1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
|
package Tie::File;
require 5.005;
use Carp ':DEFAULT', 'confess';
use POSIX 'SEEK_SET';
use Fcntl 'O_CREAT', 'O_RDWR', 'LOCK_EX', 'LOCK_SH', 'O_WRONLY', 'O_RDONLY';
sub O_ACCMODE () { O_RDONLY | O_RDWR | O_WRONLY }
$VERSION = "1.00";
my $DEFAULT_MEMORY_SIZE = 1<<21; # 2 megabytes
my $DEFAULT_AUTODEFER_THRESHHOLD = 3; # 3 records
my $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD = 65536; # 16 disk blocksful
my %good_opt = map {$_ => 1, "-$_" => 1}
qw(memory dw_size mode recsep discipline
autodefer autochomp autodefer_threshhold concurrent);
sub TIEARRAY {
if (@_ % 2 != 0) {
croak "usage: tie \@array, $_[0], filename, [option => value]...";
}
my ($pack, $file, %opts) = @_;
# transform '-foo' keys into 'foo' keys
for my $key (keys %opts) {
unless ($good_opt{$key}) {
croak("$pack: Unrecognized option '$key'\n");
}
my $okey = $key;
if ($key =~ s/^-+//) {
$opts{$key} = delete $opts{$okey};
}
}
if ($opts{concurrent}) {
croak("$pack: concurrent access not supported yet\n");
}
unless (defined $opts{memory}) {
# default is the larger of the default cache size and the
# deferred-write buffer size (if specified)
$opts{memory} = $DEFAULT_MEMORY_SIZE;
$opts{memory} = $opts{dw_size}
if defined $opts{dw_size} && $opts{dw_size} > $DEFAULT_MEMORY_SIZE;
# Dora Winifred Read
}
$opts{dw_size} = $opts{memory} unless defined $opts{dw_size};
if ($opts{dw_size} > $opts{memory}) {
croak("$pack: dw_size may not be larger than total memory allocation\n");
}
# are we in deferred-write mode?
$opts{defer} = 0 unless defined $opts{defer};
$opts{deferred} = {}; # no records are presently deferred
$opts{deferred_s} = 0; # count of total bytes in ->{deferred}
$opts{deferred_max} = -1; # empty
# What's a good way to arrange that this class can be overridden?
$opts{cache} = Tie::File::Cache->new($opts{memory});
# autodeferment is enabled by default
$opts{autodefer} = 1 unless defined $opts{autodefer};
$opts{autodeferring} = 0; # but is not initially active
$opts{ad_history} = [];
$opts{autodefer_threshhold} = $DEFAULT_AUTODEFER_THRESHHOLD
unless defined $opts{autodefer_threshhold};
$opts{autodefer_filelen_threshhold} = $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD
unless defined $opts{autodefer_filelen_threshhold};
$opts{offsets} = [0];
$opts{filename} = $file;
unless (defined $opts{recsep}) {
$opts{recsep} = _default_recsep();
}
$opts{recseplen} = length($opts{recsep});
if ($opts{recseplen} == 0) {
croak "Empty record separator not supported by $pack";
}
$opts{autochomp} = 1 unless defined $opts{autochomp};
$opts{mode} = O_CREAT|O_RDWR unless defined $opts{mode};
$opts{rdonly} = (($opts{mode} & O_ACCMODE) == O_RDONLY);
$opts{sawlastrec} = undef;
my $fh;
if (UNIVERSAL::isa($file, 'GLOB')) {
# We use 1 here on the theory that some systems
# may not indicate failure if we use 0.
# MSWin32 does not indicate failure with 0, but I don't know if
# it will indicate failure with 1 or not.
unless (seek $file, 1, SEEK_SET) {
croak "$pack: your filehandle does not appear to be seekable";
}
seek $file, 0, SEEK_SET; # put it back
$fh = $file; # setting binmode is the user's problem
} elsif (ref $file) {
croak "usage: tie \@array, $pack, filename, [option => value]...";
} else {
# $fh = \do { local *FH }; # XXX this is buggy
if ($] < 5.006) {
# perl 5.005 and earlier don't autovivify filehandles
require Symbol;
$fh = Symbol::gensym();
}
sysopen $fh, $file, $opts{mode}, 0666 or return;
binmode $fh;
++$opts{ourfh};
}
{ my $ofh = select $fh; $| = 1; select $ofh } # autoflush on write
if (defined $opts{discipline} && $] >= 5.006) {
# This avoids a compile-time warning under 5.005
eval 'binmode($fh, $opts{discipline})';
croak $@ if $@ =~ /unknown discipline/i;
die if $@;
}
$opts{fh} = $fh;
bless \%opts => $pack;
}
sub FETCH {
my ($self, $n) = @_;
my $rec;
# check the defer buffer
$rec = $self->{deferred}{$n} if exists $self->{deferred}{$n};
$rec = $self->_fetch($n) unless defined $rec;
# inlined _chomp1
substr($rec, - $self->{recseplen}) = ""
if defined $rec && $self->{autochomp};
$rec;
}
# Chomp many records in-place; return nothing useful
sub _chomp {
my $self = shift;
return unless $self->{autochomp};
if ($self->{autochomp}) {
for (@_) {
next unless defined;
substr($_, - $self->{recseplen}) = "";
}
}
}
# Chomp one record in-place; return modified record
sub _chomp1 {
my ($self, $rec) = @_;
return $rec unless $self->{autochomp};
return unless defined $rec;
substr($rec, - $self->{recseplen}) = "";
$rec;
}
sub _fetch {
my ($self, $n) = @_;
# check the record cache
{ my $cached = $self->{cache}->lookup($n);
return $cached if defined $cached;
}
if ($#{$self->{offsets}} < $n) {
return if $self->{eof}; # request for record beyond end of file
my $o = $self->_fill_offsets_to($n);
# If it's still undefined, there is no such record, so return 'undef'
return unless defined $o;
}
my $fh = $self->{FH};
$self->_seek($n); # we can do this now that offsets is populated
my $rec = $self->_read_record;
# If we happen to have just read the first record, check to see if
# the length of the record matches what 'tell' says. If not, Tie::File
# won't work, and should drop dead.
#
# if ($n == 0 && defined($rec) && tell($self->{fh}) != length($rec)) {
# if (defined $self->{discipline}) {
# croak "I/O discipline $self->{discipline} not supported";
# } else {
# croak "File encoding not supported";
# }
# }
$self->{cache}->insert($n, $rec) if defined $rec && not $self->{flushing};
$rec;
}
sub STORE {
my ($self, $n, $rec) = @_;
die "STORE called from _check_integrity!" if $DIAGNOSTIC;
$self->_fixrecs($rec);
if ($self->{autodefer}) {
$self->_annotate_ad_history($n);
}
return $self->_store_deferred($n, $rec) if $self->_is_deferring;
# We need this to decide whether the new record will fit
# It incidentally populates the offsets table
# Note we have to do this before we alter the cache
# 20020324 Wait, but this DOES alter the cache. TODO BUG?
my $oldrec = $self->_fetch($n);
if (not defined $oldrec) {
# We're storing a record beyond the end of the file
$self->_extend_file_to($n+1);
$oldrec = $self->{recsep};
}
# return if $oldrec eq $rec; # don't bother
my $len_diff = length($rec) - length($oldrec);
# length($oldrec) here is not consistent with text mode TODO XXX BUG
$self->_mtwrite($rec, $self->{offsets}[$n], length($oldrec));
$self->_oadjust([$n, 1, $rec]);
$self->{cache}->update($n, $rec);
}
sub _store_deferred {
my ($self, $n, $rec) = @_;
$self->{cache}->remove($n);
my $old_deferred = $self->{deferred}{$n};
if (defined $self->{deferred_max} && $n > $self->{deferred_max}) {
$self->{deferred_max} = $n;
}
$self->{deferred}{$n} = $rec;
my $len_diff = length($rec);
$len_diff -= length($old_deferred) if defined $old_deferred;
$self->{deferred_s} += $len_diff;
$self->{cache}->adj_limit(-$len_diff);
if ($self->{deferred_s} > $self->{dw_size}) {
$self->_flush;
} elsif ($self->_cache_too_full) {
$self->_cache_flush;
}
}
# Remove a single record from the deferred-write buffer without writing it
# The record need not be present
sub _delete_deferred {
my ($self, $n) = @_;
my $rec = delete $self->{deferred}{$n};
return unless defined $rec;
if (defined $self->{deferred_max}
&& $n == $self->{deferred_max}) {
undef $self->{deferred_max};
}
$self->{deferred_s} -= length $rec;
$self->{cache}->adj_limit(length $rec);
}
sub FETCHSIZE {
my $self = shift;
my $n = $self->{eof} ? $#{$self->{offsets}} : $self->_fill_offsets;
my $top_deferred = $self->_defer_max;
$n = $top_deferred+1 if defined $top_deferred && $n < $top_deferred+1;
$n;
}
sub STORESIZE {
my ($self, $len) = @_;
if ($self->{autodefer}) {
$self->_annotate_ad_history('STORESIZE');
}
my $olen = $self->FETCHSIZE;
return if $len == $olen; # Woo-hoo!
# file gets longer
if ($len > $olen) {
if ($self->_is_deferring) {
for ($olen .. $len-1) {
$self->_store_deferred($_, $self->{recsep});
}
} else {
$self->_extend_file_to($len);
}
return;
}
# file gets shorter
if ($self->_is_deferring) {
# TODO maybe replace this with map-plus-assignment?
for (grep $_ >= $len, keys %{$self->{deferred}}) {
$self->_delete_deferred($_);
}
$self->{deferred_max} = $len-1;
}
$self->_seek($len);
$self->_chop_file;
$#{$self->{offsets}} = $len;
# $self->{offsets}[0] = 0; # in case we just chopped this
$self->{cache}->remove(grep $_ >= $len, $self->{cache}->ckeys);
}
### OPTIMIZE ME
### It should not be necessary to do FETCHSIZE
### Just seek to the end of the file.
sub PUSH {
my $self = shift;
$self->SPLICE($self->FETCHSIZE, scalar(@_), @_);
# No need to return:
# $self->FETCHSIZE; # because av.c takes care of this for me
}
sub POP {
my $self = shift;
my $size = $self->FETCHSIZE;
return if $size == 0;
# print STDERR "# POPPITY POP POP POP\n";
scalar $self->SPLICE($size-1, 1);
}
sub SHIFT {
my $self = shift;
scalar $self->SPLICE(0, 1);
}
sub UNSHIFT {
my $self = shift;
$self->SPLICE(0, 0, @_);
# $self->FETCHSIZE; # av.c takes care of this for me
}
sub CLEAR {
my $self = shift;
if ($self->{autodefer}) {
$self->_annotate_ad_history('CLEAR');
}
$self->_seekb(0);
$self->_chop_file;
$self->{cache}->set_limit($self->{memory});
$self->{cache}->empty;
@{$self->{offsets}} = (0);
%{$self->{deferred}}= ();
$self->{deferred_s} = 0;
$self->{deferred_max} = -1;
}
sub EXTEND {
my ($self, $n) = @_;
# No need to pre-extend anything in this case
return if $self->_is_deferring;
$self->_fill_offsets_to($n);
$self->_extend_file_to($n);
}
sub DELETE {
my ($self, $n) = @_;
if ($self->{autodefer}) {
$self->_annotate_ad_history('DELETE');
}
my $lastrec = $self->FETCHSIZE-1;
my $rec = $self->FETCH($n);
$self->_delete_deferred($n) if $self->_is_deferring;
if ($n == $lastrec) {
$self->_seek($n);
$self->_chop_file;
$#{$self->{offsets}}--;
$self->{cache}->remove($n);
# perhaps in this case I should also remove trailing null records?
# 20020316
# Note that delete @a[-3..-1] deletes the records in the wrong order,
# so we only chop the very last one out of the file. We could repair this
# by tracking deleted records inside the object.
} elsif ($n < $lastrec) {
$self->STORE($n, "");
}
$rec;
}
sub EXISTS {
my ($self, $n) = @_;
return 1 if exists $self->{deferred}{$n};
$n < $self->FETCHSIZE;
}
sub SPLICE {
my $self = shift;
if ($self->{autodefer}) {
$self->_annotate_ad_history('SPLICE');
}
$self->_flush if $self->_is_deferring; # move this up?
if (wantarray) {
$self->_chomp(my @a = $self->_splice(@_));
@a;
} else {
$self->_chomp1(scalar $self->_splice(@_));
}
}
sub DESTROY {
my $self = shift;
$self->flush if $self->_is_deferring;
$self->{cache}->delink if defined $self->{cache}; # break circular link
if ($self->{fh} and $self->{ourfh}) {
delete $self->{ourfh};
close delete $self->{fh};
}
}
sub _splice {
my ($self, $pos, $nrecs, @data) = @_;
my @result;
$pos = 0 unless defined $pos;
# Deal with negative and other out-of-range positions
# Also set default for $nrecs
{
my $oldsize = $self->FETCHSIZE;
$nrecs = $oldsize unless defined $nrecs;
my $oldpos = $pos;
if ($pos < 0) {
$pos += $oldsize;
if ($pos < 0) {
croak "Modification of non-creatable array value attempted, subscript $oldpos";
}
}
if ($pos > $oldsize) {
return unless @data;
$pos = $oldsize; # This is what perl does for normal arrays
}
# The manual is very unclear here
if ($nrecs < 0) {
$nrecs = $oldsize - $pos + $nrecs;
$nrecs = 0 if $nrecs < 0;
}
# nrecs is too big---it really means "until the end"
# 20030507
if ($nrecs + $pos > $oldsize) {
$nrecs = $oldsize - $pos;
}
}
$self->_fixrecs(@data);
my $data = join '', @data;
my $datalen = length $data;
my $oldlen = 0;
# compute length of data being removed
for ($pos .. $pos+$nrecs-1) {
last unless defined $self->_fill_offsets_to($_);
my $rec = $self->_fetch($_);
last unless defined $rec;
push @result, $rec;
# Why don't we just use length($rec) here?
# Because that record might have come from the cache. _splice
# might have been called to flush out the deferred-write records,
# and in this case length($rec) is the length of the record to be
# *written*, not the length of the actual record in the file. But
# the offsets are still true. 20020322
$oldlen += $self->{offsets}[$_+1] - $self->{offsets}[$_]
if defined $self->{offsets}[$_+1];
}
$self->_fill_offsets_to($pos+$nrecs);
# Modify the file
$self->_mtwrite($data, $self->{offsets}[$pos], $oldlen);
# Adjust the offsets table
$self->_oadjust([$pos, $nrecs, @data]);
{ # Take this read cache stuff out into a separate function
# You made a half-attempt to put it into _oadjust.
# Finish something like that up eventually.
# STORE also needs to do something similarish
# update the read cache, part 1
# modified records
for ($pos .. $pos+$nrecs-1) {
my $new = $data[$_-$pos];
if (defined $new) {
$self->{cache}->update($_, $new);
} else {
$self->{cache}->remove($_);
}
}
# update the read cache, part 2
# moved records - records past the site of the change
# need to be renumbered
# Maybe merge this with the previous block?
{
my @oldkeys = grep $_ >= $pos + $nrecs, $self->{cache}->ckeys;
my @newkeys = map $_-$nrecs+@data, @oldkeys;
$self->{cache}->rekey(\@oldkeys, \@newkeys);
}
# Now there might be too much data in the cache, if we spliced out
# some short records and spliced in some long ones. If so, flush
# the cache.
$self->_cache_flush;
}
# Yes, the return value of 'splice' *is* actually this complicated
wantarray ? @result : @result ? $result[-1] : undef;
}
# write data into the file
# $data is the data to be written.
# it should be written at position $pos, and should overwrite
# exactly $len of the following bytes.
# Note that if length($data) > $len, the subsequent bytes will have to
# be moved up, and if length($data) < $len, they will have to
# be moved down
sub _twrite {
my ($self, $data, $pos, $len) = @_;
unless (defined $pos) {
die "\$pos was undefined in _twrite";
}
my $len_diff = length($data) - $len;
if ($len_diff == 0) { # Woo-hoo!
my $fh = $self->{fh};
$self->_seekb($pos);
$self->_write_record($data);
return; # well, that was easy.
}
# the two records are of different lengths
# our strategy here: rewrite the tail of the file,
# reading ahead one buffer at a time
# $bufsize is required to be at least as large as the data we're overwriting
my $bufsize = _bufsize($len_diff);
my ($writepos, $readpos) = ($pos, $pos+$len);
my $next_block;
my $more_data;
# Seems like there ought to be a way to avoid the repeated code
# and the special case here. The read(1) is also a little weird.
# Think about this.
do {
$self->_seekb($readpos);
my $br = read $self->{fh}, $next_block, $bufsize;
$more_data = read $self->{fh}, my($dummy), 1;
$self->_seekb($writepos);
$self->_write_record($data);
$readpos += $br;
$writepos += length $data;
$data = $next_block;
} while $more_data;
$self->_seekb($writepos);
$self->_write_record($next_block);
# There might be leftover data at the end of the file
$self->_chop_file if $len_diff < 0;
}
# _iwrite(D, S, E)
# Insert text D at position S.
# Let C = E-S-|D|. If C < 0; die.
# Data in [S,S+C) is copied to [S+D,S+D+C) = [S+D,E).
# Data in [S+C = E-D, E) is returned. Data in [E, oo) is untouched.
#
# In a later version, don't read the entire intervening area into
# memory at once; do the copying block by block.
sub _iwrite {
my $self = shift;
my ($D, $s, $e) = @_;
my $d = length $D;
my $c = $e-$s-$d;
local *FH = $self->{fh};
confess "Not enough space to insert $d bytes between $s and $e"
if $c < 0;
confess "[$s,$e) is an invalid insertion range" if $e < $s;
$self->_seekb($s);
read FH, my $buf, $e-$s;
$D .= substr($buf, 0, $c, "");
$self->_seekb($s);
$self->_write_record($D);
return $buf;
}
# Like _twrite, but the data-pos-len triple may be repeated; you may
# write several chunks. All the writing will be done in
# one pass. Chunks SHALL be in ascending order and SHALL NOT overlap.
sub _mtwrite {
my $self = shift;
my $unwritten = "";
my $delta = 0;
@_ % 3 == 0
or die "Arguments to _mtwrite did not come in groups of three";
while (@_) {
my ($data, $pos, $len) = splice @_, 0, 3;
my $end = $pos + $len; # The OLD end of the segment to be replaced
$data = $unwritten . $data;
$delta -= length($unwritten);
$unwritten = "";
$pos += $delta; # This is where the data goes now
my $dlen = length $data;
$self->_seekb($pos);
if ($len >= $dlen) { # the data will fit
$self->_write_record($data);
$delta += ($dlen - $len); # everything following moves down by this much
$data = ""; # All the data in the buffer has been written
} else { # won't fit
my $writable = substr($data, 0, $len - $delta, "");
$self->_write_record($writable);
$delta += ($dlen - $len); # everything following moves down by this much
}
# At this point we've written some but maybe not all of the data.
# There might be a gap to close up, or $data might still contain a
# bunch of unwritten data that didn't fit.
my $ndlen = length $data;
if ($delta == 0) {
$self->_write_record($data);
} elsif ($delta < 0) {
# upcopy (close up gap)
if (@_) {
$self->_upcopy($end, $end + $delta, $_[1] - $end);
} else {
$self->_upcopy($end, $end + $delta);
}
} else {
# downcopy (insert data that didn't fit; replace this data in memory
# with _later_ data that doesn't fit)
if (@_) {
$unwritten = $self->_downcopy($data, $end, $_[1] - $end);
} else {
# Make the file longer to accommodate the last segment that doesn't
$unwritten = $self->_downcopy($data, $end);
}
}
}
}
# Copy block of data of length $len from position $spos to position $dpos
# $dpos must be <= $spos
#
# If $len is undefined, go all the way to the end of the file
# and then truncate it ($spos - $dpos bytes will be removed)
sub _upcopy {
my $blocksize = 8192;
my ($self, $spos, $dpos, $len) = @_;
if ($dpos > $spos) {
die "source ($spos) was upstream of destination ($dpos) in _upcopy";
} elsif ($dpos == $spos) {
return;
}
while (! defined ($len) || $len > 0) {
my $readsize = ! defined($len) ? $blocksize
: $len > $blocksize ? $blocksize
: $len;
my $fh = $self->{fh};
$self->_seekb($spos);
my $bytes_read = read $fh, my($data), $readsize;
$self->_seekb($dpos);
if ($data eq "") {
$self->_chop_file;
last;
}
$self->_write_record($data);
$spos += $bytes_read;
$dpos += $bytes_read;
$len -= $bytes_read if defined $len;
}
}
# Write $data into a block of length $len at position $pos,
# moving everything in the block forwards to make room.
# Instead of writing the last length($data) bytes from the block
# (because there isn't room for them any longer) return them.
#
# Undefined $len means 'until the end of the file'
sub _downcopy {
my $blocksize = 8192;
my ($self, $data, $pos, $len) = @_;
my $fh = $self->{fh};
while (! defined $len || $len > 0) {
my $readsize = ! defined($len) ? $blocksize
: $len > $blocksize? $blocksize : $len;
$self->_seekb($pos);
read $fh, my($old), $readsize;
my $last_read_was_short = length($old) < $readsize;
$data .= $old;
my $writable;
if ($last_read_was_short) {
# If last read was short, then $data now contains the entire rest
# of the file, so there's no need to write only one block of it
$writable = $data;
$data = "";
} else {
$writable = substr($data, 0, $readsize, "");
}
last if $writable eq "";
$self->_seekb($pos);
$self->_write_record($writable);
last if $last_read_was_short && $data eq "";
$len -= $readsize if defined $len;
$pos += $readsize;
}
return $data;
}
# Adjust the object data structures following an '_mtwrite'
# Arguments are
# [$pos, $nrecs, @length] items
# indicating that $nrecs records were removed at $recpos (a record offset)
# and replaced with records of length @length...
# Arguments guarantee that $recpos is strictly increasing.
# No return value
sub _oadjust {
my $self = shift;
my $delta = 0;
my $delta_recs = 0;
my $prev_end = -1;
my %newkeys;
for (@_) {
my ($pos, $nrecs, @data) = @$_;
$pos += $delta_recs;
# Adjust the offsets of the records after the previous batch up
# to the first new one of this batch
for my $i ($prev_end+2 .. $pos - 1) {
$self->{offsets}[$i] += $delta;
$newkey{$i} = $i + $delta_recs;
}
$prev_end = $pos + @data - 1; # last record moved on this pass
# Remove the offsets for the removed records;
# replace with the offsets for the inserted records
my @newoff = ($self->{offsets}[$pos] + $delta);
for my $i (0 .. $#data) {
my $newlen = length $data[$i];
push @newoff, $newoff[$i] + $newlen;
$delta += $newlen;
}
for my $i ($pos .. $pos+$nrecs-1) {
last if $i+1 > $#{$self->{offsets}};
my $oldlen = $self->{offsets}[$i+1] - $self->{offsets}[$i];
$delta -= $oldlen;
}
# # also this data has changed, so update it in the cache
# for (0 .. $#data) {
# $self->{cache}->update($pos + $_, $data[$_]);
# }
# if ($delta_recs) {
# my @oldkeys = grep $_ >= $pos + @data, $self->{cache}->ckeys;
# my @newkeys = map $_ + $delta_recs, @oldkeys;
# $self->{cache}->rekey(\@oldkeys, \@newkeys);
# }
# replace old offsets with new
splice @{$self->{offsets}}, $pos, $nrecs+1, @newoff;
# What if we just spliced out the end of the offsets table?
# shouldn't we clear $self->{eof}? Test for this XXX BUG TODO
$delta_recs += @data - $nrecs; # net change in total number of records
}
# The trailing records at the very end of the file
if ($delta) {
for my $i ($prev_end+2 .. $#{$self->{offsets}}) {
$self->{offsets}[$i] += $delta;
}
}
# If we scrubbed out all known offsets, regenerate the trivial table
# that knows that the file does indeed start at 0.
$self->{offsets}[0] = 0 unless @{$self->{offsets}};
# If the file got longer, the offsets table is no longer complete
# $self->{eof} = 0 if $delta_recs > 0;
# Now there might be too much data in the cache, if we spliced out
# some short records and spliced in some long ones. If so, flush
# the cache.
$self->_cache_flush;
}
# If a record does not already end with the appropriate terminator
# string, append one.
sub _fixrecs {
my $self = shift;
for (@_) {
$_ = "" unless defined $_;
$_ .= $self->{recsep}
unless substr($_, - $self->{recseplen}) eq $self->{recsep};
}
}
################################################################
#
# Basic read, write, and seek
#
# seek to the beginning of record #$n
# Assumes that the offsets table is already correctly populated
#
# Note that $n=-1 has a special meaning here: It means the start of
# the last known record; this may or may not be the very last record
# in the file, depending on whether the offsets table is fully populated.
#
sub _seek {
my ($self, $n) = @_;
my $o = $self->{offsets}[$n];
defined($o)
or confess("logic error: undefined offset for record $n");
seek $self->{fh}, $o, SEEK_SET
or confess "Couldn't seek filehandle: $!"; # "Should never happen."
}
# seek to byte $b in the file
sub _seekb {
my ($self, $b) = @_;
seek $self->{fh}, $b, SEEK_SET
or die "Couldn't seek filehandle: $!"; # "Should never happen."
}
# populate the offsets table up to the beginning of record $n
# return the offset of record $n
sub _fill_offsets_to {
my ($self, $n) = @_;
return $self->{offsets}[$n] if $self->{eof};
my $fh = $self->{fh};
local *OFF = $self->{offsets};
my $rec;
until ($#OFF >= $n) {
$self->_seek(-1); # tricky -- see comment at _seek
$rec = $self->_read_record;
if (defined $rec) {
push @OFF, int(tell $fh); # Tels says that int() saves memory here
} else {
$self->{eof} = 1;
return; # It turns out there is no such record
}
}
# we have now read all the records up to record n-1,
# so we can return the offset of record n
$OFF[$n];
}
sub _fill_offsets {
my ($self) = @_;
my $fh = $self->{fh};
local *OFF = $self->{offsets};
$self->_seek(-1); # tricky -- see comment at _seek
# Tels says that inlining read_record() would make this loop
# five times faster. 20030508
while ( defined $self->_read_record()) {
# int() saves us memory here
push @OFF, int(tell $fh);
}
$self->{eof} = 1;
$#OFF;
}
# assumes that $rec is already suitably terminated
sub _write_record {
my ($self, $rec) = @_;
my $fh = $self->{fh};
local $\ = "";
print $fh $rec
or die "Couldn't write record: $!"; # "Should never happen."
# $self->{_written} += length($rec);
}
sub _read_record {
my $self = shift;
my $rec;
{ local $/ = $self->{recsep};
my $fh = $self->{fh};
$rec = <$fh>;
}
return unless defined $rec;
if (substr($rec, -$self->{recseplen}) ne $self->{recsep}) {
# improperly terminated final record --- quietly fix it.
# my $ac = substr($rec, -$self->{recseplen});
# $ac =~ s/\n/\\n/g;
$self->{sawlastrec} = 1;
unless ($self->{rdonly}) {
local $\ = "";
my $fh = $self->{fh};
print $fh $self->{recsep};
}
$rec .= $self->{recsep};
}
# $self->{_read} += length($rec) if defined $rec;
$rec;
}
sub _rw_stats {
my $self = shift;
@{$self}{'_read', '_written'};
}
################################################################
#
# Read cache management
sub _cache_flush {
my ($self) = @_;
$self->{cache}->reduce_size_to($self->{memory} - $self->{deferred_s});
}
sub _cache_too_full {
my $self = shift;
$self->{cache}->bytes + $self->{deferred_s} >= $self->{memory};
}
################################################################
#
# File custodial services
#
# We have read to the end of the file and have the offsets table
# entirely populated. Now we need to write a new record beyond
# the end of the file. We prepare for this by writing
# empty records into the file up to the position we want
#
# assumes that the offsets table already contains the offset of record $n,
# if it exists, and extends to the end of the file if not.
sub _extend_file_to {
my ($self, $n) = @_;
$self->_seek(-1); # position after the end of the last record
my $pos = $self->{offsets}[-1];
# the offsets table has one entry more than the total number of records
my $extras = $n - $#{$self->{offsets}};
# Todo : just use $self->{recsep} x $extras here?
while ($extras-- > 0) {
$self->_write_record($self->{recsep});
push @{$self->{offsets}}, int(tell $self->{fh});
}
}
# Truncate the file at the current position
sub _chop_file {
my $self = shift;
truncate $self->{fh}, tell($self->{fh});
}
# compute the size of a buffer suitable for moving
# all the data in a file forward $n bytes
# ($n may be negative)
# The result should be at least $n.
sub _bufsize {
my $n = shift;
return 8192 if $n <= 0;
my $b = $n & ~8191;
$b += 8192 if $n & 8191;
$b;
}
################################################################
#
# Miscellaneous public methods
#
# Lock the file
sub flock {
my ($self, $op) = @_;
unless (@_ <= 3) {
my $pack = ref $self;
croak "Usage: $pack\->flock([OPERATION])";
}
my $fh = $self->{fh};
$op = LOCK_EX unless defined $op;
my $locked = flock $fh, $op;
if ($locked && ($op & (LOCK_EX | LOCK_SH))) {
# If you're locking the file, then presumably it's because
# there might have been a write access by another process.
# In that case, the read cache contents and the offsets table
# might be invalid, so discard them. 20030508
$self->{offsets} = [0];
$self->{cache}->empty;
}
$locked;
}
# Get/set autochomp option
sub autochomp {
my $self = shift;
if (@_) {
my $old = $self->{autochomp};
$self->{autochomp} = shift;
$old;
} else {
$self->{autochomp};
}
}
# Get offset table entries; returns offset of nth record
sub offset {
my ($self, $n) = @_;
if ($#{$self->{offsets}} < $n) {
return if $self->{eof}; # request for record beyond the end of file
my $o = $self->_fill_offsets_to($n);
# If it's still undefined, there is no such record, so return 'undef'
return unless defined $o;
}
$self->{offsets}[$n];
}
sub discard_offsets {
my $self = shift;
$self->{offsets} = [0];
}
################################################################
#
# Matters related to deferred writing
#
# Defer writes
sub defer {
my $self = shift;
$self->_stop_autodeferring;
@{$self->{ad_history}} = ();
$self->{defer} = 1;
}
# Flush deferred writes
#
# This could be better optimized to write the file in one pass, instead
# of one pass per block of records. But that will require modifications
# to _twrite, so I should have a good _twrite test suite first.
sub flush {
my $self = shift;
$self->_flush;
$self->{defer} = 0;
}
sub _old_flush {
my $self = shift;
my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
while (@writable) {
# gather all consecutive records from the front of @writable
my $first_rec = shift @writable;
my $last_rec = $first_rec+1;
++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
--$last_rec;
$self->_fill_offsets_to($last_rec);
$self->_extend_file_to($last_rec);
$self->_splice($first_rec, $last_rec-$first_rec+1,
@{$self->{deferred}}{$first_rec .. $last_rec});
}
$self->_discard; # clear out defered-write-cache
}
sub _flush {
my $self = shift;
my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
my @args;
my @adjust;
while (@writable) {
# gather all consecutive records from the front of @writable
my $first_rec = shift @writable;
my $last_rec = $first_rec+1;
++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
--$last_rec;
my $end = $self->_fill_offsets_to($last_rec+1);
if (not defined $end) {
$self->_extend_file_to($last_rec);
$end = $self->{offsets}[$last_rec];
}
my ($start) = $self->{offsets}[$first_rec];
push @args,
join("", @{$self->{deferred}}{$first_rec .. $last_rec}), # data
$start, # position
$end-$start; # length
push @adjust, [$first_rec, # starting at this position...
$last_rec-$first_rec+1, # this many records...
# are replaced with these...
@{$self->{deferred}}{$first_rec .. $last_rec},
];
}
$self->_mtwrite(@args); # write multiple record groups
$self->_discard; # clear out defered-write-cache
$self->_oadjust(@adjust);
}
# Discard deferred writes and disable future deferred writes
sub discard {
my $self = shift;
$self->_discard;
$self->{defer} = 0;
}
# Discard deferred writes, but retain old deferred writing mode
sub _discard {
my $self = shift;
%{$self->{deferred}} = ();
$self->{deferred_s} = 0;
$self->{deferred_max} = -1;
$self->{cache}->set_limit($self->{memory});
}
# Deferred writing is enabled, either explicitly ($self->{defer})
# or automatically ($self->{autodeferring})
sub _is_deferring {
my $self = shift;
$self->{defer} || $self->{autodeferring};
}
# The largest record number of any deferred record
sub _defer_max {
my $self = shift;
return $self->{deferred_max} if defined $self->{deferred_max};
my $max = -1;
for my $key (keys %{$self->{deferred}}) {
$max = $key if $key > $max;
}
$self->{deferred_max} = $max;
$max;
}
################################################################
#
# Matters related to autodeferment
#
# Get/set autodefer option
sub autodefer {
my $self = shift;
if (@_) {
my $old = $self->{autodefer};
$self->{autodefer} = shift;
if ($old) {
$self->_stop_autodeferring;
@{$self->{ad_history}} = ();
}
$old;
} else {
$self->{autodefer};
}
}
# The user is trying to store record #$n Record that in the history,
# and then enable (or disable) autodeferment if that seems useful.
# Note that it's OK for $n to be a non-number, as long as the function
# is prepared to deal with that. Nobody else looks at the ad_history.
#
# Now, what does the ad_history mean, and what is this function doing?
# Essentially, the idea is to enable autodeferring when we see that the
# user has made three consecutive STORE calls to three consecutive records.
# ("Three" is actually ->{autodefer_threshhold}.)
# A STORE call for record #$n inserts $n into the autodefer history,
# and if the history contains three consecutive records, we enable
# autodeferment. An ad_history of [X, Y] means that the most recent
# STOREs were for records X, X+1, ..., Y, in that order.
#
# Inserting a nonconsecutive number erases the history and starts over.
#
# Performing a special operation like SPLICE erases the history.
#
# There's one special case: CLEAR means that CLEAR was just called.
# In this case, we prime the history with [-2, -1] so that if the next
# write is for record 0, autodeferring goes on immediately. This is for
# the common special case of "@a = (...)".
#
sub _annotate_ad_history {
my ($self, $n) = @_;
return unless $self->{autodefer}; # feature is disabled
return if $self->{defer}; # already in explicit defer mode
return unless $self->{offsets}[-1] >= $self->{autodefer_filelen_threshhold};
local *H = $self->{ad_history};
if ($n eq 'CLEAR') {
@H = (-2, -1); # prime the history with fake records
$self->_stop_autodeferring;
} elsif ($n =~ /^\d+$/) {
if (@H == 0) {
@H = ($n, $n);
} else { # @H == 2
if ($H[1] == $n-1) { # another consecutive record
$H[1]++;
if ($H[1] - $H[0] + 1 >= $self->{autodefer_threshhold}) {
$self->{autodeferring} = 1;
}
} else { # nonconsecutive- erase and start over
@H = ($n, $n);
$self->_stop_autodeferring;
}
}
} else { # SPLICE or STORESIZE or some such
@H = ();
$self->_stop_autodeferring;
}
}
# If autodeferring was enabled, cut it out and discard the history
sub _stop_autodeferring {
my $self = shift;
if ($self->{autodeferring}) {
$self->_flush;
}
$self->{autodeferring} = 0;
}
################################################################
# This is NOT a method. It is here for two reasons:
# 1. To factor a fairly complicated block out of the constructor
# 2. To provide access for the test suite, which need to be sure
# files are being written properly.
sub _default_recsep {
my $recsep = $/;
if ($^O eq 'MSWin32') { # Dos too?
# Windows users expect files to be terminated with \r\n
# But $/ is set to \n instead
# Note that this also transforms \n\n into \r\n\r\n.
# That is a feature.
$recsep =~ s/\n/\r\n/g;
}
$recsep;
}
# Utility function for _check_integrity
sub _ci_warn {
my $msg = shift;
$msg =~ s/\n/\\n/g;
$msg =~ s/\r/\\r/g;
print "# $msg\n";
}
# Given a file, make sure the cache is consistent with the
# file contents and the internal data structures are consistent with
# each other. Returns true if everything checks out, false if not
#
# The $file argument is no longer used. It is retained for compatibility
# with the existing test suite.
sub _check_integrity {
my ($self, $file, $warn) = @_;
my $rsl = $self->{recseplen};
my $rs = $self->{recsep};
my $good = 1;
local *_; # local $_ does not work here
local $DIAGNOSTIC = 1;
if (not defined $rs) {
_ci_warn("recsep is undef!");
$good = 0;
} elsif ($rs eq "") {
_ci_warn("recsep is empty!");
$good = 0;
} elsif ($rsl != length $rs) {
my $ln = length $rs;
_ci_warn("recsep <$rs> has length $ln, should be $rsl");
$good = 0;
}
if (not defined $self->{offsets}[0]) {
_ci_warn("offset 0 is missing!");
$good = 0;
} elsif ($self->{offsets}[0] != 0) {
_ci_warn("rec 0: offset <$self->{offsets}[0]> s/b 0!");
$good = 0;
}
my $cached = 0;
{
local *F = $self->{fh};
seek F, 0, SEEK_SET;
local $. = 0;
local $/ = $rs;
while (<F>) {
my $n = $. - 1;
my $cached = $self->{cache}->_produce($n);
my $offset = $self->{offsets}[$.];
my $ao = tell F;
if (defined $offset && $offset != $ao) {
_ci_warn("rec $n: offset <$offset> actual <$ao>");
$good = 0;
}
if (defined $cached && $_ ne $cached && ! $self->{deferred}{$n}) {
$good = 0;
_ci_warn("rec $n: cached <$cached> actual <$_>");
}
if (defined $cached && substr($cached, -$rsl) ne $rs) {
$good = 0;
_ci_warn("rec $n in the cache is missing the record separator");
}
if (! defined $offset && $self->{eof}) {
$good = 0;
_ci_warn("The offset table was marked complete, but it is missing element $.");
}
}
if (@{$self->{offsets}} > $.+1) {
$good = 0;
my $n = @{$self->{offsets}};
_ci_warn("The offset table has $n items, but the file has only $.");
}
my $deferring = $self->_is_deferring;
for my $n ($self->{cache}->ckeys) {
my $r = $self->{cache}->_produce($n);
$cached += length($r);
next if $n+1 <= $.; # checked this already
_ci_warn("spurious caching of record $n");
$good = 0;
}
my $b = $self->{cache}->bytes;
if ($cached != $b) {
_ci_warn("cache size is $b, should be $cached");
$good = 0;
}
}
# That cache has its own set of tests
$good = 0 unless $self->{cache}->_check_integrity;
# Now let's check the deferbuffer
# Unless deferred writing is enabled, it should be empty
if (! $self->_is_deferring && %{$self->{deferred}}) {
_ci_warn("deferred writing disabled, but deferbuffer nonempty");
$good = 0;
}
# Any record in the deferbuffer should *not* be present in the readcache
my $deferred_s = 0;
while (my ($n, $r) = each %{$self->{deferred}}) {
$deferred_s += length($r);
if (defined $self->{cache}->_produce($n)) {
_ci_warn("record $n is in the deferbuffer *and* the readcache");
$good = 0;
}
if (substr($r, -$rsl) ne $rs) {
_ci_warn("rec $n in the deferbuffer is missing the record separator");
$good = 0;
}
}
# Total size of deferbuffer should match internal total
if ($deferred_s != $self->{deferred_s}) {
_ci_warn("buffer size is $self->{deferred_s}, should be $deferred_s");
$good = 0;
}
# Total size of deferbuffer should not exceed the specified limit
if ($deferred_s > $self->{dw_size}) {
_ci_warn("buffer size is $self->{deferred_s} which exceeds the limit of $self->{dw_size}");
$good = 0;
}
# Total size of cached data should not exceed the specified limit
if ($deferred_s + $cached > $self->{memory}) {
my $total = $deferred_s + $cached;
_ci_warn("total stored data size is $total which exceeds the limit of $self->{memory}");
$good = 0;
}
# Stuff related to autodeferment
if (!$self->{autodefer} && @{$self->{ad_history}}) {
_ci_warn("autodefer is disabled, but ad_history is nonempty");
$good = 0;
}
if ($self->{autodeferring} && $self->{defer}) {
_ci_warn("both autodeferring and explicit deferring are active");
$good = 0;
}
if (@{$self->{ad_history}} == 0) {
# That's OK, no additional tests required
} elsif (@{$self->{ad_history}} == 2) {
my @non_number = grep !/^-?\d+$/, @{$self->{ad_history}};
if (@non_number) {
my $msg;
{ local $" = ')(';
$msg = "ad_history contains non-numbers (@{$self->{ad_history}})";
}
_ci_warn($msg);
$good = 0;
} elsif ($self->{ad_history}[1] < $self->{ad_history}[0]) {
_ci_warn("ad_history has nonsensical values @{$self->{ad_history}}");
$good = 0;
}
} else {
_ci_warn("ad_history has bad length <@{$self->{ad_history}}>");
$good = 0;
}
$good;
}
################################################################
#
# Tie::File::Cache
#
# Read cache
package Tie::File::Cache;
$Tie::File::Cache::VERSION = $Tie::File::VERSION;
use Carp ':DEFAULT', 'confess';
sub HEAP () { 0 }
sub HASH () { 1 }
sub MAX () { 2 }
sub BYTES() { 3 }
#sub STAT () { 4 } # Array with request statistics for each record
#sub MISS () { 5 } # Total number of cache misses
#sub REQ () { 6 } # Total number of cache requests
use strict 'vars';
sub new {
my ($pack, $max) = @_;
local *_;
croak "missing argument to ->new" unless defined $max;
my $self = [];
bless $self => $pack;
@$self = (Tie::File::Heap->new($self), {}, $max, 0);
$self;
}
sub adj_limit {
my ($self, $n) = @_;
$self->[MAX] += $n;
}
sub set_limit {
my ($self, $n) = @_;
$self->[MAX] = $n;
}
# For internal use only
# Will be called by the heap structure to notify us that a certain
# piece of data has moved from one heap element to another.
# $k is the hash key of the item
# $n is the new index into the heap at which it is stored
# If $n is undefined, the item has been removed from the heap.
sub _heap_move {
my ($self, $k, $n) = @_;
if (defined $n) {
$self->[HASH]{$k} = $n;
} else {
delete $self->[HASH]{$k};
}
}
sub insert {
my ($self, $key, $val) = @_;
local *_;
croak "missing argument to ->insert" unless defined $key;
unless (defined $self->[MAX]) {
confess "undefined max" ;
}
confess "undefined val" unless defined $val;
return if length($val) > $self->[MAX];
# if ($self->[STAT]) {
# $self->[STAT][$key] = 1;
# return;
# }
my $oldnode = $self->[HASH]{$key};
if (defined $oldnode) {
my $oldval = $self->[HEAP]->set_val($oldnode, $val);
$self->[BYTES] -= length($oldval);
} else {
$self->[HEAP]->insert($key, $val);
}
$self->[BYTES] += length($val);
$self->flush if $self->[BYTES] > $self->[MAX];
}
sub expire {
my $self = shift;
my $old_data = $self->[HEAP]->popheap;
return unless defined $old_data;
$self->[BYTES] -= length $old_data;
$old_data;
}
sub remove {
my ($self, @keys) = @_;
my @result;
# if ($self->[STAT]) {
# for my $key (@keys) {
# $self->[STAT][$key] = 0;
# }
# return;
# }
for my $key (@keys) {
next unless exists $self->[HASH]{$key};
my $old_data = $self->[HEAP]->remove($self->[HASH]{$key});
$self->[BYTES] -= length $old_data;
push @result, $old_data;
}
@result;
}
sub lookup {
my ($self, $key) = @_;
local *_;
croak "missing argument to ->lookup" unless defined $key;
# if ($self->[STAT]) {
# $self->[MISS]++ if $self->[STAT][$key]++ == 0;
# $self->[REQ]++;
# my $hit_rate = 1 - $self->[MISS] / $self->[REQ];
# # Do some testing to determine this threshhold
# $#$self = STAT - 1 if $hit_rate > 0.20;
# }
if (exists $self->[HASH]{$key}) {
$self->[HEAP]->lookup($self->[HASH]{$key});
} else {
return;
}
}
# For internal use only
sub _produce {
my ($self, $key) = @_;
my $loc = $self->[HASH]{$key};
return unless defined $loc;
$self->[HEAP][$loc][2];
}
# For internal use only
sub _promote {
my ($self, $key) = @_;
$self->[HEAP]->promote($self->[HASH]{$key});
}
sub empty {
my ($self) = @_;
%{$self->[HASH]} = ();
$self->[BYTES] = 0;
$self->[HEAP]->empty;
# @{$self->[STAT]} = ();
# $self->[MISS] = 0;
# $self->[REQ] = 0;
}
sub is_empty {
my ($self) = @_;
keys %{$self->[HASH]} == 0;
}
sub update {
my ($self, $key, $val) = @_;
local *_;
croak "missing argument to ->update" unless defined $key;
if (length($val) > $self->[MAX]) {
my ($oldval) = $self->remove($key);
$self->[BYTES] -= length($oldval) if defined $oldval;
} elsif (exists $self->[HASH]{$key}) {
my $oldval = $self->[HEAP]->set_val($self->[HASH]{$key}, $val);
$self->[BYTES] += length($val);
$self->[BYTES] -= length($oldval) if defined $oldval;
} else {
$self->[HEAP]->insert($key, $val);
$self->[BYTES] += length($val);
}
$self->flush;
}
sub rekey {
my ($self, $okeys, $nkeys) = @_;
local *_;
my %map;
@map{@$okeys} = @$nkeys;
croak "missing argument to ->rekey" unless defined $nkeys;
croak "length mismatch in ->rekey arguments" unless @$nkeys == @$okeys;
my %adjusted; # map new keys to heap indices
# You should be able to cut this to one loop TODO XXX
for (0 .. $#$okeys) {
$adjusted{$nkeys->[$_]} = delete $self->[HASH]{$okeys->[$_]};
}
while (my ($nk, $ix) = each %adjusted) {
# @{$self->[HASH]}{keys %adjusted} = values %adjusted;
$self->[HEAP]->rekey($ix, $nk);
$self->[HASH]{$nk} = $ix;
}
}
sub ckeys {
my $self = shift;
my @a = keys %{$self->[HASH]};
@a;
}
# Return total amount of cached data
sub bytes {
my $self = shift;
$self->[BYTES];
}
# Expire oldest item from cache until cache size is smaller than $max
sub reduce_size_to {
my ($self, $max) = @_;
until ($self->[BYTES] <= $max) {
# Note that Tie::File::Cache::expire has been inlined here
my $old_data = $self->[HEAP]->popheap;
return unless defined $old_data;
$self->[BYTES] -= length $old_data;
}
}
# Why not just $self->reduce_size_to($self->[MAX])?
# Try this when things stabilize TODO XXX
# If the cache is too full, expire the oldest records
sub flush {
my $self = shift;
$self->reduce_size_to($self->[MAX]) if $self->[BYTES] > $self->[MAX];
}
# For internal use only
sub _produce_lru {
my $self = shift;
$self->[HEAP]->expire_order;
}
BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
sub _check_integrity { # For CACHE
my $self = shift;
my $good = 1;
# Test HEAP
$self->[HEAP]->_check_integrity or $good = 0;
# Test HASH
my $bytes = 0;
for my $k (keys %{$self->[HASH]}) {
if ($k ne '0' && $k !~ /^[1-9][0-9]*$/) {
$good = 0;
_ci_warn "Cache hash key <$k> is non-numeric";
}
my $h = $self->[HASH]{$k};
if (! defined $h) {
$good = 0;
_ci_warn "Heap index number for key $k is undefined";
} elsif ($h == 0) {
$good = 0;
_ci_warn "Heap index number for key $k is zero";
} else {
my $j = $self->[HEAP][$h];
if (! defined $j) {
$good = 0;
_ci_warn "Heap contents key $k (=> $h) are undefined";
} else {
$bytes += length($j->[2]);
if ($k ne $j->[1]) {
$good = 0;
_ci_warn "Heap contents key $k (=> $h) is $j->[1], should be $k";
}
}
}
}
# Test BYTES
if ($bytes != $self->[BYTES]) {
$good = 0;
_ci_warn "Total data in cache is $bytes, expected $self->[BYTES]";
}
# Test MAX
if ($bytes > $self->[MAX]) {
$good = 0;
_ci_warn "Total data in cache is $bytes, exceeds maximum $self->[MAX]";
}
return $good;
}
sub delink {
my $self = shift;
$self->[HEAP] = undef; # Bye bye heap
}
################################################################
#
# Tie::File::Heap
#
# Heap data structure for use by cache LRU routines
package Tie::File::Heap;
use Carp ':DEFAULT', 'confess';
$Tie::File::Heap::VERSION = $Tie::File::Cache::VERSION;
sub SEQ () { 0 };
sub KEY () { 1 };
sub DAT () { 2 };
sub new {
my ($pack, $cache) = @_;
die "$pack: Parent cache object $cache does not support _heap_move method"
unless eval { $cache->can('_heap_move') };
my $self = [[0,$cache,0]];
bless $self => $pack;
}
# Allocate a new sequence number, larger than all previously allocated numbers
sub _nseq {
my $self = shift;
$self->[0][0]++;
}
sub _cache {
my $self = shift;
$self->[0][1];
}
sub _nelts {
my $self = shift;
$self->[0][2];
}
sub _nelts_inc {
my $self = shift;
++$self->[0][2];
}
sub _nelts_dec {
my $self = shift;
--$self->[0][2];
}
sub is_empty {
my $self = shift;
$self->_nelts == 0;
}
sub empty {
my $self = shift;
$#$self = 0;
$self->[0][2] = 0;
$self->[0][0] = 0; # might as well reset the sequence numbers
}
# notify the parent cache object that we moved something
sub _heap_move {
my $self = shift;
$self->_cache->_heap_move(@_);
}
# Insert a piece of data into the heap with the indicated sequence number.
# The item with the smallest sequence number is always at the top.
# If no sequence number is specified, allocate a new one and insert the
# item at the bottom.
sub insert {
my ($self, $key, $data, $seq) = @_;
$seq = $self->_nseq unless defined $seq;
$self->_insert_new([$seq, $key, $data]);
}
# Insert a new, fresh item at the bottom of the heap
sub _insert_new {
my ($self, $item) = @_;
my $i = @$self;
$i = int($i/2) until defined $self->[$i/2];
$self->[$i] = $item;
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
$self->_nelts_inc;
}
# Insert [$data, $seq] pair at or below item $i in the heap.
# If $i is omitted, default to 1 (the top element.)
sub _insert {
my ($self, $item, $i) = @_;
# $self->_check_loc($i) if defined $i;
$i = 1 unless defined $i;
until (! defined $self->[$i]) {
if ($self->[$i][SEQ] > $item->[SEQ]) { # inserted item is older
($self->[$i], $item) = ($item, $self->[$i]);
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
}
# If either is undefined, go that way. Otherwise, choose at random
my $dir;
$dir = 0 if !defined $self->[2*$i];
$dir = 1 if !defined $self->[2*$i+1];
$dir = int(rand(2)) unless defined $dir;
$i = 2*$i + $dir;
}
$self->[$i] = $item;
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
$self->_nelts_inc;
}
# Remove the item at node $i from the heap, moving child items upwards.
# The item with the smallest sequence number is always at the top.
# Moving items upwards maintains this condition.
# Return the removed item. Return undef if there was no item at node $i.
sub remove {
my ($self, $i) = @_;
$i = 1 unless defined $i;
my $top = $self->[$i];
return unless defined $top;
while (1) {
my $ii;
my ($L, $R) = (2*$i, 2*$i+1);
# If either is undefined, go the other way.
# Otherwise, go towards the smallest.
last unless defined $self->[$L] || defined $self->[$R];
$ii = $R if not defined $self->[$L];
$ii = $L if not defined $self->[$R];
unless (defined $ii) {
$ii = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
}
$self->[$i] = $self->[$ii]; # Promote child to fill vacated spot
$self->[0][1]->_heap_move($self->[$i][KEY], $i);
$i = $ii; # Fill new vacated spot
}
$self->[0][1]->_heap_move($top->[KEY], undef);
undef $self->[$i];
$self->_nelts_dec;
return $top->[DAT];
}
sub popheap {
my $self = shift;
$self->remove(1);
}
# set the sequence number of the indicated item to a higher number
# than any other item in the heap, and bubble the item down to the
# bottom.
sub promote {
my ($self, $n) = @_;
# $self->_check_loc($n);
$self->[$n][SEQ] = $self->_nseq;
my $i = $n;
while (1) {
my ($L, $R) = (2*$i, 2*$i+1);
my $dir;
last unless defined $self->[$L] || defined $self->[$R];
$dir = $R unless defined $self->[$L];
$dir = $L unless defined $self->[$R];
unless (defined $dir) {
$dir = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
}
@{$self}[$i, $dir] = @{$self}[$dir, $i];
for ($i, $dir) {
$self->[0][1]->_heap_move($self->[$_][KEY], $_) if defined $self->[$_];
}
$i = $dir;
}
}
# Return item $n from the heap, promoting its LRU status
sub lookup {
my ($self, $n) = @_;
# $self->_check_loc($n);
my $val = $self->[$n];
$self->promote($n);
$val->[DAT];
}
# Assign a new value for node $n, promoting it to the bottom of the heap
sub set_val {
my ($self, $n, $val) = @_;
# $self->_check_loc($n);
my $oval = $self->[$n][DAT];
$self->[$n][DAT] = $val;
$self->promote($n);
return $oval;
}
# The hash key has changed for an item;
# alter the heap's record of the hash key
sub rekey {
my ($self, $n, $new_key) = @_;
# $self->_check_loc($n);
$self->[$n][KEY] = $new_key;
}
sub _check_loc {
my ($self, $n) = @_;
unless (1 || defined $self->[$n]) {
confess "_check_loc($n) failed";
}
}
BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
sub _check_integrity {
my $self = shift;
my $good = 1;
my %seq;
unless (eval {$self->[0][1]->isa("Tie::File::Cache")}) {
_ci_warn "Element 0 of heap corrupt";
$good = 0;
}
$good = 0 unless $self->_satisfies_heap_condition(1);
for my $i (2 .. $#{$self}) {
my $p = int($i/2); # index of parent node
if (defined $self->[$i] && ! defined $self->[$p]) {
_ci_warn "Element $i of heap defined, but parent $p isn't";
$good = 0;
}
if (defined $self->[$i]) {
if ($seq{$self->[$i][SEQ]}) {
my $seq = $self->[$i][SEQ];
_ci_warn "Nodes $i and $seq{$seq} both have SEQ=$seq";
$good = 0;
} else {
$seq{$self->[$i][SEQ]} = $i;
}
}
}
return $good;
}
sub _satisfies_heap_condition {
my $self = shift;
my $n = shift || 1;
my $good = 1;
for (0, 1) {
my $c = $n*2 + $_;
next unless defined $self->[$c];
if ($self->[$n][SEQ] >= $self->[$c]) {
_ci_warn "Node $n of heap does not predate node $c";
$good = 0 ;
}
$good = 0 unless $self->_satisfies_heap_condition($c);
}
return $good;
}
# Return a list of all the values, sorted by expiration order
sub expire_order {
my $self = shift;
my @nodes = sort {$a->[SEQ] <=> $b->[SEQ]} $self->_nodes;
map { $_->[KEY] } @nodes;
}
sub _nodes {
my $self = shift;
my $i = shift || 1;
return unless defined $self->[$i];
($self->[$i], $self->_nodes($i*2), $self->_nodes($i*2+1));
}
"Cogito, ergo sum."; # don't forget to return a true value from the file
__END__
=head1 NAME
Tie::File - Access the lines of a disk file via a Perl array
=head1 SYNOPSIS
# This file documents Tie::File version 0.98
use Tie::File;
tie @array, 'Tie::File', filename or die ...;
$array[13] = 'blah'; # line 13 of the file is now 'blah'
print $array[42]; # display line 42 of the file
$n_recs = @array; # how many records are in the file?
$#array -= 2; # chop two records off the end
for (@array) {
s/PERL/Perl/g; # Replace PERL with Perl everywhere in the file
}
# These are just like regular push, pop, unshift, shift, and splice
# Except that they modify the file in the way you would expect
push @array, new recs...;
my $r1 = pop @array;
unshift @array, new recs...;
my $r2 = shift @array;
@old_recs = splice @array, 3, 7, new recs...;
untie @array; # all finished
=head1 DESCRIPTION
C<Tie::File> represents a regular text file as a Perl array. Each
element in the array corresponds to a record in the file. The first
line of the file is element 0 of the array; the second line is element
1, and so on.
The file is I<not> loaded into memory, so this will work even for
gigantic files.
Changes to the array are reflected in the file immediately.
Lazy people and beginners may now stop reading the manual.
=head2 C<recsep>
What is a 'record'? By default, the meaning is the same as for the
C<E<lt>...E<gt>> operator: It's a string terminated by C<$/>, which is
probably C<"\n">. (Minor exception: on DOS and Win32 systems, a
'record' is a string terminated by C<"\r\n">.) You may change the
definition of "record" by supplying the C<recsep> option in the C<tie>
call:
tie @array, 'Tie::File', $file, recsep => 'es';
This says that records are delimited by the string C<es>. If the file
contained the following data:
Curse these pesky flies!\n
then the C<@array> would appear to have four elements:
"Curse th"
"e p"
"ky fli"
"!\n"
An undefined value is not permitted as a record separator. Perl's
special "paragraph mode" semantics (E<agrave> la C<$/ = "">) are not
emulated.
Records read from the tied array do not have the record separator
string on the end; this is to allow
$array[17] .= "extra";
to work as expected.
(See L<"autochomp">, below.) Records stored into the array will have
the record separator string appended before they are written to the
file, if they don't have one already. For example, if the record
separator string is C<"\n">, then the following two lines do exactly
the same thing:
$array[17] = "Cherry pie";
$array[17] = "Cherry pie\n";
The result is that the contents of line 17 of the file will be
replaced with "Cherry pie"; a newline character will separate line 17
from line 18. This means that this code will do nothing:
chomp $array[17];
Because the C<chomp>ed value will have the separator reattached when
it is written back to the file. There is no way to create a file
whose trailing record separator string is missing.
Inserting records that I<contain> the record separator string is not
supported by this module. It will probably produce a reasonable
result, but what this result will be may change in a future version.
Use 'splice' to insert records or to replace one record with several.
=head2 C<autochomp>
Normally, array elements have the record separator removed, so that if
the file contains the text
Gold
Frankincense
Myrrh
the tied array will appear to contain C<("Gold", "Frankincense",
"Myrrh")>. If you set C<autochomp> to a false value, the record
separator will not be removed. If the file above was tied with
tie @gifts, "Tie::File", $gifts, autochomp => 0;
then the array C<@gifts> would appear to contain C<("Gold\n",
"Frankincense\n", "Myrrh\n")>, or (on Win32 systems) C<("Gold\r\n",
"Frankincense\r\n", "Myrrh\r\n")>.
=head2 C<mode>
Normally, the specified file will be opened for read and write access,
and will be created if it does not exist. (That is, the flags
C<O_RDWR | O_CREAT> are supplied in the C<open> call.) If you want to
change this, you may supply alternative flags in the C<mode> option.
See L<Fcntl> for a listing of available flags.
For example:
# open the file if it exists, but fail if it does not exist
use Fcntl 'O_RDWR';
tie @array, 'Tie::File', $file, mode => O_RDWR;
# create the file if it does not exist
use Fcntl 'O_RDWR', 'O_CREAT';
tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;
# open an existing file in read-only mode
use Fcntl 'O_RDONLY';
tie @array, 'Tie::File', $file, mode => O_RDONLY;
Opening the data file in write-only or append mode is not supported.
=head2 C<memory>
This is an upper limit on the amount of memory that C<Tie::File> will
consume at any time while managing the file. This is used for two
things: managing the I<read cache> and managing the I<deferred write
buffer>.
Records read in from the file are cached, to avoid having to re-read
them repeatedly. If you read the same record twice, the first time it
will be stored in memory, and the second time it will be fetched from
the I<read cache>. The amount of data in the read cache will not
exceed the value you specified for C<memory>. If C<Tie::File> wants
to cache a new record, but the read cache is full, it will make room
by expiring the least-recently visited records from the read cache.
The default memory limit is 2Mib. You can adjust the maximum read
cache size by supplying the C<memory> option. The argument is the
desired cache size, in bytes.
# I have a lot of memory, so use a large cache to speed up access
tie @array, 'Tie::File', $file, memory => 20_000_000;
Setting the memory limit to 0 will inhibit caching; records will be
fetched from disk every time you examine them.
The C<memory> value is not an absolute or exact limit on the memory
used. C<Tie::File> objects contains some structures besides the read
cache and the deferred write buffer, whose sizes are not charged
against C<memory>.
The cache itself consumes about 310 bytes per cached record, so if
your file has many short records, you may want to decrease the cache
memory limit, or else the cache overhead may exceed the size of the
cached data.
=head2 C<dw_size>
(This is an advanced feature. Skip this section on first reading.)
If you use deferred writing (See L<"Deferred Writing">, below) then
data you write into the array will not be written directly to the
file; instead, it will be saved in the I<deferred write buffer> to be
written out later. Data in the deferred write buffer is also charged
against the memory limit you set with the C<memory> option.
You may set the C<dw_size> option to limit the amount of data that can
be saved in the deferred write buffer. This limit may not exceed the
total memory limit. For example, if you set C<dw_size> to 1000 and
C<memory> to 2500, that means that no more than 1000 bytes of deferred
writes will be saved up. The space available for the read cache will
vary, but it will always be at least 1500 bytes (if the deferred write
buffer is full) and it could grow as large as 2500 bytes (if the
deferred write buffer is empty.)
If you don't specify a C<dw_size>, it defaults to the entire memory
limit.
=head2 Option Format
C<-mode> is a synonym for C<mode>. C<-recsep> is a synonym for
C<recsep>. C<-memory> is a synonym for C<memory>. You get the
idea.
=head1 Public Methods
The C<tie> call returns an object, say C<$o>. You may call
$rec = $o->FETCH($n);
$o->STORE($n, $rec);
to fetch or store the record at line C<$n>, respectively; similarly
the other tied array methods. (See L<perltie> for details.) You may
also call the following methods on this object:
=head2 C<flock>
$o->flock(MODE)
will lock the tied file. C<MODE> has the same meaning as the second
argument to the Perl built-in C<flock> function; for example
C<LOCK_SH> or C<LOCK_EX | LOCK_NB>. (These constants are provided by
the C<use Fcntl ':flock'> declaration.)
C<MODE> is optional; the default is C<LOCK_EX>.
C<Tie::File> maintains an internal table of the byte offset of each
record it has seen in the file.
When you use C<flock> to lock the file, C<Tie::File> assumes that the
read cache is no longer trustworthy, because another process might
have modified the file since the last time it was read. Therefore, a
successful call to C<flock> discards the contents of the read cache
and the internal record offset table.
C<Tie::File> promises that the following sequence of operations will
be safe:
my $o = tie @array, "Tie::File", $filename;
$o->flock;
In particular, C<Tie::File> will I<not> read or write the file during
the C<tie> call. (Exception: Using C<mode =E<gt> O_TRUNC> will, of
course, erase the file during the C<tie> call. If you want to do this
safely, then open the file without C<O_TRUNC>, lock the file, and use
C<@array = ()>.)
The best way to unlock a file is to discard the object and untie the
array. It is probably unsafe to unlock the file without also untying
it, because if you do, changes may remain unwritten inside the object.
That is why there is no shortcut for unlocking. If you really want to
unlock the file prematurely, you know what to do; if you don't know
what to do, then don't do it.
All the usual warnings about file locking apply here. In particular,
note that file locking in Perl is B<advisory>, which means that
holding a lock will not prevent anyone else from reading, writing, or
erasing the file; it only prevents them from getting another lock at
the same time. Locks are analogous to green traffic lights: If you
have a green light, that does not prevent the idiot coming the other
way from plowing into you sideways; it merely guarantees to you that
the idiot does not also have a green light at the same time.
=head2 C<autochomp>
my $old_value = $o->autochomp(0); # disable autochomp option
my $old_value = $o->autochomp(1); # enable autochomp option
my $ac = $o->autochomp(); # recover current value
See L<"autochomp">, above.
=head2 C<defer>, C<flush>, C<discard>, and C<autodefer>
See L<"Deferred Writing">, below.
=head2 C<offset>
$off = $o->offset($n);
This method returns the byte offset of the start of the C<$n>th record
in the file. If there is no such record, it returns an undefined
value.
=head1 Tying to an already-opened filehandle
If C<$fh> is a filehandle, such as is returned by C<IO::File> or one
of the other C<IO> modules, you may use:
tie @array, 'Tie::File', $fh, ...;
Similarly if you opened that handle C<FH> with regular C<open> or
C<sysopen>, you may use:
tie @array, 'Tie::File', \*FH, ...;
Handles that were opened write-only won't work. Handles that were
opened read-only will work as long as you don't try to modify the
array. Handles must be attached to seekable sources of data---that
means no pipes or sockets. If C<Tie::File> can detect that you
supplied a non-seekable handle, the C<tie> call will throw an
exception. (On Unix systems, it can detect this.)
Note that Tie::File will only close any filehandles that it opened
internally. If you passed it a filehandle as above, you "own" the
filehandle, and are responsible for closing it after you have untied
the @array.
=head1 Deferred Writing
(This is an advanced feature. Skip this section on first reading.)
Normally, modifying a C<Tie::File> array writes to the underlying file
immediately. Every assignment like C<$a[3] = ...> rewrites as much of
the file as is necessary; typically, everything from line 3 through
the end will need to be rewritten. This is the simplest and most
transparent behavior. Performance even for large files is reasonably
good.
However, under some circumstances, this behavior may be excessively
slow. For example, suppose you have a million-record file, and you
want to do:
for (@FILE) {
$_ = "> $_";
}
The first time through the loop, you will rewrite the entire file,
from line 0 through the end. The second time through the loop, you
will rewrite the entire file from line 1 through the end. The third
time through the loop, you will rewrite the entire file from line 2 to
the end. And so on.
If the performance in such cases is unacceptable, you may defer the
actual writing, and then have it done all at once. The following loop
will perform much better for large files:
(tied @a)->defer;
for (@a) {
$_ = "> $_";
}
(tied @a)->flush;
If C<Tie::File>'s memory limit is large enough, all the writing will
done in memory. Then, when you call C<-E<gt>flush>, the entire file
will be rewritten in a single pass.
(Actually, the preceding discussion is something of a fib. You don't
need to enable deferred writing to get good performance for this
common case, because C<Tie::File> will do it for you automatically
unless you specifically tell it not to. See L<"Autodeferring">,
below.)
Calling C<-E<gt>flush> returns the array to immediate-write mode. If
you wish to discard the deferred writes, you may call C<-E<gt>discard>
instead of C<-E<gt>flush>. Note that in some cases, some of the data
will have been written already, and it will be too late for
C<-E<gt>discard> to discard all the changes. Support for
C<-E<gt>discard> may be withdrawn in a future version of C<Tie::File>.
Deferred writes are cached in memory up to the limit specified by the
C<dw_size> option (see above). If the deferred-write buffer is full
and you try to write still more deferred data, the buffer will be
flushed. All buffered data will be written immediately, the buffer
will be emptied, and the now-empty space will be used for future
deferred writes.
If the deferred-write buffer isn't yet full, but the total size of the
buffer and the read cache would exceed the C<memory> limit, the oldest
records will be expired from the read cache until the total size is
under the limit.
C<push>, C<pop>, C<shift>, C<unshift>, and C<splice> cannot be
deferred. When you perform one of these operations, any deferred data
is written to the file and the operation is performed immediately.
This may change in a future version.
If you resize the array with deferred writing enabled, the file will
be resized immediately, but deferred records will not be written.
This has a surprising consequence: C<@a = (...)> erases the file
immediately, but the writing of the actual data is deferred. This
might be a bug. If it is a bug, it will be fixed in a future version.
=head2 Autodeferring
C<Tie::File> tries to guess when deferred writing might be helpful,
and to turn it on and off automatically.
for (@a) {
$_ = "> $_";
}
In this example, only the first two assignments will be done
immediately; after this, all the changes to the file will be deferred
up to the user-specified memory limit.
You should usually be able to ignore this and just use the module
without thinking about deferring. However, special applications may
require fine control over which writes are deferred, or may require
that all writes be immediate. To disable the autodeferment feature,
use
(tied @o)->autodefer(0);
or
tie @array, 'Tie::File', $file, autodefer => 0;
Similarly, C<-E<gt>autodefer(1)> re-enables autodeferment, and
C<-E<gt>autodefer()> recovers the current value of the autodefer setting.
=head1 CONCURRENT ACCESS TO FILES
Caching and deferred writing are inappropriate if you want the same
file to be accessed simultaneously from more than one process. Other
optimizations performed internally by this module are also
incompatible with concurrent access. A future version of this module will
support a C<concurrent =E<gt> 1> option that enables safe concurrent access.
Previous versions of this documentation suggested using C<memory
=E<gt> 0> for safe concurrent access. This was mistaken. Tie::File
will not support safe concurrent access before version 0.96.
=head1 CAVEATS
(That's Latin for 'warnings'.)
=over 4
=item *
Reasonable effort was made to make this module efficient. Nevertheless,
changing the size of a record in the middle of a large file will
always be fairly slow, because everything after the new record must be
moved.
=item *
The behavior of tied arrays is not precisely the same as for regular
arrays. For example:
# This DOES print "How unusual!"
undef $a[10]; print "How unusual!\n" if defined $a[10];
C<undef>-ing a C<Tie::File> array element just blanks out the
corresponding record in the file. When you read it back again, you'll
get the empty string, so the supposedly-C<undef>'ed value will be
defined. Similarly, if you have C<autochomp> disabled, then
# This DOES print "How unusual!" if 'autochomp' is disabled
undef $a[10];
print "How unusual!\n" if $a[10];
Because when C<autochomp> is disabled, C<$a[10]> will read back as
C<"\n"> (or whatever the record separator string is.)
There are other minor differences, particularly regarding C<exists>
and C<delete>, but in general, the correspondence is extremely close.
=item *
I have supposed that since this module is concerned with file I/O,
almost all normal use of it will be heavily I/O bound. This means
that the time to maintain complicated data structures inside the
module will be dominated by the time to actually perform the I/O.
When there was an opportunity to spend CPU time to avoid doing I/O, I
usually tried to take it.
=item *
You might be tempted to think that deferred writing is like
transactions, with C<flush> as C<commit> and C<discard> as
C<rollback>, but it isn't, so don't.
=item *
There is a large memory overhead for each record offset and for each
cache entry: about 310 bytes per cached data record, and about 21 bytes per offset table entry.
The per-record overhead will limit the maximum number of records you
can access per file. Note that I<accessing> the length of the array
via C<$x = scalar @tied_file> accesses B<all> records and stores their
offsets. The same for C<foreach (@tied_file)>, even if you exit the
loop early.
=back
=head1 SUBCLASSING
This version promises absolutely nothing about the internals, which
may change without notice. A future version of the module will have a
well-defined and stable subclassing API.
=head1 WHAT ABOUT C<DB_File>?
People sometimes point out that L<DB_File> will do something similar,
and ask why C<Tie::File> module is necessary.
There are a number of reasons that you might prefer C<Tie::File>.
A list is available at C<http://perl.plover.com/TieFile/why-not-DB_File>.
=head1 AUTHOR
Mark Jason Dominus
To contact the author, send email to: C<mjd-perl-tiefile+@plover.com>
To receive an announcement whenever a new version of this module is
released, send a blank email message to
C<mjd-perl-tiefile-subscribe@plover.com>.
The most recent version of this module, including documentation and
any news of importance, will be available at
http://perl.plover.com/TieFile/
=head1 LICENSE
C<Tie::File> version 0.96 is copyright (C) 2003 Mark Jason Dominus.
This library is free software; you may redistribute it and/or modify
it under the same terms as Perl itself.
These terms are your choice of any of (1) the Perl Artistic Licence,
or (2) version 2 of the GNU General Public License as published by the
Free Software Foundation, or (3) any later version of the GNU General
Public License.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this library program; it should be in the file C<COPYING>.
If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA
For licensing inquiries, contact the author at:
Mark Jason Dominus
255 S. Warnock St.
Philadelphia, PA 19107
=head1 WARRANTY
C<Tie::File> version 0.98 comes with ABSOLUTELY NO WARRANTY.
For details, see the license.
=head1 THANKS
Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this in the
core when I hadn't written it yet, and for generally being helpful,
supportive, and competent. (Usually the rule is "choose any one.")
Also big thanks to Abhijit Menon-Sen for all of the same things.
Special thanks to Craig Berry and Peter Prymmer (for VMS portability
help), Randy Kobes (for Win32 portability help), Clinton Pierce and
Autrijus Tang (for heroic eleventh-hour Win32 testing above and beyond
the call of duty), Michael G Schwern (for testing advice), and the
rest of the CPAN testers (for testing generally).
Special thanks to Tels for suggesting several speed and memory
optimizations.
Additional thanks to:
Edward Avis /
Mattia Barbon /
Tom Christiansen /
Gerrit Haase /
Gurusamy Sarathy /
Jarkko Hietaniemi (again) /
Nikola Knezevic /
John Kominetz /
Nick Ing-Simmons /
Tassilo von Parseval /
H. Dieter Pearcey /
Slaven Rezic /
Eric Roode /
Peter Scott /
Peter Somu /
Autrijus Tang (again) /
Tels (again) /
Juerd Waalboer /
Todd Rinaldo
=head1 TODO
More tests. (Stuff I didn't think of yet.)
Paragraph mode?
Fixed-length mode. Leave-blanks mode.
Maybe an autolocking mode?
For many common uses of the module, the read cache is a liability.
For example, a program that inserts a single record, or that scans the
file once, will have a cache hit rate of zero. This suggests a major
optimization: The cache should be initially disabled. Here's a hybrid
approach: Initially, the cache is disabled, but the cache code
maintains statistics about how high the hit rate would be *if* it were
enabled. When it sees the hit rate get high enough, it enables
itself. The STAT comments in this code are the beginning of an
implementation of this.
Record locking with fcntl()? Then the module might support an undo
log and get real transactions. What a tour de force that would be.
Keeping track of the highest cached record. This would allow reads-in-a-row
to skip the cache lookup faster (if reading from 1..N with empty cache at
start, the last cached value will be always N-1).
More tests.
=cut
|