack_sp - PL_stack_base; /* Otherwise OP_NEXTSTATE will free whatever on stack now. */ SAVETMPS; /* Apparently this is not needed, judging by wantarray. */ /* SAVEI8(cxstack[cxstack_ix].blk_gimme); cxstack[cxstack_ix].blk_gimme = G_SCALAR; */ if (reginfo->sv) { /* Make $_ available to executed code. */ if (reginfo->sv != DEFSV) { SAVE_DEFSV; DEFSV_set(reginfo->sv); } if (!(SvTYPE(reginfo->sv) >= SVt_PVMG && SvMAGIC(reginfo->sv) && (mg = mg_find(reginfo->sv, PERL_MAGIC_regex_global)))) { /* prepare for quick setting of pos */ #ifdef PERL_OLD_COPY_ON_WRITE if (SvIsCOW(reginfo->sv)) sv_force_normal_flags(reginfo->sv, 0); #endif mg = sv_magicext(reginfo->sv, NULL, PERL_MAGIC_regex_global, &PL_vtbl_mglob, NULL, 0); mg->mg_len = -1; } PL_reg_magic = mg; PL_reg_oldpos = mg->mg_len; SAVEDESTRUCTOR_X(restore_pos, prog); } if (!PL_reg_curpm) { Newxz(PL_reg_curpm, 1, PMOP); #ifdef USE_ITHREADS { SV* const repointer = &PL_sv_undef; /* this regexp is also owned by the new PL_reg_curpm, which will try to free it. */ av_push(PL_regex_padav, repointer); PL_reg_curpm->op_pmoffset = av_len(PL_regex_padav); PL_regex_pad = AvARRAY(PL_regex_padav); } #endif } #ifdef USE_ITHREADS /* It seems that non-ithreads works both with and without this code. So for efficiency reasons it seems best not to have the code compiled when it is not needed. */ /* This is safe against NULLs: */ ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); /* PM_reg_curpm owns a reference to this regexp. */ ReREFCNT_inc(rx); #endif PM_SETRE(PL_reg_curpm, rx); PL_reg_oldcurpm = PL_curpm; PL_curpm = PL_reg_curpm; if (RXp_MATCH_COPIED(prog)) { /* Here is a serious problem: we cannot rewrite subbeg, since it may be needed if this match fails. Thus $` inside (?{}) could fail... */ PL_reg_oldsaved = prog->subbeg; PL_reg_oldsavedlen = prog->sublen; #ifdef PERL_OLD_COPY_ON_WRITE PL_nrs = prog->saved_copy; #endif RXp_MATCH_COPIED_off(prog); } else PL_reg_oldsaved = NULL; prog->subbeg = PL_bostr; prog->sublen = PL_regeol - PL_bostr; /* strend may have been modified */ } DEBUG_EXECUTE_r(PL_reg_starttry = *startpos); prog->offs[0].start = *startpos - PL_bostr; PL_reginput = *startpos; PL_reglastparen = &prog->lastparen; PL_reglastcloseparen = &prog->lastcloseparen; prog->lastparen = 0; prog->lastcloseparen = 0; PL_regsize = 0; PL_regoffs = prog->offs; if (PL_reg_start_tmpl <= prog->nparens) { PL_reg_start_tmpl = prog->nparens*3/2 + 3; if(PL_reg_start_tmp) Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*); else Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*); } /* XXXX What this code is doing here?!!! There should be no need to do this again and again, PL_reglastparen should take care of this! --ilya*/ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code. * Actually, the code in regcppop() (which Ilya may be meaning by * PL_reglastparen), is not needed at all by the test suite * (op/regexp, op/pat, op/split), but that code is needed otherwise * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/ * Meanwhile, this code *is* needed for the * above-mentioned test suite tests to succeed. The common theme * on those tests seems to be returning null fields from matches. * --jhi updated by dapm */ #if 1 if (prog->nparens) { regexp_paren_pair *pp = PL_regoffs; register I32 i; for (i = prog->nparens; i > (I32)*PL_reglastparen; i--) { ++pp; pp->start = -1; pp->end = -1; } } #endif REGCP_SET(lastcp); if (regmatch(reginfo, progi->program + 1)) { PL_regoffs[0].end = PL_reginput - PL_bostr; return 1; } if (reginfo->cutpoint) *startpos= reginfo->cutpoint; REGCP_UNWIND(lastcp); return 0; } #define sayYES goto yes #define sayNO goto no #define sayNO_SILENT goto no_silent /* we dont use STMT_START/END here because it leads to "unreachable code" warnings, which are bogus, but distracting. */ #define CACHEsayNO \ if (ST.cache_mask) \ PL_reg_poscache[ST.cache_offset] |= ST.cache_mask; \ sayNO /* this is used to determine how far from the left messages like 'failed...' are printed. It should be set such that messages are inline with the regop output that created them. */ #define REPORT_CODE_OFF 32 #define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */ #define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */ #define SLAB_FIRST(s) (&(s)->states[0]) #define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1]) /* grab a new slab and return the first slot in it */ STATIC regmatch_state * S_push_slab(pTHX) { #if PERL_VERSION < 9 && !defined(PERL_CORE) dMY_CXT; #endif regmatch_slab *s = PL_regmatch_slab->next; if (!s) { Newx(s, 1, regmatch_slab); s->prev = PL_regmatch_slab; s->next = NULL; PL_regmatch_slab->next = s; } PL_regmatch_slab = s; return SLAB_FIRST(s); } /* push a new state then goto it */ #define PUSH_STATE_GOTO(state, node) \ scan = node; \ st->resume_state = state; \ goto push_state; /* push a new state with success backtracking, then goto it */ #define PUSH_YES_STATE_GOTO(state, node) \ scan = node; \ st->resume_state = state; \ goto push_yes_state; /* regmatch() - main matching routine This is basically one big switch statement in a loop. We execute an op, set 'next' to point the next op, and continue. If we come to a point which we may need to backtrack to on failure such as (A|B|C), we push a backtrack state onto the backtrack stack. On failure, we pop the top state, and re-enter the loop at the state indicated. If there are no more states to pop, we return failure. Sometimes we also need to backtrack on success; for example /A+/, where after successfully matching one A, we need to go back and try to match another one; similarly for lookahead assertions: if the assertion completes successfully, we backtrack to the state just before the assertion and then carry on. In these cases, the pushed state is marked as 'backtrack on success too'. This marking is in fact done by a chain of pointers, each pointing to the previous 'yes' state. On success, we pop to the nearest yes state, discarding any intermediate failure-only states. Sometimes a yes state is pushed just to force some cleanup code to be called at the end of a successful match or submatch; e.g. (??{$re}) uses it to free the inner regex. Note that failure backtracking rewinds the cursor position, while success backtracking leaves it alone. A pattern is complete when the END op is executed, while a subpattern such as (?=foo) is complete when the SUCCESS op is executed. Both of these ops trigger the "pop to last yes state if any, otherwise return true" behaviour. A common convention in this function is to use A and B to refer to the two subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is the subpattern to be matched possibly multiple times, while B is the entire rest of the pattern. Variable and state names reflect this convention. The states in the main switch are the union of ops and failure/success of substates associated with with that op. For example, IFMATCH is the op that does lookahead assertions /(?=A)B/ and so the IFMATCH state means 'execute IFMATCH'; while IFMATCH_A is a state saying that we have just successfully matched A and IFMATCH_A_fail is a state saying that we have just failed to match A. Resume states always come in pairs. The backtrack state we push is marked as 'IFMATCH_A', but when that is popped, we resume at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking on success or failure. The struct that holds a backtracking state is actually a big union, with one variant for each major type of op. The variable st points to the top-most backtrack struct. To make the code clearer, within each block of code we #define ST to alias the relevant union. Here's a concrete example of a (vastly oversimplified) IFMATCH implementation: switch (state) { .... #define ST st->u.ifmatch case IFMATCH: // we are executing the IFMATCH op, (?=A)B ST.foo = ...; // some state we wish to save ... // push a yes backtrack state with a resume value of // IFMATCH_A/IFMATCH_A_fail, then continue execution at the // first node of A: PUSH_YES_STATE_GOTO(IFMATCH_A, A); // NOTREACHED case IFMATCH_A: // we have successfully executed A; now continue with B next = B; bar = ST.foo; // do something with the preserved value break; case IFMATCH_A_fail: // A failed, so the assertion failed ...; // do some housekeeping, then ... sayNO; // propagate the failure #undef ST ... } For any old-timers reading this who are familiar with the old recursive approach, the code above is equivalent to: case IFMATCH: // we are executing the IFMATCH op, (?=A)B { int foo = ... ... if (regmatch(A)) { next = B; bar = foo; break; } ...; // do some housekeeping, then ... sayNO; // propagate the failure } The topmost backtrack state, pointed to by st, is usually free. If you want to claim it, populate any ST.foo fields in it with values you wish to save, then do one of PUSH_STATE_GOTO(resume_state, node); PUSH_YES_STATE_GOTO(resume_state, node); which sets that backtrack state's resume value to 'resume_state', pushes a new free entry to the top of the backtrack stack, then goes to 'node'. On backtracking, the free slot is popped, and the saved state becomes the new free state. An ST.foo field in this new top state can be temporarily accessed to retrieve values, but once the main loop is re-entered, it becomes available for reuse. Note that the depth of the backtrack stack constantly increases during the left-to-right execution of the pattern, rather than going up and down with the pattern nesting. For example the stack is at its maximum at Z at the end of the pattern, rather than at X in the following: /(((X)+)+)+....(Y)+....Z/ The only exceptions to this are lookahead/behind assertions and the cut, (?>A), which pop all the backtrack states associated with A before continuing. Backtrack state structs are allocated in slabs of about 4K in size. PL_regmatch_state and st always point to the currently active state, and PL_regmatch_slab points to the slab currently containing PL_regmatch_state. The first time regmatch() is called, the first slab is allocated, and is never freed until interpreter destruction. When the slab is full, a new one is allocated and chained to the end. At exit from regmatch(), slabs allocated since entry are freed. */ #define DEBUG_STATE_pp(pp) \ DEBUG_STATE_r({ \ DUMP_EXEC_POS(locinput, scan, utf8_target); \ PerlIO_printf(Perl_debug_log, \ " %*s"pp" %s%s%s%s%s\n", \ depth*2, "", \ PL_reg_name[st->resume_state], \ ((st==yes_state||st==mark_state) ? "[" : ""), \ ((st==yes_state) ? "Y" : ""), \ ((st==mark_state) ? "M" : ""), \ ((st==yes_state||st==mark_state) ? "]" : "") \ ); \ }); #define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1) #ifdef DEBUGGING STATIC void S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target, const char *start, const char *end, const char *blurb) { const bool utf8_pat = RX_UTF8(prog) ? 1 : 0; PERL_ARGS_ASSERT_DEBUG_START_MATCH; if (!PL_colorset) reginitcolors(); { RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0), RX_PRECOMP_const(prog), RX_PRELEN(prog), 60); RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1), start, end - start, 60); PerlIO_printf(Perl_debug_log, "%s%s REx%s %s against %s\n", PL_colors[4], blurb, PL_colors[5], s0, s1); if (utf8_target||utf8_pat) PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n", utf8_pat ? "pattern" : "", utf8_pat && utf8_target ? " and " : "", utf8_target ? "string" : "" ); } } STATIC void S_dump_exec_pos(pTHX_ const char *locinput, const regnode *scan, const char *loc_regeol, const char *loc_bostr, const char *loc_reg_starttry, const bool utf8_target) { const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4]; const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput); /* The part of the string before starttry has one color (pref0_len chars), between starttry and current position another one (pref_len - pref0_len chars), after the current position the third one. We assume that pref0_len <= pref_len, otherwise we decrease pref0_len. */ int pref_len = (locinput - loc_bostr) > (5 + taill) - l ? (5 + taill) - l : locinput - loc_bostr; int pref0_len; PERL_ARGS_ASSERT_DUMP_EXEC_POS; while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len))) pref_len++; pref0_len = pref_len - (locinput - loc_reg_starttry); if (l + pref_len < (5 + taill) && l < loc_regeol - locinput) l = ( loc_regeol - locinput > (5 + taill) - pref_len ? (5 + taill) - pref_len : loc_regeol - locinput); while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l))) l--; if (pref0_len < 0) pref0_len = 0; if (pref0_len > pref_len) pref0_len = pref_len; { const int is_uni = (utf8_target && OP(scan) != CANY) ? 1 : 0; RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0), (locinput - pref_len),pref0_len, 60, 4, 5); RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1), (locinput - pref_len + pref0_len), pref_len - pref0_len, 60, 2, 3); RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2), locinput, loc_regeol - locinput, 10, 0, 1); const STRLEN tlen=len0+len1+len2; PerlIO_printf(Perl_debug_log, "%4"IVdf" <%.*s%.*s%s%.*s>%*s|", (IV)(locinput - loc_bostr), len0, s0, len1, s1, (docolor ? "" : "> <"), len2, s2, (int)(tlen > 19 ? 0 : 19 - tlen), ""); } } #endif /* reg_check_named_buff_matched() * Checks to see if a named buffer has matched. The data array of * buffer numbers corresponding to the buffer is expected to reside * in the regexp->data->data array in the slot stored in the ARG() of * node involved. Note that this routine doesn't actually care about the * name, that information is not preserved from compilation to execution. * Returns the index of the leftmost defined buffer with the given name * or 0 if non of the buffers matched. */ STATIC I32 S_reg_check_named_buff_matched(pTHX_ const regexp *rex, const regnode *scan) { I32 n; RXi_GET_DECL(rex,rexi); SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); I32 *nums=(I32*)SvPVX(sv_dat); PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED; for ( n=0; n= nums[n] && PL_regoffs[nums[n]].end != -1) { return nums[n]; } } return 0; } /* free all slabs above current one - called during LEAVE_SCOPE */ STATIC void S_clear_backtrack_stack(pTHX_ void *p) { regmatch_slab *s = PL_regmatch_slab->next; PERL_UNUSED_ARG(p); if (!s) return; PL_regmatch_slab->next = NULL; while (s) { regmatch_slab * const osl = s; s = s->next; Safefree(osl); } } #define SETREX(Re1,Re2) \ if (PL_reg_eval_set) PM_SETRE((PL_reg_curpm), (Re2)); \ Re1 = (Re2) STATIC I32 /* 0 failure, 1 success */ S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog) { #if PERL_VERSION < 9 && !defined(PERL_CORE) dMY_CXT; #endif dVAR; register const bool utf8_target = PL_reg_match_utf8; const U32 uniflags = UTF8_ALLOW_DEFAULT; REGEXP *rex_sv = reginfo->prog; regexp *rex = (struct regexp *)SvANY(rex_sv); RXi_GET_DECL(rex,rexi); I32 oldsave; /* the current state. This is a cached copy of PL_regmatch_state */ register regmatch_state *st; /* cache heavy used fields of st in registers */ register regnode *scan; register regnode *next; register U32 n = 0; /* general value; init to avoid compiler warning */ register I32 ln = 0; /* len or last; init to avoid compiler warning */ register char *locinput = PL_reginput; register I32 nextchr; /* is always set to UCHARAT(locinput) */ bool result = 0; /* return value of S_regmatch */ int depth = 0; /* depth of backtrack stack */ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */ const U32 max_nochange_depth = (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ? 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH; regmatch_state *yes_state = NULL; /* state to pop to on success of subpattern */ /* mark_state piggy backs on the yes_state logic so that when we unwind the stack on success we can update the mark_state as we go */ regmatch_state *mark_state = NULL; /* last mark state we have seen */ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */ U32 state_num; bool no_final = 0; /* prevent failure from backtracking? */ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */ char *startpoint = PL_reginput; SV *popmark = NULL; /* are we looking for a mark? */ SV *sv_commit = NULL; /* last mark name seen in failure */ SV *sv_yes_mark = NULL; /* last mark name we have seen during a successful match */ U32 lastopen = 0; /* last open we saw */ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0; SV* const oreplsv = GvSV(PL_replgv); /* these three flags are set by various ops to signal information to * the very next op. They have a useful lifetime of exactly one loop * iteration, and are not preserved or restored by state pushes/pops */ bool sw = 0; /* the condition value in (?(cond)a|b) */ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */ int logical = 0; /* the following EVAL is: 0: (?{...}) 1: (?(?{...})X|Y) 2: (??{...}) or the following IFMATCH/UNLESSM is: false: plain (?=foo) true: used as a condition: (?(?=foo)) */ #ifdef DEBUGGING GET_RE_DEBUG_FLAGS_DECL; #endif PERL_ARGS_ASSERT_REGMATCH; DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({ PerlIO_printf(Perl_debug_log,"regmatch start\n"); })); /* on first ever call to regmatch, allocate first slab */ if (!PL_regmatch_slab) { Newx(PL_regmatch_slab, 1, regmatch_slab); PL_regmatch_slab->prev = NULL; PL_regmatch_slab->next = NULL; PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab); } oldsave = PL_savestack_ix; SAVEDESTRUCTOR_X(S_clear_backtrack_stack, NULL); SAVEVPTR(PL_regmatch_slab); SAVEVPTR(PL_regmatch_state); /* grab next free state slot */ st = ++PL_regmatch_state; if (st > SLAB_LAST(PL_regmatch_slab)) st = PL_regmatch_state = S_push_slab(aTHX); /* Note that nextchr is a byte even in UTF */ nextchr = UCHARAT(locinput); scan = prog; while (scan != NULL) { DEBUG_EXECUTE_r( { SV * const prop = sv_newmortal(); regnode *rnext=regnext(scan); DUMP_EXEC_POS( locinput, scan, utf8_target ); regprop(rex, prop, scan); PerlIO_printf(Perl_debug_log, "%3"IVdf":%*s%s(%"IVdf")\n", (IV)(scan - rexi->program), depth*2, "", SvPVX_const(prop), (PL_regkind[OP(scan)] == END || !rnext) ? 0 : (IV)(rnext - rexi->program)); }); next = scan + NEXT_OFF(scan); if (next == scan) next = NULL; state_num = OP(scan); reenter_switch: assert(PL_reglastparen == &rex->lastparen); assert(PL_reglastcloseparen == &rex->lastcloseparen); assert(PL_regoffs == rex->offs); switch (state_num) { case BOL: if (locinput == PL_bostr) { /* reginfo->till = reginfo->bol; */ break; } sayNO; case MBOL: if (locinput == PL_bostr || ((nextchr || locinput < PL_regeol) && locinput[-1] == '\n')) { break; } sayNO; case SBOL: if (locinput == PL_bostr) break; sayNO; case GPOS: if (locinput == reginfo->ganch) break; sayNO; case KEEPS: /* update the startpoint */ st->u.keeper.val = PL_regoffs[0].start; PL_reginput = locinput; PL_regoffs[0].start = locinput - PL_bostr; PUSH_STATE_GOTO(KEEPS_next, next); /*NOT-REACHED*/ case KEEPS_next_fail: /* rollback the start point change */ PL_regoffs[0].start = st->u.keeper.val; sayNO_SILENT; /*NOT-REACHED*/ case EOL: goto seol; case MEOL: if ((nextchr || locinput < PL_regeol) && nextchr != '\n') sayNO; break; case SEOL: seol: if ((nextchr || locinput < PL_regeol) && nextchr != '\n') sayNO; if (PL_regeol - locinput > 1) sayNO; break; case EOS: if (PL_regeol != locinput) sayNO; break; case SANY: if (!nextchr && locinput >= PL_regeol) sayNO; if (utf8_target) { locinput += PL_utf8skip[nextchr]; if (locinput > PL_regeol) sayNO; nextchr = UCHARAT(locinput); } else nextchr = UCHARAT(++locinput); break; case CANY: if (!nextchr && locinput >= PL_regeol) sayNO; nextchr = UCHARAT(++locinput); break; case REG_ANY: if ((!nextchr && locinput >= PL_regeol) || nextchr == '\n') sayNO; if (utf8_target) { locinput += PL_utf8skip[nextchr]; if (locinput > PL_regeol) sayNO; nextchr = UCHARAT(locinput); } else nextchr = UCHARAT(++locinput); break; #undef ST #define ST st->u.trie case TRIEC: /* In this case the charclass data is available inline so we can fail fast without a lot of extra overhead. */ if (scan->flags == EXACT || !utf8_target) { if(!ANYOF_BITMAP_TEST(scan, *locinput)) { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s %sfailed to match trie start class...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) ); sayNO_SILENT; /* NOTREACHED */ } } /* FALL THROUGH */ case TRIE: /* the basic plan of execution of the trie is: * At the beginning, run though all the states, and * find the longest-matching word. Also remember the position * of the shortest matching word. For example, this pattern: * 1 2 3 4 5 * ab|a|x|abcd|abc * when matched against the string "abcde", will generate * accept states for all words except 3, with the longest * matching word being 4, and the shortest being 1 (with * the position being after char 1 of the string). * * Then for each matching word, in word order (i.e. 1,2,4,5), * we run the remainder of the pattern; on each try setting * the current position to the character following the word, * returning to try the next word on failure. * * We avoid having to build a list of words at runtime by * using a compile-time structure, wordinfo[].prev, which * gives, for each word, the previous accepting word (if any). * In the case above it would contain the mappings 1->2, 2->0, * 3->0, 4->5, 5->1. We can use this table to generate, from * the longest word (4 above), a list of all words, by * following the list of prev pointers; this gives us the * unordered list 4,5,1,2. Then given the current word we have * just tried, we can go through the list and find the * next-biggest word to try (so if we just failed on word 2, * the next in the list is 4). * * Since at runtime we don't record the matching position in * the string for each word, we have to work that out for * each word we're about to process. The wordinfo table holds * the character length of each word; given that we recorded * at the start: the position of the shortest word and its * length in chars, we just need to move the pointer the * difference between the two char lengths. Depending on * Unicode status and folding, that's cheap or expensive. * * This algorithm is optimised for the case where are only a * small number of accept states, i.e. 0,1, or maybe 2. * With lots of accepts states, and having to try all of them, * it becomes quadratic on number of accept states to find all * the next words. */ { /* what type of TRIE am I? (utf8 makes this contextual) */ DECL_TRIE_TYPE(scan); /* what trie are we using right now */ reg_trie_data * const trie = (reg_trie_data*)rexi->data->data[ ARG( scan ) ]; HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]); U32 state = trie->startstate; if (trie->bitmap && trie_type != trie_utf8_fold && !TRIE_BITMAP_TEST(trie,*locinput) ) { if (trie->states[ state ].wordnum) { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s %smatched empty string...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) ); if (!trie->jump) break; } else { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s %sfailed to match trie start class...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) ); sayNO_SILENT; } } { U8 *uc = ( U8* )locinput; STRLEN len = 0; STRLEN foldlen = 0; U8 *uscan = (U8*)NULL; U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; U32 charcount = 0; /* how many input chars we have matched */ U32 accepted = 0; /* have we seen any accepting states? */ ST.B = next; ST.jump = trie->jump; ST.me = scan; ST.firstpos = NULL; ST.longfold = FALSE; /* char longer if folded => it's harder */ ST.nextword = 0; /* fully traverse the TRIE; note the position of the shortest accept state and the wordnum of the longest accept state */ while ( state && uc <= (U8*)PL_regeol ) { U32 base = trie->states[ state ].trans.base; UV uvc = 0; U16 charid = 0; U16 wordnum; wordnum = trie->states[ state ].wordnum; if (wordnum) { /* it's an accept state */ if (!accepted) { accepted = 1; /* record first match position */ if (ST.longfold) { ST.firstpos = (U8*)locinput; ST.firstchars = 0; } else { ST.firstpos = uc; ST.firstchars = charcount; } } if (!ST.nextword || wordnum < ST.nextword) ST.nextword = wordnum; ST.topword = wordnum; } DEBUG_TRIE_EXECUTE_r({ DUMP_EXEC_POS( (char *)uc, scan, utf8_target ); PerlIO_printf( Perl_debug_log, "%*s %sState: %4"UVxf" Accepted: %c ", 2+depth * 2, "", PL_colors[4], (UV)state, (accepted ? 'Y' : 'N')); }); /* read a char and goto next state */ if ( base ) { I32 offset; REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags); charcount++; if (foldlen>0) ST.longfold = TRUE; if (charid && ( ((offset = base + charid - 1 - trie->uniquecharcount)) >= 0) && ((U32)offset < trie->lasttrans) && trie->trans[offset].check == state) { state = trie->trans[offset].next; } else { state = 0; } uc += len; } else { state = 0; } DEBUG_TRIE_EXECUTE_r( PerlIO_printf( Perl_debug_log, "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n", charid, uvc, (UV)state, PL_colors[5] ); ); } if (!accepted) sayNO; /* calculate total number of accept states */ { U16 w = ST.topword; accepted = 0; while (w) { w = trie->wordinfo[w].prev; accepted++; } ST.accepted = accepted; } DEBUG_EXECUTE_r( PerlIO_printf( Perl_debug_log, "%*s %sgot %"IVdf" possible matches%s\n", REPORT_CODE_OFF + depth * 2, "", PL_colors[4], (IV)ST.accepted, PL_colors[5] ); ); goto trie_first_try; /* jump into the fail handler */ }} /* NOTREACHED */ case TRIE_next_fail: /* we failed - try next alternative */ if ( ST.jump) { REGCP_UNWIND(ST.cp); for (n = *PL_reglastparen; n > ST.lastparen; n--) PL_regoffs[n].end = -1; *PL_reglastparen = n; } if (!--ST.accepted) { DEBUG_EXECUTE_r({ PerlIO_printf( Perl_debug_log, "%*s %sTRIE failed...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5] ); }); sayNO_SILENT; } { /* Find next-highest word to process. Note that this code * is O(N^2) per trie run (O(N) per branch), so keep tight */ register U16 min = 0; register U16 word; register U16 const nextword = ST.nextword; register reg_trie_wordinfo * const wordinfo = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo; for (word=ST.topword; word; word=wordinfo[word].prev) { if (word > nextword && (!min || word < min)) min = word; } ST.nextword = min; } trie_first_try: if (do_cutgroup) { do_cutgroup = 0; no_final = 0; } if ( ST.jump) { ST.lastparen = *PL_reglastparen; REGCP_SET(ST.cp); } /* find start char of end of current word */ { U32 chars; /* how many chars to skip */ U8 *uc = ST.firstpos; reg_trie_data * const trie = (reg_trie_data*)rexi->data->data[ARG(ST.me)]; assert((trie->wordinfo[ST.nextword].len - trie->prefixlen) >= ST.firstchars); chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen) - ST.firstchars; if (ST.longfold) { /* the hard option - fold each char in turn and find * its folded length (which may be different */ U8 foldbuf[UTF8_MAXBYTES_CASE + 1]; STRLEN foldlen; STRLEN len; UV uvc; U8 *uscan; while (chars) { if (utf8_target) { uvc = utf8n_to_uvuni((U8*)uc, UTF8_MAXLEN, &len, uniflags); uc += len; } else { uvc = *uc; uc++; } uvc = to_uni_fold(uvc, foldbuf, &foldlen); uscan = foldbuf; while (foldlen) { if (!--chars) break; uvc = utf8n_to_uvuni(uscan, UTF8_MAXLEN, &len, uniflags); uscan += len; foldlen -= len; } } } else { if (utf8_target) while (chars--) uc += UTF8SKIP(uc); else uc += chars; } PL_reginput = (char *)uc; } scan = (ST.jump && ST.jump[ST.nextword]) ? ST.me + ST.jump[ST.nextword] : ST.B; DEBUG_EXECUTE_r({ PerlIO_printf( Perl_debug_log, "%*s %sTRIE matched word #%d, continuing%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], ST.nextword, PL_colors[5] ); }); if (ST.accepted > 1 || has_cutgroup) { PUSH_STATE_GOTO(TRIE_next, scan); /* NOTREACHED */ } /* only one choice left - just continue */ DEBUG_EXECUTE_r({ AV *const trie_words = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]); SV ** const tmp = av_fetch( trie_words, ST.nextword-1, 0 ); SV *sv= tmp ? sv_newmortal() : NULL; PerlIO_printf( Perl_debug_log, "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], ST.nextword, tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0, PL_colors[0], PL_colors[1], (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII ) : "not compiled under -Dr", PL_colors[5] ); }); locinput = PL_reginput; nextchr = UCHARAT(locinput); continue; /* execute rest of RE */ /* NOTREACHED */ #undef ST case EXACT: { char *s = STRING(scan); ln = STR_LEN(scan); if (utf8_target != UTF_PATTERN) { /* The target and the pattern have differing utf8ness. */ char *l = locinput; const char * const e = s + ln; if (utf8_target) { /* The target is utf8, the pattern is not utf8. */ while (s < e) { STRLEN ulen; if (l >= PL_regeol) sayNO; if (NATIVE_TO_UNI(*(U8*)s) != utf8n_to_uvuni((U8*)l, UTF8_MAXBYTES, &ulen, uniflags)) sayNO; l += ulen; s ++; } } else { /* The target is not utf8, the pattern is utf8. */ while (s < e) { STRLEN ulen; if (l >= PL_regeol) sayNO; if (NATIVE_TO_UNI(*((U8*)l)) != utf8n_to_uvuni((U8*)s, UTF8_MAXBYTES, &ulen, uniflags)) sayNO; s += ulen; l ++; } } locinput = l; nextchr = UCHARAT(locinput); break; } /* The target and the pattern have the same utf8ness. */ /* Inline the first character, for speed. */ if (UCHARAT(s) != nextchr) sayNO; if (PL_regeol - locinput < ln) sayNO; if (ln > 1 && memNE(s, locinput, ln)) sayNO; locinput += ln; nextchr = UCHARAT(locinput); break; } case EXACTFL: { re_fold_t folder; const U8 * fold_array; const char * s; U32 fold_utf8_flags; PL_reg_flags |= RF_tainted; folder = foldEQ_locale; fold_array = PL_fold_locale; fold_utf8_flags = 0; goto do_exactf; case EXACTFU: folder = foldEQ_latin1; fold_array = PL_fold_latin1; fold_utf8_flags = 0; goto do_exactf; case EXACTF: folder = foldEQ; fold_array = PL_fold; fold_utf8_flags = 0; do_exactf: s = STRING(scan); ln = STR_LEN(scan); if (utf8_target || UTF_PATTERN) { /* Either target or the pattern are utf8. */ const char * const l = locinput; char *e = PL_regeol; if (! foldEQ_utf8_flags(s, 0, ln, cBOOL(UTF_PATTERN), l, &e, 0, utf8_target, fold_utf8_flags)) { /* One more case for the sharp s: * pack("U0U*", 0xDF) =~ /ss/i, * the 0xC3 0x9F are the UTF-8 * byte sequence for the U+00DF. */ if (!(utf8_target && toLOWER(s[0]) == 's' && ln >= 2 && toLOWER(s[1]) == 's' && (U8)l[0] == 0xC3 && e - l >= 2 && (U8)l[1] == 0x9F)) sayNO; } locinput = e; nextchr = UCHARAT(locinput); break; } /* Neither the target nor the pattern are utf8 */ if (UCHARAT(s) != nextchr && UCHARAT(s) != fold_array[nextchr]) { sayNO; } if (PL_regeol - locinput < ln) sayNO; if (ln > 1 && ! folder(s, locinput, ln)) sayNO; locinput += ln; nextchr = UCHARAT(locinput); break; } /* XXX Could improve efficiency by separating these all out using a * macro or in-line function. At that point regcomp.c would no longer * have to set the FLAGS fields of these */ case BOUNDL: case NBOUNDL: PL_reg_flags |= RF_tainted; /* FALL THROUGH */ case BOUND: case BOUNDU: case BOUNDA: case NBOUND: case NBOUNDU: case NBOUNDA: /* was last char in word? */ if (utf8_target && FLAGS(scan) != REGEX_ASCII_RESTRICTED_CHARSET) { if (locinput == PL_bostr) ln = '\n'; else { const U8 * const r = reghop3((U8*)locinput, -1, (U8*)PL_bostr); ln = utf8n_to_uvchr(r, UTF8SKIP(r), 0, uniflags); } if (FLAGS(scan) != REGEX_LOCALE_CHARSET) { ln = isALNUM_uni(ln); LOAD_UTF8_CHARCLASS_ALNUM(); n = swash_fetch(PL_utf8_alnum, (U8*)locinput, utf8_target); } else { ln = isALNUM_LC_uvchr(UNI_TO_NATIVE(ln)); n = isALNUM_LC_utf8((U8*)locinput); } } else { /* Here the string isn't utf8, or is utf8 and only ascii * characters are to match \w. In the latter case looking at * the byte just prior to the current one may be just the final * byte of a multi-byte character. This is ok. There are two * cases: * 1) it is a single byte character, and then the test is doing * just what it's supposed to. * 2) it is a multi-byte character, in which case the final * byte is never mistakable for ASCII, and so the test * will say it is not a word character, which is the * correct answer. */ ln = (locinput != PL_bostr) ? UCHARAT(locinput - 1) : '\n'; switch (FLAGS(scan)) { case REGEX_UNICODE_CHARSET: ln = isWORDCHAR_L1(ln); n = isWORDCHAR_L1(nextchr); break; case REGEX_LOCALE_CHARSET: ln = isALNUM_LC(ln); n = isALNUM_LC(nextchr); break; case REGEX_DEPENDS_CHARSET: ln = isALNUM(ln); n = isALNUM(nextchr); break; case REGEX_ASCII_RESTRICTED_CHARSET: ln = isWORDCHAR_A(ln); n = isWORDCHAR_A(nextchr); break; default: Perl_croak(aTHX_ "panic: Unexpected FLAGS %u in op %u", FLAGS(scan), OP(scan)); break; } } /* Note requires that all BOUNDs be lower than all NBOUNDs in * regcomp.sym */ if (((!ln) == (!n)) == (OP(scan) < NBOUND)) sayNO; break; case ANYOFV: case ANYOF: if (utf8_target || state_num == ANYOFV) { STRLEN inclasslen = PL_regeol - locinput; if (locinput >= PL_regeol) sayNO; if (!reginclass(rex, scan, (U8*)locinput, &inclasslen, utf8_target)) sayNO; locinput += inclasslen; nextchr = UCHARAT(locinput); break; } else { if (nextchr < 0) nextchr = UCHARAT(locinput); if (!nextchr && locinput >= PL_regeol) sayNO; if (!REGINCLASS(rex, scan, (U8*)locinput)) sayNO; nextchr = UCHARAT(++locinput); break; } break; /* Special char classes - The defines start on line 129 or so */ CCC_TRY_U(ALNUM, NALNUM, isWORDCHAR, ALNUML, NALNUML, isALNUM_LC, isALNUM_LC_utf8, ALNUMU, NALNUMU, isWORDCHAR_L1, ALNUMA, NALNUMA, isWORDCHAR_A, perl_word, "a"); CCC_TRY_U(SPACE, NSPACE, isSPACE, SPACEL, NSPACEL, isSPACE_LC, isSPACE_LC_utf8, SPACEU, NSPACEU, isSPACE_L1, SPACEA, NSPACEA, isSPACE_A, perl_space, " "); CCC_TRY(DIGIT, NDIGIT, isDIGIT, DIGITL, NDIGITL, isDIGIT_LC, isDIGIT_LC_utf8, DIGITA, NDIGITA, isDIGIT_A, posix_digit, "0"); case CLUMP: /* Match \X: logical Unicode character. This is defined as a Unicode extended Grapheme Cluster */ /* From http://www.unicode.org/reports/tr29 (5.2 version). An extended Grapheme Cluster is: CR LF | Prepend* Begin Extend* | . Begin is (Hangul-syllable | ! Control) Extend is (Grapheme_Extend | Spacing_Mark) Control is [ GCB_Control CR LF ] The discussion below shows how the code for CLUMP is derived from this regex. Note that most of these concepts are from property values of the Grapheme Cluster Boundary (GCB) property. No code point can have multiple property values for a given property. Thus a code point in Prepend can't be in Control, but it must be in !Control. This is why Control above includes GCB_Control plus CR plus LF. The latter two are used in the GCB property separately, and so can't be in GCB_Control, even though they logically are controls. Control is not the same as gc=cc, but includes format and other characters as well. The Unicode definition of Hangul-syllable is: L+ | (L* ( ( V | LV ) V* | LVT ) T*) | T+ ) Each of these is a value for the GCB property, and hence must be disjoint, so the order they are tested is immaterial, so the above can safely be changed to T+ | L+ | (L* ( LVT | ( V | LV ) V*) T*) The last two terms can be combined like this: L* ( L | (( LVT | ( V | LV ) V*) T*)) And refactored into this: L* (L | LVT T* | V V* T* | LV V* T*) That means that if we have seen any L's at all we can quit there, but if the next character is a LVT, a V or and LV we should keep going. There is a subtlety with Prepend* which showed up in testing. Note that the Begin, and only the Begin is required in: | Prepend* Begin Extend* Also, Begin contains '! Control'. A Prepend must be a '! Control', which means it must be a Begin. What it comes down to is that if we match Prepend* and then find no suitable Begin afterwards, that if we backtrack the last Prepend, that one will be a suitable Begin. */ if (locinput >= PL_regeol) sayNO; if (! utf8_target) { /* Match either CR LF or '.', as all the other possibilities * require utf8 */ locinput++; /* Match the . or CR */ if (nextchr == '\r' && locinput < PL_regeol && UCHARAT(locinput) == '\n') locinput++; } else { /* Utf8: See if is ( CR LF ); already know that locinput < * PL_regeol, so locinput+1 is in bounds */ if (nextchr == '\r' && UCHARAT(locinput + 1) == '\n') { locinput += 2; } else { /* In case have to backtrack to beginning, then match '.' */ char *starting = locinput; /* In case have to backtrack the last prepend */ char *previous_prepend = 0; LOAD_UTF8_CHARCLASS_GCB(); /* Match (prepend)* */ while (locinput < PL_regeol && swash_fetch(PL_utf8_X_prepend, (U8*)locinput, utf8_target)) { previous_prepend = locinput; locinput += UTF8SKIP(locinput); } /* As noted above, if we matched a prepend character, but * the next thing won't match, back off the last prepend we * matched, as it is guaranteed to match the begin */ if (previous_prepend && (locinput >= PL_regeol || ! swash_fetch(PL_utf8_X_begin, (U8*)locinput, utf8_target))) { locinput = previous_prepend; } /* Note that here we know PL_regeol > locinput, as we * tested that upon input to this switch case, and if we * moved locinput forward, we tested the result just above * and it either passed, or we backed off so that it will * now pass */ if (! swash_fetch(PL_utf8_X_begin, (U8*)locinput, utf8_target)) { /* Here did not match the required 'Begin' in the * second term. So just match the very first * character, the '.' of the final term of the regex */ locinput = starting + UTF8SKIP(starting); } else { /* Here is the beginning of a character that can have * an extender. It is either a hangul syllable, or a * non-control */ if (swash_fetch(PL_utf8_X_non_hangul, (U8*)locinput, utf8_target)) { /* Here not a Hangul syllable, must be a * ('! * Control') */ locinput += UTF8SKIP(locinput); } else { /* Here is a Hangul syllable. It can be composed * of several individual characters. One * possibility is T+ */ if (swash_fetch(PL_utf8_X_T, (U8*)locinput, utf8_target)) { while (locinput < PL_regeol && swash_fetch(PL_utf8_X_T, (U8*)locinput, utf8_target)) { locinput += UTF8SKIP(locinput); } } else { /* Here, not T+, but is a Hangul. That means * it is one of the others: L, LV, LVT or V, * and matches: * L* (L | LVT T* | V V* T* | LV V* T*) */ /* Match L* */ while (locinput < PL_regeol && swash_fetch(PL_utf8_X_L, (U8*)locinput, utf8_target)) { locinput += UTF8SKIP(locinput); } /* Here, have exhausted L*. If the next * character is not an LV, LVT nor V, it means * we had to have at least one L, so matches L+ * in the original equation, we have a complete * hangul syllable. Are done. */ if (locinput < PL_regeol && swash_fetch(PL_utf8_X_LV_LVT_V, (U8*)locinput, utf8_target)) { /* Otherwise keep going. Must be LV, LVT * or V. See if LVT */ if (swash_fetch(PL_utf8_X_LVT, (U8*)locinput, utf8_target)) { locinput += UTF8SKIP(locinput); } else { /* Must be V or LV. Take it, then * match V* */ locinput += UTF8SKIP(locinput); while (locinput < PL_regeol && swash_fetch(PL_utf8_X_V, (U8*)locinput, utf8_target)) { locinput += UTF8SKIP(locinput); } } /* And any of LV, LVT, or V can be followed * by T* */ while (locinput < PL_regeol && swash_fetch(PL_utf8_X_T, (U8*)locinput, utf8_target)) { locinput += UTF8SKIP(locinput); } } } } /* Match any extender */ while (locinput < PL_regeol && swash_fetch(PL_utf8_X_extend, (U8*)locinput, utf8_target)) { locinput += UTF8SKIP(locinput); } } } if (locinput > PL_regeol) sayNO; } nextchr = UCHARAT(locinput); break; case NREFFL: { /* The capture buffer cases. The ones beginning with N for the named buffers just convert to the equivalent numbered and pretend they were called as the corresponding numbered buffer op. */ /* don't initialize these, it makes C++ unhappy */ char *s; char type; re_fold_t folder; const U8 *fold_array; UV utf8_fold_flags; PL_reg_flags |= RF_tainted; folder = foldEQ_locale; fold_array = PL_fold_locale; type = REFFL; goto do_nref; case NREFFU: folder = foldEQ_latin1; fold_array = PL_fold_latin1; type = REFFU; utf8_fold_flags = 0; goto do_nref; case NREFF: folder = foldEQ; fold_array = PL_fold; type = REFF; utf8_fold_flags = 0; goto do_nref; case NREF: type = REF; folder = NULL; fold_array = NULL; utf8_fold_flags = 0; do_nref: /* For the named back references, find the corresponding buffer * number */ n = reg_check_named_buff_matched(rex,scan); if ( ! n ) { sayNO; } goto do_nref_ref_common; case REFFL: PL_reg_flags |= RF_tainted; folder = foldEQ_locale; fold_array = PL_fold_locale; utf8_fold_flags = 0; goto do_ref; case REFFU: folder = foldEQ_latin1; fold_array = PL_fold_latin1; utf8_fold_flags = 0; goto do_ref; case REFF: folder = foldEQ; fold_array = PL_fold; utf8_fold_flags = 0; goto do_ref; case REF: folder = NULL; fold_array = NULL; utf8_fold_flags = 0; do_ref: type = OP(scan); n = ARG(scan); /* which paren pair */ do_nref_ref_common: ln = PL_regoffs[n].start; PL_reg_leftiter = PL_reg_maxiter; /* Void cache */ if (*PL_reglastparen < n || ln == -1) sayNO; /* Do not match unless seen CLOSEn. */ if (ln == PL_regoffs[n].end) break; s = PL_bostr + ln; if (type != REF /* REF can do byte comparison */ && (utf8_target || type == REFFU)) { /* XXX handle REFFL better */ char * limit = PL_regeol; /* This call case insensitively compares the entire buffer * at s, with the current input starting at locinput, but * not going off the end given by PL_regeol, and returns in * limit upon success, how much of the current input was * matched */ if (! foldEQ_utf8_flags(s, NULL, PL_regoffs[n].end - ln, utf8_target, locinput, &limit, 0, utf8_target, utf8_fold_flags)) { sayNO; } locinput = limit; nextchr = UCHARAT(locinput); break; } /* Not utf8: Inline the first character, for speed. */ if (UCHARAT(s) != nextchr && (type == REF || UCHARAT(s) != fold_array[nextchr])) sayNO; ln = PL_regoffs[n].end - ln; if (locinput + ln > PL_regeol) sayNO; if (ln > 1 && (type == REF ? memNE(s, locinput, ln) : ! folder(s, locinput, ln))) sayNO; locinput += ln; nextchr = UCHARAT(locinput); break; } case NOTHING: case TAIL: break; case BACK: break; #undef ST #define ST st->u.eval { SV *ret; REGEXP *re_sv; regexp *re; regexp_internal *rei; regnode *startpoint; case GOSTART: case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */ if (cur_eval && cur_eval->locinput==locinput) { if (cur_eval->u.eval.close_paren == (U32)ARG(scan)) Perl_croak(aTHX_ "Infinite recursion in regex"); if ( ++nochange_depth > max_nochange_depth ) Perl_croak(aTHX_ "Pattern subroutine nesting without pos change" " exceeded limit in regex"); } else { nochange_depth = 0; } re_sv = rex_sv; re = rex; rei = rexi; (void)ReREFCNT_inc(rex_sv); if (OP(scan)==GOSUB) { startpoint = scan + ARG2L(scan); ST.close_paren = ARG(scan); } else { startpoint = rei->program+1; ST.close_paren = 0; } goto eval_recurse_doit; /* NOTREACHED */ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */ if (cur_eval && cur_eval->locinput==locinput) { if ( ++nochange_depth > max_nochange_depth ) Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex"); } else { nochange_depth = 0; } { /* execute the code in the {...} */ dSP; SV ** const before = SP; OP_4tree * const oop = PL_op; COP * const ocurcop = PL_curcop; PAD *old_comppad; char *saved_regeol = PL_regeol; struct re_save_state saved_state; /* To not corrupt the existing regex state while executing the * eval we would normally put it on the save stack, like with * save_re_context. However, re-evals have a weird scoping so we * can't just add ENTER/LEAVE here. With that, things like * * (?{$a=2})(a(?{local$a=$a+1}))*aak*c(?{$b=$a}) * * would break, as they expect the localisation to be unwound * only when the re-engine backtracks through the bit that * localised it. * * What we do instead is just saving the state in a local c * variable. */ Copy(&PL_reg_state, &saved_state, 1, struct re_save_state); n = ARG(scan); PL_op = (OP_4tree*)rexi->data->data[n]; DEBUG_STATE_r( PerlIO_printf(Perl_debug_log, " re_eval 0x%"UVxf"\n", PTR2UV(PL_op)) ); PAD_SAVE_LOCAL(old_comppad, (PAD*)rexi->data->data[n + 2]); PL_regoffs[0].end = PL_reg_magic->mg_len = locinput - PL_bostr; if (sv_yes_mark) { SV *sv_mrk = get_sv("REGMARK", 1); sv_setsv(sv_mrk, sv_yes_mark); } CALLRUNOPS(aTHX); /* Scalar context. */ SPAGAIN; if (SP == before) ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */ else { ret = POPs; PUTBACK; } Copy(&saved_state, &PL_reg_state, 1, struct re_save_state); PL_op = oop; PAD_RESTORE_LOCAL(old_comppad); PL_curcop = ocurcop; PL_regeol = saved_regeol; if (!logical) { /* /(?{...})/ */ sv_setsv(save_scalar(PL_replgv), ret); break; } } if (logical == 2) { /* Postponed subexpression: /(??{...})/ */ logical = 0; { /* extract RE object from returned value; compiling if * necessary */ MAGIC *mg = NULL; REGEXP *rx = NULL; if (SvROK(ret)) { SV *const sv = SvRV(ret); if (SvTYPE(sv) == SVt_REGEXP) { rx = (REGEXP*) sv; } else if (SvSMAGICAL(sv)) { mg = mg_find(sv, PERL_MAGIC_qr); assert(mg); } } else if (SvTYPE(ret) == SVt_REGEXP) { rx = (REGEXP*) ret; } else if (SvSMAGICAL(ret)) { if (SvGMAGICAL(ret)) { /* I don't believe that there is ever qr magic here. */ assert(!mg_find(ret, PERL_MAGIC_qr)); sv_unmagic(ret, PERL_MAGIC_qr); } else { mg = mg_find(ret, PERL_MAGIC_qr); /* testing suggests mg only ends up non-NULL for scalars who were upgraded and compiled in the else block below. In turn, this is only triggered in the "postponed utf8 string" tests in t/op/pat.t */ } } if (mg) { rx = (REGEXP *) mg->mg_obj; /*XXX:dmq*/ assert(rx); } if (rx) { rx = reg_temp_copy(NULL, rx); } else { U32 pm_flags = 0; const I32 osize = PL_regsize; if (DO_UTF8(ret)) { assert (SvUTF8(ret)); } else if (SvUTF8(ret)) { /* Not doing UTF-8, despite what the SV says. Is this only if we're trapped in use 'bytes'? */ /* Make a copy of the octet sequence, but without the flag on, as the compiler now honours the SvUTF8 flag on ret. */ STRLEN len; const char *const p = SvPV(ret, len); ret = newSVpvn_flags(p, len, SVs_TEMP); } rx = CALLREGCOMP(ret, pm_flags); if (!(SvFLAGS(ret) & (SVs_TEMP | SVs_PADTMP | SVf_READONLY | SVs_GMG))) { /* This isn't a first class regexp. Instead, it's caching a regexp onto an existing, Perl visible scalar. */ sv_magic(ret, MUTABLE_SV(rx), PERL_MAGIC_qr, 0, 0); } PL_regsize = osize; } re_sv = rx; re = (struct regexp *)SvANY(rx); } RXp_MATCH_COPIED_off(re); re->subbeg = rex->subbeg; re->sublen = rex->sublen; rei = RXi_GET(re); DEBUG_EXECUTE_r( debug_start_match(re_sv, utf8_target, locinput, PL_regeol, "Matching embedded"); ); startpoint = rei->program + 1; ST.close_paren = 0; /* only used for GOSUB */ /* borrowed from regtry */ if (PL_reg_start_tmpl <= re->nparens) { PL_reg_start_tmpl = re->nparens*3/2 + 3; if(PL_reg_start_tmp) Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*); else Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*); } eval_recurse_doit: /* Share code with GOSUB below this line */ /* run the pattern returned from (??{...}) */ ST.cp = regcppush(0); /* Save *all* the positions. */ REGCP_SET(ST.lastcp); PL_regoffs = re->offs; /* essentially NOOP on GOSUB */ /* see regtry, specifically PL_reglast(?:close)?paren is a pointer! (i dont know why) :dmq */ PL_reglastparen = &re->lastparen; PL_reglastcloseparen = &re->lastcloseparen; re->lastparen = 0; re->lastcloseparen = 0; PL_reginput = locinput; PL_regsize = 0; /* XXXX This is too dramatic a measure... */ PL_reg_maxiter = 0; ST.toggle_reg_flags = PL_reg_flags; if (RX_UTF8(re_sv)) PL_reg_flags |= RF_utf8; else PL_reg_flags &= ~RF_utf8; ST.toggle_reg_flags ^= PL_reg_flags; /* diff of old and new */ ST.prev_rex = rex_sv; ST.prev_curlyx = cur_curlyx; SETREX(rex_sv,re_sv); rex = re; rexi = rei; cur_curlyx = NULL; ST.B = next; ST.prev_eval = cur_eval; cur_eval = st; /* now continue from first node in postoned RE */ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint); /* NOTREACHED */ } /* logical is 1, /(?(?{...})X|Y)/ */ sw = cBOOL(SvTRUE(ret)); logical = 0; break; } case EVAL_AB: /* cleanup after a successful (??{A})B */ /* note: this is called twice; first after popping B, then A */ PL_reg_flags ^= ST.toggle_reg_flags; ReREFCNT_dec(rex_sv); SETREX(rex_sv,ST.prev_rex); rex = (struct regexp *)SvANY(rex_sv); rexi = RXi_GET(rex); regcpblow(ST.cp); cur_eval = ST.prev_eval; cur_curlyx = ST.prev_curlyx; /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */ PL_reglastparen = &rex->lastparen; PL_reglastcloseparen = &rex->lastcloseparen; /* also update PL_regoffs */ PL_regoffs = rex->offs; /* XXXX This is too dramatic a measure... */ PL_reg_maxiter = 0; if ( nochange_depth ) nochange_depth--; sayYES; case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */ /* note: this is called twice; first after popping B, then A */ PL_reg_flags ^= ST.toggle_reg_flags; ReREFCNT_dec(rex_sv); SETREX(rex_sv,ST.prev_rex); rex = (struct regexp *)SvANY(rex_sv); rexi = RXi_GET(rex); /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */ PL_reglastparen = &rex->lastparen; PL_reglastcloseparen = &rex->lastcloseparen; PL_reginput = locinput; REGCP_UNWIND(ST.lastcp); regcppop(rex); cur_eval = ST.prev_eval; cur_curlyx = ST.prev_curlyx; /* XXXX This is too dramatic a measure... */ PL_reg_maxiter = 0; if ( nochange_depth ) nochange_depth--; sayNO_SILENT; #undef ST case OPEN: n = ARG(scan); /* which paren pair */ PL_reg_start_tmp[n] = locinput; if (n > PL_regsize) PL_regsize = n; lastopen = n; break; case CLOSE: n = ARG(scan); /* which paren pair */ PL_regoffs[n].start = PL_reg_start_tmp[n] - PL_bostr; PL_regoffs[n].end = locinput - PL_bostr; /*if (n > PL_regsize) PL_regsize = n;*/ if (n > *PL_reglastparen) *PL_reglastparen = n; *PL_reglastcloseparen = n; if (cur_eval && cur_eval->u.eval.close_paren == n) { goto fake_end; } break; case ACCEPT: if (ARG(scan)){ regnode *cursor; for (cursor=scan; cursor && OP(cursor)!=END; cursor=regnext(cursor)) { if ( OP(cursor)==CLOSE ){ n = ARG(cursor); if ( n <= lastopen ) { PL_regoffs[n].start = PL_reg_start_tmp[n] - PL_bostr; PL_regoffs[n].end = locinput - PL_bostr; /*if (n > PL_regsize) PL_regsize = n;*/ if (n > *PL_reglastparen) *PL_reglastparen = n; *PL_reglastcloseparen = n; if ( n == ARG(scan) || (cur_eval && cur_eval->u.eval.close_paren == n)) break; } } } } goto fake_end; /*NOTREACHED*/ case GROUPP: n = ARG(scan); /* which paren pair */ sw = cBOOL(*PL_reglastparen >= n && PL_regoffs[n].end != -1); break; case NGROUPP: /* reg_check_named_buff_matched returns 0 for no match */ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan)); break; case INSUBP: n = ARG(scan); sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n)); break; case DEFINEP: sw = 0; break; case IFTHEN: PL_reg_leftiter = PL_reg_maxiter; /* Void cache */ if (sw) next = NEXTOPER(NEXTOPER(scan)); else { next = scan + ARG(scan); if (OP(next) == IFTHEN) /* Fake one. */ next = NEXTOPER(NEXTOPER(next)); } break; case LOGICAL: logical = scan->flags; break; /******************************************************************* The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/ pattern, where A and B are subpatterns. (For simple A, CURLYM or STAR/PLUS/CURLY/CURLYN are used instead.) A*B is compiled as On entry to the subpattern, CURLYX is called. This pushes a CURLYX state, which contains the current count, initialised to -1. It also sets cur_curlyx to point to this state, with any previous value saved in the state block. CURLYX then jumps straight to the WHILEM op, rather than executing A, since the pattern may possibly match zero times (i.e. it's a while {} loop rather than a do {} while loop). Each entry to WHILEM represents a successful match of A. The count in the CURLYX block is incremented, another WHILEM state is pushed, and execution passes to A or B depending on greediness and the current count. For example, if matching against the string a1a2a3b (where the aN are substrings that match /A/), then the match progresses as follows: (the pushed states are interspersed with the bits of strings matched so far): a1 a1 a2 a1 a2 a3 a1 a2 a3 b (Contrast this with something like CURLYM, which maintains only a single backtrack state: a1 a1 a2 a1 a2 a3 a1 a2 a3 b ) Each WHILEM state block marks a point to backtrack to upon partial failure of A or B, and also contains some minor state data related to that iteration. The CURLYX block, pointed to by cur_curlyx, contains the overall state, such as the count, and pointers to the A and B ops. This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx must always point to the *current* CURLYX block, the rules are: When executing CURLYX, save the old cur_curlyx in the CURLYX state block, and set cur_curlyx to point the new block. When popping the CURLYX block after a successful or unsuccessful match, restore the previous cur_curlyx. When WHILEM is about to execute B, save the current cur_curlyx, and set it to the outer one saved in the CURLYX block. When popping the WHILEM block after a successful or unsuccessful B match, restore the previous cur_curlyx. Here's an example for the pattern (AI* BI)*BO I and O refer to inner and outer, C and W refer to CURLYX and WHILEM: cur_ curlyx backtrack stack ------ --------------- NULL CO CI ai CO ai bi NULL ai bi bo At this point the pattern succeeds, and we work back down the stack to clean up, restoring as we go: CO ai bi CI ai CO NULL *******************************************************************/ #define ST st->u.curlyx case CURLYX: /* start of /A*B/ (for complex A) */ { /* No need to save/restore up to this paren */ I32 parenfloor = scan->flags; assert(next); /* keep Coverity happy */ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */ next += ARG(next); /* XXXX Probably it is better to teach regpush to support parenfloor > PL_regsize... */ if (parenfloor > (I32)*PL_reglastparen) parenfloor = *PL_reglastparen; /* Pessimization... */ ST.prev_curlyx= cur_curlyx; cur_curlyx = st; ST.cp = PL_savestack_ix; /* these fields contain the state of the current curly. * they are accessed by subsequent WHILEMs */ ST.parenfloor = parenfloor; ST.me = scan; ST.B = next; ST.minmod = minmod; minmod = 0; ST.count = -1; /* this will be updated by WHILEM */ ST.lastloc = NULL; /* this will be updated by WHILEM */ PL_reginput = locinput; PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next)); /* NOTREACHED */ } case CURLYX_end: /* just finished matching all of A*B */ cur_curlyx = ST.prev_curlyx; sayYES; /* NOTREACHED */ case CURLYX_end_fail: /* just failed to match all of A*B */ regcpblow(ST.cp); cur_curlyx = ST.prev_curlyx; sayNO; /* NOTREACHED */ #undef ST #define ST st->u.whilem case WHILEM: /* just matched an A in /A*B/ (for complex A) */ { /* see the discussion above about CURLYX/WHILEM */ I32 n; int min = ARG1(cur_curlyx->u.curlyx.me); int max = ARG2(cur_curlyx->u.curlyx.me); regnode *A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS; assert(cur_curlyx); /* keep Coverity happy */ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc; ST.cache_offset = 0; ST.cache_mask = 0; PL_reginput = locinput; DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s whilem: matched %ld out of %d..%d\n", REPORT_CODE_OFF+depth*2, "", (long)n, min, max) ); /* First just match a string of min A's. */ if (n < min) { cur_curlyx->u.curlyx.lastloc = locinput; PUSH_STATE_GOTO(WHILEM_A_pre, A); /* NOTREACHED */ } /* If degenerate A matches "", assume A done. */ if (locinput == cur_curlyx->u.curlyx.lastloc) { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s whilem: empty match detected, trying continuation...\n", REPORT_CODE_OFF+depth*2, "") ); goto do_whilem_B_max; } /* super-linear cache processing */ if (scan->flags) { if (!PL_reg_maxiter) { /* start the countdown: Postpone detection until we * know the match is not *that* much linear. */ PL_reg_maxiter = (PL_regeol - PL_bostr + 1) * (scan->flags>>4); /* possible overflow for long strings and many CURLYX's */ if (PL_reg_maxiter < 0) PL_reg_maxiter = I32_MAX; PL_reg_leftiter = PL_reg_maxiter; } if (PL_reg_leftiter-- == 0) { /* initialise cache */ const I32 size = (PL_reg_maxiter + 7)/8; if (PL_reg_poscache) { if ((I32)PL_reg_poscache_size < size) { Renew(PL_reg_poscache, size, char); PL_reg_poscache_size = size; } Zero(PL_reg_poscache, size, char); } else { PL_reg_poscache_size = size; Newxz(PL_reg_poscache, size, char); } DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%swhilem: Detected a super-linear match, switching on caching%s...\n", PL_colors[4], PL_colors[5]) ); } if (PL_reg_leftiter < 0) { /* have we already failed at this position? */ I32 offset, mask; offset = (scan->flags & 0xf) - 1 + (locinput - PL_bostr) * (scan->flags>>4); mask = 1 << (offset % 8); offset /= 8; if (PL_reg_poscache[offset] & mask) { DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s whilem: (cache) already tried at this position...\n", REPORT_CODE_OFF+depth*2, "") ); sayNO; /* cache records failure */ } ST.cache_offset = offset; ST.cache_mask = mask; } } /* Prefer B over A for minimal matching. */ if (cur_curlyx->u.curlyx.minmod) { ST.save_curlyx = cur_curlyx; cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx; ST.cp = regcppush(ST.save_curlyx->u.curlyx.parenfloor); REGCP_SET(ST.lastcp); PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B); /* NOTREACHED */ } /* Prefer A over B for maximal matching. */ if (n < max) { /* More greed allowed? */ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor); cur_curlyx->u.curlyx.lastloc = locinput; REGCP_SET(ST.lastcp); PUSH_STATE_GOTO(WHILEM_A_max, A); /* NOTREACHED */ } goto do_whilem_B_max; } /* NOTREACHED */ case WHILEM_B_min: /* just matched B in a minimal match */ case WHILEM_B_max: /* just matched B in a maximal match */ cur_curlyx = ST.save_curlyx; sayYES; /* NOTREACHED */ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */ cur_curlyx = ST.save_curlyx; cur_curlyx->u.curlyx.lastloc = ST.save_lastloc; cur_curlyx->u.curlyx.count--; CACHEsayNO; /* NOTREACHED */ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */ REGCP_UNWIND(ST.lastcp); regcppop(rex); /* FALL THROUGH */ case WHILEM_A_pre_fail: /* just failed to match even minimal A */ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc; cur_curlyx->u.curlyx.count--; CACHEsayNO; /* NOTREACHED */ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */ REGCP_UNWIND(ST.lastcp); regcppop(rex); /* Restore some previous $s? */ PL_reginput = locinput; DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%*s whilem: failed, trying continuation...\n", REPORT_CODE_OFF+depth*2, "") ); do_whilem_B_max: if (cur_curlyx->u.curlyx.count >= REG_INFTY && ckWARN(WARN_REGEXP) && !(PL_reg_flags & RF_warned)) { PL_reg_flags |= RF_warned; Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s limit (%d) exceeded", "Complex regular subexpression recursion", REG_INFTY - 1); } /* now try B */ ST.save_curlyx = cur_curlyx; cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx; PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B); /* NOTREACHED */ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */ cur_curlyx = ST.save_curlyx; REGCP_UNWIND(ST.lastcp); regcppop(rex); if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) { /* Maximum greed exceeded */ if (cur_curlyx->u.curlyx.count >= REG_INFTY && ckWARN(WARN_REGEXP) && !(PL_reg_flags & RF_warned)) { PL_reg_flags |= RF_warned; Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s limit (%d) exceeded", "Complex regular subexpression recursion", REG_INFTY - 1); } cur_curlyx->u.curlyx.count--; CACHEsayNO; } DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "") ); /* Try grabbing another A and see if it helps. */ PL_reginput = locinput; cur_curlyx->u.curlyx.lastloc = locinput; ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor); REGCP_SET(ST.lastcp); PUSH_STATE_GOTO(WHILEM_A_min, /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS); /* NOTREACHED */ #undef ST #define ST st->u.branch case BRANCHJ: /* /(...|A|...)/ with long next pointer */ next = scan + ARG(scan); if (next == scan) next = NULL; scan = NEXTOPER(scan); /* FALL THROUGH */ case BRANCH: /* /(...|A|...)/ */ scan = NEXTOPER(scan); /* scan now points to inner node */ ST.lastparen = *PL_reglastparen; ST.next_branch = next; REGCP_SET(ST.cp); PL_reginput = locinput; /* Now go into the branch */ if (has_cutgroup) { PUSH_YES_STATE_GOTO(BRANCH_next, scan); } else { PUSH_STATE_GOTO(BRANCH_next, scan); } /* NOTREACHED */ case CUTGROUP: PL_reginput = locinput; sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL : MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); PUSH_STATE_GOTO(CUTGROUP_next,next); /* NOTREACHED */ case CUTGROUP_next_fail: do_cutgroup = 1; no_final = 1; if (st->u.mark.mark_name) sv_commit = st->u.mark.mark_name; sayNO; /* NOTREACHED */ case BRANCH_next: sayYES; /* NOTREACHED */ case BRANCH_next_fail: /* that branch failed; try the next, if any */ if (do_cutgroup) { do_cutgroup = 0; no_final = 0; } REGCP_UNWIND(ST.cp); for (n = *PL_reglastparen; n > ST.lastparen; n--) PL_regoffs[n].end = -1; *PL_reglastparen = n; /*dmq: *PL_reglastcloseparen = n; */ scan = ST.next_branch; /* no more branches? */ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) { DEBUG_EXECUTE_r({ PerlIO_printf( Perl_debug_log, "%*s %sBRANCH failed...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5] ); }); sayNO_SILENT; } continue; /* execute next BRANCH[J] op */ /* NOTREACHED */ case MINMOD: minmod = 1; break; #undef ST #define ST st->u.curlym case CURLYM: /* /A{m,n}B/ where A is fixed-length */ /* This is an optimisation of CURLYX that enables us to push * only a single backtracking state, no matter how many matches * there are in {m,n}. It relies on the pattern being constant * length, with no parens to influence future backrefs */ ST.me = scan; scan = NEXTOPER(scan) + NODE_STEP_REGNODE; /* if paren positive, emulate an OPEN/CLOSE around A */ if (ST.me->flags) { U32 paren = ST.me->flags; if (paren > PL_regsize) PL_regsize = paren; if (paren > *PL_reglastparen) *PL_reglastparen = paren; scan += NEXT_OFF(scan); /* Skip former OPEN. */ } ST.A = scan; ST.B = next; ST.alen = 0; ST.count = 0; ST.minmod = minmod; minmod = 0; ST.c1 = CHRTEST_UNINIT; REGCP_SET(ST.cp); if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */ goto curlym_do_B; curlym_do_A: /* execute the A in /A{m,n}B/ */ PL_reginput = locinput; PUSH_YES_STATE_GOTO(CURLYM_A, ST.A); /* match A */ /* NOTREACHED */ case CURLYM_A: /* we've just matched an A */ locinput = st->locinput; nextchr = UCHARAT(locinput); ST.count++; /* after first match, determine A's length: u.curlym.alen */ if (ST.count == 1) { if (PL_reg_match_utf8) { char *s = locinput; while (s < PL_reginput) { ST.alen++; s += UTF8SKIP(s); } } else { ST.alen = PL_reginput - locinput; } if (ST.alen == 0) ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me); } DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n", (int)(REPORT_CODE_OFF+(depth*2)), "", (IV) ST.count, (IV)ST.alen) ); locinput = PL_reginput; if (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.me->flags) goto fake_end; { I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me)); if ( max == REG_INFTY || ST.count < max ) goto curlym_do_A; /* try to match another A */ } goto curlym_do_B; /* try to match B */ case CURLYM_A_fail: /* just failed to match an A */ REGCP_UNWIND(ST.cp); if (ST.minmod || ST.count < ARG1(ST.me) /* min*/ || (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.me->flags)) sayNO; curlym_do_B: /* execute the B in /A{m,n}B/ */ PL_reginput = locinput; if (ST.c1 == CHRTEST_UNINIT) { /* calculate c1 and c2 for possible match of 1st char * following curly */ ST.c1 = ST.c2 = CHRTEST_VOID; if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) { regnode *text_node = ST.B; if (! HAS_TEXT(text_node)) FIND_NEXT_IMPT(text_node); /* this used to be (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT) But the former is redundant in light of the latter. if this changes back then the macro for IS_TEXT and friends need to change. */ if (PL_regkind[OP(text_node)] == EXACT) { ST.c1 = (U8)*STRING(text_node); switch (OP(text_node)) { case EXACTF: ST.c2 = PL_fold[ST.c1]; break; case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break; case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break; default: ST.c2 = ST.c1; } } } } DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s CURLYM trying tail with matches=%"IVdf"...\n", (int)(REPORT_CODE_OFF+(depth*2)), "", (IV)ST.count) ); if (ST.c1 != CHRTEST_VOID && UCHARAT(PL_reginput) != ST.c1 && UCHARAT(PL_reginput) != ST.c2) { /* simulate B failing */ DEBUG_OPTIMISE_r( PerlIO_printf(Perl_debug_log, "%*s CURLYM Fast bail c1=%"IVdf" c2=%"IVdf"\n", (int)(REPORT_CODE_OFF+(depth*2)),"", (IV)ST.c1,(IV)ST.c2 )); state_num = CURLYM_B_fail; goto reenter_switch; } if (ST.me->flags) { /* mark current A as captured */ I32 paren = ST.me->flags; if (ST.count) { PL_regoffs[paren].start = HOPc(PL_reginput, -ST.alen) - PL_bostr; PL_regoffs[paren].end = PL_reginput - PL_bostr; /*dmq: *PL_reglastcloseparen = paren; */ } else PL_regoffs[paren].end = -1; if (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.me->flags) { if (ST.count) goto fake_end; else sayNO; } } PUSH_STATE_GOTO(CURLYM_B, ST.B); /* match B */ /* NOTREACHED */ case CURLYM_B_fail: /* just failed to match a B */ REGCP_UNWIND(ST.cp); if (ST.minmod) { I32 max = ARG2(ST.me); if (max != REG_INFTY && ST.count == max) sayNO; goto curlym_do_A; /* try to match a further A */ } /* backtrack one A */ if (ST.count == ARG1(ST.me) /* min */) sayNO; ST.count--; locinput = HOPc(locinput, -ST.alen); goto curlym_do_B; /* try to match B */ #undef ST #define ST st->u.curly #define CURLY_SETPAREN(paren, success) \ if (paren) { \ if (success) { \ PL_regoffs[paren].start = HOPc(locinput, -1) - PL_bostr; \ PL_regoffs[paren].end = locinput - PL_bostr; \ *PL_reglastcloseparen = paren; \ } \ else \ PL_regoffs[paren].end = -1; \ } case STAR: /* /A*B/ where A is width 1 */ ST.paren = 0; ST.min = 0; ST.max = REG_INFTY; scan = NEXTOPER(scan); goto repeat; case PLUS: /* /A+B/ where A is width 1 */ ST.paren = 0; ST.min = 1; ST.max = REG_INFTY; scan = NEXTOPER(scan); goto repeat; case CURLYN: /* /(A){m,n}B/ where A is width 1 */ ST.paren = scan->flags; /* Which paren to set */ if (ST.paren > PL_regsize) PL_regsize = ST.paren; if (ST.paren > *PL_reglastparen) *PL_reglastparen = ST.paren; ST.min = ARG1(scan); /* min to match */ ST.max = ARG2(scan); /* max to match */ if (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.paren) { ST.min=1; ST.max=1; } scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE); goto repeat; case CURLY: /* /A{m,n}B/ where A is width 1 */ ST.paren = 0; ST.min = ARG1(scan); /* min to match */ ST.max = ARG2(scan); /* max to match */ scan = NEXTOPER(scan) + NODE_STEP_REGNODE; repeat: /* * Lookahead to avoid useless match attempts * when we know what character comes next. * * Used to only do .*x and .*?x, but now it allows * for )'s, ('s and (?{ ... })'s to be in the way * of the quantifier and the EXACT-like node. -- japhy */ if (ST.min > ST.max) /* XXX make this a compile-time check? */ sayNO; if (HAS_TEXT(next) || JUMPABLE(next)) { U8 *s; regnode *text_node = next; if (! HAS_TEXT(text_node)) FIND_NEXT_IMPT(text_node); if (! HAS_TEXT(text_node)) ST.c1 = ST.c2 = CHRTEST_VOID; else { if ( PL_regkind[OP(text_node)] != EXACT ) { ST.c1 = ST.c2 = CHRTEST_VOID; goto assume_ok_easy; } else s = (U8*)STRING(text_node); /* Currently we only get here when PL_rekind[OP(text_node)] == EXACT if this changes back then the macro for IS_TEXT and friends need to change. */ if (!UTF_PATTERN) { ST.c1 = *s; switch (OP(text_node)) { case EXACTF: ST.c2 = PL_fold[ST.c1]; break; case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break; case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break; default: ST.c2 = ST.c1; break; } } else { /* UTF_PATTERN */ if (IS_TEXTFU(text_node) || IS_TEXTF(text_node)) { STRLEN ulen1, ulen2; U8 tmpbuf1[UTF8_MAXBYTES_CASE+1]; U8 tmpbuf2[UTF8_MAXBYTES_CASE+1]; to_utf8_lower((U8*)s, tmpbuf1, &ulen1); to_utf8_upper((U8*)s, tmpbuf2, &ulen2); #ifdef EBCDIC ST.c1 = utf8n_to_uvchr(tmpbuf1, UTF8_MAXLEN, 0, ckWARN(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY); ST.c2 = utf8n_to_uvchr(tmpbuf2, UTF8_MAXLEN, 0, ckWARN(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY); #else ST.c1 = utf8n_to_uvuni(tmpbuf1, UTF8_MAXBYTES, 0, uniflags); ST.c2 = utf8n_to_uvuni(tmpbuf2, UTF8_MAXBYTES, 0, uniflags); #endif } else { ST.c2 = ST.c1 = utf8n_to_uvchr(s, UTF8_MAXBYTES, 0, uniflags); } } } } else ST.c1 = ST.c2 = CHRTEST_VOID; assume_ok_easy: ST.A = scan; ST.B = next; PL_reginput = locinput; if (minmod) { minmod = 0; if (ST.min && regrepeat(rex, ST.A, ST.min, depth) < ST.min) sayNO; ST.count = ST.min; locinput = PL_reginput; REGCP_SET(ST.cp); if (ST.c1 == CHRTEST_VOID) goto curly_try_B_min; ST.oldloc = locinput; /* set ST.maxpos to the furthest point along the * string that could possibly match */ if (ST.max == REG_INFTY) { ST.maxpos = PL_regeol - 1; if (utf8_target) while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos)) ST.maxpos--; } else if (utf8_target) { int m = ST.max - ST.min; for (ST.maxpos = locinput; m >0 && ST.maxpos + UTF8SKIP(ST.maxpos) <= PL_regeol; m--) ST.maxpos += UTF8SKIP(ST.maxpos); } else { ST.maxpos = locinput + ST.max - ST.min; if (ST.maxpos >= PL_regeol) ST.maxpos = PL_regeol - 1; } goto curly_try_B_min_known; } else { ST.count = regrepeat(rex, ST.A, ST.max, depth); locinput = PL_reginput; if (ST.count < ST.min) sayNO; if ((ST.count > ST.min) && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL)) { /* A{m,n} must come at the end of the string, there's * no point in backing off ... */ ST.min = ST.count; /* ...except that $ and \Z can match before *and* after newline at the end. Consider "\n\n" =~ /\n+\Z\n/. We may back off by one in this case. */ if (UCHARAT(PL_reginput - 1) == '\n' && OP(ST.B) != EOS) ST.min--; } REGCP_SET(ST.cp); goto curly_try_B_max; } /* NOTREACHED */ case CURLY_B_min_known_fail: /* failed to find B in a non-greedy match where c1,c2 valid */ if (ST.paren && ST.count) PL_regoffs[ST.paren].end = -1; PL_reginput = locinput; /* Could be reset... */ REGCP_UNWIND(ST.cp); /* Couldn't or didn't -- move forward. */ ST.oldloc = locinput; if (utf8_target) locinput += UTF8SKIP(locinput); else locinput++; ST.count++; curly_try_B_min_known: /* find the next place where 'B' could work, then call B */ { int n; if (utf8_target) { n = (ST.oldloc == locinput) ? 0 : 1; if (ST.c1 == ST.c2) { STRLEN len; /* set n to utf8_distance(oldloc, locinput) */ while (locinput <= ST.maxpos && utf8n_to_uvchr((U8*)locinput, UTF8_MAXBYTES, &len, uniflags) != (UV)ST.c1) { locinput += len; n++; } } else { /* set n to utf8_distance(oldloc, locinput) */ while (locinput <= ST.maxpos) { STRLEN len; const UV c = utf8n_to_uvchr((U8*)locinput, UTF8_MAXBYTES, &len, uniflags); if (c == (UV)ST.c1 || c == (UV)ST.c2) break; locinput += len; n++; } } } else { if (ST.c1 == ST.c2) { while (locinput <= ST.maxpos && UCHARAT(locinput) != ST.c1) locinput++; } else { while (locinput <= ST.maxpos && UCHARAT(locinput) != ST.c1 && UCHARAT(locinput) != ST.c2) locinput++; } n = locinput - ST.oldloc; } if (locinput > ST.maxpos) sayNO; /* PL_reginput == oldloc now */ if (n) { ST.count += n; if (regrepeat(rex, ST.A, n, depth) < n) sayNO; } PL_reginput = locinput; CURLY_SETPAREN(ST.paren, ST.count); if (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.paren) { goto fake_end; } PUSH_STATE_GOTO(CURLY_B_min_known, ST.B); } /* NOTREACHED */ case CURLY_B_min_fail: /* failed to find B in a non-greedy match where c1,c2 invalid */ if (ST.paren && ST.count) PL_regoffs[ST.paren].end = -1; REGCP_UNWIND(ST.cp); /* failed -- move forward one */ PL_reginput = locinput; if (regrepeat(rex, ST.A, 1, depth)) { ST.count++; locinput = PL_reginput; if (ST.count <= ST.max || (ST.max == REG_INFTY && ST.count > 0)) /* count overflow ? */ { curly_try_B_min: CURLY_SETPAREN(ST.paren, ST.count); if (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.paren) { goto fake_end; } PUSH_STATE_GOTO(CURLY_B_min, ST.B); } } sayNO; /* NOTREACHED */ curly_try_B_max: /* a successful greedy match: now try to match B */ if (cur_eval && cur_eval->u.eval.close_paren && cur_eval->u.eval.close_paren == (U32)ST.paren) { goto fake_end; } { UV c = 0; if (ST.c1 != CHRTEST_VOID) c = utf8_target ? utf8n_to_uvchr((U8*)PL_reginput, UTF8_MAXBYTES, 0, uniflags) : (UV) UCHARAT(PL_reginput); /* If it could work, try it. */ if (ST.c1 == CHRTEST_VOID || c == (UV)ST.c1 || c == (UV)ST.c2) { CURLY_SETPAREN(ST.paren, ST.count); PUSH_STATE_GOTO(CURLY_B_max, ST.B); /* NOTREACHED */ } } /* FALL THROUGH */ case CURLY_B_max_fail: /* failed to find B in a greedy match */ if (ST.paren && ST.count) PL_regoffs[ST.paren].end = -1; REGCP_UNWIND(ST.cp); /* back up. */ if (--ST.count < ST.min) sayNO; PL_reginput = locinput = HOPc(locinput, -1); goto curly_try_B_max; #undef ST case END: fake_end: if (cur_eval) { /* we've just finished A in /(??{A})B/; now continue with B */ I32 tmpix; st->u.eval.toggle_reg_flags = cur_eval->u.eval.toggle_reg_flags; PL_reg_flags ^= st->u.eval.toggle_reg_flags; st->u.eval.prev_rex = rex_sv; /* inner */ SETREX(rex_sv,cur_eval->u.eval.prev_rex); rex = (struct regexp *)SvANY(rex_sv); rexi = RXi_GET(rex); cur_curlyx = cur_eval->u.eval.prev_curlyx; ReREFCNT_inc(rex_sv); st->u.eval.cp = regcppush(0); /* Save *all* the positions. */ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */ PL_reglastparen = &rex->lastparen; PL_reglastcloseparen = &rex->lastcloseparen; REGCP_SET(st->u.eval.lastcp); PL_reginput = locinput; /* Restore parens of the outer rex without popping the * savestack */ tmpix = PL_savestack_ix; PL_savestack_ix = cur_eval->u.eval.lastcp; regcppop(rex); PL_savestack_ix = tmpix; st->u.eval.prev_eval = cur_eval; cur_eval = cur_eval->u.eval.prev_eval; DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n", REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval));); if ( nochange_depth ) nochange_depth--; PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B); /* match B */ } if (locinput < reginfo->till) { DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n", PL_colors[4], (long)(locinput - PL_reg_starttry), (long)(reginfo->till - PL_reg_starttry), PL_colors[5])); sayNO_SILENT; /* Cannot match: too short. */ } PL_reginput = locinput; /* put where regtry can find it */ sayYES; /* Success! */ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s %ssubpattern success...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])); PL_reginput = locinput; /* put where regtry can find it */ sayYES; /* Success! */ #undef ST #define ST st->u.ifmatch case SUSPEND: /* (?>A) */ ST.wanted = 1; PL_reginput = locinput; goto do_ifmatch; case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?flags) { char * const s = HOPBACKc(locinput, scan->flags); if (!s) { /* trivial fail */ if (logical) { logical = 0; sw = 1 - cBOOL(ST.wanted); } else if (ST.wanted) sayNO; next = scan + ARG(scan); if (next == scan) next = NULL; break; } PL_reginput = s; } else PL_reginput = locinput; do_ifmatch: ST.me = scan; ST.logical = logical; logical = 0; /* XXX: reset state of logical once it has been saved into ST */ /* execute body of (?...A) */ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan))); /* NOTREACHED */ case IFMATCH_A_fail: /* body of (?...A) failed */ ST.wanted = !ST.wanted; /* FALL THROUGH */ case IFMATCH_A: /* body of (?...A) succeeded */ if (ST.logical) { sw = cBOOL(ST.wanted); } else if (!ST.wanted) sayNO; if (OP(ST.me) == SUSPEND) locinput = PL_reginput; else { locinput = PL_reginput = st->locinput; nextchr = UCHARAT(locinput); } scan = ST.me + ARG(ST.me); if (scan == ST.me) scan = NULL; continue; /* execute B */ #undef ST case LONGJMP: next = scan + ARG(scan); if (next == scan) next = NULL; break; case COMMIT: reginfo->cutpoint = PL_regeol; /* FALLTHROUGH */ case PRUNE: PL_reginput = locinput; if (!scan->flags) sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); PUSH_STATE_GOTO(COMMIT_next,next); /* NOTREACHED */ case COMMIT_next_fail: no_final = 1; /* FALLTHROUGH */ case OPFAIL: sayNO; /* NOTREACHED */ #define ST st->u.mark case MARKPOINT: ST.prev_mark = mark_state; ST.mark_name = sv_commit = sv_yes_mark = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); mark_state = st; ST.mark_loc = PL_reginput = locinput; PUSH_YES_STATE_GOTO(MARKPOINT_next,next); /* NOTREACHED */ case MARKPOINT_next: mark_state = ST.prev_mark; sayYES; /* NOTREACHED */ case MARKPOINT_next_fail: if (popmark && sv_eq(ST.mark_name,popmark)) { if (ST.mark_loc > startpoint) reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1); popmark = NULL; /* we found our mark */ sv_commit = ST.mark_name; DEBUG_EXECUTE_r({ PerlIO_printf(Perl_debug_log, "%*s %ssetting cutpoint to mark:%"SVf"...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], SVfARG(sv_commit), PL_colors[5]); }); } mark_state = ST.prev_mark; sv_yes_mark = mark_state ? mark_state->u.mark.mark_name : NULL; sayNO; /* NOTREACHED */ case SKIP: PL_reginput = locinput; if (scan->flags) { /* (*SKIP) : if we fail we cut here*/ ST.mark_name = NULL; ST.mark_loc = locinput; PUSH_STATE_GOTO(SKIP_next,next); } else { /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was, otherwise do nothing. Meaning we need to scan */ regmatch_state *cur = mark_state; SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); while (cur) { if ( sv_eq( cur->u.mark.mark_name, find ) ) { ST.mark_name = find; PUSH_STATE_GOTO( SKIP_next, next ); } cur = cur->u.mark.prev_mark; } } /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */ break; case SKIP_next_fail: if (ST.mark_name) { /* (*CUT:NAME) - Set up to search for the name as we collapse the stack*/ popmark = ST.mark_name; } else { /* (*CUT) - No name, we cut here.*/ if (ST.mark_loc > startpoint) reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1); /* but we set sv_commit to latest mark_name if there is one so they can test to see how things lead to this cut */ if (mark_state) sv_commit=mark_state->u.mark.mark_name; } no_final = 1; sayNO; /* NOTREACHED */ #undef ST case FOLDCHAR: n = ARG(scan); if ( n == (U32)what_len_TRICKYFOLD(locinput,utf8_target,ln) ) { locinput += ln; } else if ( LATIN_SMALL_LETTER_SHARP_S == n && !utf8_target && !UTF_PATTERN ) { sayNO; } else { U8 folded[UTF8_MAXBYTES_CASE+1]; STRLEN foldlen; const char * const l = locinput; char *e = PL_regeol; to_uni_fold(n, folded, &foldlen); if (! foldEQ_utf8((const char*) folded, 0, foldlen, 1, l, &e, 0, utf8_target)) { sayNO; } locinput = e; } nextchr = UCHARAT(locinput); break; case LNBREAK: if ((n=is_LNBREAK(locinput,utf8_target))) { locinput += n; nextchr = UCHARAT(locinput); } else sayNO; break; #define CASE_CLASS(nAmE) \ case nAmE: \ if ((n=is_##nAmE(locinput,utf8_target))) { \ locinput += n; \ nextchr = UCHARAT(locinput); \ } else \ sayNO; \ break; \ case N##nAmE: \ if ((n=is_##nAmE(locinput,utf8_target))) { \ sayNO; \ } else { \ locinput += UTF8SKIP(locinput); \ nextchr = UCHARAT(locinput); \ } \ break CASE_CLASS(VERTWS); CASE_CLASS(HORIZWS); #undef CASE_CLASS default: PerlIO_printf(Perl_error_log, "%"UVxf" %d\n", PTR2UV(scan), OP(scan)); Perl_croak(aTHX_ "regexp memory corruption"); } /* end switch */ /* switch break jumps here */ scan = next; /* prepare to execute the next op and ... */ continue; /* ... jump back to the top, reusing st */ /* NOTREACHED */ push_yes_state: /* push a state that backtracks on success */ st->u.yes.prev_yes_state = yes_state; yes_state = st; /* FALL THROUGH */ push_state: /* push a new regex state, then continue at scan */ { regmatch_state *newst; DEBUG_STACK_r({ regmatch_state *cur = st; regmatch_state *curyes = yes_state; int curd = depth; regmatch_slab *slab = PL_regmatch_slab; for (;curd > -1;cur--,curd--) { if (cur < SLAB_FIRST(slab)) { slab = slab->prev; cur = SLAB_LAST(slab); } PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n", REPORT_CODE_OFF + 2 + depth * 2,"", curd, PL_reg_name[cur->resume_state], (curyes == cur) ? "yes" : "" ); if (curyes == cur) curyes = cur->u.yes.prev_yes_state; } } else DEBUG_STATE_pp("push") ); depth++; st->locinput = locinput; newst = st+1; if (newst > SLAB_LAST(PL_regmatch_slab)) newst = S_push_slab(aTHX); PL_regmatch_state = newst; locinput = PL_reginput; nextchr = UCHARAT(locinput); st = newst; continue; /* NOTREACHED */ } } /* * We get here only if there's trouble -- normally "case END" is * the terminating point. */ Perl_croak(aTHX_ "corrupted regexp pointers"); /*NOTREACHED*/ sayNO; yes: if (yes_state) { /* we have successfully completed a subexpression, but we must now * pop to the state marked by yes_state and continue from there */ assert(st != yes_state); #ifdef DEBUGGING while (st != yes_state) { st--; if (st < SLAB_FIRST(PL_regmatch_slab)) { PL_regmatch_slab = PL_regmatch_slab->prev; st = SLAB_LAST(PL_regmatch_slab); } DEBUG_STATE_r({ if (no_final) { DEBUG_STATE_pp("pop (no final)"); } else { DEBUG_STATE_pp("pop (yes)"); } }); depth--; } #else while (yes_state < SLAB_FIRST(PL_regmatch_slab) || yes_state > SLAB_LAST(PL_regmatch_slab)) { /* not in this slab, pop slab */ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1); PL_regmatch_slab = PL_regmatch_slab->prev; st = SLAB_LAST(PL_regmatch_slab); } depth -= (st - yes_state); #endif st = yes_state; yes_state = st->u.yes.prev_yes_state; PL_regmatch_state = st; if (no_final) { locinput= st->locinput; nextchr = UCHARAT(locinput); } state_num = st->resume_state + no_final; goto reenter_switch; } DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n", PL_colors[4], PL_colors[5])); if (PL_reg_eval_set) { /* each successfully executed (?{...}) block does the equivalent of * local $^R = do {...} * When popping the save stack, all these locals would be undone; * bypass this by setting the outermost saved $^R to the latest * value */ if (oreplsv != GvSV(PL_replgv)) sv_setsv(oreplsv, GvSV(PL_replgv)); } result = 1; goto final_exit; no: DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, "%*s %sfailed...%s\n", REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) ); no_silent: if (no_final) { if (yes_state) { goto yes; } else { goto final_exit; } } if (depth) { /* there's a previous state to backtrack to */ st--; if (st < SLAB_FIRST(PL_regmatch_slab)) { PL_regmatch_slab = PL_regmatch_slab->prev; st = SLAB_LAST(PL_regmatch_slab); } PL_regmatch_state = st; locinput= st->locinput; nextchr = UCHARAT(locinput); DEBUG_STATE_pp("pop"); depth--; if (yes_state == st) yes_state = st->u.yes.prev_yes_state; state_num = st->resume_state + 1; /* failure = success + 1 */ goto reenter_switch; } result = 0; final_exit: if (rex->intflags & PREGf_VERBARG_SEEN) { SV *sv_err = get_sv("REGERROR", 1); SV *sv_mrk = get_sv("REGMARK", 1); if (result) { sv_commit = &PL_sv_no; if (!sv_yes_mark) sv_yes_mark = &PL_sv_yes; } else { if (!sv_commit) sv_commit = &PL_sv_yes; sv_yes_mark = &PL_sv_no; } sv_setsv(sv_err, sv_commit); sv_setsv(sv_mrk, sv_yes_mark); } /* clean up; in particular, free all slabs above current one */ LEAVE_SCOPE(oldsave); return result; } /* - regrepeat - repeatedly match something simple, report how many */ /* * [This routine now assumes that it will only match on things of length 1. * That was true before, but now we assume scan - reginput is the count, * rather than incrementing count on every character. [Er, except utf8.]] */ STATIC I32 S_regrepeat(pTHX_ const regexp *prog, const regnode *p, I32 max, int depth) { dVAR; register char *scan; register I32 c; register char *loceol = PL_regeol; register I32 hardcount = 0; register bool utf8_target = PL_reg_match_utf8; UV utf8_flags; #ifndef DEBUGGING PERL_UNUSED_ARG(depth); #endif PERL_ARGS_ASSERT_REGREPEAT; scan = PL_reginput; if (max == REG_INFTY) max = I32_MAX; else if (max < loceol - scan) loceol = scan + max; switch (OP(p)) { case REG_ANY: if (utf8_target) { loceol = PL_regeol; while (scan < loceol && hardcount < max && *scan != '\n') { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && *scan != '\n') scan++; } break; case SANY: if (utf8_target) { loceol = PL_regeol; while (scan < loceol && hardcount < max) { scan += UTF8SKIP(scan); hardcount++; } } else scan = loceol; break; case CANY: scan = loceol; break; case EXACT: /* To get here, EXACTish nodes must have *byte* length == 1. That * means they match only characters in the string that can be expressed * as a single byte. For non-utf8 strings, that means a simple match. * For utf8 strings, the character matched must be an invariant, or * downgradable to a single byte. The pattern's utf8ness is * irrelevant, as since it's a single byte, it either isn't utf8, or if * it is, it's an invariant */ c = (U8)*STRING(p); assert(! UTF_PATTERN || UNI_IS_INVARIANT(c)); if (! utf8_target || UNI_IS_INVARIANT(c)) { while (scan < loceol && UCHARAT(scan) == c) { scan++; } } else { /* Here, the string is utf8, and the pattern char is different * in utf8 than not, so can't compare them directly. Outside the * loop, find find the two utf8 bytes that represent c, and then * look for those in sequence in the utf8 string */ U8 high = UTF8_TWO_BYTE_HI(c); U8 low = UTF8_TWO_BYTE_LO(c); loceol = PL_regeol; while (hardcount < max && scan + 1 < loceol && UCHARAT(scan) == high && UCHARAT(scan + 1) == low) { scan += 2; hardcount++; } } break; case EXACTFL: PL_reg_flags |= RF_tainted; /* FALL THROUGH */ case EXACTF: case EXACTFU: utf8_flags = 0; /* The comments for the EXACT case above apply as well to these fold * ones */ c = (U8)*STRING(p); assert(! UTF_PATTERN || UNI_IS_INVARIANT(c)); if (utf8_target) { /* Use full Unicode fold matching */ /* For the EXACTFL case, It doesn't really make sense to compare * locale and utf8, but it is best we can do. The documents warn * against mixing them */ char *tmpeol = loceol; while (hardcount < max && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target, STRING(p), NULL, 1, cBOOL(UTF_PATTERN), utf8_flags)) { scan = tmpeol; tmpeol = loceol; hardcount++; } /* XXX Note that the above handles properly the German sharp s in * the pattern matching ss in the string. But it doesn't handle * properly cases where the string contains say 'LIGATURE ff' and * the pattern is 'f+'. This would require, say, a new function or * revised interface to foldEQ_utf8(), in which the maximum number * of characters to match could be passed and it would return how * many actually did. This is just one of many cases where * multi-char folds don't work properly, and so the fix is being * deferred */ } else { U8 folded; /* Here, the string isn't utf8 and c is a single byte; and either * the pattern isn't utf8 or c is an invariant, so its utf8ness * doesn't affect c. Can just do simple comparisons for exact or * fold matching. */ switch (OP(p)) { case EXACTF: folded = PL_fold[c]; break; case EXACTFU: folded = PL_fold_latin1[c]; break; case EXACTFL: folded = PL_fold_locale[c]; break; default: Perl_croak(aTHX_ "panic: Unexpected op %u", OP(p)); } while (scan < loceol && (UCHARAT(scan) == c || UCHARAT(scan) == folded)) { scan++; } } break; case ANYOFV: case ANYOF: if (utf8_target || OP(p) == ANYOFV) { STRLEN inclasslen; loceol = PL_regeol; inclasslen = loceol - scan; while (hardcount < max && ((inclasslen = loceol - scan) > 0) && reginclass(prog, p, (U8*)scan, &inclasslen, utf8_target)) { scan += inclasslen; hardcount++; } } else { while (scan < loceol && REGINCLASS(prog, p, (U8*)scan)) scan++; } break; case ALNUMU: if (utf8_target) { utf8_wordchar: loceol = PL_regeol; LOAD_UTF8_CHARCLASS_ALNUM(); while (hardcount < max && scan < loceol && swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && isWORDCHAR_L1((U8) *scan)) { scan++; } } break; case ALNUM: if (utf8_target) goto utf8_wordchar; while (scan < loceol && isALNUM((U8) *scan)) { scan++; } break; case ALNUMA: while (scan < loceol && isWORDCHAR_A((U8) *scan)) { scan++; } break; case ALNUML: PL_reg_flags |= RF_tainted; if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && isALNUM_LC_utf8((U8*)scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && isALNUM_LC(*scan)) scan++; } break; case NALNUMU: if (utf8_target) { utf8_Nwordchar: loceol = PL_regeol; LOAD_UTF8_CHARCLASS_ALNUM(); while (hardcount < max && scan < loceol && ! swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && ! isWORDCHAR_L1((U8) *scan)) { scan++; } } break; case NALNUM: if (utf8_target) goto utf8_Nwordchar; while (scan < loceol && ! isALNUM((U8) *scan)) { scan++; } break; case NALNUMA: if (utf8_target) { while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) { scan += UTF8SKIP(scan); } } else { while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) { scan++; } } break; case NALNUML: PL_reg_flags |= RF_tainted; if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && !isALNUM_LC_utf8((U8*)scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && !isALNUM_LC(*scan)) scan++; } break; case SPACEU: if (utf8_target) { utf8_space: loceol = PL_regeol; LOAD_UTF8_CHARCLASS_SPACE(); while (hardcount < max && scan < loceol && (*scan == ' ' || swash_fetch(PL_utf8_space,(U8*)scan, utf8_target))) { scan += UTF8SKIP(scan); hardcount++; } break; } else { while (scan < loceol && isSPACE_L1((U8) *scan)) { scan++; } break; } case SPACE: if (utf8_target) goto utf8_space; while (scan < loceol && isSPACE((U8) *scan)) { scan++; } break; case SPACEA: while (scan < loceol && isSPACE_A((U8) *scan)) { scan++; } break; case SPACEL: PL_reg_flags |= RF_tainted; if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && isSPACE_LC_utf8((U8*)scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && isSPACE_LC(*scan)) scan++; } break; case NSPACEU: if (utf8_target) { utf8_Nspace: loceol = PL_regeol; LOAD_UTF8_CHARCLASS_SPACE(); while (hardcount < max && scan < loceol && ! (*scan == ' ' || swash_fetch(PL_utf8_space,(U8*)scan, utf8_target))) { scan += UTF8SKIP(scan); hardcount++; } break; } else { while (scan < loceol && ! isSPACE_L1((U8) *scan)) { scan++; } } break; case NSPACE: if (utf8_target) goto utf8_Nspace; while (scan < loceol && ! isSPACE((U8) *scan)) { scan++; } break; case NSPACEA: if (utf8_target) { while (scan < loceol && ! isSPACE_A((U8) *scan)) { scan += UTF8SKIP(scan); } } else { while (scan < loceol && ! isSPACE_A((U8) *scan)) { scan++; } } break; case NSPACEL: PL_reg_flags |= RF_tainted; if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && !isSPACE_LC_utf8((U8*)scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && !isSPACE_LC(*scan)) scan++; } break; case DIGIT: if (utf8_target) { loceol = PL_regeol; LOAD_UTF8_CHARCLASS_DIGIT(); while (hardcount < max && scan < loceol && swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && isDIGIT(*scan)) scan++; } break; case DIGITA: while (scan < loceol && isDIGIT_A((U8) *scan)) { scan++; } break; case DIGITL: PL_reg_flags |= RF_tainted; if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && isDIGIT_LC_utf8((U8*)scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && isDIGIT_LC(*scan)) scan++; } break; case NDIGIT: if (utf8_target) { loceol = PL_regeol; LOAD_UTF8_CHARCLASS_DIGIT(); while (hardcount < max && scan < loceol && !swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && !isDIGIT(*scan)) scan++; } break; case NDIGITA: if (utf8_target) { while (scan < loceol && ! isDIGIT_A((U8) *scan)) { scan += UTF8SKIP(scan); } } else { while (scan < loceol && ! isDIGIT_A((U8) *scan)) { scan++; } } break; case NDIGITL: PL_reg_flags |= RF_tainted; if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && !isDIGIT_LC_utf8((U8*)scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && !isDIGIT_LC(*scan)) scan++; } break; case LNBREAK: if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && (c=is_LNBREAK_utf8(scan))) { scan += c; hardcount++; } } else { /* LNBREAK can match two latin chars, which is ok, because we have a null terminated string, but we have to use hardcount in this situation */ while (scan < loceol && (c=is_LNBREAK_latin1(scan))) { scan+=c; hardcount++; } } break; case HORIZWS: if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && (c=is_HORIZWS_utf8(scan))) { scan += c; hardcount++; } } else { while (scan < loceol && is_HORIZWS_latin1(scan)) scan++; } break; case NHORIZWS: if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && !is_HORIZWS_utf8(scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && !is_HORIZWS_latin1(scan)) scan++; } break; case VERTWS: if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && (c=is_VERTWS_utf8(scan))) { scan += c; hardcount++; } } else { while (scan < loceol && is_VERTWS_latin1(scan)) scan++; } break; case NVERTWS: if (utf8_target) { loceol = PL_regeol; while (hardcount < max && scan < loceol && !is_VERTWS_utf8(scan)) { scan += UTF8SKIP(scan); hardcount++; } } else { while (scan < loceol && !is_VERTWS_latin1(scan)) scan++; } break; default: /* Called on something of 0 width. */ break; /* So match right here or not at all. */ } if (hardcount) c = hardcount; else c = scan - PL_reginput; PL_reginput = scan; DEBUG_r({ GET_RE_DEBUG_FLAGS_DECL; DEBUG_EXECUTE_r({ SV * const prop = sv_newmortal(); regprop(prog, prop, p); PerlIO_printf(Perl_debug_log, "%*s %s can match %"IVdf" times out of %"IVdf"...\n", REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max); }); }); return(c); } #if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) /* - regclass_swash - prepare the utf8 swash */ SV * Perl_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp) { dVAR; SV *sw = NULL; SV *si = NULL; SV *alt = NULL; RXi_GET_DECL(prog,progi); const struct reg_data * const data = prog ? progi->data : NULL; PERL_ARGS_ASSERT_REGCLASS_SWASH; if (data && data->count) { const U32 n = ARG(node); if (data->what[n] == 's') { SV * const rv = MUTABLE_SV(data->data[n]); AV * const av = MUTABLE_AV(SvRV(rv)); SV **const ary = AvARRAY(av); SV **a, **b; /* See the end of regcomp.c:S_regclass() for * documentation of these array elements. */ si = *ary; a = SvROK(ary[1]) ? &ary[1] : NULL; b = SvTYPE(ary[2]) == SVt_PVAV ? &ary[2] : NULL; if (a) sw = *a; else if (si && doinit) { sw = swash_init("utf8", "", si, 1, 0); (void)av_store(av, 1, sw); } if (b) alt = *b; } } if (listsvp) *listsvp = si; if (altsvp) *altsvp = alt; return sw; } #endif /* - reginclass - determine if a character falls into a character class n is the ANYOF regnode p is the target string lenp is pointer to the maximum number of bytes of how far to go in p (This is assumed wthout checking to always be at least the current character's size) utf8_target tells whether p is in UTF-8. Returns true if matched; false otherwise. If lenp is not NULL, on return from a successful match, the value it points to will be updated to how many bytes in p were matched. If there was no match, the value is undefined, possibly changed from the input. Note that this can be a synthetic start class, a combination of various nodes, so things you think might be mutually exclusive, such as locale, aren't. It can match both locale and non-locale */ STATIC bool S_reginclass(pTHX_ const regexp * const prog, register const regnode * const n, register const U8* const p, STRLEN* lenp, register const bool utf8_target) { dVAR; const char flags = ANYOF_FLAGS(n); bool match = FALSE; UV c = *p; STRLEN c_len = 0; STRLEN maxlen; PERL_ARGS_ASSERT_REGINCLASS; /* If c is not already the code point, get it */ if (utf8_target && !UTF8_IS_INVARIANT(c)) { c = utf8n_to_uvchr(p, UTF8_MAXBYTES, &c_len, (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV) | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY); /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for * UTF8_ALLOW_FFFF */ if (c_len == (STRLEN)-1) Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)"); } else { c_len = 1; } /* Use passed in max length, or one character if none passed in or less * than one character. And assume will match just one character. This is * overwritten later if matched more. */ if (lenp) { maxlen = (*lenp > c_len) ? *lenp : c_len; *lenp = c_len; } else { maxlen = c_len; } /* If this character is potentially in the bitmap, check it */ if (c < 256) { if (ANYOF_BITMAP_TEST(n, c)) match = TRUE; else if (flags & ANYOF_NON_UTF8_LATIN1_ALL && ! utf8_target && ! isASCII(c)) { match = TRUE; } else if (flags & ANYOF_LOCALE) { PL_reg_flags |= RF_tainted; if ((flags & ANYOF_LOC_NONBITMAP_FOLD) && ANYOF_BITMAP_TEST(n, PL_fold_locale[c])) { match = TRUE; } else if (ANYOF_CLASS_TEST_ANY_SET(n) && ((ANYOF_CLASS_TEST(n, ANYOF_ALNUM) && isALNUM_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NALNUM) && !isALNUM_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_SPACE) && isSPACE_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NSPACE) && !isSPACE_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_DIGIT) && isDIGIT_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NDIGIT) && !isDIGIT_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_ALNUMC) && isALNUMC_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NALNUMC) && !isALNUMC_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_ALPHA) && isALPHA_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NALPHA) && !isALPHA_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_ASCII) && isASCII(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NASCII) && !isASCII(c)) || (ANYOF_CLASS_TEST(n, ANYOF_CNTRL) && isCNTRL_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NCNTRL) && !isCNTRL_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_GRAPH) && isGRAPH_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NGRAPH) && !isGRAPH_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_LOWER) && isLOWER_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NLOWER) && !isLOWER_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_PRINT) && isPRINT_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NPRINT) && !isPRINT_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_PUNCT) && isPUNCT_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NPUNCT) && !isPUNCT_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_UPPER) && isUPPER_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NUPPER) && !isUPPER_LC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_XDIGIT) && isXDIGIT(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NXDIGIT) && !isXDIGIT(c)) || (ANYOF_CLASS_TEST(n, ANYOF_PSXSPC) && isPSXSPC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NPSXSPC) && !isPSXSPC(c)) || (ANYOF_CLASS_TEST(n, ANYOF_BLANK) && isBLANK(c)) || (ANYOF_CLASS_TEST(n, ANYOF_NBLANK) && !isBLANK(c)) ) /* How's that for a conditional? */ ) { match = TRUE; } } } /* If the bitmap didn't (or couldn't) match, and something outside the * bitmap could match, try that */ if (!match) { if (utf8_target && (flags & ANYOF_UNICODE_ALL) && c >= 256) { match = TRUE; /* Everything above 255 matches */ } else if ((flags & ANYOF_NONBITMAP_NON_UTF8 || (utf8_target && flags & ANYOF_UTF8))) { AV *av; SV * const sw = regclass_swash(prog, n, TRUE, 0, (SV**)&av); if (sw) { U8 * utf8_p; if (utf8_target) { utf8_p = (U8 *) p; } else { /* Not utf8. Convert as much of the string as available up * to the limit of how far the (single) character in the * pattern can possibly match (no need to go further). If * the node is a straight ANYOF or not folding, it can't * match more than one. Otherwise, It can match up to how * far a single char can fold to. Since not utf8, each * character is a single byte, so the max it can be in * bytes is the same as the max it can be in characters */ STRLEN len = (OP(n) == ANYOF || ! (flags & ANYOF_LOC_NONBITMAP_FOLD)) ? 1 : (maxlen < UTF8_MAX_FOLD_CHAR_EXPAND) ? maxlen : UTF8_MAX_FOLD_CHAR_EXPAND; utf8_p = bytes_to_utf8(p, &len); } if (swash_fetch(sw, utf8_p, TRUE)) match = TRUE; else if (flags & ANYOF_LOC_NONBITMAP_FOLD) { /* Here, we need to test if the fold of the target string * matches. In the case of a multi-char fold that is * caught by regcomp.c, it has stored all such folds into * 'av'; we linearly check to see if any match the target * string (folded). We know that the originals were each * one character, but we don't currently know how many * characters/bytes each folded to, except we do know that * there are small limits imposed by Unicode. XXX A * performance enhancement would be to have regcomp.c store * the max number of chars/bytes that are in an av entry, * as, say the 0th element. Even better would be to have a * hash of the few characters that can start a multi-char * fold to the max number of chars of those folds. * * Further down, if there isn't a * match in the av, we will check if there is another * fold-type match. For that, we also need the fold, but * only the first character. No sense in folding it twice, * so we do it here, even if there isn't any multi-char * fold, so we always fold at least the first character. * If the node is a straight ANYOF node, or there is only * one character available in the string, or if there isn't * any av, that's all we have to fold. In the case of a * multi-char fold, we do have guarantees in Unicode that * it can only expand up to so many characters and so many * bytes. We keep track so don't exceed either. * * If there is a match, we will need to advance (if lenp is * specified) the match pointer in the target string. But * what we are comparing here isn't that string directly, * but its fold, whose length may differ from the original. * As we go along in constructing the fold, therefore, we * create a map so that we know how many bytes in the * source to advance given that we have matched a certain * number of bytes in the fold. This map is stored in * 'map_fold_len_back'. The first character in the fold * has array element 1 contain the number of bytes in the * source that folded to it; the 2nd is the cumulative * number to match it; ... */ U8 map_fold_len_back[UTF8_MAX_FOLD_CHAR_EXPAND] = { 0 }; U8 folded[UTF8_MAXBYTES_CASE+1]; STRLEN foldlen = 0; /* num bytes in fold of 1st char */ STRLEN foldlen_for_av; /* num bytes in fold of all chars */ if (OP(n) == ANYOF || maxlen == 1 || ! lenp || ! av) { /* Here, only need to fold the first char of the target * string */ to_utf8_fold(utf8_p, folded, &foldlen); foldlen_for_av = foldlen; map_fold_len_back[1] = UTF8SKIP(utf8_p); } else { /* Here, need to fold more than the first char. Do so * up to the limits */ UV which_char = 0; U8* source_ptr = utf8_p; /* The source for the fold is the regex target string */ U8* folded_ptr = folded; U8* e = utf8_p + maxlen; /* Can't go beyond last available byte in the target string */ while (which_char < UTF8_MAX_FOLD_CHAR_EXPAND && source_ptr < e) { /* Fold the next character */ U8 this_char_folded[UTF8_MAXBYTES_CASE+1]; STRLEN this_char_foldlen; to_utf8_fold(source_ptr, this_char_folded, &this_char_foldlen); /* Bail if it would exceed the byte limit for * folding a single char. */ if (this_char_foldlen + folded_ptr - folded > UTF8_MAXBYTES_CASE) { break; } /* Save the first character's folded length, in * case we have to use it later */ if (! foldlen) { foldlen = this_char_foldlen; } /* Here, add the fold of this character */ Copy(this_char_folded, folded_ptr, this_char_foldlen, U8); which_char++; map_fold_len_back[which_char] = map_fold_len_back[which_char - 1] + UTF8SKIP(source_ptr); folded_ptr += this_char_foldlen; source_ptr += UTF8SKIP(source_ptr); } *folded_ptr = '\0'; foldlen_for_av = folded_ptr - folded; } /* Do the linear search to see if the fold is in the list * of multi-char folds. (Useless to look if won't be able * to store that it is a multi-char fold in *lenp) */ if (lenp && av) { I32 i; for (i = 0; i <= av_len(av); i++) { SV* const sv = *av_fetch(av, i, FALSE); STRLEN len; const char * const s = SvPV_const(sv, len); if (len <= foldlen_for_av && memEQ(s, (char*)folded, len)) { /* Advance the target string ptr to account for * this fold, but have to translate from the * folded length to the corresponding source * length. The array is indexed by how many * characters in the match */ *lenp = map_fold_len_back[ utf8_length(folded, folded + len)]; match = TRUE; break; } } } #if 0 if (!match) { /* See if the folded version matches */ SV** listp; /* Consider "k" =~ /[K]/i. The line above would have * just folded the 'k' to itself, and that isn't going * to match 'K'. So we look through the closure of * everything that folds to 'k'. That will find the * 'K'. Initialize the list, if necessary */ if (! PL_utf8_foldclosures) { /* If the folds haven't been read in, call a fold * function to force that */ if (! PL_utf8_tofold) { U8 dummy[UTF8_MAXBYTES+1]; STRLEN dummy_len; to_utf8_fold((U8*) "A", dummy, &dummy_len); } PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold); } /* The data structure is a hash with the keys every * character that is folded to, like 'k', and the * values each an array of everything that folds to its * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */ if ((listp = hv_fetch(PL_utf8_foldclosures, (char *) folded, foldlen, FALSE))) { AV* list = (AV*) *listp; IV i; for (i = 0; i <= av_len(list); i++) { SV** try_p = av_fetch(list, i, FALSE); char* try_c; if (try_p == NULL) { Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure"); } /* Don't have to worry about embedded nulls * since NULL isn't folded or foldable */ try_c = SvPVX(*try_p); /* The fold in a few cases of an above Latin1 * char is in the Latin1 range, and hence may * be in the bitmap */ if (UTF8_IS_INVARIANT(*try_c) && ANYOF_BITMAP_TEST(n, UNI_TO_NATIVE(*try_c))) { match = TRUE; break; } else if (UTF8_IS_DOWNGRADEABLE_START(*try_c) && ANYOF_BITMAP_TEST(n, UNI_TO_NATIVE( TWO_BYTE_UTF8_TO_UNI(try_c[0], try_c[1])))) { /* Since the fold comes from internally * generated data, we can safely assume it * is valid utf8 in the test above */ match = TRUE; break; } else if (swash_fetch(sw, (U8*) try_c, TRUE)) { match = TRUE; break; } } } } #endif } /* If we allocated a string above, free it */ if (! utf8_target) Safefree(utf8_p); } } } return (flags & ANYOF_INVERT) ? !match : match; } STATIC U8 * S_reghop3(U8 *s, I32 off, const U8* lim) { dVAR; PERL_ARGS_ASSERT_REGHOP3; if (off >= 0) { while (off-- && s < lim) { /* XXX could check well-formedness here */ s += UTF8SKIP(s); } } else { while (off++ && s > lim) { s--; if (UTF8_IS_CONTINUED(*s)) { while (s > lim && UTF8_IS_CONTINUATION(*s)) s--; } /* XXX could check well-formedness here */ } } return s; } #ifdef XXX_dmq /* there are a bunch of places where we use two reghop3's that should be replaced with this routine. but since thats not done yet we ifdef it out - dmq */ STATIC U8 * S_reghop4(U8 *s, I32 off, const U8* llim, const U8* rlim) { dVAR; PERL_ARGS_ASSERT_REGHOP4; if (off >= 0) { while (off-- && s < rlim) { /* XXX could check well-formedness here */ s += UTF8SKIP(s); } } else { while (off++ && s > llim) { s--; if (UTF8_IS_CONTINUED(*s)) { while (s > llim && UTF8_IS_CONTINUATION(*s)) s--; } /* XXX could check well-formedness here */ } } return s; } #endif STATIC U8 * S_reghopmaybe3(U8* s, I32 off, const U8* lim) { dVAR; PERL_ARGS_ASSERT_REGHOPMAYBE3; if (off >= 0) { while (off-- && s < lim) { /* XXX could check well-formedness here */ s += UTF8SKIP(s); } if (off >= 0) return NULL; } else { while (off++ && s > lim) { s--; if (UTF8_IS_CONTINUED(*s)) { while (s > lim && UTF8_IS_CONTINUATION(*s)) s--; } /* XXX could check well-formedness here */ } if (off <= 0) return NULL; } return s; } static void restore_pos(pTHX_ void *arg) { dVAR; regexp * const rex = (regexp *)arg; if (PL_reg_eval_set) { if (PL_reg_oldsaved) { rex->subbeg = PL_reg_oldsaved; rex->sublen = PL_reg_oldsavedlen; #ifdef PERL_OLD_COPY_ON_WRITE rex->saved_copy = PL_nrs; #endif RXp_MATCH_COPIED_on(rex); } PL_reg_magic->mg_len = PL_reg_oldpos; PL_reg_eval_set = 0; PL_curpm = PL_reg_oldcurpm; } } STATIC void S_to_utf8_substr(pTHX_ register regexp *prog) { int i = 1; PERL_ARGS_ASSERT_TO_UTF8_SUBSTR; do { if (prog->substrs->data[i].substr && !prog->substrs->data[i].utf8_substr) { SV* const sv = newSVsv(prog->substrs->data[i].substr); prog->substrs->data[i].utf8_substr = sv; sv_utf8_upgrade(sv); if (SvVALID(prog->substrs->data[i].substr)) { const U8 flags = BmFLAGS(prog->substrs->data[i].substr); if (flags & FBMcf_TAIL) { /* Trim the trailing \n that fbm_compile added last time. */ SvCUR_set(sv, SvCUR(sv) - 1); /* Whilst this makes the SV technically "invalid" (as its buffer is no longer followed by "\0") when fbm_compile() adds the "\n" back, a "\0" is restored. */ } fbm_compile(sv, flags); } if (prog->substrs->data[i].substr == prog->check_substr) prog->check_utf8 = sv; } } while (i--); } STATIC void S_to_byte_substr(pTHX_ register regexp *prog) { dVAR; int i = 1; PERL_ARGS_ASSERT_TO_BYTE_SUBSTR; do { if (prog->substrs->data[i].utf8_substr && !prog->substrs->data[i].substr) { SV* sv = newSVsv(prog->substrs->data[i].utf8_substr); if (sv_utf8_downgrade(sv, TRUE)) { if (SvVALID(prog->substrs->data[i].utf8_substr)) { const U8 flags = BmFLAGS(prog->substrs->data[i].utf8_substr); if (flags & FBMcf_TAIL) { /* Trim the trailing \n that fbm_compile added last time. */ SvCUR_set(sv, SvCUR(sv) - 1); } fbm_compile(sv, flags); } } else { SvREFCNT_dec(sv); sv = &PL_sv_undef; } prog->substrs->data[i].substr = sv; if (prog->substrs->data[i].utf8_substr == prog->check_utf8) prog->check_substr = sv; } } while (i--); } /* * Local variables: * c-indentation-style: bsd * c-basic-offset: 4 * indent-tabs-mode: t * End: * * ex: set ts=8 sts=4 sw=4 noet: */