summaryrefslogtreecommitdiff
path: root/dist/Math-BigInt/lib/Math/BigInt.pm
blob: 9082a35b92aca8c0b238acaecd5313f77e61dff7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
package Math::BigInt;

#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#

# The following hash values are used:
#   value: unsigned int with actual value (as a Math::BigInt::Calc or similar)
#   sign : +,-,NaN,+inf,-inf
#   _a   : accuracy
#   _p   : precision
#   _f   : flags, used by MBF to flag parts of a float as untouchable

# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!

my $class = "Math::BigInt";
use 5.006002;

$VERSION = '1.999';

@ISA = qw(Exporter);
@EXPORT_OK = qw(objectify bgcd blcm); 

# _trap_inf and _trap_nan are internal and should never be accessed from the
# outside
use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode 
	    $upgrade $downgrade $_trap_nan $_trap_inf/;
use strict;

# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third parameter is true.
# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
# no difference, but in some cases it does.

# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.

# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.

# We register ops that are not registerable yet, so suppress warnings
{ no warnings;
use overload
'='     =>      sub { $_[0]->copy(); },

# some shortcuts for speed (assumes that reversed order of arguments is routed
# to normal '+' and we thus can always modify first arg. If this is changed,
# this breaks and must be adjusted.)
'+='	=>	sub { $_[0]->badd($_[1]); },
'-='	=>	sub { $_[0]->bsub($_[1]); },
'*='	=>	sub { $_[0]->bmul($_[1]); },
'/='	=>	sub { scalar $_[0]->bdiv($_[1]); },
'%='	=>	sub { $_[0]->bmod($_[1]); },
'^='	=>	sub { $_[0]->bxor($_[1]); },
'&='	=>	sub { $_[0]->band($_[1]); },
'|='	=>	sub { $_[0]->bior($_[1]); },

'**='	=>	sub { $_[0]->bpow($_[1]); },
'<<='	=>	sub { $_[0]->blsft($_[1]); },
'>>='	=>	sub { $_[0]->brsft($_[1]); },

# not supported by Perl yet
'..'	=>	\&_pointpoint,

'<=>'	=>	sub { my $rc = $_[2] ?
                      ref($_[0])->bcmp($_[1],$_[0]) : 
                      $_[0]->bcmp($_[1]); 
		      $rc = 1 unless defined $rc;
		      $rc <=> 0;
		},
# we need '>=' to get things like "1 >= NaN" right:
'>='	=>	sub { my $rc = $_[2] ?
                      ref($_[0])->bcmp($_[1],$_[0]) : 
                      $_[0]->bcmp($_[1]);
		      # if there was a NaN involved, return false
		      return '' unless defined $rc;
		      $rc >= 0;
		},
'cmp'	=>	sub {
         $_[2] ? 
               "$_[1]" cmp $_[0]->bstr() :
               $_[0]->bstr() cmp "$_[1]" },

'cos'	=>	sub { $_[0]->copy->bcos(); }, 
'sin'	=>	sub { $_[0]->copy->bsin(); }, 
'atan2'	=>	sub { $_[2] ?
			ref($_[0])->new($_[1])->batan2($_[0]) :
			$_[0]->copy()->batan2($_[1]) },

# are not yet overloadable
#'hex'	=>	sub { print "hex"; $_[0]; }, 
#'oct'	=>	sub { print "oct"; $_[0]; }, 

# log(N) is log(N, e), where e is Euler's number
'log'	=>	sub { $_[0]->copy()->blog($_[1], undef); }, 
'exp'	=>	sub { $_[0]->copy()->bexp($_[1]); }, 
'int'	=>	sub { $_[0]->copy(); }, 
'neg'	=>	sub { $_[0]->copy()->bneg(); }, 
'abs'	=>	sub { $_[0]->copy()->babs(); },
'sqrt'  =>	sub { $_[0]->copy()->bsqrt(); },
'~'	=>	sub { $_[0]->copy()->bnot(); },

# for subtract it's a bit tricky to not modify b: b-a => -a+b
'-'	=>	sub { my $c = $_[0]->copy; $_[2] ?
			$c->bneg()->badd( $_[1]) :
			$c->bsub( $_[1]) },
'+'	=>	sub { $_[0]->copy()->badd($_[1]); },
'*'	=>	sub { $_[0]->copy()->bmul($_[1]); },

'/'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
  }, 
'%'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
  }, 
'**'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
  }, 
'<<'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
  }, 
'>>'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
  }, 
'&'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
  }, 
'|'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
  }, 
'^'	=>	sub { 
   $_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
  }, 

# can modify arg of ++ and --, so avoid a copy() for speed, but don't
# use $_[0]->bone(), it would modify $_[0] to be 1!
'++'	=>	sub { $_[0]->binc() },
'--'	=>	sub { $_[0]->bdec() },

# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
'bool'  =>	sub {
  # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
  # v5.6.1 dumps on this: return !$_[0]->is_zero() || undef;		    :-(
  my $t = undef;
  $t = 1 if !$_[0]->is_zero();
  $t;
  },

# the original qw() does not work with the TIESCALAR below, why?
# Order of arguments unsignificant
'""' => sub { $_[0]->bstr(); },
'0+' => sub { $_[0]->numify(); }
;
} # no warnings scope

##############################################################################
# global constants, flags and accessory

# These vars are public, but their direct usage is not recommended, use the
# accessor methods instead

$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
$accuracy   = undef;
$precision  = undef;
$div_scale  = 40;

$upgrade = undef;			# default is no upgrade
$downgrade = undef;			# default is no downgrade

# These are internally, and not to be used from the outside at all

$_trap_nan = 0;				# are NaNs ok? set w/ config()
$_trap_inf = 0;				# are infs ok? set w/ config()
my $nan = 'NaN'; 			# constants for easier life

my $CALC = 'Math::BigInt::Calc';	# module to do the low level math
					# default is Calc.pm
my $IMPORT = 0;				# was import() called yet?
					# used to make require work
my %WARN;				# warn only once for low-level libs
my %CAN;				# cache for $CALC->can(...)
my %CALLBACKS;				# callbacks to notify on lib loads
my $EMU_LIB = 'Math/BigInt/CalcEmu.pm';	# emulate low-level math

##############################################################################
# the old code had $rnd_mode, so we need to support it, too

$rnd_mode   = 'even';
sub TIESCALAR  { my ($class) = @_; bless \$round_mode, $class; }
sub FETCH      { return $round_mode; }
sub STORE      { $rnd_mode = $_[0]->round_mode($_[1]); }

BEGIN
  { 
  # tie to enable $rnd_mode to work transparently
  tie $rnd_mode, 'Math::BigInt'; 

  # set up some handy alias names
  *as_int = \&as_number;
  *is_pos = \&is_positive;
  *is_neg = \&is_negative;
  }

############################################################################## 

sub round_mode
  {
  no strict 'refs';
  # make Class->round_mode() work
  my $self = shift;
  my $class = ref($self) || $self || __PACKAGE__;
  if (defined $_[0])
    {
    my $m = shift;
    if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
      {
      require Carp; Carp::croak ("Unknown round mode '$m'");
      }
    return ${"${class}::round_mode"} = $m;
    }
  ${"${class}::round_mode"};
  }

sub upgrade
  {
  no strict 'refs';
  # make Class->upgrade() work
  my $self = shift;
  my $class = ref($self) || $self || __PACKAGE__;
  # need to set new value?
  if (@_ > 0)
    {
    return ${"${class}::upgrade"} = $_[0];
    }
  ${"${class}::upgrade"};
  }

sub downgrade
  {
  no strict 'refs';
  # make Class->downgrade() work
  my $self = shift;
  my $class = ref($self) || $self || __PACKAGE__;
  # need to set new value?
  if (@_ > 0)
    {
    return ${"${class}::downgrade"} = $_[0];
    }
  ${"${class}::downgrade"};
  }

sub div_scale
  {
  no strict 'refs';
  # make Class->div_scale() work
  my $self = shift;
  my $class = ref($self) || $self || __PACKAGE__;
  if (defined $_[0])
    {
    if ($_[0] < 0)
      {
      require Carp; Carp::croak ('div_scale must be greater than zero');
      }
    ${"${class}::div_scale"} = $_[0];
    }
  ${"${class}::div_scale"};
  }

sub accuracy
  {
  # $x->accuracy($a);		ref($x)	$a
  # $x->accuracy();		ref($x)
  # Class->accuracy();		class
  # Class->accuracy($a);	class $a

  my $x = shift;
  my $class = ref($x) || $x || __PACKAGE__;

  no strict 'refs';
  # need to set new value?
  if (@_ > 0)
    {
    my $a = shift;
    # convert objects to scalars to avoid deep recursion. If object doesn't
    # have numify(), then hopefully it will have overloading for int() and
    # boolean test without wandering into a deep recursion path...
    $a = $a->numify() if ref($a) && $a->can('numify');

    if (defined $a)
      {
      # also croak on non-numerical
      if (!$a || $a <= 0)
        {
        require Carp;
	Carp::croak ('Argument to accuracy must be greater than zero');
        }
      if (int($a) != $a)
        {
        require Carp;
	Carp::croak ('Argument to accuracy must be an integer');
        }
      }
    if (ref($x))
      {
      # $object->accuracy() or fallback to global
      $x->bround($a) if $a;		# not for undef, 0
      $x->{_a} = $a;			# set/overwrite, even if not rounded
      delete $x->{_p};			# clear P
      $a = ${"${class}::accuracy"} unless defined $a;   # proper return value
      }
    else
      {
      ${"${class}::accuracy"} = $a;	# set global A
      ${"${class}::precision"} = undef;	# clear global P
      }
    return $a;				# shortcut
    }

  my $a;
  # $object->accuracy() or fallback to global
  $a = $x->{_a} if ref($x);
  # but don't return global undef, when $x's accuracy is 0!
  $a = ${"${class}::accuracy"} if !defined $a;
  $a;
  }

sub precision
  {
  # $x->precision($p);		ref($x)	$p
  # $x->precision();		ref($x)
  # Class->precision();		class
  # Class->precision($p);	class $p

  my $x = shift;
  my $class = ref($x) || $x || __PACKAGE__;

  no strict 'refs';
  if (@_ > 0)
    {
    my $p = shift;
    # convert objects to scalars to avoid deep recursion. If object doesn't
    # have numify(), then hopefully it will have overloading for int() and
    # boolean test without wandering into a deep recursion path...
    $p = $p->numify() if ref($p) && $p->can('numify');
    if ((defined $p) && (int($p) != $p))
      {
      require Carp; Carp::croak ('Argument to precision must be an integer');
      }
    if (ref($x))
      {
      # $object->precision() or fallback to global
      $x->bfround($p) if $p;		# not for undef, 0
      $x->{_p} = $p;			# set/overwrite, even if not rounded
      delete $x->{_a};			# clear A
      $p = ${"${class}::precision"} unless defined $p;  # proper return value
      }
    else
      {
      ${"${class}::precision"} = $p;	# set global P
      ${"${class}::accuracy"} = undef;	# clear global A
      }
    return $p;				# shortcut
    }

  my $p;
  # $object->precision() or fallback to global
  $p = $x->{_p} if ref($x);
  # but don't return global undef, when $x's precision is 0!
  $p = ${"${class}::precision"} if !defined $p;
  $p;
  }

sub config
  {
  # return (or set) configuration data as hash ref
  my $class = shift || 'Math::BigInt';

  no strict 'refs';
  if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH')))
    {
    # try to set given options as arguments from hash

    my $args = $_[0];
    if (ref($args) ne 'HASH')
      {
      $args = { @_ };
      }
    # these values can be "set"
    my $set_args = {};
    foreach my $key (
     qw/trap_inf trap_nan
        upgrade downgrade precision accuracy round_mode div_scale/
     )
      {
      $set_args->{$key} = $args->{$key} if exists $args->{$key};
      delete $args->{$key};
      }
    if (keys %$args > 0)
      {
      require Carp;
      Carp::croak ("Illegal key(s) '",
       join("','",keys %$args),"' passed to $class\->config()");
      }
    foreach my $key (keys %$set_args)
      {
      if ($key =~ /^trap_(inf|nan)\z/)
        {
        ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
        next;
        }
      # use a call instead of just setting the $variable to check argument
      $class->$key($set_args->{$key});
      }
    }

  # now return actual configuration

  my $cfg = {
    lib => $CALC,
    lib_version => ${"${CALC}::VERSION"},
    class => $class,
    trap_nan => ${"${class}::_trap_nan"},
    trap_inf => ${"${class}::_trap_inf"},
    version => ${"${class}::VERSION"},
    };
  foreach my $key (qw/
     upgrade downgrade precision accuracy round_mode div_scale
     /)
    {
    $cfg->{$key} = ${"${class}::$key"};
    };
  if (@_ == 1 && (ref($_[0]) ne 'HASH'))
    {
    # calls of the style config('lib') return just this value
    return $cfg->{$_[0]};
    }
  $cfg;
  }

sub _scale_a
  { 
  # select accuracy parameter based on precedence,
  # used by bround() and bfround(), may return undef for scale (means no op)
  my ($x,$scale,$mode) = @_;

  $scale = $x->{_a} unless defined $scale;

  no strict 'refs';
  my $class = ref($x);

  $scale = ${ $class . '::accuracy' } unless defined $scale;
  $mode = ${ $class . '::round_mode' } unless defined $mode;

  if (defined $scale)
    {
    $scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
    $scale = int($scale);
    }

  ($scale,$mode);
  }

sub _scale_p
  { 
  # select precision parameter based on precedence,
  # used by bround() and bfround(), may return undef for scale (means no op)
  my ($x,$scale,$mode) = @_;
  
  $scale = $x->{_p} unless defined $scale;

  no strict 'refs';
  my $class = ref($x);

  $scale = ${ $class . '::precision' } unless defined $scale;
  $mode = ${ $class . '::round_mode' } unless defined $mode;

  if (defined $scale)
    {
    $scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
    $scale = int($scale);
    }

  ($scale,$mode);
  }

##############################################################################
# constructors

sub copy
  {
  # if two arguments, the first one is the class to "swallow" subclasses
  if (@_ > 1)
    {
    my  $self = bless {
	sign => $_[1]->{sign}, 
	value => $CALC->_copy($_[1]->{value}),
    }, $_[0] if @_ > 1;

    $self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
    $self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
    return $self;
    }

  my $self = bless {
	sign => $_[0]->{sign}, 
	value => $CALC->_copy($_[0]->{value}),
	}, ref($_[0]);

  $self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
  $self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
  $self;
  }

sub new 
  {
  # create a new BigInt object from a string or another BigInt object. 
  # see hash keys documented at top

  # the argument could be an object, so avoid ||, && etc on it, this would
  # cause costly overloaded code to be called. The only allowed ops are
  # ref() and defined.

  my ($class,$wanted,$a,$p,$r) = @_;
 
  # avoid numify-calls by not using || on $wanted!
  return $class->bzero($a,$p) if !defined $wanted;	# default to 0
  return $class->copy($wanted,$a,$p,$r)
   if ref($wanted) && $wanted->isa($class);		# MBI or subclass

  $class->import() if $IMPORT == 0;		# make require work
  
  my $self = bless {}, $class;

  # shortcut for "normal" numbers
  if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
    {
    $self->{sign} = $1 || '+';

    if ($wanted =~ /^[+-]/)
     {
      # remove sign without touching wanted to make it work with constants
      my $t = $wanted; $t =~ s/^[+-]//;
      $self->{value} = $CALC->_new($t);
      }
    else
      {
      $self->{value} = $CALC->_new($wanted);
      }
    no strict 'refs';
    if ( (defined $a) || (defined $p) 
        || (defined ${"${class}::precision"})
        || (defined ${"${class}::accuracy"}) 
       )
      {
      $self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
      }
    return $self;
    }

  # handle '+inf', '-inf' first
  if ($wanted =~ /^[+-]?inf\z/)
    {
    $self->{sign} = $wanted;		# set a default sign for bstr()
    return $self->binf($wanted);
    }
  # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
  my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
  if (!ref $mis)
    {
    if ($_trap_nan)
      {
      require Carp; Carp::croak("$wanted is not a number in $class");
      }
    $self->{value} = $CALC->_zero();
    $self->{sign} = $nan;
    return $self;
    }
  if (!ref $miv)
    {
    # _from_hex or _from_bin
    $self->{value} = $mis->{value};
    $self->{sign} = $mis->{sign};
    return $self;	# throw away $mis
    }
  # make integer from mantissa by adjusting exp, then convert to bigint
  $self->{sign} = $$mis;			# store sign
  $self->{value} = $CALC->_zero();		# for all the NaN cases
  my $e = int("$$es$$ev");			# exponent (avoid recursion)
  if ($e > 0)
    {
    my $diff = $e - CORE::length($$mfv);
    if ($diff < 0)				# Not integer
      {
      if ($_trap_nan)
        {
        require Carp; Carp::croak("$wanted not an integer in $class");
        }
      #print "NOI 1\n";
      return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
      $self->{sign} = $nan;
      }
    else					# diff >= 0
      {
      # adjust fraction and add it to value
      #print "diff > 0 $$miv\n";
      $$miv = $$miv . ($$mfv . '0' x $diff);
      }
    }
  else
    {
    if ($$mfv ne '')				# e <= 0
      {
      # fraction and negative/zero E => NOI
      if ($_trap_nan)
        {
        require Carp; Carp::croak("$wanted not an integer in $class");
        }
      #print "NOI 2 \$\$mfv '$$mfv'\n";
      return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
      $self->{sign} = $nan;
      }
    elsif ($e < 0)
      {
      # xE-y, and empty mfv
      #print "xE-y\n";
      $e = abs($e);
      if ($$miv !~ s/0{$e}$//)		# can strip so many zero's?
        {
        if ($_trap_nan)
          {
          require Carp; Carp::croak("$wanted not an integer in $class");
          }
        #print "NOI 3\n";
        return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
        $self->{sign} = $nan;
        }
      }
    }
  $self->{sign} = '+' if $$miv eq '0';			# normalize -0 => +0
  $self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
  # if any of the globals is set, use them to round and store them inside $self
  # do not round for new($x,undef,undef) since that is used by MBF to signal
  # no rounding
  $self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
  $self;
  }

sub bnan
  {
  # create a bigint 'NaN', if given a BigInt, set it to 'NaN'
  my $self = shift;
  $self = $class if !defined $self;
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  no strict 'refs';
  if (${"${class}::_trap_nan"})
    {
    require Carp;
    Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
    }
  $self->import() if $IMPORT == 0;		# make require work
  return if $self->modify('bnan');
  if ($self->can('_bnan'))
    {
    # use subclass to initialize
    $self->_bnan();
    }
  else
    {
    # otherwise do our own thing
    $self->{value} = $CALC->_zero();
    }
  $self->{sign} = $nan;
  delete $self->{_a}; delete $self->{_p};	# rounding NaN is silly
  $self;
  }

sub binf
  {
  # create a bigint '+-inf', if given a BigInt, set it to '+-inf'
  # the sign is either '+', or if given, used from there
  my $self = shift;
  my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
  $self = $class if !defined $self;
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  no strict 'refs';
  if (${"${class}::_trap_inf"})
    {
    require Carp;
    Carp::croak ("Tried to set $self to +-inf in $class\::binf()");
    }
  $self->import() if $IMPORT == 0;		# make require work
  return if $self->modify('binf');
  if ($self->can('_binf'))
    {
    # use subclass to initialize
    $self->_binf();
    }
  else
    {
    # otherwise do our own thing
    $self->{value} = $CALC->_zero();
    }
  $sign = $sign . 'inf' if $sign !~ /inf$/;	# - => -inf
  $self->{sign} = $sign;
  ($self->{_a},$self->{_p}) = @_;		# take over requested rounding
  $self;
  }

sub bzero
  {
  # create a bigint '+0', if given a BigInt, set it to 0
  my $self = shift;
  $self = __PACKAGE__ if !defined $self;
 
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  $self->import() if $IMPORT == 0;		# make require work
  return if $self->modify('bzero');
  
  if ($self->can('_bzero'))
    {
    # use subclass to initialize
    $self->_bzero();
    }
  else
    {
    # otherwise do our own thing
    $self->{value} = $CALC->_zero();
    }
  $self->{sign} = '+';
  if (@_ > 0)
    {
    if (@_ > 3)
      {
      # call like: $x->bzero($a,$p,$r,$y);
      ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
      }
    else
      {
      $self->{_a} = $_[0]
       if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
      $self->{_p} = $_[1]
       if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
      }
    }
  $self;
  }

sub bone
  {
  # create a bigint '+1' (or -1 if given sign '-'),
  # if given a BigInt, set it to +1 or -1, respectively
  my $self = shift;
  my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
  $self = $class if !defined $self;

  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  $self->import() if $IMPORT == 0;		# make require work
  return if $self->modify('bone');

  if ($self->can('_bone'))
    {
    # use subclass to initialize
    $self->_bone();
    }
  else
    {
    # otherwise do our own thing
    $self->{value} = $CALC->_one();
    }
  $self->{sign} = $sign;
  if (@_ > 0)
    {
    if (@_ > 3)
      {
      # call like: $x->bone($sign,$a,$p,$r,$y);
      ($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
      }
    else
      {
      # call like: $x->bone($sign,$a,$p,$r);
      $self->{_a} = $_[0]
       if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
      $self->{_p} = $_[1]
       if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
      }
    }
  $self;
  }

##############################################################################
# string conversion

sub bsstr
  {
  # (ref to BFLOAT or num_str ) return num_str
  # Convert number from internal format to scientific string format.
  # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 

  if ($x->{sign} !~ /^[+-]$/)
    {
    return $x->{sign} unless $x->{sign} eq '+inf';	# -inf, NaN
    return 'inf';					# +inf
    }
  my ($m,$e) = $x->parts();
  #$m->bstr() . 'e+' . $e->bstr(); 	# e can only be positive in BigInt
  # 'e+' because E can only be positive in BigInt
  $m->bstr() . 'e+' . $CALC->_str($e->{value}); 
  }

sub bstr 
  {
  # make a string from bigint object
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 

  if ($x->{sign} !~ /^[+-]$/)
    {
    return $x->{sign} unless $x->{sign} eq '+inf';	# -inf, NaN
    return 'inf';					# +inf
    }
  my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
  $es.$CALC->_str($x->{value});
  }

sub numify 
  {
  # Make a "normal" scalar from a BigInt object
  my $x = shift; $x = $class->new($x) unless ref $x;

  return $x->bstr() if $x->{sign} !~ /^[+-]$/;
  my $num = $CALC->_num($x->{value});
  return -$num if $x->{sign} eq '-';
  $num;
  }

##############################################################################
# public stuff (usually prefixed with "b")

sub sign
  {
  # return the sign of the number: +/-/-inf/+inf/NaN
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 
  
  $x->{sign};
  }

sub _find_round_parameters
  {
  # After any operation or when calling round(), the result is rounded by
  # regarding the A & P from arguments, local parameters, or globals.

  # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!

  # This procedure finds the round parameters, but it is for speed reasons
  # duplicated in round. Otherwise, it is tested by the testsuite and used
  # by fdiv().
 
  # returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
  # were requested/defined (locally or globally or both)
  
  my ($self,$a,$p,$r,@args) = @_;
  # $a accuracy, if given by caller
  # $p precision, if given by caller
  # $r round_mode, if given by caller
  # @args all 'other' arguments (0 for unary, 1 for binary ops)

  my $c = ref($self);				# find out class of argument(s)
  no strict 'refs';

  # convert to normal scalar for speed and correctness in inner parts
  $a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a);
  $p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p);

  # now pick $a or $p, but only if we have got "arguments"
  if (!defined $a)
    {
    foreach ($self,@args)
      {
      # take the defined one, or if both defined, the one that is smaller
      $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
      }
    }
  if (!defined $p)
    {
    # even if $a is defined, take $p, to signal error for both defined
    foreach ($self,@args)
      {
      # take the defined one, or if both defined, the one that is bigger
      # -2 > -3, and 3 > 2
      $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
      }
    }
  # if still none defined, use globals (#2)
  $a = ${"$c\::accuracy"} unless defined $a;
  $p = ${"$c\::precision"} unless defined $p;

  # A == 0 is useless, so undef it to signal no rounding
  $a = undef if defined $a && $a == 0;
 
  # no rounding today? 
  return ($self) unless defined $a || defined $p;		# early out

  # set A and set P is an fatal error
  return ($self->bnan()) if defined $a && defined $p;		# error

  $r = ${"$c\::round_mode"} unless defined $r;
  if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
    {
    require Carp; Carp::croak ("Unknown round mode '$r'");
    }

  $a = int($a) if defined $a;
  $p = int($p) if defined $p;

  ($self,$a,$p,$r);
  }

sub round
  {
  # Round $self according to given parameters, or given second argument's
  # parameters or global defaults 

  # for speed reasons, _find_round_parameters is embedded here:

  my ($self,$a,$p,$r,@args) = @_;
  # $a accuracy, if given by caller
  # $p precision, if given by caller
  # $r round_mode, if given by caller
  # @args all 'other' arguments (0 for unary, 1 for binary ops)

  my $c = ref($self);				# find out class of argument(s)
  no strict 'refs';

  # now pick $a or $p, but only if we have got "arguments"
  if (!defined $a)
    {
    foreach ($self,@args)
      {
      # take the defined one, or if both defined, the one that is smaller
      $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
      }
    }
  if (!defined $p)
    {
    # even if $a is defined, take $p, to signal error for both defined
    foreach ($self,@args)
      {
      # take the defined one, or if both defined, the one that is bigger
      # -2 > -3, and 3 > 2
      $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
      }
    }
  # if still none defined, use globals (#2)
  $a = ${"$c\::accuracy"} unless defined $a;
  $p = ${"$c\::precision"} unless defined $p;
 
  # A == 0 is useless, so undef it to signal no rounding
  $a = undef if defined $a && $a == 0;
  
  # no rounding today? 
  return $self unless defined $a || defined $p;		# early out

  # set A and set P is an fatal error
  return $self->bnan() if defined $a && defined $p;

  $r = ${"$c\::round_mode"} unless defined $r;
  if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
    {
    require Carp; Carp::croak ("Unknown round mode '$r'");
    }

  # now round, by calling either fround or ffround:
  if (defined $a)
    {
    $self->bround(int($a),$r) if !defined $self->{_a} || $self->{_a} >= $a;
    }
  else # both can't be undefined due to early out
    {
    $self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p;
    }
  # bround() or bfround() already called bnorm() if nec.
  $self;
  }

sub bnorm
  { 
  # (numstr or BINT) return BINT
  # Normalize number -- no-op here
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  $x;
  }

sub babs 
  {
  # (BINT or num_str) return BINT
  # make number absolute, or return absolute BINT from string
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  return $x if $x->modify('babs');
  # post-normalized abs for internal use (does nothing for NaN)
  $x->{sign} =~ s/^-/+/;
  $x;
  }

sub bsgn {
    # Signum function.

    my $self = shift;

    return $self if $self->modify('bsgn');

    return $self -> bone("+") if $self -> is_pos();
    return $self -> bone("-") if $self -> is_neg();
    return $self;               # zero or NaN
}

sub bneg 
  { 
  # (BINT or num_str) return BINT
  # negate number or make a negated number from string
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  return $x if $x->modify('bneg');

  # for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
  $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
  $x;
  }

sub bcmp 
  {
  # Compares 2 values.  Returns one of undef, <0, =0, >0. (suitable for sort)
  # (BINT or num_str, BINT or num_str) return cond_code
  
  # set up parameters
  my ($self,$x,$y) = (ref($_[0]),@_);

  # objectify is costly, so avoid it 
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y) = objectify(2,@_);
    }

  return $upgrade->bcmp($x,$y) if defined $upgrade &&
    ((!$x->isa($self)) || (!$y->isa($self)));

  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
    {
    # handle +-inf and NaN
    return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
    return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
    return +1 if $x->{sign} eq '+inf';
    return -1 if $x->{sign} eq '-inf';
    return -1 if $y->{sign} eq '+inf';
    return +1;
    }
  # check sign for speed first
  return 1 if $x->{sign} eq '+' && $y->{sign} eq '-';	# does also 0 <=> -y
  return -1 if $x->{sign} eq '-' && $y->{sign} eq '+';  # does also -x <=> 0 

  # have same sign, so compare absolute values. Don't make tests for zero here
  # because it's actually slower than testin in Calc (especially w/ Pari et al)

  # post-normalized compare for internal use (honors signs)
  if ($x->{sign} eq '+') 
    {
    # $x and $y both > 0
    return $CALC->_acmp($x->{value},$y->{value});
    }

  # $x && $y both < 0
  $CALC->_acmp($y->{value},$x->{value});	# swaped acmp (lib returns 0,1,-1)
  }

sub bacmp 
  {
  # Compares 2 values, ignoring their signs. 
  # Returns one of undef, <0, =0, >0. (suitable for sort)
  # (BINT, BINT) return cond_code
  
  # set up parameters
  my ($self,$x,$y) = (ref($_[0]),@_);
  # objectify is costly, so avoid it 
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y) = objectify(2,@_);
    }

  return $upgrade->bacmp($x,$y) if defined $upgrade &&
    ((!$x->isa($self)) || (!$y->isa($self)));

  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
    {
    # handle +-inf and NaN
    return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
    return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
    return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
    return -1;
    }
  $CALC->_acmp($x->{value},$y->{value});	# lib does only 0,1,-1
  }

sub badd 
  {
  # add second arg (BINT or string) to first (BINT) (modifies first)
  # return result as BINT

  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it 
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('badd');
  return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
    ((!$x->isa($self)) || (!$y->isa($self)));

  $r[3] = $y;				# no push!
  # inf and NaN handling
  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
    {
    # NaN first
    return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
    # inf handling
    if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
      {
      # +inf++inf or -inf+-inf => same, rest is NaN
      return $x if $x->{sign} eq $y->{sign};
      return $x->bnan();
      }
    # +-inf + something => +inf
    # something +-inf => +-inf
    $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
    return $x;
    }
    
  my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); 		# get signs

  if ($sx eq $sy)  
    {
    $x->{value} = $CALC->_add($x->{value},$y->{value});	# same sign, abs add
    }
  else 
    {
    my $a = $CALC->_acmp ($y->{value},$x->{value});	# absolute compare
    if ($a > 0)                           
      {
      $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
      $x->{sign} = $sy;
      } 
    elsif ($a == 0)
      {
      # speedup, if equal, set result to 0
      $x->{value} = $CALC->_zero();
      $x->{sign} = '+';
      }
    else # a < 0
      {
      $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
      }
    }
  $x->round(@r);
  }

sub bsub 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # subtract second arg from first, modify first
  
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);

  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bsub');

  return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
   ((!$x->isa($self)) || (!$y->isa($self)));

  return $x->round(@r) if $y->is_zero();

  # To correctly handle the lone special case $x->bsub($x), we note the sign
  # of $x, then flip the sign from $y, and if the sign of $x did change, too,
  # then we caught the special case:
  my $xsign = $x->{sign};
  $y->{sign} =~ tr/+\-/-+/; 	# does nothing for NaN
  if ($xsign ne $x->{sign})
    {
    # special case of $x->bsub($x) results in 0
    return $x->bzero(@r) if $xsign =~ /^[+-]$/;
    return $x->bnan();          # NaN, -inf, +inf
    }
  $x->badd($y,@r); 		# badd does not leave internal zeros
  $y->{sign} =~ tr/+\-/-+/; 	# refix $y (does nothing for NaN)
  $x;				# already rounded by badd() or no round nec.
  }

sub binc
  {
  # increment arg by one
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
  return $x if $x->modify('binc');

  if ($x->{sign} eq '+')
    {
    $x->{value} = $CALC->_inc($x->{value});
    return $x->round($a,$p,$r);
    }
  elsif ($x->{sign} eq '-')
    {
    $x->{value} = $CALC->_dec($x->{value});
    $x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
    return $x->round($a,$p,$r);
    }
  # inf, nan handling etc
  $x->badd($self->bone(),$a,$p,$r);		# badd does round
  }

sub bdec
  {
  # decrement arg by one
  my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
  return $x if $x->modify('bdec');
  
  if ($x->{sign} eq '-')
    {
    # x already < 0
    $x->{value} = $CALC->_inc($x->{value});
    } 
  else
    {
    return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; 	# inf or NaN
    # >= 0
    if ($CALC->_is_zero($x->{value}))
      {
      # == 0
      $x->{value} = $CALC->_one(); $x->{sign} = '-';		# 0 => -1
      }
    else
      {
      # > 0
      $x->{value} = $CALC->_dec($x->{value});
      }
    }
  $x->round(@r);
  }

sub blog
  {
  # calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
  # $base of $x)

  # set up parameters
  my ($self,$x,$base,@r) = (undef,@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$base,@r) = objectify(2,@_);
    }

  return $x if $x->modify('blog');

  $base = $self->new($base) if defined $base && !ref $base;

  # inf, -inf, NaN, <0 => NaN
  return $x->bnan()
   if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');

  return $upgrade->blog($upgrade->new($x),$base,@r) if 
    defined $upgrade;

  # fix for bug #24969:
  # the default base is e (Euler's number) which is not an integer
  if (!defined $base)
    {
    require Math::BigFloat;
    my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int();
    # modify $x in place
    $x->{value} = $u->{value};
    $x->{sign} = $u->{sign};
    return $x;
    }
  
  my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
  return $x->bnan() unless defined $rc;		# not possible to take log?
  $x->{value} = $rc;
  $x->round(@r);
  }

sub bnok
  {
  # Calculate n over k (binomial coefficient or "choose" function) as integer.
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);

  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bnok');
  return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
  return $x->binf() if $x->{sign} eq '+inf';

  # k > n or k < 0 => 0
  my $cmp = $x->bacmp($y);
  return $x->bzero() if $cmp < 0 || $y->{sign} =~ /^-/;
  # k == n => 1
  return $x->bone(@r) if $cmp == 0;

  if ($CALC->can('_nok'))
    {
    $x->{value} = $CALC->_nok($x->{value},$y->{value});
    }
  else
    {
    # ( 7 )       7!       1*2*3*4 * 5*6*7   5 * 6 * 7       6   7
    # ( - ) = --------- =  --------------- = --------- = 5 * - * -
    # ( 3 )   (7-3)! 3!    1*2*3*4 * 1*2*3   1 * 2 * 3       2   3

    if (!$y->is_zero())
      {
      my $z = $x - $y;
      $z->binc();
      my $r = $z->copy(); $z->binc();
      my $d = $self->new(2);
      while ($z->bacmp($x) <= 0)		# f <= x ?
        {
        $r->bmul($z); $r->bdiv($d);
        $z->binc(); $d->binc();
        }
      $x->{value} = $r->{value}; $x->{sign} = '+';
      }
    else { $x->bone(); }
    }
  $x->round(@r);
  }

sub bexp
  {
  # Calculate e ** $x (Euler's number to the power of X), truncated to
  # an integer value.
  my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
  return $x if $x->modify('bexp');

  # inf, -inf, NaN, <0 => NaN
  return $x->bnan() if $x->{sign} eq 'NaN';
  return $x->bone() if $x->is_zero();
  return $x if $x->{sign} eq '+inf';
  return $x->bzero() if $x->{sign} eq '-inf';

  my $u;
  {
    # run through Math::BigFloat unless told otherwise
    require Math::BigFloat unless defined $upgrade;
    local $upgrade = 'Math::BigFloat' unless defined $upgrade;
    # calculate result, truncate it to integer
    $u = $upgrade->bexp($upgrade->new($x),@r);
  }

  if (!defined $upgrade)
    {
    $u = $u->as_int();
    # modify $x in place
    $x->{value} = $u->{value};
    $x->round(@r);
    }
  else { $x = $u; }
  }

sub blcm
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # does not modify arguments, but returns new object
  # Lowest Common Multiple

  my $y = shift; my ($x);
  if (ref($y))
    {
    $x = $y->copy();
    }
  else
    {
    $x = $class->new($y);
    }
  my $self = ref($x);
  while (@_) 
    {
    my $y = shift; $y = $self->new($y) if !ref ($y);
    $x = __lcm($x,$y);
    } 
  $x;
  }

sub bgcd 
  { 
  # (BINT or num_str, BINT or num_str) return BINT
  # does not modify arguments, but returns new object
  # GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff)

  my $y = shift;
  $y = $class->new($y) if !ref($y);
  my $self = ref($y);
  my $x = $y->copy()->babs();			# keep arguments
  return $x->bnan() if $x->{sign} !~ /^[+-]$/;	# x NaN?

  while (@_)
    {
    $y = shift; $y = $self->new($y) if !ref($y);
    return $x->bnan() if $y->{sign} !~ /^[+-]$/;	# y NaN?
    $x->{value} = $CALC->_gcd($x->{value},$y->{value});
    last if $CALC->_is_one($x->{value});
    }
  $x;
  }

sub bnot 
  {
  # (num_str or BINT) return BINT
  # represent ~x as twos-complement number
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
  return $x if $x->modify('bnot');
  $x->binc()->bneg();			# binc already does round
  }

##############################################################################
# is_foo test routines
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster

sub is_zero
  {
  # return true if arg (BINT or num_str) is zero (array '+', '0')
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  return 0 if $x->{sign} !~ /^\+$/;			# -, NaN & +-inf aren't
  $CALC->_is_zero($x->{value});
  }

sub is_nan
  {
  # return true if arg (BINT or num_str) is NaN
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  $x->{sign} eq $nan ? 1 : 0;
  }

sub is_inf
  {
  # return true if arg (BINT or num_str) is +-inf
  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  if (defined $sign)
    {
    $sign = '[+-]inf' if $sign eq '';	# +- doesn't matter, only that's inf
    $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/;	# extract '+' or '-'
    return $x->{sign} =~ /^$sign$/ ? 1 : 0;
    }
  $x->{sign} =~ /^[+-]inf$/ ? 1 : 0;		# only +-inf is infinity
  }

sub is_one
  {
  # return true if arg (BINT or num_str) is +1, or -1 if sign is given
  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
    
  $sign = '+' if !defined $sign || $sign ne '-';
 
  return 0 if $x->{sign} ne $sign; 	# -1 != +1, NaN, +-inf aren't either
  $CALC->_is_one($x->{value});
  }

sub is_odd
  {
  # return true when arg (BINT or num_str) is odd, false for even
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  return 0 if $x->{sign} !~ /^[+-]$/;			# NaN & +-inf aren't
  $CALC->_is_odd($x->{value});
  }

sub is_even
  {
  # return true when arg (BINT or num_str) is even, false for odd
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  return 0 if $x->{sign} !~ /^[+-]$/;			# NaN & +-inf aren't
  $CALC->_is_even($x->{value});
  }

sub is_positive
  {
  # return true when arg (BINT or num_str) is positive (> 0)
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  return 1 if $x->{sign} eq '+inf';			# +inf is positive

  # 0+ is neither positive nor negative
  ($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;
  }

sub is_negative
  {
  # return true when arg (BINT or num_str) is negative (< 0)
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  $x->{sign} =~ /^-/ ? 1 : 0; 		# -inf is negative, but NaN is not
  }

sub is_int
  {
  # return true when arg (BINT or num_str) is an integer
  # always true for BigInt, but different for BigFloats
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  $x->{sign} =~ /^[+-]$/ ? 1 : 0;		# inf/-inf/NaN aren't
  }

###############################################################################

sub bmul 
  { 
  # multiply the first number by the second number
  # (BINT or num_str, BINT or num_str) return BINT

  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bmul');

  return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));

  # inf handling
  if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
    {
    return $x->bnan() if $x->is_zero() || $y->is_zero();
    # result will always be +-inf:
    # +inf * +/+inf => +inf, -inf * -/-inf => +inf
    # +inf * -/-inf => -inf, -inf * +/+inf => -inf
    return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); 
    return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); 
    return $x->binf('-');
    }

  return $upgrade->bmul($x,$upgrade->new($y),@r)
   if defined $upgrade && !$y->isa($self);
  
  $r[3] = $y;				# no push here

  $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +

  $x->{value} = $CALC->_mul($x->{value},$y->{value});	# do actual math
  $x->{sign} = '+' if $CALC->_is_zero($x->{value}); 	# no -0

  $x->round(@r);
  }

sub bmuladd
  { 
  # multiply two numbers and then add the third to the result
  # (BINT or num_str, BINT or num_str, BINT or num_str) return BINT

  # set up parameters
  my ($self,$x,$y,$z,@r) = objectify(3,@_);

  return $x if $x->modify('bmuladd');

  return $x->bnan() if  ($x->{sign} eq $nan) ||
			($y->{sign} eq $nan) ||
			($z->{sign} eq $nan);

  # inf handling of x and y
  if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
    {
    return $x->bnan() if $x->is_zero() || $y->is_zero();
    # result will always be +-inf:
    # +inf * +/+inf => +inf, -inf * -/-inf => +inf
    # +inf * -/-inf => -inf, -inf * +/+inf => -inf
    return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); 
    return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); 
    return $x->binf('-');
    }
  # inf handling x*y and z
  if (($z->{sign} =~ /^[+-]inf$/))
    {
    # something +-inf => +-inf
    $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
    }

  return $upgrade->bmuladd($x,$upgrade->new($y),$upgrade->new($z),@r)
   if defined $upgrade && (!$y->isa($self) || !$z->isa($self) || !$x->isa($self));
 
  # TODO: what if $y and $z have A or P set?
  $r[3] = $z;				# no push here

  $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +

  $x->{value} = $CALC->_mul($x->{value},$y->{value});	# do actual math
  $x->{sign} = '+' if $CALC->_is_zero($x->{value}); 	# no -0

  my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); 		# get signs

  if ($sx eq $sz)  
    {
    $x->{value} = $CALC->_add($x->{value},$z->{value});	# same sign, abs add
    }
  else 
    {
    my $a = $CALC->_acmp ($z->{value},$x->{value});	# absolute compare
    if ($a > 0)                           
      {
      $x->{value} = $CALC->_sub($z->{value},$x->{value},1); # abs sub w/ swap
      $x->{sign} = $sz;
      } 
    elsif ($a == 0)
      {
      # speedup, if equal, set result to 0
      $x->{value} = $CALC->_zero();
      $x->{sign} = '+';
      }
    else # a < 0
      {
      $x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub
      }
    }
  $x->round(@r);
  }

sub _div_inf
  {
  # helper function that handles +-inf cases for bdiv()/bmod() to reuse code
  my ($self,$x,$y) = @_;

  # NaN if x == NaN or y == NaN or x==y==0
  return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
   if (($x->is_nan() || $y->is_nan())   ||
       ($x->is_zero() && $y->is_zero()));
 
  # +-inf / +-inf == NaN, remainder also NaN
  if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
    {
    return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
    }
  # x / +-inf => 0, remainder x (works even if x == 0)
  if ($y->{sign} =~ /^[+-]inf$/)
    {
    my $t = $x->copy();		# bzero clobbers up $x
    return wantarray ? ($x->bzero(),$t) : $x->bzero()
    }
  
  # 5 / 0 => +inf, -6 / 0 => -inf
  # +inf / 0 = inf, inf,  and -inf / 0 => -inf, -inf 
  # exception:   -8 / 0 has remainder -8, not 8
  # exception: -inf / 0 has remainder -inf, not inf
  if ($y->is_zero())
    {
    # +-inf / 0 => special case for -inf
    return wantarray ?  ($x,$x->copy()) : $x if $x->is_inf();
    if (!$x->is_zero() && !$x->is_inf())
      {
      my $t = $x->copy();		# binf clobbers up $x
      return wantarray ?
       ($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
      }
    }
  
  # last case: +-inf / ordinary number
  my $sign = '+inf';
  $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
  $x->{sign} = $sign;
  return wantarray ? ($x,$self->bzero()) : $x;
  }

sub bdiv 
  {
  # (dividend: BINT or num_str, divisor: BINT or num_str) return 
  # (BINT,BINT) (quo,rem) or BINT (only rem)
  
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it 
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    } 

  return $x if $x->modify('bdiv');

  return $self->_div_inf($x,$y)
   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());

  return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
   if defined $upgrade;
   
  $r[3] = $y;					# no push!

  # calc new sign and in case $y == +/- 1, return $x
  my $xsign = $x->{sign};				# keep
  $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+'); 

  if (wantarray)
    {
    my $rem = $self->bzero(); 
    ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
    $x->{sign} = '+' if $CALC->_is_zero($x->{value});
    $rem->{_a} = $x->{_a};
    $rem->{_p} = $x->{_p};
    $x->round(@r);
    if (! $CALC->_is_zero($rem->{value}))
      {
      $rem->{sign} = $y->{sign};
      $rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
      }
    else
      {
      $rem->{sign} = '+';			# dont leave -0
      }
    $rem->round(@r);
    return ($x,$rem);
    }

  $x->{value} = $CALC->_div($x->{value},$y->{value});
  $x->{sign} = '+' if $CALC->_is_zero($x->{value});

  $x->round(@r);
  }

###############################################################################
# modulus functions

sub bmod 
  {
  # modulus (or remainder)
  # (BINT or num_str, BINT or num_str) return BINT
  
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bmod');
  $r[3] = $y;					# no push!
  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
    {
    my ($d,$r) = $self->_div_inf($x,$y);
    $x->{sign} = $r->{sign};
    $x->{value} = $r->{value};
    return $x->round(@r);
    }

  # calc new sign and in case $y == +/- 1, return $x
  $x->{value} = $CALC->_mod($x->{value},$y->{value});
  if (!$CALC->_is_zero($x->{value}))
    {
    $x->{value} = $CALC->_sub($y->{value},$x->{value},1) 	# $y-$x
      if ($x->{sign} ne $y->{sign});
    $x->{sign} = $y->{sign};
    }
   else
    {
    $x->{sign} = '+';				# dont leave -0
    }
  $x->round(@r);
  }

sub bmodinv
  {
  # Return modular multiplicative inverse: z is the modular inverse of x (mod
  # y) if and only if x*z (mod y) = 1 (mod y). If the modulus y is larger than
  # one, x and z are relative primes (i.e., their greatest common divisor is
  # one).
  #
  # If no modular multiplicative inverse exists, NaN is returned.

  # set up parameters
  my ($self,$x,$y,@r) = (undef,@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bmodinv');

  # Return NaN if one or both arguments is +inf, -inf, or nan.

  return $x->bnan() if ($y->{sign} !~ /^[+-]$/ ||
                        $x->{sign} !~ /^[+-]$/);

  # Return NaN if $y is zero; 1 % 0 makes no sense.

  return $x->bnan() if $y->is_zero();

  # Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite
  # integers $x.

  return $x->bzero() if ($y->is_one() ||
                         $y->is_one('-'));

  # Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when
  # $x = 0 is when $y = 1 or $y = -1, but that was covered above.
  #
  # Note that computing $x modulo $y here affects the value we'll feed to
  # $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x =
  # 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and
  # $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7.
  # The value if $x is affected only when $x and $y have opposite signs.

  $x->bmod($y);
  return $x->bnan() if $x->is_zero();

  # Compute the modular multiplicative inverse of the absolute values. We'll
  # correct for the signs of $x and $y later. Return NaN if no GCD is found.

  ($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value});
  return $x->bnan() if !defined $x->{value};

  # Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions
  # <= 1.32 return undef rather than a "+" for the sign.

  $x->{sign} = '+' unless defined $x->{sign};

  # When one or both arguments are negative, we have the following
  # relations.  If x and y are positive:
  #
  #   modinv(-x, -y) = -modinv(x, y)
  #   modinv(-x,  y) = y - modinv(x, y)  = -modinv(x, y) (mod y)
  #   modinv( x, -y) = modinv(x, y) - y  =  modinv(x, y) (mod -y)

  # We must swap the sign of the result if the original $x is negative.
  # However, we must compensate for ignoring the signs when computing the
  # inverse modulo. The net effect is that we must swap the sign of the
  # result if $y is negative.

  $x -> bneg() if $y->{sign} eq '-';

  # Compute $x modulo $y again after correcting the sign.

  $x -> bmod($y) if $x->{sign} ne $y->{sign};

  return $x;
  }

sub bmodpow
  {
  # Modular exponentiation. Raises a very large number to a very large exponent
  # in a given very large modulus quickly, thanks to binary exponentiation.
  # Supports negative exponents.
  my ($self,$num,$exp,$mod,@r) = objectify(3,@_);

  return $num if $num->modify('bmodpow');

  # When the exponent 'e' is negative, use the following relation, which is
  # based on finding the multiplicative inverse 'd' of 'b' modulo 'm':
  #
  #    b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m)

  $num->bmodinv($mod) if ($exp->{sign} eq '-');

  # Check for valid input. All operands must be finite, and the modulus must be
  # non-zero.

  return $num->bnan() if ($num->{sign} =~ /NaN|inf/ ||  # NaN, -inf, +inf
                          $exp->{sign} =~ /NaN|inf/ ||  # NaN, -inf, +inf
                          $mod->{sign} =~ /NaN|inf/ ||  # NaN, -inf, +inf
                          $mod->is_zero());

  # Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting
  # value is zero, the output is also zero, regardless of the signs on 'a' and
  # 'm'.

  my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value});
  my $sign  = '+';

  # If the resulting value is non-zero, we have four special cases, depending
  # on the signs on 'a' and 'm'.

  unless ($CALC->_is_zero($value)) {

      # There is a negative sign on 'a' (= $num**$exp) only if the number we
      # are exponentiating ($num) is negative and the exponent ($exp) is odd.

      if ($num->{sign} eq '-' && $exp->is_odd()) {

          # When both the number 'a' and the modulus 'm' have a negative sign,
          # use this relation:
          #
          #    -a (mod -m) = -(a (mod m))

          if ($mod->{sign} eq '-') {
              $sign = '-';
          }

          # When only the number 'a' has a negative sign, use this relation:
          #
          #    -a (mod m) = m - (a (mod m))

          else {
              # Use copy of $mod since _sub() modifies the first argument.
              my $mod = $CALC->_copy($mod->{value});
              $value = $CALC->_sub($mod, $value);
              $sign  = '+';
          }

      } else {

          # When only the modulus 'm' has a negative sign, use this relation:
          #
          #    a (mod -m) = (a (mod m)) - m
          #               = -(m - (a (mod m)))

          if ($mod->{sign} eq '-') {
              # Use copy of $mod since _sub() modifies the first argument.
              my $mod = $CALC->_copy($mod->{value});
              $value = $CALC->_sub($mod, $value);
              $sign  = '-';
          }

          # When neither the number 'a' nor the modulus 'm' have a negative
          # sign, directly return the already computed value.
          #
          #    (a (mod m))

      }

  }

  $num->{value} = $value;
  $num->{sign}  = $sign;

  return $num;
  }

###############################################################################

sub bfac
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute factorial number from $x, modify $x in place
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  return $x if $x->modify('bfac') || $x->{sign} eq '+inf';	# inf => inf
  return $x->bnan() if $x->{sign} ne '+';			# NaN, <0 etc => NaN

  $x->{value} = $CALC->_fac($x->{value});
  $x->round(@r);
  }
 
sub bpow 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute power of two numbers -- stolen from Knuth Vol 2 pg 233
  # modifies first argument

  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bpow');

  return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;

  # inf handling
  if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
    {
    if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
      {
      # +-inf ** +-inf
      return $x->bnan();
      }
    # +-inf ** Y
    if ($x->{sign} =~ /^[+-]inf/)
      {
      # +inf ** 0 => NaN
      return $x->bnan() if $y->is_zero();
      # -inf ** -1 => 1/inf => 0
      return $x->bzero() if $y->is_one('-') && $x->is_negative();

      # +inf ** Y => inf
      return $x if $x->{sign} eq '+inf';

      # -inf ** Y => -inf if Y is odd
      return $x if $y->is_odd();
      return $x->babs();
      }
    # X ** +-inf

    # 1 ** +inf => 1
    return $x if $x->is_one();
    
    # 0 ** inf => 0
    return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;

    # 0 ** -inf => inf
    return $x->binf() if $x->is_zero();

    # -1 ** -inf => NaN
    return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;

    # -X ** -inf => 0
    return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;

    # -1 ** inf => NaN
    return $x->bnan() if $x->{sign} eq '-';

    # X ** inf => inf
    return $x->binf() if $y->{sign} =~ /^[+]/;
    # X ** -inf => 0
    return $x->bzero();
    }

  return $upgrade->bpow($upgrade->new($x),$y,@r)
   if defined $upgrade && (!$y->isa($self) || $y->{sign} eq '-');

  $r[3] = $y;					# no push!

  # cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu

  my $new_sign = '+';
  $new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+'); 

  # 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf 
  return $x->binf() 
    if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
  # 1 ** -y => 1 / (1 ** |y|)
  # so do test for negative $y after above's clause
  return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});

  $x->{value} = $CALC->_pow($x->{value},$y->{value});
  $x->{sign} = $new_sign;
  $x->{sign} = '+' if $CALC->_is_zero($y->{value});
  $x->round(@r);
  }

sub blsft 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute x << y, base n, y >= 0
 
  # set up parameters
  my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,$n,@r) = objectify(2,@_);
    }

  return $x if $x->modify('blsft');
  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
  return $x->round(@r) if $y->is_zero();

  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';

  $x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
  $x->round(@r);
  }

sub brsft 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute x >> y, base n, y >= 0
  
  # set up parameters
  my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,$n,@r) = objectify(2,@_);
    }

  return $x if $x->modify('brsft');
  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
  return $x->round(@r) if $y->is_zero();
  return $x->bzero(@r) if $x->is_zero();		# 0 => 0

  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';

   # this only works for negative numbers when shifting in base 2
  if (($x->{sign} eq '-') && ($n == 2))
    {
    return $x->round(@r) if $x->is_one('-');	# -1 => -1
    if (!$y->is_one())
      {
      # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
      # but perhaps there is a better emulation for two's complement shift...
      # if $y != 1, we must simulate it by doing:
      # convert to bin, flip all bits, shift, and be done
      $x->binc();			# -3 => -2
      my $bin = $x->as_bin();
      $bin =~ s/^-0b//;			# strip '-0b' prefix
      $bin =~ tr/10/01/;		# flip bits
      # now shift
      if ($y >= CORE::length($bin))
        {
	$bin = '0'; 			# shifting to far right creates -1
					# 0, because later increment makes 
					# that 1, attached '-' makes it '-1'
					# because -1 >> x == -1 !
        } 
      else
	{
	$bin =~ s/.{$y}$//;		# cut off at the right side
        $bin = '1' . $bin;		# extend left side by one dummy '1'
        $bin =~ tr/10/01/;		# flip bits back
	}
      my $res = $self->new('0b'.$bin);	# add prefix and convert back
      $res->binc();			# remember to increment
      $x->{value} = $res->{value};	# take over value
      return $x->round(@r);		# we are done now, magic, isn't?
      }
    # x < 0, n == 2, y == 1
    $x->bdec();				# n == 2, but $y == 1: this fixes it
    }

  $x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
  $x->round(@r);
  }

sub band 
  {
  #(BINT or num_str, BINT or num_str) return BINT
  # compute x & y
 
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }
  
  return $x if $x->modify('band');

  $r[3] = $y;				# no push!

  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);

  my $sx = $x->{sign} eq '+' ? 1 : -1;
  my $sy = $y->{sign} eq '+' ? 1 : -1;
  
  if ($sx == 1 && $sy == 1)
    {
    $x->{value} = $CALC->_and($x->{value},$y->{value});
    return $x->round(@r);
    }
  
  if ($CAN{signed_and})
    {
    $x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
    return $x->round(@r);
    }
 
  require $EMU_LIB;
  __emu_band($self,$x,$y,$sx,$sy,@r);
  }

sub bior 
  {
  #(BINT or num_str, BINT or num_str) return BINT
  # compute x | y
  
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bior');
  $r[3] = $y;				# no push!

  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);

  my $sx = $x->{sign} eq '+' ? 1 : -1;
  my $sy = $y->{sign} eq '+' ? 1 : -1;

  # the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
  
  # don't use lib for negative values
  if ($sx == 1 && $sy == 1)
    {
    $x->{value} = $CALC->_or($x->{value},$y->{value});
    return $x->round(@r);
    }

  # if lib can do negative values, let it handle this
  if ($CAN{signed_or})
    {
    $x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
    return $x->round(@r);
    }

  require $EMU_LIB;
  __emu_bior($self,$x,$y,$sx,$sy,@r);
  }

sub bxor 
  {
  #(BINT or num_str, BINT or num_str) return BINT
  # compute x ^ y
  
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$x,$y,@r) = objectify(2,@_);
    }

  return $x if $x->modify('bxor');
  $r[3] = $y;				# no push!

  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
  
  my $sx = $x->{sign} eq '+' ? 1 : -1;
  my $sy = $y->{sign} eq '+' ? 1 : -1;

  # don't use lib for negative values
  if ($sx == 1 && $sy == 1)
    {
    $x->{value} = $CALC->_xor($x->{value},$y->{value});
    return $x->round(@r);
    }
  
  # if lib can do negative values, let it handle this
  if ($CAN{signed_xor})
    {
    $x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
    return $x->round(@r);
    }

  require $EMU_LIB;
  __emu_bxor($self,$x,$y,$sx,$sy,@r);
  }

sub length
  {
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  my $e = $CALC->_len($x->{value}); 
  wantarray ? ($e,0) : $e;
  }

sub digit
  {
  # return the nth decimal digit, negative values count backward, 0 is right
  my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  $n = $n->numify() if ref($n);
  $CALC->_digit($x->{value},$n||0);
  }

sub _trailing_zeros
  {
  # return the amount of trailing zeros in $x (as scalar)
  my $x = shift;
  $x = $class->new($x) unless ref $x;

  return 0 if $x->{sign} !~ /^[+-]$/;	# NaN, inf, -inf etc

  $CALC->_zeros($x->{value});		# must handle odd values, 0 etc
  }

sub bsqrt
  {
  # calculate square root of $x
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  return $x if $x->modify('bsqrt');

  return $x->bnan() if $x->{sign} !~ /^\+/;	# -x or -inf or NaN => NaN
  return $x if $x->{sign} eq '+inf';		# sqrt(+inf) == inf

  return $upgrade->bsqrt($x,@r) if defined $upgrade;

  $x->{value} = $CALC->_sqrt($x->{value});
  $x->round(@r);
  }

sub broot
  {
  # calculate $y'th root of $x
 
  # set up parameters
  my ($self,$x,$y,@r) = (ref($_[0]),@_);

  $y = $self->new(2) unless defined $y;

  # objectify is costly, so avoid it
  if ((!ref($x)) || (ref($x) ne ref($y)))
    {
    ($self,$x,$y,@r) = objectify(2,$self || $class,@_);
    }

  return $x if $x->modify('broot');

  # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
  return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
         $y->{sign} !~ /^\+$/;

  return $x->round(@r)
    if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();

  return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;

  $x->{value} = $CALC->_root($x->{value},$y->{value});
  $x->round(@r);
  }

sub exponent
  {
  # return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
 
  if ($x->{sign} !~ /^[+-]$/)
    {
    my $s = $x->{sign}; $s =~ s/^[+-]//;  # NaN, -inf,+inf => NaN or inf
    return $self->new($s);
    }
  return $self->bone() if $x->is_zero();

  # 12300 => 2 trailing zeros => exponent is 2
  $self->new( $CALC->_zeros($x->{value}) );
  }

sub mantissa
  {
  # return the mantissa (compatible to Math::BigFloat, e.g. reduced)
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  if ($x->{sign} !~ /^[+-]$/)
    {
    # for NaN, +inf, -inf: keep the sign
    return $self->new($x->{sign});
    }
  my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};

  # that's a bit inefficient:
  my $zeros = $CALC->_zeros($m->{value});
  $m->brsft($zeros,10) if $zeros != 0;
  $m;
  }

sub parts
  {
  # return a copy of both the exponent and the mantissa
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  ($x->mantissa(),$x->exponent());
  }
   
##############################################################################
# rounding functions

sub bfround
  {
  # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
  # $n == 0 || $n == 1 => round to integer
  my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;

  my ($scale,$mode) = $x->_scale_p(@_);

  return $x if !defined $scale || $x->modify('bfround');	# no-op

  # no-op for BigInts if $n <= 0
  $x->bround( $x->length()-$scale, $mode) if $scale > 0;

  delete $x->{_a};	# delete to save memory
  $x->{_p} = $scale;	# store new _p
  $x;
  }

sub _scan_for_nonzero
  {
  # internal, used by bround() to scan for non-zeros after a '5'
  my ($x,$pad,$xs,$len) = @_;
 
  return 0 if $len == 1;		# "5" is trailed by invisible zeros
  my $follow = $pad - 1;
  return 0 if $follow > $len || $follow < 1;

  # use the string form to check whether only '0's follow or not
  substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0;
  }

sub fround
  {
  # Exists to make life easier for switch between MBF and MBI (should we
  # autoload fxxx() like MBF does for bxxx()?)
  my $x = shift; $x = $class->new($x) unless ref $x;
  $x->bround(@_);
  }

sub bround
  {
  # accuracy: +$n preserve $n digits from left,
  #           -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
  # no-op for $n == 0
  # and overwrite the rest with 0's, return normalized number
  # do not return $x->bnorm(), but $x

  my $x = shift; $x = $class->new($x) unless ref $x;
  my ($scale,$mode) = $x->_scale_a(@_);
  return $x if !defined $scale || $x->modify('bround');	# no-op
  
  if ($x->is_zero() || $scale == 0)
    {
    $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
    return $x;
    }
  return $x if $x->{sign} !~ /^[+-]$/;		# inf, NaN

  # we have fewer digits than we want to scale to
  my $len = $x->length();
  # convert $scale to a scalar in case it is an object (put's a limit on the
  # number length, but this would already limited by memory constraints), makes
  # it faster
  $scale = $scale->numify() if ref ($scale);

  # scale < 0, but > -len (not >=!)
  if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
    {
    $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
    return $x; 
    }
   
  # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
  my ($pad,$digit_round,$digit_after);
  $pad = $len - $scale;
  $pad = abs($scale-1) if $scale < 0;

  # do not use digit(), it is very costly for binary => decimal
  # getting the entire string is also costly, but we need to do it only once
  my $xs = $CALC->_str($x->{value});
  my $pl = -$pad-1;

  # pad:   123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
  # pad+1: 123: 0 => 0,  at 1 => -1, at 2 => -2, at 3 => -3
  $digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
  $pl++; $pl ++ if $pad >= $len;
  $digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;

  # in case of 01234 we round down, for 6789 up, and only in case 5 we look
  # closer at the remaining digits of the original $x, remember decision
  my $round_up = 1;					# default round up
  $round_up -- if
    ($mode eq 'trunc')				||	# trunc by round down
    ($digit_after =~ /[01234]/)			|| 	# round down anyway,
							# 6789 => round up
    ($digit_after eq '5')			&&	# not 5000...0000
    ($x->_scan_for_nonzero($pad,$xs,$len) == 0)		&&
    (
     ($mode eq 'even') && ($digit_round =~ /[24680]/) ||
     ($mode eq 'odd')  && ($digit_round =~ /[13579]/) ||
     ($mode eq '+inf') && ($x->{sign} eq '-')   ||
     ($mode eq '-inf') && ($x->{sign} eq '+')   ||
     ($mode eq 'zero')		# round down if zero, sign adjusted below
    );
  my $put_back = 0;					# not yet modified
	
  if (($pad > 0) && ($pad <= $len))
    {
    substr($xs,-$pad,$pad) = '0' x $pad;		# replace with '00...'
    $put_back = 1;					# need to put back
    }
  elsif ($pad > $len)
    {
    $x->bzero();					# round to '0'
    }

  if ($round_up)					# what gave test above?
    {
    $put_back = 1;					# need to put back
    $pad = $len, $xs = '0' x $pad if $scale < 0;	# tlr: whack 0.51=>1.0	

    # we modify directly the string variant instead of creating a number and
    # adding it, since that is faster (we already have the string)
    my $c = 0; $pad ++;				# for $pad == $len case
    while ($pad <= $len)
      {
      $c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
      substr($xs,-$pad,1) = $c; $pad++;
      last if $c != 0;				# no overflow => early out
      }
    $xs = '1'.$xs if $c == 0;

    }
  $x->{value} = $CALC->_new($xs) if $put_back == 1;	# put back, if needed

  $x->{_a} = $scale if $scale >= 0;
  if ($scale < 0)
    {
    $x->{_a} = $len+$scale;
    $x->{_a} = 0 if $scale < -$len;
    }
  $x;
  }

sub bfloor
  {
  # return integer less or equal then number; no-op since it's already integer
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  $x->round(@r);
  }

sub bceil
  {
  # return integer greater or equal then number; no-op since it's already int
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  $x->round(@r);
  }

sub as_number
  {
  # An object might be asked to return itself as bigint on certain overloaded
  # operations. This does exactly this, so that sub classes can simple inherit
  # it or override with their own integer conversion routine.
  $_[0]->copy();
  }

sub as_hex
  {
  # return as hex string, with prefixed 0x
  my $x = shift; $x = $class->new($x) if !ref($x);

  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc

  my $s = '';
  $s = $x->{sign} if $x->{sign} eq '-';
  $s . $CALC->_as_hex($x->{value});
  }

sub as_bin
  {
  # return as binary string, with prefixed 0b
  my $x = shift; $x = $class->new($x) if !ref($x);

  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc

  my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
  return $s . $CALC->_as_bin($x->{value});
  }

sub as_oct
  {
  # return as octal string, with prefixed 0
  my $x = shift; $x = $class->new($x) if !ref($x);

  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc

  my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
  return $s . $CALC->_as_oct($x->{value});
  }

##############################################################################
# private stuff (internal use only)

sub objectify {
    # Convert strings and "foreign objects" to the objects we want.

    # The first argument, $count, is the number of following arguments that
    # objectify() looks at and converts to objects. The first is a classname.
    # If the given count is 0, all arguments will be used.

    # After the count is read, objectify obtains the name of the class to which
    # the following arguments are converted. If the second argument is a
    # reference, use the reference type as the class name. Otherwise, if it is
    # a string that looks like a class name, use that. Otherwise, use $class.

    # Caller:                        Gives us:
    #
    # $x->badd(1);                => ref x, scalar y
    # Class->badd(1,2);           => classname x (scalar), scalar x, scalar y
    # Class->badd(Class->(1),2);  => classname x (scalar), ref x, scalar y
    # Math::BigInt::badd(1,2);    => scalar x, scalar y

    # A shortcut for the common case $x->unary_op():

    return (ref($_[1]), $_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);

    # Check the context.

    unless (wantarray) {
        require Carp;
        Carp::croak ("${class}::objectify() needs list context");
    }

    # Get the number of arguments to objectify.

    my $count = shift;
    $count ||= @_;

    # Initialize the output array.

    my @a = @_;

    # If the first argument is a reference, use that reference type as our
    # class name. Otherwise, if the first argument looks like a class name,
    # then use that as our class name. Otherwise, use the default class name.

    {
        if (ref($a[0])) {               # reference?
            unshift @a, ref($a[0]);
            last;
        }
        if ($a[0] =~ /^[A-Z].*::/) {    # string with class name?
            last;
        }
        unshift @a, $class;             # default class name
    }

    no strict 'refs';

    # What we upgrade to, if anything.

    my $up = ${"$a[0]::upgrade"};

    # Disable downgrading, because Math::BigFloat -> foo('1.0','2.0') needs
    # floats.

    my $down;
    if (defined ${"$a[0]::downgrade"}) {
        $down = ${"$a[0]::downgrade"};
        ${"$a[0]::downgrade"} = undef;
    }

    for my $i (1 .. $count) {
        my $ref = ref $a[$i];

        # If it is an object of the right class, all is fine.

        if ($ref eq $a[0]) {
            next;
        }

        # Don't do anything with undefs.

        unless (defined($a[$i])) {
            next;
        }

        # Perl scalars are fed to the appropriate constructor.

        unless ($ref) {
            $a[$i] = $a[0] -> new($a[$i]);
            next;
        }

        # Upgrading is OK, so skip further tests if the argument is upgraded.

        if (defined $up && $ref eq $up) {
            next;
        }

        # If we want a Math::BigInt, see if the object can become one.
        # Support the old misnomer as_number().

        if ($a[0] eq 'Math::BigInt') {
            if ($a[$i] -> can('as_int')) {
                $a[$i] = $a[$i] -> as_int();
                next;
            }
            if ($a[$i] -> can('as_number')) {
                $a[$i] = $a[$i] -> as_number();
                next;
            }
        }

        # If we want a Math::BigFloat, see if the object can become one.

        if ($a[0] eq 'Math::BigFloat') {
            if ($a[$i] -> can('as_float')) {
                $a[$i] = $a[$i] -> as_float();
                next;
            }
        }

        # Last resort.

        $a[$i] = $a[0] -> new($a[$i]);
    }

    # Reset the downgrading.

    ${"$a[0]::downgrade"} = $down;

    return @a;
}

sub _register_callback
  {
  my ($class,$callback) = @_;

  if (ref($callback) ne 'CODE')
    { 
    require Carp;
    Carp::croak ("$callback is not a coderef");
    }
  $CALLBACKS{$class} = $callback;
  }

sub import 
  {
  my $self = shift;

  $IMPORT++;				# remember we did import()
  my @a; my $l = scalar @_;
  my $warn_or_die = 0;			# 0 - no warn, 1 - warn, 2 - die
  for ( my $i = 0; $i < $l ; $i++ )
    {
    if ($_[$i] eq ':constant')
      {
      # this causes overlord er load to step in
      overload::constant 
	integer => sub { $self->new(shift) },
      	binary => sub { $self->new(shift) };
      }
    elsif ($_[$i] eq 'upgrade')
      {
      # this causes upgrading
      $upgrade = $_[$i+1];		# or undef to disable
      $i++;
      }
    elsif ($_[$i] =~ /^(lib|try|only)\z/)
      {
      # this causes a different low lib to take care...
      $CALC = $_[$i+1] || '';
      # lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback)
      $warn_or_die = 1 if $_[$i] eq 'lib';
      $warn_or_die = 2 if $_[$i] eq 'only';
      $i++;
      }
    else
      {
      push @a, $_[$i];
      }
    }
  # any non :constant stuff is handled by our parent, Exporter
  if (@a > 0)
    {
    require Exporter;
 
    $self->SUPER::import(@a);			# need it for subclasses
    $self->export_to_level(1,$self,@a);		# need it for MBF
    }

  # try to load core math lib
  my @c = split /\s*,\s*/,$CALC;
  foreach (@c)
    {
    $_ =~ tr/a-zA-Z0-9://cd;			# limit to sane characters
    }
  push @c, \'Calc'				# if all fail, try these
    if $warn_or_die < 2;			# but not for "only"
  $CALC = '';					# signal error
  foreach my $l (@c)
    {
    # fallback libraries are "marked" as \'string', extract string if nec.
    my $lib = $l; $lib = $$l if ref($l);

    next if ($lib || '') eq '';
    $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
    $lib =~ s/\.pm$//;
    if ($] < 5.006)
      {
      # Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
      # used in the same script, or eval("") inside import().
      my @parts = split /::/, $lib;             # Math::BigInt => Math BigInt
      my $file = pop @parts; $file .= '.pm';    # BigInt => BigInt.pm
      require File::Spec;
      $file = File::Spec->catfile (@parts, $file);
      eval { require "$file"; $lib->import( @c ); }
      }
    else
      {
      eval "use $lib qw/@c/;";
      }
    if ($@ eq '')
      {
      my $ok = 1;
      # loaded it ok, see if the api_version() is high enough
      if ($lib->can('api_version') && $lib->api_version() >= 1.0)
	{
	$ok = 0;
	# api_version matches, check if it really provides anything we need
        for my $method (qw/
		one two ten
		str num
		add mul div sub dec inc
		acmp len digit is_one is_zero is_even is_odd
		is_two is_ten
		zeros new copy check
		from_hex from_oct from_bin as_hex as_bin as_oct
		rsft lsft xor and or
		mod sqrt root fac pow modinv modpow log_int gcd
	 /)
          {
	  if (!$lib->can("_$method"))
	    {
	    if (($WARN{$lib}||0) < 2)
	      {
	      require Carp;
	      Carp::carp ("$lib is missing method '_$method'");
	      $WARN{$lib} = 1;		# still warn about the lib
	      }
            $ok++; last; 
	    }
          }
	}
      if ($ok == 0)
	{
	$CALC = $lib;
	if ($warn_or_die > 0 && ref($l))
	  {
	  require Carp;
	  my $msg = "Math::BigInt: couldn't load specified math lib(s), fallback to $lib";
          Carp::carp ($msg) if $warn_or_die == 1;
          Carp::croak ($msg) if $warn_or_die == 2;
	  }
        last;			# found a usable one, break
	}
      else
	{
	if (($WARN{$lib}||0) < 2)
	  {
	  my $ver = eval "\$$lib\::VERSION" || 'unknown';
	  require Carp;
	  Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
	  $WARN{$lib} = 2;		# never warn again
	  }
        }
      }
    }
  if ($CALC eq '')
    {
    require Carp;
    if ($warn_or_die == 2)
      {
      Carp::croak ("Couldn't load specified math lib(s) and fallback disallowed");
      }
    else
      {
      Carp::croak ("Couldn't load any math lib(s), not even fallback to Calc.pm");
      }
    }

  # notify callbacks
  foreach my $class (keys %CALLBACKS)
    {
    &{$CALLBACKS{$class}}($CALC);
    }

  # Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
  # functions

  %CAN = ();
  for my $method (qw/ signed_and signed_or signed_xor /)
    {
    $CAN{$method} = $CALC->can("_$method") ? 1 : 0;
    }

  # import done
  }

sub from_hex {
    # Create a bigint from a hexadecimal string.

    my ($self, $str) = @_;

    if ($str =~ s/
                     ^
                     ( [+-]? )
                     (0?x)?
                     (
                         [0-9a-fA-F]*
                         ( _ [0-9a-fA-F]+ )*
                     )
                     $
                 //x)
    {
        # Get a "clean" version of the string, i.e., non-emtpy and with no
        # underscores or invalid characters.

        my $sign = $1;
        my $chrs = $3;
        $chrs =~ tr/_//d;
        $chrs = '0' unless CORE::length $chrs;

        # Initialize output.

        my $x = Math::BigInt->bzero();

        # The library method requires a prefix.

        $x->{value} = $CALC->_from_hex('0x' . $chrs);

        # Place the sign.

        if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
            $x->{sign} = '-';
        }

        return $x;
    }

    # CORE::hex() parses as much as it can, and ignores any trailing garbage.
    # For backwards compatibility, we return NaN.

    return $self->bnan();
}

sub from_oct {
    # Create a bigint from an octal string.

    my ($self, $str) = @_;

    if ($str =~ s/
                     ^
                     ( [+-]? )
                     (
                         [0-7]*
                         ( _ [0-7]+ )*
                     )
                     $
                 //x)
    {
        # Get a "clean" version of the string, i.e., non-emtpy and with no
        # underscores or invalid characters.

        my $sign = $1;
        my $chrs = $2;
        $chrs =~ tr/_//d;
        $chrs = '0' unless CORE::length $chrs;

        # Initialize output.

        my $x = Math::BigInt->bzero();

        # The library method requires a prefix.

        $x->{value} = $CALC->_from_oct('0' . $chrs);

        # Place the sign.

        if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
            $x->{sign} = '-';
        }

        return $x;
    }

    # CORE::oct() parses as much as it can, and ignores any trailing garbage.
    # For backwards compatibility, we return NaN.

    return $self->bnan();
}

sub from_bin {
    # Create a bigint from a binary string.

    my ($self, $str) = @_;

    if ($str =~ s/
                     ^
                     ( [+-]? )
                     (0?b)?
                     (
                         [01]*
                         ( _ [01]+ )*
                     )
                     $
                 //x)
    {
        # Get a "clean" version of the string, i.e., non-emtpy and with no
        # underscores or invalid characters.

        my $sign = $1;
        my $chrs = $3;
        $chrs =~ tr/_//d;
        $chrs = '0' unless CORE::length $chrs;

        # Initialize output.

        my $x = Math::BigInt->bzero();

        # The library method requires a prefix.

        $x->{value} = $CALC->_from_bin('0b' . $chrs);

        # Place the sign.

        if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
            $x->{sign} = '-';
        }

        return $x;
    }

    # For consistency with from_hex() and from_oct(), we return NaN when the
    # input is invalid.

    return $self->bnan();
}

sub _split
  {
  # input: num_str; output: undef for invalid or
  # (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction,\$exp_sign,\$exp_value)
  # Internal, take apart a string and return the pieces.
  # Strip leading/trailing whitespace, leading zeros, underscore and reject
  # invalid input.
  my $x = shift;

  # strip white space at front, also extraneous leading zeros
  $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g;   # will not strip '  .2'
  $x =~ s/^\s+//;                       # but this will
  $x =~ s/\s+$//g;                      # strip white space at end

  # shortcut, if nothing to split, return early
  if ($x =~ /^[+-]?[0-9]+\z/)
    {
    $x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
    return (\$sign, \$x, \'', \'', \0);
    }

  # invalid starting char?
  return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;

  return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/;        # hex string
  return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/;        # binary string

  # strip underscores between digits
  $x =~ s/([0-9])_([0-9])/$1$2/g;
  $x =~ s/([0-9])_([0-9])/$1$2/g;		# do twice for 1_2_3

  # some possible inputs: 
  # 2.1234 # 0.12        # 1 	      # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 
  # .2 	   # 1_2_3.4_5_6 # 1.4E1_2_3  # 1e3 # +.2     # 0e999	

  my ($m,$e,$last) = split /[Ee]/,$x;
  return if defined $last;		# last defined => 1e2E3 or others
  $e = '0' if !defined $e || $e eq "";

  # sign,value for exponent,mantint,mantfrac
  my ($es,$ev,$mis,$miv,$mfv);
  # valid exponent?
  if ($e =~ /^([+-]?)0*([0-9]+)$/)	# strip leading zeros
    {
    $es = $1; $ev = $2;
    # valid mantissa?
    return if $m eq '.' || $m eq '';
    my ($mi,$mf,$lastf) = split /\./,$m;
    return if defined $lastf;		# lastf defined => 1.2.3 or others
    $mi = '0' if !defined $mi;
    $mi .= '0' if $mi =~ /^[\-\+]?$/;
    $mf = '0' if !defined $mf || $mf eq '';
    if ($mi =~ /^([+-]?)0*([0-9]+)$/)		# strip leading zeros
      {
      $mis = $1||'+'; $miv = $2;
      return unless ($mf =~ /^([0-9]*?)0*$/);	# strip trailing zeros
      $mfv = $1;
      # handle the 0e999 case here
      $ev = 0 if $miv eq '0' && $mfv eq '';
      return (\$mis,\$miv,\$mfv,\$es,\$ev);
      }
    }
  return; # NaN, not a number
  }

##############################################################################
# internal calculation routines (others are in Math::BigInt::Calc etc)

sub __lcm 
  { 
  # (BINT or num_str, BINT or num_str) return BINT
  # does modify first argument
  # LCM
 
  my ($x,$ty) = @_;
  return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
  my $method = ref($x) . '::bgcd';
  no strict 'refs';
  $x * $ty / &$method($x,$ty);
  }

###############################################################################
# trigonometric functions

sub bpi
  {
  # Calculate PI to N digits. Unless upgrading is in effect, returns the
  # result truncated to an integer, that is, always returns '3'.
  my ($self,$n) = @_;
  if (@_ == 1)
    {
    # called like Math::BigInt::bpi(10);
    $n = $self; $self = $class;
    }
  $self = ref($self) if ref($self);

  return $upgrade->new($n) if defined $upgrade;

  # hard-wired to "3"
  $self->new(3);
  }

sub bcos
  {
  # Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the
  # result truncated to an integer.
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  return $x if $x->modify('bcos');

  return $x->bnan() if $x->{sign} !~ /^[+-]\z/;	# -inf +inf or NaN => NaN

  return $upgrade->new($x)->bcos(@r) if defined $upgrade;

  require Math::BigFloat;
  # calculate the result and truncate it to integer
  my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();

  $x->bone() if $t->is_one();
  $x->bzero() if $t->is_zero();
  $x->round(@r);
  }

sub bsin
  {
  # Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the
  # result truncated to an integer.
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  return $x if $x->modify('bsin');

  return $x->bnan() if $x->{sign} !~ /^[+-]\z/;	# -inf +inf or NaN => NaN

  return $upgrade->new($x)->bsin(@r) if defined $upgrade;

  require Math::BigFloat;
  # calculate the result and truncate it to integer
  my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();

  $x->bone() if $t->is_one();
  $x->bzero() if $t->is_zero();
  $x->round(@r);
  }

sub batan2
  { 
  # calculate arcus tangens of ($y/$x)
 
  # set up parameters
  my ($self,$y,$x,@r) = (ref($_[0]),@_);
  # objectify is costly, so avoid it
  if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
    {
    ($self,$y,$x,@r) = objectify(2,@_);
    }

  return $y if $y->modify('batan2');

  return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);

  # Y    X
  # != 0 -inf result is +- pi
  if ($x->is_inf() || $y->is_inf())
    {
    # upgrade to BigFloat etc.
    return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
    if ($y->is_inf())
      {
      if ($x->{sign} eq '-inf')
        {
        # calculate 3 pi/4 => 2.3.. => 2
        $y->bone( substr($y->{sign},0,1) );
        $y->bmul($self->new(2));
        }
      elsif ($x->{sign} eq '+inf')
        {
        # calculate pi/4 => 0.7 => 0
        $y->bzero();
        }
      else
        {
        # calculate pi/2 => 1.5 => 1
        $y->bone( substr($y->{sign},0,1) );
        }
      }
    else
      {
      if ($x->{sign} eq '+inf')
        {
        # calculate pi/4 => 0.7 => 0
        $y->bzero();
        }
      else
        {
        # PI => 3.1415.. => 3
        $y->bone( substr($y->{sign},0,1) );
        $y->bmul($self->new(3));
        }
      }
    return $y;
    }

  return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;

  require Math::BigFloat;
  my $r = Math::BigFloat->new($y)->batan2(Math::BigFloat->new($x),@r)->as_int();

  $x->{value} = $r->{value};
  $x->{sign} = $r->{sign};

  $x;
  }

sub batan
  {
  # Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
  # result truncated to an integer.
  my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);

  return $x if $x->modify('batan');

  return $x->bnan() if $x->{sign} !~ /^[+-]\z/;	# -inf +inf or NaN => NaN

  return $upgrade->new($x)->batan(@r) if defined $upgrade;

  # calculate the result and truncate it to integer
  my $t = Math::BigFloat->new($x)->batan(@r);

  $x->{value} = $CALC->_new( $x->as_int()->bstr() );
  $x->round(@r);
  }

###############################################################################
# this method returns 0 if the object can be modified, or 1 if not.
# We use a fast constant sub() here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)

sub modify () { 0; }

1;
__END__

=pod

=head1 NAME

Math::BigInt - Arbitrary size integer/float math package

=head1 SYNOPSIS

  use Math::BigInt;

  # or make it faster with huge numbers: install (optional)
  # Math::BigInt::GMP and always use (it will fall back to
  # pure Perl if the GMP library is not installed):
  # (See also the L<MATH LIBRARY> section!)

  # will warn if Math::BigInt::GMP cannot be found
  use Math::BigInt lib => 'GMP';

  # to suppress the warning use this:
  # use Math::BigInt try => 'GMP';

  # dies if GMP cannot be loaded:
  # use Math::BigInt only => 'GMP';

  my $str = '1234567890';
  my @values = (64,74,18);
  my $n = 1; my $sign = '-';

  # Number creation	
  my $x = Math::BigInt->new($str);	# defaults to 0
  my $y = $x->copy();			# make a true copy
  my $nan  = Math::BigInt->bnan(); 	# create a NotANumber
  my $zero = Math::BigInt->bzero();	# create a +0
  my $inf = Math::BigInt->binf();	# create a +inf
  my $inf = Math::BigInt->binf('-');	# create a -inf
  my $one = Math::BigInt->bone();	# create a +1
  my $mone = Math::BigInt->bone('-');	# create a -1

  my $pi = Math::BigInt->bpi();		# returns '3'
					# see Math::BigFloat::bpi()

  $h = Math::BigInt->new('0x123');	# from hexadecimal
  $b = Math::BigInt->new('0b101');	# from binary
  $o = Math::BigInt->from_oct('0101');	# from octal

  # Testing (don't modify their arguments)
  # (return true if the condition is met, otherwise false)

  $x->is_zero();	# if $x is +0
  $x->is_nan();		# if $x is NaN
  $x->is_one();		# if $x is +1
  $x->is_one('-');	# if $x is -1
  $x->is_odd();		# if $x is odd
  $x->is_even();	# if $x is even
  $x->is_pos();		# if $x > 0
  $x->is_neg();		# if $x < 0
  $x->is_inf($sign);	# if $x is +inf, or -inf (sign is default '+')
  $x->is_int();		# if $x is an integer (not a float)

  # comparing and digit/sign extraction
  $x->bcmp($y);		# compare numbers (undef,<0,=0,>0)
  $x->bacmp($y);	# compare absolutely (undef,<0,=0,>0)
  $x->sign();		# return the sign, either +,- or NaN
  $x->digit($n);	# return the nth digit, counting from right
  $x->digit(-$n);	# return the nth digit, counting from left

  # The following all modify their first argument. If you want to pre-
  # serve $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for
  # why this is necessary when mixing $a = $b assignments with non-over-
  # loaded math.

  $x->bzero();		# set $x to 0
  $x->bnan();		# set $x to NaN
  $x->bone();		# set $x to +1
  $x->bone('-');	# set $x to -1
  $x->binf();		# set $x to inf
  $x->binf('-');	# set $x to -inf

  $x->bneg();		# negation
  $x->babs();		# absolute value
  $x->bsgn();		# sign function (-1, 0, 1, or NaN)
  $x->bnorm();		# normalize (no-op in BigInt)
  $x->bnot();		# two's complement (bit wise not)
  $x->binc();		# increment $x by 1
  $x->bdec();		# decrement $x by 1

  $x->badd($y);		# addition (add $y to $x)
  $x->bsub($y);		# subtraction (subtract $y from $x)
  $x->bmul($y);		# multiplication (multiply $x by $y)
  $x->bdiv($y);		# divide, set $x to quotient
			# return (quo,rem) or quo if scalar

  $x->bmuladd($y,$z);	# $x = $x * $y + $z

  $x->bmod($y);		   # modulus (x % y)
  $x->bmodpow($y,$mod);    # modular exponentiation (($x ** $y) % $mod)
  $x->bmodinv($mod);       # modular multiplicative inverse
  $x->bpow($y);		   # power of arguments (x ** y)
  $x->blsft($y);	   # left shift in base 2
  $x->brsft($y);	   # right shift in base 2
			   # returns (quo,rem) or quo if in sca-
			   # lar context
  $x->blsft($y,$n);	   # left shift by $y places in base $n
  $x->brsft($y,$n);	   # right shift by $y places in base $n
			   # returns (quo,rem) or quo if in sca-
			   # lar context

  $x->band($y);		   # bitwise and
  $x->bior($y);		   # bitwise inclusive or
  $x->bxor($y);		   # bitwise exclusive or
  $x->bnot();		   # bitwise not (two's complement)

  $x->bsqrt();		   # calculate square-root
  $x->broot($y);	   # $y'th root of $x (e.g. $y == 3 => cubic root)
  $x->bfac();		   # factorial of $x (1*2*3*4*..$x)

  $x->bnok($y);		   # x over y (binomial coefficient n over k)

  $x->blog();		   # logarithm of $x to base e (Euler's number)
  $x->blog($base);	   # logarithm of $x to base $base (f.i. 2)
  $x->bexp();		   # calculate e ** $x where e is Euler's number

  $x->round($A,$P,$mode);  # round to accuracy or precision using
			   # mode $mode
  $x->bround($n);	   # accuracy: preserve $n digits
  $x->bfround($n);	   # $n > 0: round $nth digits,
			   # $n < 0: round to the $nth digit after the
			   # dot, no-op for BigInts

  # The following do not modify their arguments in BigInt (are no-ops),
  # but do so in BigFloat:

  $x->bfloor();		   # return integer less or equal than $x
  $x->bceil();		   # return integer greater or equal than $x

  # The following do not modify their arguments:

  # greatest common divisor (no OO style)
  my $gcd = Math::BigInt::bgcd(@values);
  # lowest common multiple (no OO style)
  my $lcm = Math::BigInt::blcm(@values);

  $x->length();		   # return number of digits in number
  ($xl,$f) = $x->length(); # length of number and length of fraction
			   # part, latter is always 0 digits long
			   # for BigInts

  $x->exponent();	  # return exponent as BigInt
  $x->mantissa();	  # return (signed) mantissa as BigInt
  $x->parts();		  # return (mantissa,exponent) as BigInt
  $x->copy();		  # make a true copy of $x (unlike $y = $x;)
  $x->as_int();		  # return as BigInt (in BigInt: same as copy())
  $x->numify();		  # return as scalar (might overflow!)

  # conversion to string (do not modify their argument)
  $x->bstr();	      # normalized string (e.g. '3')
  $x->bsstr();	      # norm. string in scientific notation (e.g. '3E0')
  $x->as_hex();	      # as signed hexadecimal string with prefixed 0x
  $x->as_bin();	      # as signed binary string with prefixed 0b
  $x->as_oct();	      # as signed octal string with prefixed 0


  # precision and accuracy (see section about rounding for more)
  $x->precision();	 # return P of $x (or global, if P of $x undef)
  $x->precision($n);	 # set P of $x to $n
  $x->accuracy();	 # return A of $x (or global, if A of $x undef)
  $x->accuracy($n);	 # set A $x to $n

  # Global methods
  Math::BigInt->precision();   # get/set global P for all BigInt objects
  Math::BigInt->accuracy();    # get/set global A for all BigInt objects
  Math::BigInt->round_mode();  # get/set global round mode, one of
			       # 'even', 'odd', '+inf', '-inf', 'zero',
			       # 'trunc' or 'common'
  Math::BigInt->config();      # return hash containing configuration

=head1 DESCRIPTION

All operators (including basic math operations) are overloaded if you
declare your big integers as

  $i = new Math::BigInt '123_456_789_123_456_789';

Operations with overloaded operators preserve the arguments which is
exactly what you expect.

=over 2

=item Input

Input values to these routines may be any string, that looks like a number
and results in an integer, including hexadecimal and binary numbers.

Scalars holding numbers may also be passed, but note that non-integer numbers
may already have lost precision due to the conversion to float. Quote
your input if you want BigInt to see all the digits:

	$x = Math::BigInt->new(12345678890123456789);	# bad
	$x = Math::BigInt->new('12345678901234567890');	# good

You can include one underscore between any two digits.

This means integer values like 1.01E2 or even 1000E-2 are also accepted.
Non-integer values result in NaN.

Hexadecimal (prefixed with "0x") and binary numbers (prefixed with "0b")
are accepted, too. Please note that octal numbers are not recognized
by new(), so the following will print "123":

	perl -MMath::BigInt -le 'print Math::BigInt->new("0123")'

To convert an octal number, use from_oct();

	perl -MMath::BigInt -le 'print Math::BigInt->from_oct("0123")'

Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
results in 'NaN'. This might change in the future, so use always the following
explicit forms to get a zero or NaN:

	$zero = Math::BigInt->bzero();
	$nan = Math::BigInt->bnan();

C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers 
are always stored in normalized form. If passed a string, creates a BigInt 
object from the input.

=item Output

Output values are BigInt objects (normalized), except for the methods which
return a string (see L</SYNOPSIS>).

Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
C<is_nan()>, etc.) return true or false, while others (C<bcmp()>, C<bacmp()>)
return either undef (if NaN is involved), <0, 0 or >0 and are suited for sort.

=back

=head1 METHODS

Each of the methods below (except config(), accuracy() and precision())
accepts three additional parameters. These arguments C<$A>, C<$P> and C<$R>
are C<accuracy>, C<precision> and C<round_mode>. Please see the section about
L</ACCURACY and PRECISION> for more information.

=head2 config()

	use Data::Dumper;

	print Dumper ( Math::BigInt->config() );
	print Math::BigInt->config()->{lib},"\n";

Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.

	key	      Description
		      Example
	============================================================
	lib	      Name of the low-level math library
		      Math::BigInt::Calc
	lib_version   Version of low-level math library (see 'lib')
		      0.30
	class	      The class name of config() you just called
		      Math::BigInt
	upgrade	      To which class math operations might be upgraded
		      Math::BigFloat
	downgrade     To which class math operations might be downgraded
		      undef
	precision     Global precision
		      undef
	accuracy      Global accuracy
		      undef
	round_mode    Global round mode
		      even
	version	      version number of the class you used
		      1.61
	div_scale     Fallback accuracy for div
		      40
	trap_nan      If true, traps creation of NaN via croak()
		      1
	trap_inf      If true, traps creation of +inf/-inf via croak()
		      1

The following values can be set by passing C<config()> a reference to a hash:

	trap_inf trap_nan
        upgrade downgrade precision accuracy round_mode div_scale

Example:

	$new_cfg = Math::BigInt->config(
	    { trap_inf => 1, precision => 5 }
	);

=head2 accuracy()

    $x->accuracy(5);	     # local for $x
    CLASS->accuracy(5);	     # global for all members of CLASS
    			     # Note: This also applies to new()!

    $A = $x->accuracy();     # read out accuracy that affects $x
    $A = CLASS->accuracy();  # read out global accuracy

Set or get the global or local accuracy, aka how many significant digits the
results have. If you set a global accuracy, then this also applies to new()!

Warning! The accuracy I<sticks>, e.g. once you created a number under the
influence of C<< CLASS->accuracy($A) >>, all results from math operations with
that number will also be rounded.

In most cases, you should probably round the results explicitly using one of
L</round()>, L</bround()> or L</bfround()> or by passing the desired accuracy
to the math operation as additional parameter:

    my $x = Math::BigInt->new(30000);
    my $y = Math::BigInt->new(7);
    print scalar $x->copy()->bdiv($y, 2);		# print 4300
    print scalar $x->copy()->bdiv($y)->bround(2);	# print 4300

Please see the section about L</ACCURACY and PRECISION> for further details.

Value must be greater than zero. Pass an undef value to disable it:

    $x->accuracy(undef);
    Math::BigInt->accuracy(undef);

Returns the current accuracy. For C<< $x->accuracy() >> it will return either
the local accuracy, or if not defined, the global. This means the return value
represents the accuracy that will be in effect for $x:

    $y = Math::BigInt->new(1234567);	   # unrounded
    print Math::BigInt->accuracy(4),"\n";  # set 4, print 4
    $x = Math::BigInt->new(123456);	   # $x will be automatic-
					   # ally rounded!
    print "$x $y\n";			   # '123500 1234567'
    print $x->accuracy(),"\n";		   # will be 4
    print $y->accuracy(),"\n";		   # also 4, since global is 4
    print Math::BigInt->accuracy(5),"\n";  # set to 5, print 5
    print $x->accuracy(),"\n";		   # still 4
    print $y->accuracy(),"\n";		   # 5, since global is 5

Note: Works also for subclasses like Math::BigFloat. Each class has it's own
globals separated from Math::BigInt, but it is possible to subclass
Math::BigInt and make the globals of the subclass aliases to the ones from
Math::BigInt.

=head2 precision()

    $x->precision(-2);		# local for $x, round at the second
    				# digit right of the dot
    $x->precision(2);		# ditto, round at the second digit left
    				# of the dot

    CLASS->precision(5);	# Global for all members of CLASS
    				# This also applies to new()!
    CLASS->precision(-5);	# ditto

    $P = CLASS->precision();	# read out global precision
    $P = $x->precision();	# read out precision that affects $x

Note: You probably want to use L</accuracy()> instead. With L</accuracy()> you
set the number of digits each result should have, with L</precision()> you
set the place where to round!

C<precision()> sets or gets the global or local precision, aka at which digit
before or after the dot to round all results. A set global precision also
applies to all newly created numbers!

In Math::BigInt, passing a negative number precision has no effect since no
numbers have digits after the dot. In L<Math::BigFloat>, it will round all
results to P digits after the dot.

Please see the section about L</ACCURACY and PRECISION> for further details.

Pass an undef value to disable it:

    $x->precision(undef);
    Math::BigInt->precision(undef);

Returns the current precision. For C<< $x->precision() >> it will return either
the local precision of $x, or if not defined, the global. This means the return
value represents the prevision that will be in effect for $x:

    $y = Math::BigInt->new(1234567);	    # unrounded
    print Math::BigInt->precision(4),"\n";  # set 4, print 4
    $x = Math::BigInt->new(123456);	 # will be automatically rounded
    print $x;				    # print "120000"!

Note: Works also for subclasses like L<Math::BigFloat>. Each class has its
own globals separated from Math::BigInt, but it is possible to subclass
Math::BigInt and make the globals of the subclass aliases to the ones from
Math::BigInt.

=head2 brsft()

	$x->brsft($y,$n);

Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
2, but others work, too.

Right shifting usually amounts to dividing $x by $n ** $y and truncating the
result:


	$x = Math::BigInt->new(10);
	$x->brsft(1);			# same as $x >> 1: 5
	$x = Math::BigInt->new(1234);
	$x->brsft(2,10);		# result 12

There is one exception, and that is base 2 with negative $x:


	$x = Math::BigInt->new(-5);
	print $x->brsft(1);

This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
result).

=head2 new()

  	$x = Math::BigInt->new($str,$A,$P,$R);

Creates a new BigInt object from a scalar or another BigInt object. The
input is accepted as decimal, hex (with leading '0x') or binary (with leading
'0b').

See L</Input> for more info on accepted input formats.

=head2 from_oct()

	$x = Math::BigInt->from_oct("0775");	# input is octal

Interpret the input as an octal string and return the corresponding value. A
"0" (zero) prefix is optional. A single underscore character may be placed
right after the prefix, if present, or between any two digits. If the input is
invalid, a NaN is returned.

=head2 from_hex()

	$x = Math::BigInt->from_hex("0xcafe");	# input is hexadecimal

Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.

=head2 from_bin()

	$x = Math::BigInt->from_bin("0b10011");	# input is binary

Interpret the input as a binary string. A "0b" or "b" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.

=head2 bnan()

  	$x = Math::BigInt->bnan();

Creates a new BigInt object representing NaN (Not A Number).
If used on an object, it will set it to NaN:

	$x->bnan();

=head2 bzero()

  	$x = Math::BigInt->bzero();

Creates a new BigInt object representing zero.
If used on an object, it will set it to zero:

	$x->bzero();

=head2 binf()

  	$x = Math::BigInt->binf($sign);

Creates a new BigInt object representing infinity. The optional argument is
either '-' or '+', indicating whether you want infinity or minus infinity.
If used on an object, it will set it to infinity:

	$x->binf();
	$x->binf('-');

=head2 bone()

  	$x = Math::BigInt->binf($sign);

Creates a new BigInt object representing one. The optional argument is
either '-' or '+', indicating whether you want one or minus one.
If used on an object, it will set it to one:

	$x->bone();		# +1
	$x->bone('-');		# -1

=head2 is_one()/is_zero()/is_nan()/is_inf()

	$x->is_zero();		# true if arg is +0
	$x->is_nan();		# true if arg is NaN
	$x->is_one();		# true if arg is +1
	$x->is_one('-');	# true if arg is -1
	$x->is_inf();		# true if +inf
	$x->is_inf('-');	# true if -inf (sign is default '+')

These methods all test the BigInt for being one specific value and return
true or false depending on the input. These are faster than doing something
like:

	if ($x == 0)

=head2 is_pos()/is_neg()/is_positive()/is_negative()

	$x->is_pos();			# true if > 0
	$x->is_neg();			# true if < 0

The methods return true if the argument is positive or negative, respectively.
C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and
C<-inf> is negative. A C<zero> is neither positive nor negative.

These methods are only testing the sign, and not the value.

C<is_positive()> and C<is_negative()> are aliases to C<is_pos()> and
C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were
introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced
in v1.68.

=head2 is_odd()/is_even()/is_int()

	$x->is_odd();			# true if odd, false for even
	$x->is_even();			# true if even, false for odd
	$x->is_int();			# true if $x is an integer

The return true when the argument satisfies the condition. C<NaN>, C<+inf>,
C<-inf> are not integers and are neither odd nor even.

In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers.

=head2 bcmp()

	$x->bcmp($y);

Compares $x with $y and takes the sign into account.
Returns -1, 0, 1 or undef.

=head2 bacmp()

	$x->bacmp($y);

Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef.

=head2 sign()

	$x->sign();

Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.

If you want $x to have a certain sign, use one of the following methods:

	$x->babs();		# '+'
	$x->babs()->bneg();	# '-'
	$x->bnan();		# 'NaN'
	$x->binf();		# '+inf'
	$x->binf('-');		# '-inf'

=head2 digit()

	$x->digit($n);	     # return the nth digit, counting from right

If C<$n> is negative, returns the digit counting from left.

=head2 bneg()

	$x->bneg();

Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
and '-inf', respectively. Does nothing for NaN or zero.

=head2 babs()

	$x->babs();

Set the number to its absolute value, e.g. change the sign from '-' to '+'
and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
numbers.

=head2 bsgn()

	$x->bsgn();

Signum function. Set the number to -1, 0, or 1, depending on whether the
number is negative, zero, or positive, respectivly. Does not modify NaNs.

=head2 bnorm()

	$x->bnorm();			# normalize (no-op)

=head2 bnot()

	$x->bnot();

Two's complement (bitwise not). This is equivalent to

	$x->binc()->bneg();

but faster.

=head2 binc()

	$x->binc();		# increment x by 1

=head2 bdec()

	$x->bdec();		# decrement x by 1

=head2 badd()

	$x->badd($y);		# addition (add $y to $x)

=head2 bsub()

	$x->bsub($y);		# subtraction (subtract $y from $x)

=head2 bmul()

	$x->bmul($y);		# multiplication (multiply $x by $y)

=head2 bmuladd()

	$x->bmuladd($y,$z);

Multiply $x by $y, and then add $z to the result,

This method was added in v1.87 of Math::BigInt (June 2007).

=head2 bdiv()

	$x->bdiv($y);		# divide, set $x to quotient
				# return (quo,rem) or quo if scalar

=head2 bmod()

	$x->bmod($y);		# modulus (x % y)

=head2 bmodinv()

	$x->bmodinv($mod);	# modular multiplicative inverse

Returns the multiplicative inverse of C<$x> modulo C<$mod>. If

        $y = $x -> copy() -> bmodinv($mod)

then C<$y> is the number closest to zero, and with the same sign as C<$mod>,
satisfying

        ($x * $y) % $mod = 1 % $mod

If C<$x> and C<$y> are non-zero, they must be relative primes, i.e.,
C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative
inverse exists.

=head2 bmodpow()

	$num->bmodpow($exp,$mod);	# modular exponentiation
					# ($num**$exp % $mod)

Returns the value of C<$num> taken to the power C<$exp> in the modulus
C<$mod> using binary exponentiation.  C<bmodpow> is far superior to
writing

	$num ** $exp % $mod

because it is much faster - it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.

C<bmodpow> also supports negative exponents.

	bmodpow($num, -1, $mod)

is exactly equivalent to

	bmodinv($num, $mod)

=head2 bpow()

	$x->bpow($y);		      # power of arguments (x ** y)

=head2 blog()

	$x->blog($base, $accuracy);   # logarithm of x to the base $base

If C<$base> is not defined, Euler's number (e) is used:

	print $x->blog(undef, 100);   # log(x) to 100 digits

=head2 bexp()

	$x->bexp($accuracy);	      # calculate e ** X

Calculates the expression C<e ** $x> where C<e> is Euler's number.

This method was added in v1.82 of Math::BigInt (April 2007).

See also L</blog()>.

=head2 bnok()

	$x->bnok($y);	     # x over y (binomial coefficient n over k)

Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:

	( n )      n!
	| - |  = -------
	( k )    k!(n-k)!

This method was added in v1.84 of Math::BigInt (April 2007).

=head2 bpi()

	print Math::BigInt->bpi(100), "\n";		# 3

Returns PI truncated to an integer, with the argument being ignored. This means
under BigInt this always returns C<3>.

If upgrading is in effect, returns PI, rounded to N digits with the
current rounding mode:

	use Math::BigFloat;
	use Math::BigInt upgrade => Math::BigFloat;
	print Math::BigInt->bpi(3), "\n";		# 3.14
	print Math::BigInt->bpi(100), "\n";		# 3.1415....

This method was added in v1.87 of Math::BigInt (June 2007).

=head2 bcos()

	my $x = Math::BigInt->new(1);
	print $x->bcos(100), "\n";

Calculate the cosinus of $x, modifying $x in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
integer.

This method was added in v1.87 of Math::BigInt (June 2007).

=head2 bsin()

	my $x = Math::BigInt->new(1);
	print $x->bsin(100), "\n";

Calculate the sinus of $x, modifying $x in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
integer.

This method was added in v1.87 of Math::BigInt (June 2007).

=head2 batan2()

	my $x = Math::BigInt->new(1);
	my $y = Math::BigInt->new(1);
	print $y->batan2($x), "\n";

Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
integer.

This method was added in v1.87 of Math::BigInt (June 2007).

=head2 batan()

	my $x = Math::BigFloat->new(0.5);
	print $x->batan(100), "\n";

Calculate the arcus tangens of $x, modifying $x in place.

In BigInt, unless upgrading is in effect, the result is truncated to an
integer.

This method was added in v1.87 of Math::BigInt (June 2007).

=head2 blsft()

	$x->blsft($y);		# left shift in base 2
	$x->blsft($y,$n);	# left shift, in base $n (like 10)

=head2 brsft()

	$x->brsft($y);		# right shift in base 2
	$x->brsft($y,$n);	# right shift, in base $n (like 10)

=head2 band()

	$x->band($y);			# bitwise and

=head2 bior()

	$x->bior($y);			# bitwise inclusive or

=head2 bxor()

	$x->bxor($y);			# bitwise exclusive or

=head2 bnot()

	$x->bnot();			# bitwise not (two's complement)

=head2 bsqrt()

	$x->bsqrt();			# calculate square-root

=head2 broot()

	$x->broot($N);

Calculates the N'th root of C<$x>.

=head2 bfac()

	$x->bfac();			# factorial of $x (1*2*3*4*..$x)

=head2 round()

	$x->round($A,$P,$round_mode);

Round $x to accuracy C<$A> or precision C<$P> using the round mode
C<$round_mode>.

=head2 bround()

	$x->bround($N);               # accuracy: preserve $N digits

=head2 bfround()

	$x->bfround($N);

If N is > 0, rounds to the Nth digit from the left. If N < 0, rounds to
the Nth digit after the dot. Since BigInts are integers, the case N < 0
is a no-op for them.

Examples:

	Input		N		Result
	===================================================
	123456.123456	3		123500
	123456.123456	2		123450
	123456.123456	-2		123456.12
	123456.123456	-3		123456.123

=head2 bfloor()

	$x->bfloor();

Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
does change $x in BigFloat.

=head2 bceil()

	$x->bceil();

Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
does change $x in BigFloat.

=head2 bgcd()

	bgcd(@values);		# greatest common divisor (no OO style)

=head2 blcm()

	blcm(@values);		# lowest common multiple (no OO style)

head2 length()

	$x->length();
        ($xl,$fl) = $x->length();

Returns the number of digits in the decimal representation of the number.
In list context, returns the length of the integer and fraction part. For
BigInt's, the length of the fraction part will always be 0.

=head2 exponent()

	$x->exponent();

Return the exponent of $x as BigInt.

=head2 mantissa()

	$x->mantissa();

Return the signed mantissa of $x as BigInt.

=head2 parts()

	$x->parts();	# return (mantissa,exponent) as BigInt

=head2 copy()

	$x->copy();	# make a true copy of $x (unlike $y = $x;)

=head2 as_int()/as_number()

	$x->as_int();

Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as
C<copy()>.

C<as_number()> is an alias to this method. C<as_number> was introduced in
v1.22, while C<as_int()> was only introduced in v1.68.

=head2 bstr()

	$x->bstr();

Returns a normalized string representation of C<$x>.

=head2 bsstr()

	$x->bsstr();	# normalized string in scientific notation

=head2 as_hex()

	$x->as_hex();	# as signed hexadecimal string with prefixed 0x

=head2 as_bin()

	$x->as_bin();	# as signed binary string with prefixed 0b

=head2 as_oct()

	$x->as_oct();	# as signed octal string with prefixed 0

=head2 numify()

	print $x->numify();

This returns a normal Perl scalar from $x. It is used automatically
whenever a scalar is needed, for instance in array index operations.

This loses precision, to avoid this use L<as_int()|/"as_int()/as_number()"> instead.

=head2 modify()

	$x->modify('bpowd');

This method returns 0 if the object can be modified with the given
operation, or 1 if not.

This is used for instance by L<Math::BigInt::Constant>.

=head2 upgrade()/downgrade()

Set/get the class for downgrade/upgrade operations. Thuis is used
for instance by L<bignum>. The defaults are '', thus the following
operation will create a BigInt, not a BigFloat:

	my $i = Math::BigInt->new(123);
	my $f = Math::BigFloat->new('123.1');

	print $i + $f,"\n";			# print 246

=head2 div_scale()

Set/get the number of digits for the default precision in divide
operations.

=head2 round_mode()

Set/get the current round mode.

=head1 ACCURACY and PRECISION

Since version v1.33, Math::BigInt and Math::BigFloat have full support for
accuracy and precision based rounding, both automatically after every
operation, as well as manually.

This section describes the accuracy/precision handling in Math::Big* as it
used to be and as it is now, complete with an explanation of all terms and
abbreviations.

Not yet implemented things (but with correct description) are marked with '!',
things that need to be answered are marked with '?'.

In the next paragraph follows a short description of terms used here (because
these may differ from terms used by others people or documentation).

During the rest of this document, the shortcuts A (for accuracy), P (for
precision), F (fallback) and R (rounding mode) will be used.

=head2 Precision P

A fixed number of digits before (positive) or after (negative)
the decimal point. For example, 123.45 has a precision of -2. 0 means an
integer like 123 (or 120). A precision of 2 means two digits to the left
of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
numbers with zeros before the decimal point may have different precisions,
because 1200 can have p = 0, 1 or 2 (depending on what the initial value
was). It could also have p < 0, when the digits after the decimal point
are zero.

The string output (of floating point numbers) will be padded with zeros:

	Initial value   P       A	Result          String
	------------------------------------------------------------
	1234.01         -3      	1000            1000
	1234            -2      	1200            1200
	1234.5          -1      	1230            1230
	1234.001        1       	1234            1234.0
	1234.01         0       	1234            1234
	1234.01         2       	1234.01		1234.01
	1234.01         5       	1234.01		1234.01000

For BigInts, no padding occurs.

=head2 Accuracy A

Number of significant digits. Leading zeros are not counted. A
number may have an accuracy greater than the non-zero digits
when there are zeros in it or trailing zeros. For example, 123.456 has
A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.

The string output (of floating point numbers) will be padded with zeros:

	Initial value   P       A	Result          String
	------------------------------------------------------------
	1234.01			3	1230		1230
	1234.01			6	1234.01		1234.01
	1234.1			8	1234.1		1234.1000

For BigInts, no padding occurs.

=head2 Fallback F

When both A and P are undefined, this is used as a fallback accuracy when
dividing numbers.

=head2 Rounding mode R

When rounding a number, different 'styles' or 'kinds'
of rounding are possible. (Note that random rounding, as in
Math::Round, is not implemented.)

=over 2

=item 'trunc'

truncation invariably removes all digits following the
rounding place, replacing them with zeros. Thus, 987.65 rounded
to tens (P=1) becomes 980, and rounded to the fourth sigdig
becomes 987.6 (A=4). 123.456 rounded to the second place after the
decimal point (P=-2) becomes 123.46.

All other implemented styles of rounding attempt to round to the
"nearest digit." If the digit D immediately to the right of the
rounding place (skipping the decimal point) is greater than 5, the
number is incremented at the rounding place (possibly causing a
cascade of incrementation): e.g. when rounding to units, 0.9 rounds
to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
truncated at the rounding place: e.g. when rounding to units, 0.4
rounds to 0, and -19.4 rounds to -19.

However the results of other styles of rounding differ if the
digit immediately to the right of the rounding place (skipping the
decimal point) is 5 and if there are no digits, or no digits other
than 0, after that 5. In such cases:

=item 'even'

rounds the digit at the rounding place to 0, 2, 4, 6, or 8
if it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.

=item 'odd'

rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.

=item '+inf'

round to plus infinity, i.e. always round up. E.g., when
rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5,
and 0.4501 also becomes 0.5.

=item '-inf'

round to minus infinity, i.e. always round down. E.g., when
rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6,
but 0.4501 becomes 0.5.

=item 'zero'

round to zero, i.e. positive numbers down, negative ones up.
E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
becomes -0.5, but 0.4501 becomes 0.5.

=item 'common'

round up if the digit immediately to the right of the rounding place
is 5 or greater, otherwise round down. E.g., 0.15 becomes 0.2 and
0.149 becomes 0.1.

=back

The handling of A & P in MBI/MBF (the old core code shipped with Perl
versions <= 5.7.2) is like this:

=over 2

=item Precision

  * ffround($p) is able to round to $p number of digits after the decimal
    point
  * otherwise P is unused

=item Accuracy (significant digits)

  * fround($a) rounds to $a significant digits
  * only fdiv() and fsqrt() take A as (optional) parameter
    + other operations simply create the same number (fneg etc), or more (fmul)
      of digits
    + rounding/truncating is only done when explicitly calling one of fround
      or ffround, and never for BigInt (not implemented)
  * fsqrt() simply hands its accuracy argument over to fdiv.
  * the documentation and the comment in the code indicate two different ways
    on how fdiv() determines the maximum number of digits it should calculate,
    and the actual code does yet another thing
    POD:
      max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
    Comment:
      result has at most max(scale, length(dividend), length(divisor)) digits
    Actual code:
      scale = max(scale, length(dividend)-1,length(divisor)-1);
      scale += length(divisor) - length(dividend);
    So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
    Actually, the 'difference' added to the scale is calculated from the
    number of "significant digits" in dividend and divisor, which is derived
    by looking at the length of the mantissa. Which is wrong, since it includes
    the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops
    again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
    assumption that 124 has 3 significant digits, while 120/7 will get you
    '17', not '17.1' since 120 is thought to have 2 significant digits.
    The rounding after the division then uses the remainder and $y to determine
    whether it must round up or down.
 ?  I have no idea which is the right way. That's why I used a slightly more
 ?  simple scheme and tweaked the few failing testcases to match it.

=back

This is how it works now:

=over 2

=item Setting/Accessing

  * You can set the A global via Math::BigInt->accuracy() or
    Math::BigFloat->accuracy() or whatever class you are using.
  * You can also set P globally by using Math::SomeClass->precision()
    likewise.
  * Globals are classwide, and not inherited by subclasses.
  * to undefine A, use Math::SomeCLass->accuracy(undef);
  * to undefine P, use Math::SomeClass->precision(undef);
  * Setting Math::SomeClass->accuracy() clears automatically
    Math::SomeClass->precision(), and vice versa.
  * To be valid, A must be > 0, P can have any value.
  * If P is negative, this means round to the P'th place to the right of the
    decimal point; positive values mean to the left of the decimal point.
    P of 0 means round to integer.
  * to find out the current global A, use Math::SomeClass->accuracy()
  * to find out the current global P, use Math::SomeClass->precision()
  * use $x->accuracy() respective $x->precision() for the local
    setting of $x.
  * Please note that $x->accuracy() respective $x->precision()
    return eventually defined global A or P, when $x's A or P is not
    set.

=item Creating numbers

  * When you create a number, you can give the desired A or P via:
    $x = Math::BigInt->new($number,$A,$P);
  * Only one of A or P can be defined, otherwise the result is NaN
  * If no A or P is give ($x = Math::BigInt->new($number) form), then the
    globals (if set) will be used. Thus changing the global defaults later on
    will not change the A or P of previously created numbers (i.e., A and P of
    $x will be what was in effect when $x was created)
  * If given undef for A and P, NO rounding will occur, and the globals will
    NOT be used. This is used by subclasses to create numbers without
    suffering rounding in the parent. Thus a subclass is able to have its own
    globals enforced upon creation of a number by using
    $x = Math::BigInt->new($number,undef,undef):

	use Math::BigInt::SomeSubclass;
	use Math::BigInt;

	Math::BigInt->accuracy(2);
	Math::BigInt::SomeSubClass->accuracy(3);
	$x = Math::BigInt::SomeSubClass->new(1234);

    $x is now 1230, and not 1200. A subclass might choose to implement
    this otherwise, e.g. falling back to the parent's A and P.

=item Usage

  * If A or P are enabled/defined, they are used to round the result of each
    operation according to the rules below
  * Negative P is ignored in Math::BigInt, since BigInts never have digits
    after the decimal point
  * Math::BigFloat uses Math::BigInt internally, but setting A or P inside
    Math::BigInt as globals does not tamper with the parts of a BigFloat.
    A flag is used to mark all Math::BigFloat numbers as 'never round'.

=item Precedence

  * It only makes sense that a number has only one of A or P at a time.
    If you set either A or P on one object, or globally, the other one will
    be automatically cleared.
  * If two objects are involved in an operation, and one of them has A in
    effect, and the other P, this results in an error (NaN).
  * A takes precedence over P (Hint: A comes before P).
    If neither of them is defined, nothing is used, i.e. the result will have
    as many digits as it can (with an exception for fdiv/fsqrt) and will not
    be rounded.
  * There is another setting for fdiv() (and thus for fsqrt()). If neither of
    A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
    If either the dividend's or the divisor's mantissa has more digits than
    the value of F, the higher value will be used instead of F.
    This is to limit the digits (A) of the result (just consider what would
    happen with unlimited A and P in the case of 1/3 :-)
  * fdiv will calculate (at least) 4 more digits than required (determined by
    A, P or F), and, if F is not used, round the result
    (this will still fail in the case of a result like 0.12345000000001 with A
    or P of 5, but this can not be helped - or can it?)
  * Thus you can have the math done by on Math::Big* class in two modi:
    + never round (this is the default):
      This is done by setting A and P to undef. No math operation
      will round the result, with fdiv() and fsqrt() as exceptions to guard
      against overflows. You must explicitly call bround(), bfround() or
      round() (the latter with parameters).
      Note: Once you have rounded a number, the settings will 'stick' on it
      and 'infect' all other numbers engaged in math operations with it, since
      local settings have the highest precedence. So, to get SaferRound[tm],
      use a copy() before rounding like this:

        $x = Math::BigFloat->new(12.34);
        $y = Math::BigFloat->new(98.76);
        $z = $x * $y;                           # 1218.6984
        print $x->copy()->fround(3);            # 12.3 (but A is now 3!)
        $z = $x * $y;                           # still 1218.6984, without
                                                # copy would have been 1210!

    + round after each op:
      After each single operation (except for testing like is_zero()), the
      method round() is called and the result is rounded appropriately. By
      setting proper values for A and P, you can have all-the-same-A or
      all-the-same-P modes. For example, Math::Currency might set A to undef,
      and P to -2, globally.

 ?Maybe an extra option that forbids local A & P settings would be in order,
 ?so that intermediate rounding does not 'poison' further math?

=item Overriding globals

  * you will be able to give A, P and R as an argument to all the calculation
    routines; the second parameter is A, the third one is P, and the fourth is
    R (shift right by one for binary operations like badd). P is used only if
    the first parameter (A) is undefined. These three parameters override the
    globals in the order detailed as follows, i.e. the first defined value
    wins:
    (local: per object, global: global default, parameter: argument to sub)
      + parameter A
      + parameter P
      + local A (if defined on both of the operands: smaller one is taken)
      + local P (if defined on both of the operands: bigger one is taken)
      + global A
      + global P
      + global F
  * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
    arguments (A and P) instead of one

=item Local settings

  * You can set A or P locally by using $x->accuracy() or
    $x->precision()
    and thus force different A and P for different objects/numbers.
  * Setting A or P this way immediately rounds $x to the new value.
  * $x->accuracy() clears $x->precision(), and vice versa.

=item Rounding

  * the rounding routines will use the respective global or local settings.
    fround()/bround() is for accuracy rounding, while ffround()/bfround()
    is for precision
  * the two rounding functions take as the second parameter one of the
    following rounding modes (R):
    'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common'
  * you can set/get the global R by using Math::SomeClass->round_mode()
    or by setting $Math::SomeClass::round_mode
  * after each operation, $result->round() is called, and the result may
    eventually be rounded (that is, if A or P were set either locally,
    globally or as parameter to the operation)
  * to manually round a number, call $x->round($A,$P,$round_mode);
    this will round the number by using the appropriate rounding function
    and then normalize it.
  * rounding modifies the local settings of the number:

        $x = Math::BigFloat->new(123.456);
        $x->accuracy(5);
        $x->bround(4);

    Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
    will be 4 from now on.

=item Default values

  * R: 'even'
  * F: 40
  * A: undef
  * P: undef

=item Remarks

  * The defaults are set up so that the new code gives the same results as
    the old code (except in a few cases on fdiv):
    + Both A and P are undefined and thus will not be used for rounding
      after each operation.
    + round() is thus a no-op, unless given extra parameters A and P

=back

=head1 Infinity and Not a Number

While BigInt has extensive handling of inf and NaN, certain quirks remain.

=over 2

=item oct()/hex()

These perl routines currently (as of Perl v.5.8.6) cannot handle passed
inf.

	te@linux:~> perl -wle 'print 2 ** 3333'
	inf
	te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
	1
	te@linux:~> perl -wle 'print oct(2 ** 3333)'
	0
	te@linux:~> perl -wle 'print hex(2 ** 3333)'
	Illegal hexadecimal digit 'i' ignored at -e line 1.
	0

The same problems occur if you pass them Math::BigInt->binf() objects. Since
overloading these routines is not possible, this cannot be fixed from BigInt.

=item ==, !=, <, >, <=, >= with NaNs

BigInt's bcmp() routine currently returns undef to signal that a NaN was
involved in a comparison. However, the overload code turns that into
either 1 or '' and thus operations like C<< NaN != NaN >> might return
wrong values.

=item log(-inf)

C<< log(-inf) >> is highly weird. Since log(-x)=pi*i+log(x), then
log(-inf)=pi*i+inf. However, since the imaginary part is finite, the real
infinity "overshadows" it, so the number might as well just be infinity.
However, the result is a complex number, and since BigInt/BigFloat can only
have real numbers as results, the result is NaN.

=item exp(), cos(), sin(), atan2()

These all might have problems handling infinity right.

=back

=head1 INTERNALS

The actual numbers are stored as unsigned big integers (with separate sign).

You should neither care about nor depend on the internal representation; it
might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >>
instead relying on the internal representation.

=head2 MATH LIBRARY

Math with the numbers is done (by default) by a module called
C<Math::BigInt::Calc>. This is equivalent to saying:

	use Math::BigInt try => 'Calc';

You can change this backend library by using:

	use Math::BigInt try => 'GMP';

B<Note>: General purpose packages should not be explicit about the library
to use; let the script author decide which is best.

If your script works with huge numbers and Calc is too slow for them,
you can also for the loading of one of these libraries and if none
of them can be used, the code will die:

	use Math::BigInt only => 'GMP,Pari';

The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:

	use Math::BigInt try => 'Foo,Math::BigInt::Bar';

The library that is loaded last will be used. Note that this can be
overwritten at any time by loading a different library, and numbers
constructed with different libraries cannot be used in math operations
together.

=head3 What library to use?

B<Note>: General purpose packages should not be explicit about the library
to use; let the script author decide which is best.

L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big
numbers much faster than Calc, however it is slower when dealing with very
small numbers (less than about 20 digits) and when converting very large
numbers to decimal (for instance for printing, rounding, calculating their
length in decimal etc).

So please select carefully what library you want to use.

Different low-level libraries use different formats to store the numbers.
However, you should B<NOT> depend on the number having a specific format
internally.

See the respective math library module documentation for further details.

=head2 SIGN

The sign is either '+', '-', 'NaN', '+inf' or '-inf'.

A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You will get '+inf' when dividing a positive number by 0, and
'-inf' when dividing any negative number by 0.

=head2 mantissa(), exponent() and parts()

C<mantissa()> and C<exponent()> return the said parts of the BigInt such
that:

        $m = $x->mantissa();
        $e = $x->exponent();
        $y = $m * ( 10 ** $e );
        print "ok\n" if $x == $y;

C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
in one go. Both the returned mantissa and exponent have a sign.

Currently, for BigInts C<$e> is always 0, except +inf and -inf, where it is
C<+inf>; and for NaN, where it is C<NaN>; and for C<$x == 0>, where it is C<1>
(to be compatible with Math::BigFloat's internal representation of a zero as
C<0E1>).

C<$m> is currently just a copy of the original number. The relation between
C<$e> and C<$m> will stay always the same, though their real values might
change.

=head1 EXAMPLES

  use Math::BigInt;

  sub bint { Math::BigInt->new(shift); }

  $x = Math::BigInt->bstr("1234")      	# string "1234"
  $x = "$x";                         	# same as bstr()
  $x = Math::BigInt->bneg("1234");   	# BigInt "-1234"
  $x = Math::BigInt->babs("-12345"); 	# BigInt "12345"
  $x = Math::BigInt->bnorm("-0.00"); 	# BigInt "0"
  $x = bint(1) + bint(2);            	# BigInt "3"
  $x = bint(1) + "2";                	# ditto (auto-BigIntify of "2")
  $x = bint(1);                      	# BigInt "1"
  $x = $x + 5 / 2;                   	# BigInt "3"
  $x = $x ** 3;                      	# BigInt "27"
  $x *= 2;                           	# BigInt "54"
  $x = Math::BigInt->new(0);       	# BigInt "0"
  $x--;                              	# BigInt "-1"
  $x = Math::BigInt->badd(4,5)		# BigInt "9"
  print $x->bsstr();			# 9e+0

Examples for rounding:

  use Math::BigFloat;
  use Test;

  $x = Math::BigFloat->new(123.4567);
  $y = Math::BigFloat->new(123.456789);
  Math::BigFloat->accuracy(4);		# no more A than 4

  ok ($x->copy()->fround(),123.4);	# even rounding
  print $x->copy()->fround(),"\n";	# 123.4
  Math::BigFloat->round_mode('odd');	# round to odd
  print $x->copy()->fround(),"\n";	# 123.5
  Math::BigFloat->accuracy(5);		# no more A than 5
  Math::BigFloat->round_mode('odd');	# round to odd
  print $x->copy()->fround(),"\n";	# 123.46
  $y = $x->copy()->fround(4),"\n";	# A = 4: 123.4
  print "$y, ",$y->accuracy(),"\n";	# 123.4, 4

  Math::BigFloat->accuracy(undef);	# A not important now
  Math::BigFloat->precision(2); 	# P important
  print $x->copy()->bnorm(),"\n";	# 123.46
  print $x->copy()->fround(),"\n";	# 123.46

Examples for converting:

  my $x = Math::BigInt->new('0b1'.'01' x 123);
  print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";

=head1 Autocreating constants

After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
and binary constants in the given scope are converted to C<Math::BigInt>.
This conversion happens at compile time. 

In particular,

  perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'

prints the integer value of C<2**100>. Note that without conversion of 
constants the expression 2**100 will be calculated as perl scalar.

Please note that strings and floating point constants are not affected,
so that

  	use Math::BigInt qw/:constant/;

	$x = 1234567890123456789012345678901234567890
		+ 123456789123456789;
	$y = '1234567890123456789012345678901234567890'
		+ '123456789123456789';

do not work. You need an explicit Math::BigInt->new() around one of the
operands. You should also quote large constants to protect loss of precision:

	use Math::BigInt;

	$x = Math::BigInt->new('1234567889123456789123456789123456789');

Without the quotes Perl would convert the large number to a floating point
constant at compile time and then hand the result to BigInt, which results in
an truncated result or a NaN.

This also applies to integers that look like floating point constants:

	use Math::BigInt ':constant';

	print ref(123e2),"\n";
	print ref(123.2e2),"\n";

will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat>
to get this to work.

=head1 PERFORMANCE

Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
must be made in the second case. For long numbers, the copy can eat up to 20%
of the work (in the case of addition/subtraction, less for
multiplication/division). If $y is very small compared to $x, the form
$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
more time then the actual addition.

With a technique called copy-on-write, the cost of copying with overload could
be minimized or even completely avoided. A test implementation of COW did show
performance gains for overloaded math, but introduced a performance loss due
to a constant overhead for all other operations. So Math::BigInt does currently
not COW.

The rewritten version of this module (vs. v0.01) is slower on certain
operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
does now more work and handles much more cases. The time spent in these
operations is usually gained in the other math operations so that code on
the average should get (much) faster. If they don't, please contact the author.

Some operations may be slower for small numbers, but are significantly faster
for big numbers. Other operations are now constant (O(1), like C<bneg()>,
C<babs()> etc), instead of O(N) and thus nearly always take much less time.
These optimizations were done on purpose.

If you find the Calc module to slow, try to install any of the replacement
modules and see if they help you. 

=head2 Alternative math libraries

You can use an alternative library to drive Math::BigInt. See the section
L</MATH LIBRARY> for more information.

For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.

=head1 SUBCLASSING

=head2 Subclassing Math::BigInt

The basic design of Math::BigInt allows simple subclasses with very little
work, as long as a few simple rules are followed:

=over 2

=item *

The public API must remain consistent, i.e. if a sub-class is overloading
addition, the sub-class must use the same name, in this case badd(). The
reason for this is that Math::BigInt is optimized to call the object methods
directly.

=item *

The private object hash keys like C<< $x->{sign} >> may not be changed, but
additional keys can be added, like C<< $x->{_custom} >>.

=item *

Accessor functions are available for all existing object hash keys and should
be used instead of directly accessing the internal hash keys. The reason for
this is that Math::BigInt itself has a pluggable interface which permits it
to support different storage methods.

=back

More complex sub-classes may have to replicate more of the logic internal of
Math::BigInt if they need to change more basic behaviors. A subclass that
needs to merely change the output only needs to overload C<bstr()>. 

All other object methods and overloaded functions can be directly inherited
from the parent class.

At the very minimum, any subclass will need to provide its own C<new()> and can
store additional hash keys in the object. There are also some package globals
that must be defined, e.g.:

  # Globals
  $accuracy = undef;
  $precision = -2;       # round to 2 decimal places
  $round_mode = 'even';
  $div_scale = 40;

Additionally, you might want to provide the following two globals to allow
auto-upgrading and auto-downgrading to work correctly:

  $upgrade = undef;
  $downgrade = undef;

This allows Math::BigInt to correctly retrieve package globals from the 
subclass, like C<$SubClass::precision>.  See t/Math/BigInt/Subclass.pm or
t/Math/BigFloat/SubClass.pm completely functional subclass examples.

Don't forget to 

	use overload;

in your subclass to automatically inherit the overloading from the parent. If
you like, you can change part of the overloading, look at Math::String for an
example.

=head1 UPGRADING

When used like this:

	use Math::BigInt upgrade => 'Foo::Bar';

certain operations will 'upgrade' their calculation and thus the result to
the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:

	use Math::BigInt upgrade => 'Math::BigFloat';

As a shortcut, you can use the module C<bignum>:

	use bignum;

Also good for one-liners:

	perl -Mbignum -le 'print 2 ** 255'

This makes it possible to mix arguments of different classes (as in 2.5 + 2)
as well es preserve accuracy (as in sqrt(3)).

Beware: This feature is not fully implemented yet.

=head2 Auto-upgrade

The following methods upgrade themselves unconditionally; that is if upgrade
is in effect, they will always hand up their work:

=over 2

=item bsqrt()

=item div()

=item blog()

=item bexp()

=back

Beware: This list is not complete.

All other methods upgrade themselves only when one (or all) of their
arguments are of the class mentioned in $upgrade (This might change in later
versions to a more sophisticated scheme):

=head1 EXPORTS

C<Math::BigInt> exports nothing by default, but can export the following methods:

	bgcd
	blcm

=head1 CAVEATS

Some things might not work as you expect them. Below is documented what is
known to be troublesome:

=over 1

=item bstr(), bsstr() and 'cmp'

Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now
drop the leading '+'. The old code would return '+3', the new returns '3'.
This is to be consistent with Perl and to make C<cmp> (especially with
overloading) to work as you expect. It also solves problems with C<Test.pm>,
because its C<ok()> uses 'eq' internally. 

Mark Biggar said, when asked about to drop the '+' altogether, or make only
C<cmp> work:

	I agree (with the first alternative), don't add the '+' on positive
	numbers.  It's not as important anymore with the new internal 
	form for numbers.  It made doing things like abs and neg easier,
	but those have to be done differently now anyway.

So, the following examples will now work all as expected:

	use Test;
        BEGIN { plan tests => 1 }
	use Math::BigInt;

	my $x = new Math::BigInt 3*3;
	my $y = new Math::BigInt 3*3;

	ok ($x,3*3);
	print "$x eq 9" if $x eq $y;
	print "$x eq 9" if $x eq '9';
	print "$x eq 9" if $x eq 3*3;

Additionally, the following still works:

	print "$x == 9" if $x == $y;
	print "$x == 9" if $x == 9;
	print "$x == 9" if $x == 3*3;

There is now a C<bsstr()> method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparison, but Perl will represent some numbers as 100 and others
as 1e+308. If in doubt, convert both arguments to Math::BigInt before 
comparing them as strings:

	use Test;
        BEGIN { plan tests => 3 }
	use Math::BigInt;

	$x = Math::BigInt->new('1e56'); $y = 1e56;
	ok ($x,$y);			# will fail
	ok ($x->bsstr(),$y);		# okay
	$y = Math::BigInt->new($y);
	ok ($x,$y);			# okay

Alternatively, simple use C<< <=> >> for comparisons, this will get it
always right. There is not yet a way to get a number automatically represented
as a string that matches exactly the way Perl represents it.

See also the section about L<Infinity and Not a Number> for problems in
comparing NaNs.

=item int()

C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a 
Perl scalar:

	$x = Math::BigInt->new(123);
	$y = int($x);				# BigInt 123
	$x = Math::BigFloat->new(123.45);
	$y = int($x);				# BigInt 123

In all Perl versions you can use C<as_number()> or C<as_int> for the same
effect:

	$x = Math::BigFloat->new(123.45);
	$y = $x->as_number();			# BigInt 123
	$y = $x->as_int();			# ditto

This also works for other subclasses, like Math::String.

If you want a real Perl scalar, use C<numify()>:

	$y = $x->numify();			# 123 as scalar

This is seldom necessary, though, because this is done automatically, like
when you access an array:

	$z = $array[$x];			# does work automatically

=item length

The following will probably not do what you expect:

	$c = Math::BigInt->new(123);
	print $c->length(),"\n";		# prints 30

It prints both the number of digits in the number and in the fraction part
since print calls C<length()> in list context. Use something like: 

	print scalar $c->length(),"\n";		# prints 3

=item bdiv

The following will probably not do what you expect:

	print $c->bdiv(10000),"\n";

It prints both quotient and remainder since print calls C<bdiv()> in list
context. Also, C<bdiv()> will modify $c, so be careful. You probably want
to use

	print $c / 10000,"\n";
	print scalar $c->bdiv(10000),"\n";  # or if you want to modify $c

instead.

The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
non-zero) always has the same sign as the second operand; so, for
example,

	  1 / 4  => ( 0, 1)
	  1 / -4 => (-1,-3)
	 -3 / 4  => (-1, 1)
	 -3 / -4 => ( 0,-3)
	-11 / 2  => (-5,1)
	 11 /-2  => (-5,-1)

As a consequence, the behavior of the operator % agrees with the
behavior of Perl's built-in % operator (as documented in the perlop
manpage), and the equation

	$x == ($x / $y) * $y + ($x % $y)

holds true for any $x and $y, which justifies calling the two return
values of bdiv() the quotient and remainder. The only exception to this rule
are when $y == 0 and $x is negative, then the remainder will also be
negative. See below under "infinity handling" for the reasoning behind this.

Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
not change BigInt's way to do things. This is because under 'use integer' Perl
will do what the underlying C thinks is right and this is different for each
system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
the author to implement it ;)

=item infinity handling

Here are some examples that explain the reasons why certain results occur while
handling infinity:

The following table shows the result of the division and the remainder, so that
the equation above holds true. Some "ordinary" cases are strewn in to show more
clearly the reasoning:

	A /  B  =   C,     R so that C *    B +    R =    A
     =========================================================
	5 /   8 =   0,     5 	     0 *    8 +    5 =    5
	0 /   8 =   0,     0	     0 *    8 +    0 =    0
	0 / inf =   0,     0	     0 *  inf +    0 =    0
	0 /-inf =   0,     0	     0 * -inf +    0 =    0
	5 / inf =   0,     5	     0 *  inf +    5 =    5
	5 /-inf =   0,     5	     0 * -inf +    5 =    5
	-5/ inf =   0,    -5	     0 *  inf +   -5 =   -5
	-5/-inf =   0,    -5	     0 * -inf +   -5 =   -5
       inf/   5 =  inf,    0	   inf *    5 +    0 =  inf
      -inf/   5 = -inf,    0      -inf *    5 +    0 = -inf
       inf/  -5 = -inf,    0	  -inf *   -5 +    0 =  inf
      -inf/  -5 =  inf,    0       inf *   -5 +    0 = -inf
	 5/   5 =    1,    0         1 *    5 +    0 =    5
	-5/  -5 =    1,    0         1 *   -5 +    0 =   -5
       inf/ inf =    1,    0         1 *  inf +    0 =  inf
      -inf/-inf =    1,    0         1 * -inf +    0 = -inf
       inf/-inf =   -1,    0        -1 * -inf +    0 =  inf
      -inf/ inf =   -1,    0         1 * -inf +    0 = -inf
	 8/   0 =  inf,    8       inf *    0 +    8 =    8
       inf/   0 =  inf,  inf       inf *    0 +  inf =  inf
         0/   0 =  NaN

These cases below violate the "remainder has the sign of the second of the two
arguments", since they wouldn't match up otherwise.

	A /  B  =   C,     R so that C *    B +    R =    A
     ========================================================
      -inf/   0 = -inf, -inf      -inf *    0 +  inf = -inf
	-8/   0 = -inf,   -8      -inf *    0 +    8 = -8

=item Modifying and =

Beware of:

        $x = Math::BigFloat->new(5);
        $y = $x;

It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B<same> object and stores it in $y. Thus anything
that modifies $x (except overloaded operators) will modify $y, and vice versa.
Or in other words, C<=> is only safe if you modify your BigInts only via
overloaded math. As soon as you use a method call it breaks:

        $x->bmul(2);
        print "$x, $y\n";       # prints '10, 10'

If you want a true copy of $x, use:

        $y = $x->copy();

You can also chain the calls like this, this will make first a copy and then
multiply it by 2:

        $y = $x->copy()->bmul(2);

See also the documentation for overload.pm regarding C<=>.

=item bpow

C<bpow()> (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C<badd()> etc. The first three will
modify $x, the last one won't:

	print bpow($x,$i),"\n"; 	# modify $x
	print $x->bpow($i),"\n"; 	# ditto
	print $x **= $i,"\n";		# the same
	print $x ** $i,"\n";		# leave $x alone

The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.

=item Overloading -$x

The following:

	$x = -$x;

is slower than

	$x->bneg();

since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
needs to preserve $x since it does not know that it later will get overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).

=item Mixing different object types

In Perl you will get a floating point value if you do one of the following:

	$float = 5.0 + 2;
	$float = 2 + 5.0;
	$float = 5 / 2;

With overloaded math, only the first two variants will result in a BigFloat:

	use Math::BigInt;
	use Math::BigFloat;

	$mbf = Math::BigFloat->new(5);
	$mbi2 = Math::BigInteger->new(5);
	$mbi = Math::BigInteger->new(2);

					# what actually gets called:
	$float = $mbf + $mbi;		# $mbf->badd()
	$float = $mbf / $mbi;		# $mbf->bdiv()
	$integer = $mbi + $mbf;		# $mbi->badd()
	$integer = $mbi2 / $mbi;	# $mbi2->bdiv()
	$integer = $mbi2 / $mbf;	# $mbi2->bdiv()

This is because math with overloaded operators follows the first (dominating)
operand, and the operation of that is called and returns thus the result. So,
Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
the result should be a Math::BigFloat or the second operant is one.

To get a Math::BigFloat you either need to call the operation manually,
make sure the operands are already of the proper type or casted to that type
via Math::BigFloat->new():

	$float = Math::BigFloat->new($mbi2) / $mbi;	# = 2.5

Beware of simple "casting" the entire expression, this would only convert
the already computed result:

	$float = Math::BigFloat->new($mbi2 / $mbi);	# = 2.0 thus wrong!

Beware also of the order of more complicated expressions like:

	$integer = ($mbi2 + $mbi) / $mbf;		# int / float => int
	$integer = $mbi2 / Math::BigFloat->new($mbi);	# ditto

If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.

Scalar values are a bit different, since:

	$float = 2 + $mbf;
	$float = $mbf + 2;

will both result in the proper type due to the way the overloaded math works.

This section also applies to other overloaded math packages, like Math::String.

One solution to you problem might be autoupgrading|upgrading. See the
pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.

=item bsqrt()

C<bsqrt()> works only good if the result is a big integer, e.g. the square
root of 144 is 12, but from 12 the square root is 3, regardless of rounding
mode. The reason is that the result is always truncated to an integer.

If you want a better approximation of the square root, then use:

	$x = Math::BigFloat->new(12);
	Math::BigFloat->precision(0);
	Math::BigFloat->round_mode('even');
	print $x->copy->bsqrt(),"\n";		# 4

	Math::BigFloat->precision(2);
	print $x->bsqrt(),"\n";			# 3.46
	print $x->bsqrt(3),"\n";		# 3.464

=item brsft()

For negative numbers in base see also L<brsft|/brsft()>.

=back

=head1 LICENSE

This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.

=head1 SEE ALSO

L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and  L<Math::BigInt::GMP>.

The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.

The package at
L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.

=head1 AUTHORS

Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2006
and still at it in 2007.

Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (incomplete) list. If you miss your name, please drop me a
mail. Thank you!

=cut