1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
#ifdef __cplusplus
extern "C" {
#endif
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#include <time.h>
#ifdef __cplusplus
}
#endif
/* XXX struct tm on some systems (SunOS4/BSD) contains extra (non POSIX)
* fields for which we don't have Configure support yet:
* char *tm_zone; -- abbreviation of timezone name
* long tm_gmtoff; -- offset from GMT in seconds
* To workaround core dumps from the uninitialised tm_zone we get the
* system to give us a reasonable struct to copy. This fix means that
* strftime uses the tm_zone and tm_gmtoff values returned by
* localtime(time()). That should give the desired result most of the
* time. But probably not always!
*
* This is a temporary workaround to be removed once Configure
* support is added and NETaa14816 is considered in full.
* It does not address tzname aspects of NETaa14816.
*/
#if !defined(HAS_GNULIBC)
# ifndef STRUCT_TM_HASZONE
# define STRUCT_TM_HASZONE
# else
# define USE_TM_GMTOFF
# endif
#endif
#define DAYS_PER_YEAR 365
#define DAYS_PER_QYEAR (4*DAYS_PER_YEAR+1)
#define DAYS_PER_CENT (25*DAYS_PER_QYEAR-1)
#define DAYS_PER_QCENT (4*DAYS_PER_CENT+1)
#define SECS_PER_HOUR (60*60)
#define SECS_PER_DAY (24*SECS_PER_HOUR)
/* parentheses deliberately absent on these two, otherwise they don't work */
#define MONTH_TO_DAYS 153/5
#define DAYS_TO_MONTH 5/153
/* offset to bias by March (month 4) 1st between month/mday & year finding */
#define YEAR_ADJUST (4*MONTH_TO_DAYS+1)
/* as used here, the algorithm leaves Sunday as day 1 unless we adjust it */
#define WEEKDAY_BIAS 6 /* (1+6)%7 makes Sunday 0 again */
#ifdef STRUCT_TM_HASZONE
static void
my_init_tm(struct tm *ptm) /* see mktime, strftime and asctime */
{
Time_t now;
(void)time(&now);
Copy(localtime(&now), ptm, 1, struct tm);
}
#else
# define my_init_tm(ptm)
#endif
/*
* my_mini_mktime - normalise struct tm values without the localtime()
* semantics (and overhead) of mktime().
*/
static void
my_mini_mktime(struct tm *ptm)
{
int yearday;
int secs;
int month, mday, year, jday;
int odd_cent, odd_year;
/*
* Year/day algorithm notes:
*
* With a suitable offset for numeric value of the month, one can find
* an offset into the year by considering months to have 30.6 (153/5) days,
* using integer arithmetic (i.e., with truncation). To avoid too much
* messing about with leap days, we consider January and February to be
* the 13th and 14th month of the previous year. After that transformation,
* we need the month index we use to be high by 1 from 'normal human' usage,
* so the month index values we use run from 4 through 15.
*
* Given that, and the rules for the Gregorian calendar (leap years are those
* divisible by 4 unless also divisible by 100, when they must be divisible
* by 400 instead), we can simply calculate the number of days since some
* arbitrary 'beginning of time' by futzing with the (adjusted) year number,
* the days we derive from our month index, and adding in the day of the
* month. The value used here is not adjusted for the actual origin which
* it normally would use (1 January A.D. 1), since we're not exposing it.
* We're only building the value so we can turn around and get the
* normalised values for the year, month, day-of-month, and day-of-year.
*
* For going backward, we need to bias the value we're using so that we find
* the right year value. (Basically, we don't want the contribution of
* March 1st to the number to apply while deriving the year). Having done
* that, we 'count up' the contribution to the year number by accounting for
* full quadracenturies (400-year periods) with their extra leap days, plus
* the contribution from full centuries (to avoid counting in the lost leap
* days), plus the contribution from full quad-years (to count in the normal
* leap days), plus the leftover contribution from any non-leap years.
* At this point, if we were working with an actual leap day, we'll have 0
* days left over. This is also true for March 1st, however. So, we have
* to special-case that result, and (earlier) keep track of the 'odd'
* century and year contributions. If we got 4 extra centuries in a qcent,
* or 4 extra years in a qyear, then it's a leap day and we call it 29 Feb.
* Otherwise, we add back in the earlier bias we removed (the 123 from
* figuring in March 1st), find the month index (integer division by 30.6),
* and the remainder is the day-of-month. We then have to convert back to
* 'real' months (including fixing January and February from being 14/15 in
* the previous year to being in the proper year). After that, to get
* tm_yday, we work with the normalised year and get a new yearday value for
* January 1st, which we subtract from the yearday value we had earlier,
* representing the date we've re-built. This is done from January 1
* because tm_yday is 0-origin.
*
* Since POSIX time routines are only guaranteed to work for times since the
* UNIX epoch (00:00:00 1 Jan 1970 UTC), the fact that this algorithm
* applies Gregorian calendar rules even to dates before the 16th century
* doesn't bother me. Besides, you'd need cultural context for a given
* date to know whether it was Julian or Gregorian calendar, and that's
* outside the scope for this routine. Since we convert back based on the
* same rules we used to build the yearday, you'll only get strange results
* for input which needed normalising, or for the 'odd' century years which
* were leap years in the Julian calander but not in the Gregorian one.
* I can live with that.
*
* This algorithm also fails to handle years before A.D. 1 gracefully, but
* that's still outside the scope for POSIX time manipulation, so I don't
* care.
*/
year = 1900 + ptm->tm_year;
month = ptm->tm_mon;
mday = ptm->tm_mday;
/* allow given yday with no month & mday to dominate the result */
if (ptm->tm_yday >= 0 && mday <= 0 && month <= 0) {
month = 0;
mday = 0;
jday = 1 + ptm->tm_yday;
}
else {
jday = 0;
}
if (month >= 2)
month+=2;
else
month+=14, year--;
yearday = DAYS_PER_YEAR * year + year/4 - year/100 + year/400;
yearday += month*MONTH_TO_DAYS + mday + jday;
/*
* Note that we don't know when leap-seconds were or will be,
* so we have to trust the user if we get something which looks
* like a sensible leap-second. Wild values for seconds will
* be rationalised, however.
*/
if ((unsigned) ptm->tm_sec <= 60) {
secs = 0;
}
else {
secs = ptm->tm_sec;
ptm->tm_sec = 0;
}
secs += 60 * ptm->tm_min;
secs += SECS_PER_HOUR * ptm->tm_hour;
if (secs < 0) {
if (secs-(secs/SECS_PER_DAY*SECS_PER_DAY) < 0) {
/* got negative remainder, but need positive time */
/* back off an extra day to compensate */
yearday += (secs/SECS_PER_DAY)-1;
secs -= SECS_PER_DAY * (secs/SECS_PER_DAY - 1);
}
else {
yearday += (secs/SECS_PER_DAY);
secs -= SECS_PER_DAY * (secs/SECS_PER_DAY);
}
}
else if (secs >= SECS_PER_DAY) {
yearday += (secs/SECS_PER_DAY);
secs %= SECS_PER_DAY;
}
ptm->tm_hour = secs/SECS_PER_HOUR;
secs %= SECS_PER_HOUR;
ptm->tm_min = secs/60;
secs %= 60;
ptm->tm_sec += secs;
/* done with time of day effects */
/*
* The algorithm for yearday has (so far) left it high by 428.
* To avoid mistaking a legitimate Feb 29 as Mar 1, we need to
* bias it by 123 while trying to figure out what year it
* really represents. Even with this tweak, the reverse
* translation fails for years before A.D. 0001.
* It would still fail for Feb 29, but we catch that one below.
*/
jday = yearday; /* save for later fixup vis-a-vis Jan 1 */
yearday -= YEAR_ADJUST;
year = (yearday / DAYS_PER_QCENT) * 400;
yearday %= DAYS_PER_QCENT;
odd_cent = yearday / DAYS_PER_CENT;
year += odd_cent * 100;
yearday %= DAYS_PER_CENT;
year += (yearday / DAYS_PER_QYEAR) * 4;
yearday %= DAYS_PER_QYEAR;
odd_year = yearday / DAYS_PER_YEAR;
year += odd_year;
yearday %= DAYS_PER_YEAR;
if (!yearday && (odd_cent==4 || odd_year==4)) { /* catch Feb 29 */
month = 1;
yearday = 29;
}
else {
yearday += YEAR_ADJUST; /* recover March 1st crock */
month = yearday*DAYS_TO_MONTH;
yearday -= month*MONTH_TO_DAYS;
/* recover other leap-year adjustment */
if (month > 13) {
month-=14;
year++;
}
else {
month-=2;
}
}
ptm->tm_year = year - 1900;
if (yearday) {
ptm->tm_mday = yearday;
ptm->tm_mon = month;
}
else {
ptm->tm_mday = 31;
ptm->tm_mon = month - 1;
}
/* re-build yearday based on Jan 1 to get tm_yday */
year--;
yearday = year*DAYS_PER_YEAR + year/4 - year/100 + year/400;
yearday += 14*MONTH_TO_DAYS + 1;
ptm->tm_yday = jday - yearday;
/* fix tm_wday if not overridden by caller */
ptm->tm_wday = (jday + WEEKDAY_BIAS) % 7;
}
#if defined(WIN32) || (defined(__QNX__) && defined(__WATCOMC__)) /* No strptime on Win32 or QNX4 */
#define strncasecmp(x,y,n) strnicmp(x,y,n)
#if defined(WIN32)
#if defined(__BORLANDC__)
void * __cdecl _EXPFUNC alloca(_SIZE_T __size);
#else
#define alloca _alloca
#endif
#endif
#include <time.h>
#include <ctype.h>
#include <string.h>
#ifdef _THREAD_SAFE
#include <pthread.h>
#include "pthread_private.h"
#endif /* _THREAD_SAFE */
static char * _strptime(const char *, const char *, struct tm *);
#ifdef _THREAD_SAFE
static struct pthread_mutex _gotgmt_mutexd = PTHREAD_MUTEX_STATIC_INITIALIZER;
static pthread_mutex_t gotgmt_mutex = &_gotgmt_mutexd;
#endif
static int got_GMT;
#define asizeof(a) (sizeof (a) / sizeof ((a)[0]))
struct lc_time_T {
const char * mon[12];
const char * month[12];
const char * wday[7];
const char * weekday[7];
const char * X_fmt;
const char * x_fmt;
const char * c_fmt;
const char * am;
const char * pm;
const char * date_fmt;
const char * alt_month[12];
const char * Ef_fmt;
const char * EF_fmt;
};
struct lc_time_T _time_localebuf;
int _time_using_locale;
const struct lc_time_T _C_time_locale = {
{
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
}, {
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"
}, {
"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"
}, {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"
},
/* X_fmt */
"%H:%M:%S",
/*
** x_fmt
** Since the C language standard calls for
** "date, using locale's date format," anything goes.
** Using just numbers (as here) makes Quakers happier;
** it's also compatible with SVR4.
*/
"%m/%d/%y",
/*
** c_fmt (ctime-compatible)
** Not used, just compatibility placeholder.
*/
NULL,
/* am */
"AM",
/* pm */
"PM",
/* date_fmt */
"%a %Ef %X %Z %Y",
{
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"
},
/* Ef_fmt
** To determine short months / day order
*/
"%b %e",
/* EF_fmt
** To determine long months / day order
*/
"%B %e"
};
#define Locale (&_C_time_locale)
static char *
_strptime(const char *buf, const char *fmt, struct tm *tm)
{
char c;
const char *ptr;
int i,
len;
int Ealternative, Oalternative;
ptr = fmt;
while (*ptr != 0) {
if (*buf == 0)
break;
c = *ptr++;
if (c != '%') {
if (isspace((unsigned char)c))
while (*buf != 0 && isspace((unsigned char)*buf))
buf++;
else if (c != *buf++)
return 0;
continue;
}
Ealternative = 0;
Oalternative = 0;
label:
c = *ptr++;
switch (c) {
case 0:
case '%':
if (*buf++ != '%')
return 0;
break;
case '+':
buf = _strptime(buf, Locale->date_fmt, tm);
if (buf == 0)
return 0;
break;
case 'C':
if (!isdigit((unsigned char)*buf))
return 0;
/* XXX This will break for 3-digit centuries. */
len = 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (i < 19)
return 0;
tm->tm_year = i * 100 - 1900;
break;
case 'c':
/* NOTE: c_fmt is intentionally ignored */
buf = _strptime(buf, "%a %Ef %T %Y", tm);
if (buf == 0)
return 0;
break;
case 'D':
buf = _strptime(buf, "%m/%d/%y", tm);
if (buf == 0)
return 0;
break;
case 'E':
if (Ealternative || Oalternative)
break;
Ealternative++;
goto label;
case 'O':
if (Ealternative || Oalternative)
break;
Oalternative++;
goto label;
case 'F':
case 'f':
if (!Ealternative)
break;
buf = _strptime(buf, (c == 'f') ? Locale->Ef_fmt : Locale->EF_fmt, tm);
if (buf == 0)
return 0;
break;
case 'R':
buf = _strptime(buf, "%H:%M", tm);
if (buf == 0)
return 0;
break;
case 'r':
buf = _strptime(buf, "%I:%M:%S %p", tm);
if (buf == 0)
return 0;
break;
case 'T':
buf = _strptime(buf, "%H:%M:%S", tm);
if (buf == 0)
return 0;
break;
case 'X':
buf = _strptime(buf, Locale->X_fmt, tm);
if (buf == 0)
return 0;
break;
case 'x':
buf = _strptime(buf, Locale->x_fmt, tm);
if (buf == 0)
return 0;
break;
case 'j':
if (!isdigit((unsigned char)*buf))
return 0;
len = 3;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (i < 1 || i > 366)
return 0;
tm->tm_yday = i - 1;
break;
case 'M':
case 'S':
if (*buf == 0 || isspace((unsigned char)*buf))
break;
if (!isdigit((unsigned char)*buf))
return 0;
len = 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (c == 'M') {
if (i > 59)
return 0;
tm->tm_min = i;
} else {
if (i > 60)
return 0;
tm->tm_sec = i;
}
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'H':
case 'I':
case 'k':
case 'l':
/*
* Of these, %l is the only specifier explicitly
* documented as not being zero-padded. However,
* there is no harm in allowing zero-padding.
*
* XXX The %l specifier may gobble one too many
* digits if used incorrectly.
*/
if (!isdigit((unsigned char)*buf))
return 0;
len = 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (c == 'H' || c == 'k') {
if (i > 23)
return 0;
} else if (i > 12)
return 0;
tm->tm_hour = i;
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'p':
/*
* XXX This is bogus if parsed before hour-related
* specifiers.
*/
len = strlen(Locale->am);
if (strncasecmp(buf, Locale->am, len) == 0) {
if (tm->tm_hour > 12)
return 0;
if (tm->tm_hour == 12)
tm->tm_hour = 0;
buf += len;
break;
}
len = strlen(Locale->pm);
if (strncasecmp(buf, Locale->pm, len) == 0) {
if (tm->tm_hour > 12)
return 0;
if (tm->tm_hour != 12)
tm->tm_hour += 12;
buf += len;
break;
}
return 0;
case 'A':
case 'a':
for (i = 0; i < asizeof(Locale->weekday); i++) {
if (c == 'A') {
len = strlen(Locale->weekday[i]);
if (strncasecmp(buf,
Locale->weekday[i],
len) == 0)
break;
} else {
len = strlen(Locale->wday[i]);
if (strncasecmp(buf,
Locale->wday[i],
len) == 0)
break;
}
}
if (i == asizeof(Locale->weekday))
return 0;
tm->tm_wday = i;
buf += len;
break;
case 'U':
case 'W':
/*
* XXX This is bogus, as we can not assume any valid
* information present in the tm structure at this
* point to calculate a real value, so just check the
* range for now.
*/
if (!isdigit((unsigned char)*buf))
return 0;
len = 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (i > 53)
return 0;
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'w':
if (!isdigit((unsigned char)*buf))
return 0;
i = *buf - '0';
if (i > 6)
return 0;
tm->tm_wday = i;
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'd':
case 'e':
/*
* The %e specifier is explicitly documented as not
* being zero-padded but there is no harm in allowing
* such padding.
*
* XXX The %e specifier may gobble one too many
* digits if used incorrectly.
*/
if (!isdigit((unsigned char)*buf))
return 0;
len = 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (i > 31)
return 0;
tm->tm_mday = i;
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'B':
case 'b':
case 'h':
for (i = 0; i < asizeof(Locale->month); i++) {
if (Oalternative) {
if (c == 'B') {
len = strlen(Locale->alt_month[i]);
if (strncasecmp(buf,
Locale->alt_month[i],
len) == 0)
break;
}
} else {
if (c == 'B') {
len = strlen(Locale->month[i]);
if (strncasecmp(buf,
Locale->month[i],
len) == 0)
break;
} else {
len = strlen(Locale->mon[i]);
if (strncasecmp(buf,
Locale->mon[i],
len) == 0)
break;
}
}
}
if (i == asizeof(Locale->month))
return 0;
tm->tm_mon = i;
buf += len;
break;
case 'm':
if (!isdigit((unsigned char)*buf))
return 0;
len = 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (i < 1 || i > 12)
return 0;
tm->tm_mon = i - 1;
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'Y':
case 'y':
if (*buf == 0 || isspace((unsigned char)*buf))
break;
if (!isdigit((unsigned char)*buf))
return 0;
len = (c == 'Y') ? 4 : 2;
for (i = 0; len && *buf != 0 && isdigit((unsigned char)*buf); buf++) {
i *= 10;
i += *buf - '0';
len--;
}
if (c == 'Y')
i -= 1900;
if (c == 'y' && i < 69)
i += 100;
if (i < 0)
return 0;
tm->tm_year = i;
if (*buf != 0 && isspace((unsigned char)*buf))
while (*ptr != 0 && !isspace((unsigned char)*ptr))
ptr++;
break;
case 'Z':
{
const char *cp;
char *zonestr;
for (cp = buf; *cp && isupper((unsigned char)*cp); ++cp)
{/*empty*/}
if (cp - buf) {
zonestr = (char *)alloca(cp - buf + 1);
strncpy(zonestr, buf, cp - buf);
zonestr[cp - buf] = '\0';
tzset();
if (0 == strcmp(zonestr, "GMT")) {
got_GMT = 1;
} else {
return 0;
}
buf += cp - buf;
}
}
break;
}
}
return (char *)buf;
}
char *
strptime(const char *buf, const char *fmt, struct tm *tm)
{
char *ret;
#ifdef _THREAD_SAFE
pthread_mutex_lock(&gotgmt_mutex);
#endif
got_GMT = 0;
ret = _strptime(buf, fmt, tm);
#ifdef _THREAD_SAFE
pthread_mutex_unlock(&gotgmt_mutex);
#endif
return ret;
}
#endif /* Mac OS X */
MODULE = Time::Piece PACKAGE = Time::Piece
PROTOTYPES: ENABLE
void
_strftime(fmt, sec, min, hour, mday, mon, year, wday = -1, yday = -1, isdst = -1)
char * fmt
int sec
int min
int hour
int mday
int mon
int year
int wday
int yday
int isdst
CODE:
{
char tmpbuf[128];
struct tm mytm;
int len;
memset(&mytm, 0, sizeof(mytm));
my_init_tm(&mytm); /* XXX workaround - see my_init_tm() above */
mytm.tm_sec = sec;
mytm.tm_min = min;
mytm.tm_hour = hour;
mytm.tm_mday = mday;
mytm.tm_mon = mon;
mytm.tm_year = year;
mytm.tm_wday = wday;
mytm.tm_yday = yday;
mytm.tm_isdst = isdst;
my_mini_mktime(&mytm);
len = strftime(tmpbuf, sizeof tmpbuf, fmt, &mytm);
/*
** The following is needed to handle to the situation where
** tmpbuf overflows. Basically we want to allocate a buffer
** and try repeatedly. The reason why it is so complicated
** is that getting a return value of 0 from strftime can indicate
** one of the following:
** 1. buffer overflowed,
** 2. illegal conversion specifier, or
** 3. the format string specifies nothing to be returned(not
** an error). This could be because format is an empty string
** or it specifies %p that yields an empty string in some locale.
** If there is a better way to make it portable, go ahead by
** all means.
*/
if ((len > 0 && len < sizeof(tmpbuf)) || (len == 0 && *fmt == '\0'))
ST(0) = sv_2mortal(newSVpv(tmpbuf, len));
else {
/* Possibly buf overflowed - try again with a bigger buf */
int fmtlen = strlen(fmt);
int bufsize = fmtlen + sizeof(tmpbuf);
char* buf;
int buflen;
New(0, buf, bufsize, char);
while (buf) {
buflen = strftime(buf, bufsize, fmt, &mytm);
if (buflen > 0 && buflen < bufsize)
break;
/* heuristic to prevent out-of-memory errors */
if (bufsize > 100*fmtlen) {
Safefree(buf);
buf = NULL;
break;
}
bufsize *= 2;
Renew(buf, bufsize, char);
}
if (buf) {
ST(0) = sv_2mortal(newSVpv(buf, buflen));
Safefree(buf);
}
else
ST(0) = sv_2mortal(newSVpv(tmpbuf, len));
}
}
void
_tzset()
PPCODE:
tzset();
void
_strptime ( string, format )
char * string
char * format
PREINIT:
struct tm mytm;
time_t t;
char * remainder;
PPCODE:
t = 0;
mytm = *gmtime(&t);
remainder = (char *)strptime(string, format, &mytm);
if (remainder == NULL) {
croak("Error parsing time");
}
if (*remainder != '\0') {
warn("garbage at end of string in strptime: %s", remainder);
}
my_mini_mktime(&mytm);
/* warn("tm: %d-%d-%d %d:%d:%d\n", mytm.tm_year, mytm.tm_mon, mytm.tm_mday, mytm.tm_hour, mytm.tm_min, mytm.tm_sec); */
EXTEND(SP, 11);
PUSHs(sv_2mortal(newSViv(mytm.tm_sec)));
PUSHs(sv_2mortal(newSViv(mytm.tm_min)));
PUSHs(sv_2mortal(newSViv(mytm.tm_hour)));
PUSHs(sv_2mortal(newSViv(mytm.tm_mday)));
PUSHs(sv_2mortal(newSViv(mytm.tm_mon)));
PUSHs(sv_2mortal(newSViv(mytm.tm_year)));
PUSHs(sv_2mortal(newSViv(mytm.tm_wday)));
PUSHs(sv_2mortal(newSViv(mytm.tm_yday)));
/* isdst */
PUSHs(sv_2mortal(newSViv(0)));
/* epoch */
PUSHs(sv_2mortal(newSViv(0)));
/* islocal */
PUSHs(sv_2mortal(newSViv(0)));
|