1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
|
/* hv.h
*
* Copyright (C) 1991, 1992, 1993, 1996, 1997, 1998, 1999,
* 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008, by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/* entry in hash value chain */
struct he {
/* Keep hent_next first in this structure, because sv_free_arenas take
advantage of this to share code between the he arenas and the SV
body arenas */
HE *hent_next; /* next entry in chain */
HEK *hent_hek; /* hash key */
union {
SV *hent_val; /* scalar value that was hashed */
Size_t hent_refcount; /* references for this shared hash key */
} he_valu;
};
/* hash key -- defined separately for use as shared pointer */
struct hek {
U32 hek_hash; /* hash of key */
I32 hek_len; /* length of hash key */
char hek_key[1]; /* variable-length hash key */
/* the hash-key is \0-terminated */
/* after the \0 there is a byte for flags, such as whether the key
is UTF-8 */
};
struct shared_he {
struct he shared_he_he;
struct hek shared_he_hek;
};
/* Subject to change.
Don't access this directly.
Use the funcs in mro.c
*/
struct mro_alg {
AV *(*resolve)(pTHX_ HV* stash, U32 level);
const char *name;
U16 length;
U16 kflags; /* For the hash API - set HVhek_UTF8 if name is UTF-8 */
U32 hash; /* or 0 */
};
struct mro_meta {
/* a hash holding the different MROs private data. */
HV *mro_linear_all;
/* a pointer directly to the current MROs private data. If mro_linear_all
is NULL, this owns the SV reference, else it is just a pointer to a
value stored in and owned by mro_linear_all. */
SV *mro_linear_current;
HV *mro_nextmethod; /* next::method caching */
U32 cache_gen; /* Bumping this invalidates our method cache */
U32 pkg_gen; /* Bumps when local methods/@ISA change */
const struct mro_alg *mro_which; /* which mro alg is in use? */
HV *isa; /* Everything this class @ISA */
};
#define MRO_GET_PRIVATE_DATA(smeta, which) \
(((smeta)->mro_which && (which) == (smeta)->mro_which) \
? (smeta)->mro_linear_current \
: Perl_mro_get_private_data(aTHX_ (smeta), (which)))
/* Subject to change.
Don't access this directly.
*/
union _xhvnameu {
HEK *xhvnameu_name; /* When xhv_name_count is 0 */
HEK **xhvnameu_names; /* When xhv_name_count is non-0 */
};
struct xpvhv_aux {
union _xhvnameu xhv_name_u; /* name, if a symbol table */
AV *xhv_backreferences; /* back references for weak references */
HE *xhv_eiter; /* current entry of iterator */
I32 xhv_riter; /* current root of iterator */
/* Concerning xhv_name_count: When non-zero, xhv_name_u contains a pointer
* to an array of HEK pointers, this being the length. The first element is
* the name of the stash, which may be NULL. If xhv_name_count is positive,
* then *xhv_name is one of the effective names. If xhv_name_count is nega-
* tive, then xhv_name_u.xhvnameu_names[1] is the first effective name.
*/
I32 xhv_name_count;
struct mro_meta *xhv_mro_meta;
HV * xhv_super; /* SUPER method cache */
};
/* hash structure: */
/* This structure must match the beginning of struct xpvmg in sv.h. */
struct xpvhv {
HV* xmg_stash; /* class package */
union _xmgu xmg_u;
STRLEN xhv_keys; /* total keys, including placeholders */
STRLEN xhv_max; /* subscript of last element of xhv_array */
};
/* hash a key */
/* The use of a temporary pointer and the casting games
* is needed to serve the dual purposes of
* (a) the hashed data being interpreted as "unsigned char" (new since 5.8,
* a "char" can be either signed or unsigned, depending on the compiler)
* (b) catering for old code that uses a "char"
*
* The "hash seed" feature was added in Perl 5.8.1 to perturb the results
* to avoid "algorithmic complexity attacks".
*
* If USE_HASH_SEED is defined, hash randomisation is done by default
* If USE_HASH_SEED_EXPLICIT is defined, hash randomisation is done
* only if the environment variable PERL_HASH_SEED is set.
* (see also perl.c:perl_parse() and S_init_tls_and_interp() and util.c:get_hash_seed())
*/
#ifndef PERL_HASH_SEED
# if defined(USE_HASH_SEED) || defined(USE_HASH_SEED_EXPLICIT)
# define PERL_HASH_SEED PL_hash_seed
# else
# define PERL_HASH_SEED "PeRlHaShhAcKpErl"
# endif
#endif
#define PERL_HASH_SEED_U32 *((U32*)PERL_HASH_SEED)
#define PERL_HASH_SEED_U64_1 (((U64*)PERL_HASH_SEED)[0])
#define PERL_HASH_SEED_U64_2 (((U64*)PERL_HASH_SEED)[1])
#define PERL_HASH_SEED_U16_x(idx) (((U16*)PERL_HASH_SEED)[idx])
/* legacy - only mod_perl should be doing this. */
#ifdef PERL_HASH_INTERNAL_ACCESS
#define PERL_HASH_INTERNAL(hash,str,len) PERL_HASH(hash,str,len)
#endif
/* Uncomment one of the following lines to use an alternative hash algorithm.
#define PERL_HASH_FUNC_SDBM
#define PERL_HASH_FUNC_DJB2
#define PERL_HASH_FUNC_SUPERFAST
#define PERL_HASH_FUNC_MURMUR3
#define PERL_HASH_FUNC_SIPHASH
#define PERL_HASH_FUNC_ONE_AT_A_TIME
#define PERL_HASH_FUNC_ONE_AT_A_TIME_OLD
#define PERL_HASH_FUNC_BUZZHASH16
*/
#if !( 0 \
|| defined(PERL_HASH_FUNC_SDBM) \
|| defined(PERL_HASH_FUNC_DJB2) \
|| defined(PERL_HASH_FUNC_SUPERFAST) \
|| defined(PERL_HASH_FUNC_MURMUR3) \
|| defined(PERL_HASH_FUNC_ONE_AT_A_TIME) \
|| defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD) \
|| defined(PERL_HASH_FUNC_BUZZHASH16) \
)
#ifdef U64
#define PERL_HASH_FUNC_SIPHASH
#else
#define PERL_HASH_FUNC_ONE_AT_A_TIME
#endif
#endif
#if defined(PERL_HASH_FUNC_BUZZHASH16)
/* "BUZZHASH16"
*
* I whacked this together while just playing around.
*
* The idea is that instead of hashing the actual string input we use the
* bytes of the string as an index into a table of randomly generated
* 16 bit values.
*
* A left rotate is used to "mix" in previous bits as we go, and I borrowed
* the avalanche function from one-at-a-time for the final step. A lookup
* into the table based on the lower 8 bits of the length combined with
* the length itself is used as an itializer.
*
* The resulting hash value has no actual bits fed in from the string so
* I would guess it is pretty secure, although I am not a cryptographer
* and have no idea for sure. Nor has it been rigorously tested. On the
* other hand it is reasonably fast, and seems to produce reasonable
* distributions.
*
* Yves Orton
*/
#define PERL_HASH_FUNC "BUZZHASH16"
#define PERL_HASH_SEED_BYTES 512 /* 2 bytes per octet value, 2 * 256 */
/* Find best way to ROTL32 */
#if defined(_MSC_VER)
#include <stdlib.h> /* Microsoft put _rotl declaration in here */
#define BUZZHASH_ROTL32(x,r) _rotl(x,r)
#else
/* gcc recognises this code and generates a rotate instruction for CPUs with one */
#define BUZZHASH_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r)))
#endif
#define PERL_HASH(hash,str,len) \
STMT_START { \
const char * const s_PeRlHaSh_tmp = (str); \
const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
const unsigned char *end_PeRlHaSh = (const unsigned char *)s_PeRlHaSh + len; \
U32 hash_PeRlHaSh = (PERL_HASH_SEED_U16_x(len & 0xff) << 16) + len; \
while (s_PeRlHaSh < end_PeRlHaSh) { \
hash_PeRlHaSh ^= PERL_HASH_SEED_U16_x((U8)*s_PeRlHaSh++); \
hash_PeRlHaSh += BUZZHASH_ROTL32(hash_PeRlHaSh,11); \
} \
hash_PeRlHaSh += (hash_PeRlHaSh << 3); \
hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \
(hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \
} STMT_END
#elif defined(PERL_HASH_FUNC_SIPHASH)
#define PERL_HASH_FUNC "SIPHASH"
#define PERL_HASH_SEED_BYTES 16
/* This is SipHash by Jean-Philippe Aumasson and Daniel J. Bernstein.
* The authors claim it is relatively secure compared to the alternatives
* and that performance wise it is a suitable hash for languages like Perl.
* See:
*
* https://www.131002.net/siphash/
*
* This implementation seems to perform slightly slower than one-at-a-time for
* short keys, but degrades slower for longer keys. Murmur Hash outperforms it
* regardless of keys size.
*
* It is 64 bit only.
*/
#define PERL_HASH_NEEDS_TWO_SEEDS
#ifndef U64
#define U64 uint64_t
#endif
#define ROTL(x,b) (U64)( ((x) << (b)) | ( (x) >> (64 - (b))) )
#define U32TO8_LE(p, v) \
(p)[0] = (U8)((v) ); (p)[1] = (U8)((v) >> 8); \
(p)[2] = (U8)((v) >> 16); (p)[3] = (U8)((v) >> 24);
#define U64TO8_LE(p, v) \
U32TO8_LE((p), (U32)((v) )); \
U32TO8_LE((p) + 4, (U32)((v) >> 32));
#define U8TO64_LE(p) \
(((U64)((p)[0]) ) | \
((U64)((p)[1]) << 8) | \
((U64)((p)[2]) << 16) | \
((U64)((p)[3]) << 24) | \
((U64)((p)[4]) << 32) | \
((U64)((p)[5]) << 40) | \
((U64)((p)[6]) << 48) | \
((U64)((p)[7]) << 56))
#define SIPROUND \
do { \
v0_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,13); v1_PeRlHaSh ^= v0_PeRlHaSh; v0_PeRlHaSh=ROTL(v0_PeRlHaSh,32); \
v2_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,16); v3_PeRlHaSh ^= v2_PeRlHaSh; \
v0_PeRlHaSh += v3_PeRlHaSh; v3_PeRlHaSh=ROTL(v3_PeRlHaSh,21); v3_PeRlHaSh ^= v0_PeRlHaSh; \
v2_PeRlHaSh += v1_PeRlHaSh; v1_PeRlHaSh=ROTL(v1_PeRlHaSh,17); v1_PeRlHaSh ^= v2_PeRlHaSh; v2_PeRlHaSh=ROTL(v2_PeRlHaSh,32); \
} while(0)
/* SipHash-2-4 */
#define PERL_HASH(hash,str,len) STMT_START { \
const char * const strtmp_PeRlHaSh = (str); \
const unsigned char *in_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \
const U32 inlen_PeRlHaSh = (len); \
/* "somepseudorandomlygeneratedbytes" */ \
U64 v0_PeRlHaSh = 0x736f6d6570736575ULL; \
U64 v1_PeRlHaSh = 0x646f72616e646f6dULL; \
U64 v2_PeRlHaSh = 0x6c7967656e657261ULL; \
U64 v3_PeRlHaSh = 0x7465646279746573ULL; \
\
U64 b_PeRlHaSh; \
U64 k0_PeRlHaSh = PERL_HASH_SEED_U64_1; \
U64 k1_PeRlHaSh = PERL_HASH_SEED_U64_2; \
U64 m_PeRlHaSh; \
const int left_PeRlHaSh = inlen_PeRlHaSh & 7; \
const U8 *end_PeRlHaSh = in_PeRlHaSh + inlen_PeRlHaSh - left_PeRlHaSh; \
\
b_PeRlHaSh = ( ( U64 )(len) ) << 56; \
v3_PeRlHaSh ^= k1_PeRlHaSh; \
v2_PeRlHaSh ^= k0_PeRlHaSh; \
v1_PeRlHaSh ^= k1_PeRlHaSh; \
v0_PeRlHaSh ^= k0_PeRlHaSh; \
\
for ( ; in_PeRlHaSh != end_PeRlHaSh; in_PeRlHaSh += 8 ) \
{ \
m_PeRlHaSh = U8TO64_LE( in_PeRlHaSh ); \
v3_PeRlHaSh ^= m_PeRlHaSh; \
SIPROUND; \
SIPROUND; \
v0_PeRlHaSh ^= m_PeRlHaSh; \
} \
\
switch( left_PeRlHaSh ) \
{ \
case 7: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 6] ) << 48; \
case 6: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 5] ) << 40; \
case 5: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 4] ) << 32; \
case 4: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 3] ) << 24; \
case 3: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 2] ) << 16; \
case 2: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 1] ) << 8; \
case 1: b_PeRlHaSh |= ( ( U64 )in_PeRlHaSh[ 0] ); break; \
case 0: break; \
} \
\
v3_PeRlHaSh ^= b_PeRlHaSh; \
SIPROUND; \
SIPROUND; \
v0_PeRlHaSh ^= b_PeRlHaSh; \
\
v2_PeRlHaSh ^= 0xff; \
SIPROUND; \
SIPROUND; \
SIPROUND; \
SIPROUND; \
b_PeRlHaSh = v0_PeRlHaSh ^ v1_PeRlHaSh ^ v2_PeRlHaSh ^ v3_PeRlHaSh; \
(hash)= (U32)(b_PeRlHaSh & U32_MAX); \
} STMT_END
#elif defined(PERL_HASH_FUNC_SUPERFAST)
#define PERL_HASH_FUNC "SUPERFAST"
#define PERL_HASH_SEED_BYTES 4
/* FYI: This is the "Super-Fast" algorithm mentioned by Bob Jenkins in
* (http://burtleburtle.net/bob/hash/doobs.html)
* It is by Paul Hsieh (c) 2004 and is analysed here
* http://www.azillionmonkeys.com/qed/hash.html
* license terms are here:
* http://www.azillionmonkeys.com/qed/weblicense.html
*/
#undef get16bits
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
#define get16bits(d) (*((const U16 *) (d)))
#endif
#if !defined (get16bits)
#define get16bits(d) ((((const U8 *)(d))[1] << UINT32_C(8))\
+((const U8 *)(d))[0])
#endif
#define PERL_HASH(hash,str,len) \
STMT_START { \
const char * const strtmp_PeRlHaSh = (str); \
const unsigned char *str_PeRlHaSh = (const unsigned char *)strtmp_PeRlHaSh; \
U32 len_PeRlHaSh = (len); \
U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
U32 tmp_PeRlHaSh; \
int rem_PeRlHaSh= len_PeRlHaSh & 3; \
len_PeRlHaSh >>= 2; \
\
for (;len_PeRlHaSh > 0; len_PeRlHaSh--) { \
hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
tmp_PeRlHaSh = (get16bits (str_PeRlHaSh+2) << 11) ^ hash_PeRlHaSh; \
hash_PeRlHaSh = (hash_PeRlHaSh << 16) ^ tmp_PeRlHaSh; \
str_PeRlHaSh += 2 * sizeof (U16); \
hash_PeRlHaSh += hash_PeRlHaSh >> 11; \
} \
\
/* Handle end cases */ \
switch (rem_PeRlHaSh) { \
case 3: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
hash_PeRlHaSh ^= hash_PeRlHaSh << 16; \
hash_PeRlHaSh ^= str_PeRlHaSh[sizeof (U16)] << 18; \
hash_PeRlHaSh += hash_PeRlHaSh >> 11; \
break; \
case 2: hash_PeRlHaSh += get16bits (str_PeRlHaSh); \
hash_PeRlHaSh ^= hash_PeRlHaSh << 11; \
hash_PeRlHaSh += hash_PeRlHaSh >> 17; \
break; \
case 1: hash_PeRlHaSh += *str_PeRlHaSh; \
hash_PeRlHaSh ^= hash_PeRlHaSh << 10; \
hash_PeRlHaSh += hash_PeRlHaSh >> 1; \
} \
\
/* Force "avalanching" of final 127 bits */ \
hash_PeRlHaSh ^= hash_PeRlHaSh << 3; \
hash_PeRlHaSh += hash_PeRlHaSh >> 5; \
hash_PeRlHaSh ^= hash_PeRlHaSh << 4; \
hash_PeRlHaSh += hash_PeRlHaSh >> 17; \
hash_PeRlHaSh ^= hash_PeRlHaSh << 25; \
(hash) = (hash_PeRlHaSh + (hash_PeRlHaSh >> 6)); \
} STMT_END
#elif defined(PERL_HASH_FUNC_MURMUR3)
#define PERL_HASH_FUNC "MURMUR3"
#define PERL_HASH_SEED_BYTES 4
/*-----------------------------------------------------------------------------
* MurmurHash3 was written by Austin Appleby, and is placed in the public
* domain.
*
* This implementation was originally written by Shane Day, and is also public domain,
* and was modified to function as a macro similar to other perl hash functions by
* Yves Orton.
*
* This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A)
* with support for progressive processing.
*
* If you want to understand the MurmurHash algorithm you would be much better
* off reading the original source. Just point your browser at:
* http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
*
* How does it work?
*
* We can only process entire 32 bit chunks of input, except for the very end
* that may be shorter.
*
* To handle endianess I simply use a macro that reads a U32 and define
* that macro to be a direct read on little endian machines, a read and swap
* on big endian machines, or a byte-by-byte read if the endianess is unknown.
*/
/*-----------------------------------------------------------------------------
* Endianess, misalignment capabilities and util macros
*
* The following 3 macros are defined in this section. The other macros defined
* are only needed to help derive these 3.
*
* MURMUR_READ_UINT32(x) Read a little endian unsigned 32-bit int
* MURMUR_UNALIGNED_SAFE Defined if READ_UINT32 works on non-word boundaries
* MURMUR_ROTL32(x,r) Rotate x left by r bits
*/
/* Now find best way we can to READ_UINT32 */
#if (BYTEORDER == 0x1234 || BYTEORDER == 0x12345678) && U32SIZE == 4
/* CPU endian matches murmurhash algorithm, so read 32-bit word directly */
#define MURMUR_READ_UINT32(ptr) (*((U32*)(ptr)))
#elif BYTEORDER == 0x4321 || BYTEORDER == 0x87654321
/* TODO: Add additional cases below where a compiler provided bswap32 is available */
#if defined(__GNUC__) && (__GNUC__>4 || (__GNUC__==4 && __GNUC_MINOR__>=3))
#define MURMUR_READ_UINT32(ptr) (__builtin_bswap32(*((U32*)(ptr))))
#else
/* Without a known fast bswap32 we're just as well off doing this */
#define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
#define MURMUR_UNALIGNED_SAFE
#endif
#else
/* Unknown endianess so last resort is to read individual bytes */
#define MURMUR_READ_UINT32(ptr) (ptr[0]|ptr[1]<<8|ptr[2]<<16|ptr[3]<<24)
/* Since we're not doing word-reads we can skip the messing about with realignment */
#define MURMUR_UNALIGNED_SAFE
#endif
/* Find best way to ROTL32 */
#if defined(_MSC_VER)
#include <stdlib.h> /* Microsoft put _rotl declaration in here */
#define MURMUR_ROTL32(x,r) _rotl(x,r)
#else
/* gcc recognises this code and generates a rotate instruction for CPUs with one */
#define MURMUR_ROTL32(x,r) (((U32)x << r) | ((U32)x >> (32 - r)))
#endif
/*-----------------------------------------------------------------------------
* Core murmurhash algorithm macros */
#define MURMUR_C1 (0xcc9e2d51)
#define MURMUR_C2 (0x1b873593)
#define MURMUR_C3 (0xe6546b64)
#define MURMUR_C4 (0x85ebca6b)
#define MURMUR_C5 (0xc2b2ae35)
/* This is the main processing body of the algorithm. It operates
* on each full 32-bits of input. */
#define MURMUR_DOBLOCK(h1, k1) STMT_START { \
k1 *= MURMUR_C1; \
k1 = MURMUR_ROTL32(k1,15); \
k1 *= MURMUR_C2; \
\
h1 ^= k1; \
h1 = MURMUR_ROTL32(h1,13); \
h1 = h1 * 5 + MURMUR_C3; \
} STMT_END
/* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */
/* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */
#define MURMUR_DOBYTES(cnt, h1, c, n, ptr, len) STMT_START { \
int MURMUR_DOBYTES_i = cnt; \
while(MURMUR_DOBYTES_i--) { \
c = c>>8 | *ptr++<<24; \
n++; len--; \
if(n==4) { \
MURMUR_DOBLOCK(h1, c); \
n = 0; \
} \
} \
} STMT_END
/* process the last 1..3 bytes and finalize */
#define MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length) STMT_START { \
/* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */\
PeRlHaSh_len -= PeRlHaSh_len/4*4; \
\
/* Append any remaining bytes into carry */ \
MURMUR_DOBYTES(PeRlHaSh_len, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len); \
\
if (PeRlHaSh_bytes_in_carry) { \
PeRlHaSh_k1 = PeRlHaSh_carry >> ( 4 - PeRlHaSh_bytes_in_carry ) * 8; \
PeRlHaSh_k1 *= MURMUR_C1; \
PeRlHaSh_k1 = MURMUR_ROTL32(PeRlHaSh_k1,15); \
PeRlHaSh_k1 *= MURMUR_C2; \
PeRlHaSh_h1 ^= PeRlHaSh_k1; \
} \
PeRlHaSh_h1 ^= PeRlHaSh_total_length; \
\
/* fmix */ \
PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \
PeRlHaSh_h1 *= MURMUR_C4; \
PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 13; \
PeRlHaSh_h1 *= MURMUR_C5; \
PeRlHaSh_h1 ^= PeRlHaSh_h1 >> 16; \
(hash)= PeRlHaSh_h1; \
} STMT_END
/* now we create the hash function */
#if defined(UNALIGNED_SAFE)
#define PERL_HASH(hash,str,len) STMT_START { \
const char * const s_PeRlHaSh_tmp = (str); \
const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \
I32 PeRlHaSh_len = len; \
\
U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \
U32 PeRlHaSh_k1; \
U32 PeRlHaSh_carry = 0; \
\
const unsigned char *PeRlHaSh_end; \
\
int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \
I32 PeRlHaSh_total_length= PeRlHaSh_len; \
\
/* This CPU handles unaligned word access */ \
/* Process 32-bit chunks */ \
PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \
for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
} \
\
MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\
} STMT_END
#else
#define PERL_HASH(hash,str,len) STMT_START { \
const char * const s_PeRlHaSh_tmp = (str); \
const unsigned char *PeRlHaSh_ptr = (const unsigned char *)s_PeRlHaSh_tmp; \
I32 PeRlHaSh_len = len; \
\
U32 PeRlHaSh_h1 = PERL_HASH_SEED_U32; \
U32 PeRlHaSh_k1; \
U32 PeRlHaSh_carry = 0; \
\
const unsigned char *PeRlHaSh_end; \
\
int PeRlHaSh_bytes_in_carry = 0; /* bytes in carry */ \
I32 PeRlHaSh_total_length= PeRlHaSh_len; \
\
/* This CPU does not handle unaligned word access */ \
\
/* Consume enough so that the next data byte is word aligned */ \
int PeRlHaSh_i = -(long)PeRlHaSh_ptr & 3; \
if(PeRlHaSh_i && PeRlHaSh_i <= PeRlHaSh_len) { \
MURMUR_DOBYTES(PeRlHaSh_i, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_len);\
} \
\
/* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */ \
PeRlHaSh_end = PeRlHaSh_ptr + PeRlHaSh_len/4*4; \
switch(PeRlHaSh_bytes_in_carry) { /* how many bytes in carry */ \
case 0: /* c=[----] w=[3210] b=[3210]=w c'=[----] */ \
for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
PeRlHaSh_k1 = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
} \
break; \
case 1: /* c=[0---] w=[4321] b=[3210]=c>>24|w<<8 c'=[4---] */ \
for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
PeRlHaSh_k1 = PeRlHaSh_carry>>24; \
PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
PeRlHaSh_k1 |= PeRlHaSh_carry<<8; \
MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
} \
break; \
case 2: /* c=[10--] w=[5432] b=[3210]=c>>16|w<<16 c'=[54--] */ \
for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
PeRlHaSh_k1 = PeRlHaSh_carry>>16; \
PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
PeRlHaSh_k1 |= PeRlHaSh_carry<<16; \
MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
} \
break; \
case 3: /* c=[210-] w=[6543] b=[3210]=c>>8|w<<24 c'=[654-] */ \
for( ; PeRlHaSh_ptr < PeRlHaSh_end ; PeRlHaSh_ptr+=4) { \
PeRlHaSh_k1 = PeRlHaSh_carry>>8; \
PeRlHaSh_carry = MURMUR_READ_UINT32(PeRlHaSh_ptr); \
PeRlHaSh_k1 |= PeRlHaSh_carry<<24; \
MURMUR_DOBLOCK(PeRlHaSh_h1, PeRlHaSh_k1); \
} \
} \
\
MURMUR_FINALIZE(hash, PeRlHaSh_len, PeRlHaSh_k1, PeRlHaSh_h1, PeRlHaSh_carry, PeRlHaSh_bytes_in_carry, PeRlHaSh_ptr, PeRlHaSh_total_length);\
} STMT_END
#endif
#elif defined(PERL_HASH_FUNC_DJB2)
#define PERL_HASH_FUNC "DJB2"
#define PERL_HASH_SEED_BYTES 4
#define PERL_HASH(hash,str,len) \
STMT_START { \
const char * const s_PeRlHaSh_tmp = (str); \
const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
I32 i_PeRlHaSh = len; \
U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
while (i_PeRlHaSh--) { \
hash_PeRlHaSh = ((hash_PeRlHaSh << 5) + hash_PeRlHaSh) + *s_PeRlHaSh++; \
} \
(hash) = hash_PeRlHaSh;\
} STMT_END
#elif defined(PERL_HASH_FUNC_SDBM)
#define PERL_HASH_FUNC "SDBM"
#define PERL_HASH_SEED_BYTES 4
#define PERL_HASH(hash,str,len) \
STMT_START { \
const char * const s_PeRlHaSh_tmp = (str); \
const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
I32 i_PeRlHaSh = len; \
U32 hash_PeRlHaSh = PERL_HASH_SEED_U32 ^ len; \
while (i_PeRlHaSh--) { \
hash_PeRlHaSh = (hash_PeRlHaSh << 6) + (hash_PeRlHaSh << 16) - hash_PeRlHaSh + *s_PeRlHaSh++; \
} \
(hash) = hash_PeRlHaSh;\
} STMT_END
#elif defined(PERL_HASH_FUNC_ONE_AT_A_TIME) || defined(PERL_HASH_FUNC_ONE_AT_A_TIME_OLD)
#define PERL_HASH_SEED_BYTES 4
#ifdef PERL_HASH_FUNC_ONE_AT_A_TIME
/* new version, add the length to the seed so that adding characters changes the "seed" being used. */
#define PERL_HASH_FUNC "ONE_AT_A_TIME"
#define MIX_SEED_AND_LEN(seed,len) (seed + len)
#else
/* old version, just use the seed. - not recommended */
#define PERL_HASH_FUNC "ONE_AT_A_TIME_OLD"
#define MIX_SEED_AND_LEN(seed,len) (seed)
#endif
/* FYI: This is the "One-at-a-Time" algorithm by Bob Jenkins
* from requirements by Colin Plumb.
* (http://burtleburtle.net/bob/hash/doobs.html) */
#define PERL_HASH(hash,str,len) \
STMT_START { \
const char * const s_PeRlHaSh_tmp = (str); \
const unsigned char *s_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp; \
const unsigned char *end_PeRlHaSh = (const unsigned char *)s_PeRlHaSh_tmp + (len); \
U32 hash_PeRlHaSh = MIX_SEED_AND_LEN(PERL_HASH_SEED_U32, len); \
while (s_PeRlHaSh < end_PeRlHaSh) { \
hash_PeRlHaSh += (U8)*s_PeRlHaSh++; \
hash_PeRlHaSh += (hash_PeRlHaSh << 10); \
hash_PeRlHaSh ^= (hash_PeRlHaSh >> 6); \
} \
hash_PeRlHaSh += (hash_PeRlHaSh << 3); \
hash_PeRlHaSh ^= (hash_PeRlHaSh >> 11); \
(hash) = (hash_PeRlHaSh + (hash_PeRlHaSh << 15)); \
} STMT_END
#endif
#ifndef PERL_HASH
#error "No hash function defined!"
#endif
/*
=head1 Hash Manipulation Functions
=for apidoc AmU||HEf_SVKEY
This flag, used in the length slot of hash entries and magic structures,
specifies the structure contains an C<SV*> pointer where a C<char*> pointer
is to be expected. (For information only--not to be used).
=head1 Handy Values
=for apidoc AmU||Nullhv
Null HV pointer.
(deprecated - use C<(HV *)NULL> instead)
=head1 Hash Manipulation Functions
=for apidoc Am|char*|HvNAME|HV* stash
Returns the package name of a stash, or NULL if C<stash> isn't a stash.
See C<SvSTASH>, C<CvSTASH>.
=for apidoc Am|STRLEN|HvNAMELEN|HV *stash
Returns the length of the stash's name.
=for apidoc Am|unsigned char|HvNAMEUTF8|HV *stash
Returns true if the name is in UTF8 encoding.
=for apidoc Am|char*|HvENAME|HV* stash
Returns the effective name of a stash, or NULL if there is none. The
effective name represents a location in the symbol table where this stash
resides. It is updated automatically when packages are aliased or deleted.
A stash that is no longer in the symbol table has no effective name. This
name is preferable to C<HvNAME> for use in MRO linearisations and isa
caches.
=for apidoc Am|STRLEN|HvENAMELEN|HV *stash
Returns the length of the stash's effective name.
=for apidoc Am|unsigned char|HvENAMEUTF8|HV *stash
Returns true if the effective name is in UTF8 encoding.
=for apidoc Am|void*|HeKEY|HE* he
Returns the actual pointer stored in the key slot of the hash entry. The
pointer may be either C<char*> or C<SV*>, depending on the value of
C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros are
usually preferable for finding the value of a key.
=for apidoc Am|STRLEN|HeKLEN|HE* he
If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
holds an C<SV*> key. Otherwise, holds the actual length of the key. Can
be assigned to. The C<HePV()> macro is usually preferable for finding key
lengths.
=for apidoc Am|SV*|HeVAL|HE* he
Returns the value slot (type C<SV*>) stored in the hash entry. Can be assigned
to.
SV *foo= HeVAL(hv);
HeVAL(hv)= sv;
=for apidoc Am|U32|HeHASH|HE* he
Returns the computed hash stored in the hash entry.
=for apidoc Am|char*|HePV|HE* he|STRLEN len
Returns the key slot of the hash entry as a C<char*> value, doing any
necessary dereferencing of possibly C<SV*> keys. The length of the string
is placed in C<len> (this is a macro, so do I<not> use C<&len>). If you do
not care about what the length of the key is, you may use the global
variable C<PL_na>, though this is rather less efficient than using a local
variable. Remember though, that hash keys in perl are free to contain
embedded nulls, so using C<strlen()> or similar is not a good way to find
the length of hash keys. This is very similar to the C<SvPV()> macro
described elsewhere in this document. See also C<HeUTF8>.
If you are using C<HePV> to get values to pass to C<newSVpvn()> to create a
new SV, you should consider using C<newSVhek(HeKEY_hek(he))> as it is more
efficient.
=for apidoc Am|char*|HeUTF8|HE* he
Returns whether the C<char *> value returned by C<HePV> is encoded in UTF-8,
doing any necessary dereferencing of possibly C<SV*> keys. The value returned
will be 0 or non-0, not necessarily 1 (or even a value with any low bits set),
so B<do not> blindly assign this to a C<bool> variable, as C<bool> may be a
typedef for C<char>.
=for apidoc Am|SV*|HeSVKEY|HE* he
Returns the key as an C<SV*>, or C<NULL> if the hash entry does not
contain an C<SV*> key.
=for apidoc Am|SV*|HeSVKEY_force|HE* he
Returns the key as an C<SV*>. Will create and return a temporary mortal
C<SV*> if the hash entry contains only a C<char*> key.
=for apidoc Am|SV*|HeSVKEY_set|HE* he|SV* sv
Sets the key to a given C<SV*>, taking care to set the appropriate flags to
indicate the presence of an C<SV*> key, and returns the same
C<SV*>.
=cut
*/
/* these hash entry flags ride on hent_klen (for use only in magic/tied HVs) */
#define HEf_SVKEY -2 /* hent_key is an SV* */
#ifndef PERL_CORE
# define Nullhv Null(HV*)
#endif
#define HvARRAY(hv) ((hv)->sv_u.svu_hash)
#define HvFILL(hv) Perl_hv_fill(aTHX_ (const HV *)(hv))
#define HvMAX(hv) ((XPVHV*) SvANY(hv))->xhv_max
/* This quite intentionally does no flag checking first. That's your
responsibility. */
#define HvAUX(hv) ((struct xpvhv_aux*)&(HvARRAY(hv)[HvMAX(hv)+1]))
#define HvRITER(hv) (*Perl_hv_riter_p(aTHX_ MUTABLE_HV(hv)))
#define HvEITER(hv) (*Perl_hv_eiter_p(aTHX_ MUTABLE_HV(hv)))
#define HvRITER_set(hv,r) Perl_hv_riter_set(aTHX_ MUTABLE_HV(hv), r)
#define HvEITER_set(hv,e) Perl_hv_eiter_set(aTHX_ MUTABLE_HV(hv), e)
#define HvRITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_riter : -1)
#define HvEITER_get(hv) (SvOOK(hv) ? HvAUX(hv)->xhv_eiter : NULL)
#define HvNAME(hv) HvNAME_get(hv)
#define HvNAMELEN(hv) HvNAMELEN_get(hv)
#define HvENAME(hv) HvENAME_get(hv)
#define HvENAMELEN(hv) HvENAMELEN_get(hv)
/* Checking that hv is a valid package stash is the
caller's responsibility */
#define HvMROMETA(hv) (HvAUX(hv)->xhv_mro_meta \
? HvAUX(hv)->xhv_mro_meta \
: Perl_mro_meta_init(aTHX_ hv))
#define HvNAME_HEK_NN(hv) \
( \
HvAUX(hv)->xhv_name_count \
? *HvAUX(hv)->xhv_name_u.xhvnameu_names \
: HvAUX(hv)->xhv_name_u.xhvnameu_name \
)
/* This macro may go away without notice. */
#define HvNAME_HEK(hv) \
(SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvNAME_HEK_NN(hv) : NULL)
#define HvNAME_get(hv) \
((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
? HEK_KEY(HvNAME_HEK_NN(hv)) : NULL)
#define HvNAMELEN_get(hv) \
((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
? HEK_LEN(HvNAME_HEK_NN(hv)) : 0)
#define HvNAMEUTF8(hv) \
((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvNAME_HEK_NN(hv)) \
? HEK_UTF8(HvNAME_HEK_NN(hv)) : 0)
#define HvENAME_HEK_NN(hv) \
( \
HvAUX(hv)->xhv_name_count > 0 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[0] : \
HvAUX(hv)->xhv_name_count < -1 ? HvAUX(hv)->xhv_name_u.xhvnameu_names[1] : \
HvAUX(hv)->xhv_name_count == -1 ? NULL : \
HvAUX(hv)->xhv_name_u.xhvnameu_name \
)
#define HvENAME_HEK(hv) \
(SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name ? HvENAME_HEK_NN(hv) : NULL)
#define HvENAME_get(hv) \
((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
? HEK_KEY(HvENAME_HEK_NN(hv)) : NULL)
#define HvENAMELEN_get(hv) \
((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
? HEK_LEN(HvENAME_HEK_NN(hv)) : 0)
#define HvENAMEUTF8(hv) \
((SvOOK(hv) && HvAUX(hv)->xhv_name_u.xhvnameu_name && HvAUX(hv)->xhv_name_count != -1) \
? HEK_UTF8(HvENAME_HEK_NN(hv)) : 0)
/* the number of keys (including any placeholders) */
#define XHvTOTALKEYS(xhv) ((xhv)->xhv_keys)
/*
* HvKEYS gets the number of keys that actually exist(), and is provided
* for backwards compatibility with old XS code. The core uses HvUSEDKEYS
* (keys, excluding placeholders) and HvTOTALKEYS (including placeholders)
*/
#define HvKEYS(hv) HvUSEDKEYS(hv)
#define HvUSEDKEYS(hv) (HvTOTALKEYS(hv) - HvPLACEHOLDERS_get(hv))
#define HvTOTALKEYS(hv) XHvTOTALKEYS((XPVHV*) SvANY(hv))
#define HvPLACEHOLDERS(hv) (*Perl_hv_placeholders_p(aTHX_ MUTABLE_HV(hv)))
#define HvPLACEHOLDERS_get(hv) (SvMAGIC(hv) ? Perl_hv_placeholders_get(aTHX_ (const HV *)hv) : 0)
#define HvPLACEHOLDERS_set(hv,p) Perl_hv_placeholders_set(aTHX_ MUTABLE_HV(hv), p)
#define HvSHAREKEYS(hv) (SvFLAGS(hv) & SVphv_SHAREKEYS)
#define HvSHAREKEYS_on(hv) (SvFLAGS(hv) |= SVphv_SHAREKEYS)
#define HvSHAREKEYS_off(hv) (SvFLAGS(hv) &= ~SVphv_SHAREKEYS)
/* This is an optimisation flag. It won't be set if all hash keys have a 0
* flag. Currently the only flags relate to utf8.
* Hence it won't be set if all keys are 8 bit only. It will be set if any key
* is utf8 (including 8 bit keys that were entered as utf8, and need upgrading
* when retrieved during iteration. It may still be set when there are no longer
* any utf8 keys.
* See HVhek_ENABLEHVKFLAGS for the trigger.
*/
#define HvHASKFLAGS(hv) (SvFLAGS(hv) & SVphv_HASKFLAGS)
#define HvHASKFLAGS_on(hv) (SvFLAGS(hv) |= SVphv_HASKFLAGS)
#define HvHASKFLAGS_off(hv) (SvFLAGS(hv) &= ~SVphv_HASKFLAGS)
#define HvLAZYDEL(hv) (SvFLAGS(hv) & SVphv_LAZYDEL)
#define HvLAZYDEL_on(hv) (SvFLAGS(hv) |= SVphv_LAZYDEL)
#define HvLAZYDEL_off(hv) (SvFLAGS(hv) &= ~SVphv_LAZYDEL)
#ifndef PERL_CORE
# define Nullhe Null(HE*)
#endif
#define HeNEXT(he) (he)->hent_next
#define HeKEY_hek(he) (he)->hent_hek
#define HeKEY(he) HEK_KEY(HeKEY_hek(he))
#define HeKEY_sv(he) (*(SV**)HeKEY(he))
#define HeKLEN(he) HEK_LEN(HeKEY_hek(he))
#define HeKUTF8(he) HEK_UTF8(HeKEY_hek(he))
#define HeKWASUTF8(he) HEK_WASUTF8(HeKEY_hek(he))
#define HeKLEN_UTF8(he) (HeKUTF8(he) ? -HeKLEN(he) : HeKLEN(he))
#define HeKFLAGS(he) HEK_FLAGS(HeKEY_hek(he))
#define HeVAL(he) (he)->he_valu.hent_val
#define HeHASH(he) HEK_HASH(HeKEY_hek(he))
#define HePV(he,lp) ((HeKLEN(he) == HEf_SVKEY) ? \
SvPV(HeKEY_sv(he),lp) : \
((lp = HeKLEN(he)), HeKEY(he)))
#define HeUTF8(he) ((HeKLEN(he) == HEf_SVKEY) ? \
SvUTF8(HeKEY_sv(he)) : \
(U32)HeKUTF8(he))
#define HeSVKEY(he) ((HeKEY(he) && \
HeKLEN(he) == HEf_SVKEY) ? \
HeKEY_sv(he) : NULL)
#define HeSVKEY_force(he) (HeKEY(he) ? \
((HeKLEN(he) == HEf_SVKEY) ? \
HeKEY_sv(he) : \
newSVpvn_flags(HeKEY(he), \
HeKLEN(he), SVs_TEMP)) : \
&PL_sv_undef)
#define HeSVKEY_set(he,sv) ((HeKLEN(he) = HEf_SVKEY), (HeKEY_sv(he) = sv))
#ifndef PERL_CORE
# define Nullhek Null(HEK*)
#endif
#define HEK_BASESIZE STRUCT_OFFSET(HEK, hek_key[0])
#define HEK_HASH(hek) (hek)->hek_hash
#define HEK_LEN(hek) (hek)->hek_len
#define HEK_KEY(hek) (hek)->hek_key
#define HEK_FLAGS(hek) (*((unsigned char *)(HEK_KEY(hek))+HEK_LEN(hek)+1))
#define HVhek_UTF8 0x01 /* Key is utf8 encoded. */
#define HVhek_WASUTF8 0x02 /* Key is bytes here, but was supplied as utf8. */
#define HVhek_UNSHARED 0x08 /* This key isn't a shared hash key. */
#define HVhek_FREEKEY 0x100 /* Internal flag to say key is malloc()ed. */
#define HVhek_PLACEHOLD 0x200 /* Internal flag to create placeholder.
* (may change, but Storable is a core module) */
#define HVhek_KEYCANONICAL 0x400 /* Internal flag - key is in canonical form.
If the string is UTF-8, it cannot be
converted to bytes. */
#define HVhek_MASK 0xFF
#define HVhek_ENABLEHVKFLAGS (HVhek_MASK & ~(HVhek_UNSHARED))
#define HEK_UTF8(hek) (HEK_FLAGS(hek) & HVhek_UTF8)
#define HEK_UTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_UTF8)
#define HEK_UTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_UTF8)
#define HEK_WASUTF8(hek) (HEK_FLAGS(hek) & HVhek_WASUTF8)
#define HEK_WASUTF8_on(hek) (HEK_FLAGS(hek) |= HVhek_WASUTF8)
#define HEK_WASUTF8_off(hek) (HEK_FLAGS(hek) &= ~HVhek_WASUTF8)
/* calculate HV array allocation */
#ifndef PERL_USE_LARGE_HV_ALLOC
/* Default to allocating the correct size - default to assuming that malloc()
is not broken and is efficient at allocating blocks sized at powers-of-two.
*/
# define PERL_HV_ARRAY_ALLOC_BYTES(size) ((size) * sizeof(HE*))
#else
# define MALLOC_OVERHEAD 16
# define PERL_HV_ARRAY_ALLOC_BYTES(size) \
(((size) < 64) \
? (size) * sizeof(HE*) \
: (size) * sizeof(HE*) * 2 - MALLOC_OVERHEAD)
#endif
/* Flags for hv_iternext_flags. */
#define HV_ITERNEXT_WANTPLACEHOLDERS 0x01 /* Don't skip placeholders. */
#define hv_iternext(hv) hv_iternext_flags(hv, 0)
#define hv_magic(hv, gv, how) sv_magic(MUTABLE_SV(hv), MUTABLE_SV(gv), how, NULL, 0)
#define hv_undef(hv) Perl_hv_undef_flags(aTHX_ hv, 0)
#define Perl_sharepvn(pv, len, hash) HEK_KEY(share_hek(pv, len, hash))
#define sharepvn(pv, len, hash) Perl_sharepvn(pv, len, hash)
#define share_hek_hek(hek) \
(++(((struct shared_he *)(((char *)hek) \
- STRUCT_OFFSET(struct shared_he, \
shared_he_hek))) \
->shared_he_he.he_valu.hent_refcount), \
hek)
#define hv_store_ent(hv, keysv, val, hash) \
((HE *) hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISSTORE, \
(val), (hash)))
#define hv_exists_ent(hv, keysv, hash) \
(hv_common((hv), (keysv), NULL, 0, 0, HV_FETCH_ISEXISTS, 0, (hash)) \
? TRUE : FALSE)
#define hv_fetch_ent(hv, keysv, lval, hash) \
((HE *) hv_common((hv), (keysv), NULL, 0, 0, \
((lval) ? HV_FETCH_LVALUE : 0), NULL, (hash)))
#define hv_delete_ent(hv, key, flags, hash) \
(MUTABLE_SV(hv_common((hv), (key), NULL, 0, 0, (flags) | HV_DELETE, \
NULL, (hash))))
#define hv_store_flags(hv, key, klen, val, hash, flags) \
((SV**) hv_common((hv), NULL, (key), (klen), (flags), \
(HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), (val), \
(hash)))
#define hv_store(hv, key, klen, val, hash) \
((SV**) hv_common_key_len((hv), (key), (klen), \
(HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), \
(val), (hash)))
#define hv_exists(hv, key, klen) \
(hv_common_key_len((hv), (key), (klen), HV_FETCH_ISEXISTS, NULL, 0) \
? TRUE : FALSE)
#define hv_fetch(hv, key, klen, lval) \
((SV**) hv_common_key_len((hv), (key), (klen), (lval) \
? (HV_FETCH_JUST_SV | HV_FETCH_LVALUE) \
: HV_FETCH_JUST_SV, NULL, 0))
#define hv_delete(hv, key, klen, flags) \
(MUTABLE_SV(hv_common_key_len((hv), (key), (klen), \
(flags) | HV_DELETE, NULL, 0)))
/* This refcounted he structure is used for storing the hints used for lexical
pragmas. Without threads, it's basically struct he + refcount.
With threads, life gets more complex as the structure needs to be shared
between threads (because it hangs from OPs, which are shared), hence the
alternate definition and mutex. */
struct refcounted_he;
/* flags for the refcounted_he API */
#define REFCOUNTED_HE_KEY_UTF8 0x00000001
#ifdef PERL_CORE
# define REFCOUNTED_HE_EXISTS 0x00000002
#endif
#ifdef PERL_CORE
/* Gosh. This really isn't a good name any longer. */
struct refcounted_he {
struct refcounted_he *refcounted_he_next; /* next entry in chain */
#ifdef USE_ITHREADS
U32 refcounted_he_hash;
U32 refcounted_he_keylen;
#else
HEK *refcounted_he_hek; /* hint key */
#endif
union {
IV refcounted_he_u_iv;
UV refcounted_he_u_uv;
STRLEN refcounted_he_u_len;
void *refcounted_he_u_ptr; /* Might be useful in future */
} refcounted_he_val;
U32 refcounted_he_refcnt; /* reference count */
/* First byte is flags. Then NUL-terminated value. Then for ithreads,
non-NUL terminated key. */
char refcounted_he_data[1];
};
/*
=for apidoc m|SV *|refcounted_he_fetch_pvs|const struct refcounted_he *chain|const char *key|U32 flags
Like L</refcounted_he_fetch_pvn>, but takes a literal string instead of
a string/length pair, and no precomputed hash.
=cut
*/
#define refcounted_he_fetch_pvs(chain, key, flags) \
Perl_refcounted_he_fetch_pvn(aTHX_ chain, STR_WITH_LEN(key), 0, flags)
/*
=for apidoc m|struct refcounted_he *|refcounted_he_new_pvs|struct refcounted_he *parent|const char *key|SV *value|U32 flags
Like L</refcounted_he_new_pvn>, but takes a literal string instead of
a string/length pair, and no precomputed hash.
=cut
*/
#define refcounted_he_new_pvs(parent, key, value, flags) \
Perl_refcounted_he_new_pvn(aTHX_ parent, STR_WITH_LEN(key), 0, value, flags)
/* Flag bits are HVhek_UTF8, HVhek_WASUTF8, then */
#define HVrhek_undef 0x00 /* Value is undef. */
#define HVrhek_delete 0x10 /* Value is placeholder - signifies delete. */
#define HVrhek_IV 0x20 /* Value is IV. */
#define HVrhek_UV 0x30 /* Value is UV. */
#define HVrhek_PV 0x40 /* Value is a (byte) string. */
#define HVrhek_PV_UTF8 0x50 /* Value is a (utf8) string. */
/* Two spare. As these have to live in the optree, you can't store anything
interpreter specific, such as SVs. :-( */
#define HVrhek_typemask 0x70
#ifdef USE_ITHREADS
/* A big expression to find the key offset */
#define REF_HE_KEY(chain) \
((((chain->refcounted_he_data[0] & 0x60) == 0x40) \
? chain->refcounted_he_val.refcounted_he_u_len + 1 : 0) \
+ 1 + chain->refcounted_he_data)
#endif
# ifdef USE_ITHREADS
# define HINTS_REFCNT_LOCK MUTEX_LOCK(&PL_hints_mutex)
# define HINTS_REFCNT_UNLOCK MUTEX_UNLOCK(&PL_hints_mutex)
# else
# define HINTS_REFCNT_LOCK NOOP
# define HINTS_REFCNT_UNLOCK NOOP
# endif
#endif
#ifdef USE_ITHREADS
# define HINTS_REFCNT_INIT MUTEX_INIT(&PL_hints_mutex)
# define HINTS_REFCNT_TERM MUTEX_DESTROY(&PL_hints_mutex)
#else
# define HINTS_REFCNT_INIT NOOP
# define HINTS_REFCNT_TERM NOOP
#endif
/* Hash actions
* Passed in PERL_MAGIC_uvar calls
*/
#define HV_DISABLE_UVAR_XKEY 0x01
/* We need to ensure that these don't clash with G_DISCARD, which is 2, as it
is documented as being passed to hv_delete(). */
#define HV_FETCH_ISSTORE 0x04
#define HV_FETCH_ISEXISTS 0x08
#define HV_FETCH_LVALUE 0x10
#define HV_FETCH_JUST_SV 0x20
#define HV_DELETE 0x40
#define HV_FETCH_EMPTY_HE 0x80 /* Leave HeVAL null. */
/* Must not conflict with HVhek_UTF8 */
#define HV_NAME_SETALL 0x02
/*
=for apidoc newHV
Creates a new HV. The reference count is set to 1.
=cut
*/
#define newHV() MUTABLE_HV(newSV_type(SVt_PVHV))
/*
* Local variables:
* c-indentation-style: bsd
* c-basic-offset: 4
* indent-tabs-mode: nil
* End:
*
* ex: set ts=8 sts=4 sw=4 et:
*/
|