1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
package Exporter;
require 5.006;
# Be lean.
#use strict;
#no strict 'refs';
our $Debug = 0;
our $ExportLevel = 0;
our $Verbose ||= 0;
our $VERSION = '5.566';
$Carp::Internal{Exporter} = 1;
sub as_heavy {
require Exporter::Heavy;
# Unfortunately, this does not work if the caller is aliased as *name = \&foo
# Thus the need to create a lot of identical subroutines
my $c = (caller(1))[3];
$c =~ s/.*:://;
\&{"Exporter::Heavy::heavy_$c"};
}
sub export {
goto &{as_heavy()};
}
sub import {
my $pkg = shift;
my $callpkg = caller($ExportLevel);
# We *need* to treat @{"$pkg\::EXPORT_FAIL"} since Carp uses it :-(
my($exports, $export_cache, $fail)
= (\@{"$pkg\::EXPORT"}, \%{"$pkg\::EXPORT"}, \@{"$pkg\::EXPORT_FAIL"});
return export $pkg, $callpkg, @_
if $Verbose or $Debug or @$fail > 1;
my $args = @_ or @_ = @$exports;
local $_;
if ($args and not %$export_cache) {
s/^&//, $export_cache->{$_} = 1
foreach (@$exports, @{"$pkg\::EXPORT_OK"});
}
my $heavy;
# Try very hard not to use {} and hence have to enter scope on the foreach
# We bomb out of the loop with last as soon as heavy is set.
if ($args or $fail) {
($heavy = (/\W/ or $args and not exists $export_cache->{$_}
or @$fail and $_ eq $fail->[0])) and last
foreach (@_);
} else {
($heavy = /\W/) and last
foreach (@_);
}
return export $pkg, $callpkg, ($args ? @_ : ()) if $heavy;
local $SIG{__WARN__} =
sub {require Carp; &Carp::carp};
# shortcut for the common case of no type character
*{"$callpkg\::$_"} = \&{"$pkg\::$_"} foreach @_;
}
# Default methods
sub export_fail {
my $self = shift;
@_;
}
# Unfortunately, caller(1)[3] "does not work" if the caller is aliased as
# *name = \&foo. Thus the need to create a lot of identical subroutines
# Otherwise we could have aliased them to export().
sub export_to_level {
goto &{as_heavy()};
}
sub export_tags {
goto &{as_heavy()};
}
sub export_ok_tags {
goto &{as_heavy()};
}
sub require_version {
goto &{as_heavy()};
}
1;
__END__
=head1 NAME
Exporter - Implements default import method for modules
=head1 SYNOPSIS
In module YourModule.pm:
package YourModule;
require Exporter;
@ISA = qw(Exporter);
@EXPORT_OK = qw(munge frobnicate); # symbols to export on request
In other files which wish to use YourModule:
use ModuleName qw(frobnicate); # import listed symbols
frobnicate ($left, $right) # calls YourModule::frobnicate
=head1 DESCRIPTION
The Exporter module implements an C<import> method which allows a module
to export functions and variables to its users' namespaces. Many modules
use Exporter rather than implementing their own C<import> method because
Exporter provides a highly flexible interface, with an implementation optimised
for the common case.
Perl automatically calls the C<import> method when processing a
C<use> statement for a module. Modules and C<use> are documented
in L<perlfunc> and L<perlmod>. Understanding the concept of
modules and how the C<use> statement operates is important to
understanding the Exporter.
=head2 How to Export
The arrays C<@EXPORT> and C<@EXPORT_OK> in a module hold lists of
symbols that are going to be exported into the users name space by
default, or which they can request to be exported, respectively. The
symbols can represent functions, scalars, arrays, hashes, or typeglobs.
The symbols must be given by full name with the exception that the
ampersand in front of a function is optional, e.g.
@EXPORT = qw(afunc $scalar @array); # afunc is a function
@EXPORT_OK = qw(&bfunc %hash *typeglob); # explicit prefix on &bfunc
If you are only exporting function names it is recommended to omit the
ampersand, as the implementation is faster this way.
=head2 Selecting What To Export
Do B<not> export method names!
Do B<not> export anything else by default without a good reason!
Exports pollute the namespace of the module user. If you must export
try to use @EXPORT_OK in preference to @EXPORT and avoid short or
common symbol names to reduce the risk of name clashes.
Generally anything not exported is still accessible from outside the
module using the ModuleName::item_name (or $blessed_ref-E<gt>method)
syntax. By convention you can use a leading underscore on names to
informally indicate that they are 'internal' and not for public use.
(It is actually possible to get private functions by saying:
my $subref = sub { ... };
$subref->(@args); # Call it as a function
$obj->$subref(@args); # Use it as a method
However if you use them for methods it is up to you to figure out
how to make inheritance work.)
As a general rule, if the module is trying to be object oriented
then export nothing. If it's just a collection of functions then
@EXPORT_OK anything but use @EXPORT with caution. For function and
method names use barewords in preference to names prefixed with
ampersands for the export lists.
Other module design guidelines can be found in L<perlmod>.
=head2 How to Import
In other files which wish to use your module there are three basic ways for
them to load your module and import its symbols:
=over 4
=item C<use ModuleName;>
This imports all the symbols from ModuleName's @EXPORT into the namespace
of the C<use> statement.
=item C<use ModuleName ();>
This causes perl to load your module but does not import any symbols.
=item C<use ModuleName qw(...);>
This imports only the symbols listed by the caller into their namespace.
All listed symbols must be in your @EXPORT or @EXPORT_OK, else an error
occurs. The advanced export features of Exporter are accessed like this,
but with list entries that are syntactically distinct from symbol names.
=back
Unless you want to use its advanced features, this is probably all you
need to know to use Exporter.
=head1 Advanced features
=head2 Specialised Import Lists
If the first entry in an import list begins with !, : or / then the
list is treated as a series of specifications which either add to or
delete from the list of names to import. They are processed left to
right. Specifications are in the form:
[!]name This name only
[!]:DEFAULT All names in @EXPORT
[!]:tag All names in $EXPORT_TAGS{tag} anonymous list
[!]/pattern/ All names in @EXPORT and @EXPORT_OK which match
A leading ! indicates that matching names should be deleted from the
list of names to import. If the first specification is a deletion it
is treated as though preceded by :DEFAULT. If you just want to import
extra names in addition to the default set you will still need to
include :DEFAULT explicitly.
e.g., Module.pm defines:
@EXPORT = qw(A1 A2 A3 A4 A5);
@EXPORT_OK = qw(B1 B2 B3 B4 B5);
%EXPORT_TAGS = (T1 => [qw(A1 A2 B1 B2)], T2 => [qw(A1 A2 B3 B4)]);
Note that you cannot use tags in @EXPORT or @EXPORT_OK.
Names in EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK.
An application using Module can say something like:
use Module qw(:DEFAULT :T2 !B3 A3);
Other examples include:
use Socket qw(!/^[AP]F_/ !SOMAXCONN !SOL_SOCKET);
use POSIX qw(:errno_h :termios_h !TCSADRAIN !/^EXIT/);
Remember that most patterns (using //) will need to be anchored
with a leading ^, e.g., C</^EXIT/> rather than C</EXIT/>.
You can say C<BEGIN { $Exporter::Verbose=1 }> to see how the
specifications are being processed and what is actually being imported
into modules.
=head2 Exporting without using Exporter's import method
Exporter has a special method, 'export_to_level' which is used in situations
where you can't directly call Exporter's import method. The export_to_level
method looks like:
MyPackage->export_to_level($where_to_export, $package, @what_to_export);
where $where_to_export is an integer telling how far up the calling stack
to export your symbols, and @what_to_export is an array telling what
symbols *to* export (usually this is @_). The $package argument is
currently unused.
For example, suppose that you have a module, A, which already has an
import function:
package A;
@ISA = qw(Exporter);
@EXPORT_OK = qw ($b);
sub import
{
$A::b = 1; # not a very useful import method
}
and you want to Export symbol $A::b back to the module that called
package A. Since Exporter relies on the import method to work, via
inheritance, as it stands Exporter::import() will never get called.
Instead, say the following:
package A;
@ISA = qw(Exporter);
@EXPORT_OK = qw ($b);
sub import
{
$A::b = 1;
A->export_to_level(1, @_);
}
This will export the symbols one level 'above' the current package - ie: to
the program or module that used package A.
Note: Be careful not to modify '@_' at all before you call export_to_level
- or people using your package will get very unexplained results!
=head2 Module Version Checking
The Exporter module will convert an attempt to import a number from a
module into a call to $module_name-E<gt>require_version($value). This can
be used to validate that the version of the module being used is
greater than or equal to the required version.
The Exporter module supplies a default require_version method which
checks the value of $VERSION in the exporting module.
Since the default require_version method treats the $VERSION number as
a simple numeric value it will regard version 1.10 as lower than
1.9. For this reason it is strongly recommended that you use numbers
with at least two decimal places, e.g., 1.09.
=head2 Managing Unknown Symbols
In some situations you may want to prevent certain symbols from being
exported. Typically this applies to extensions which have functions
or constants that may not exist on some systems.
The names of any symbols that cannot be exported should be listed
in the C<@EXPORT_FAIL> array.
If a module attempts to import any of these symbols the Exporter
will give the module an opportunity to handle the situation before
generating an error. The Exporter will call an export_fail method
with a list of the failed symbols:
@failed_symbols = $module_name->export_fail(@failed_symbols);
If the export_fail method returns an empty list then no error is
recorded and all the requested symbols are exported. If the returned
list is not empty then an error is generated for each symbol and the
export fails. The Exporter provides a default export_fail method which
simply returns the list unchanged.
Uses for the export_fail method include giving better error messages
for some symbols and performing lazy architectural checks (put more
symbols into @EXPORT_FAIL by default and then take them out if someone
actually tries to use them and an expensive check shows that they are
usable on that platform).
=head2 Tag Handling Utility Functions
Since the symbols listed within %EXPORT_TAGS must also appear in either
@EXPORT or @EXPORT_OK, two utility functions are provided which allow
you to easily add tagged sets of symbols to @EXPORT or @EXPORT_OK:
%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);
Exporter::export_tags('foo'); # add aa, bb and cc to @EXPORT
Exporter::export_ok_tags('bar'); # add aa, cc and dd to @EXPORT_OK
Any names which are not tags are added to @EXPORT or @EXPORT_OK
unchanged but will trigger a warning (with C<-w>) to avoid misspelt tags
names being silently added to @EXPORT or @EXPORT_OK. Future versions
may make this a fatal error.
=head2 Generating combined tags
If several symbol categories exist in %EXPORT_TAGS, it's usually
useful to create the utility ":all" to simplify "use" statements.
The simplest way to do this is:
%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);
# add all the other ":class" tags to the ":all" class,
# deleting duplicates
{
my %seen;
push @{$EXPORT_TAGS{all}},
grep {!$seen{$_}++} @{$EXPORT_TAGS{$_}} foreach keys %EXPORT_TAGS;
}
CGI.pm creates an ":all" tag which contains some (but not really
all) of its categories. That could be done with one small
change:
# add some of the other ":class" tags to the ":all" class,
# deleting duplicates
{
my %seen;
push @{$EXPORT_TAGS{all}},
grep {!$seen{$_}++} @{$EXPORT_TAGS{$_}}
foreach qw/html2 html3 netscape form cgi internal/;
}
Note that the tag names in %EXPORT_TAGS don't have the leading ':'.
=head2 C<AUTOLOAD>ed Constants
Many modules make use of C<AUTOLOAD>ing for constant subroutines to
avoid having to compile and waste memory on rarely used values (see
L<perlsub> for details on constant subroutines). Calls to such
constant subroutines are not optimized away at compile time because
they can't be checked at compile time for constancy.
Even if a prototype is available at compile time, the body of the
subroutine is not (it hasn't been C<AUTOLOAD>ed yet). perl needs to
examine both the C<()> prototype and the body of a subroutine at
compile time to detect that it can safely replace calls to that
subroutine with the constant value.
A workaround for this is to call the constants once in a C<BEGIN> block:
package My ;
use Socket ;
foo( SO_LINGER ); ## SO_LINGER NOT optimized away; called at runtime
BEGIN { SO_LINGER }
foo( SO_LINGER ); ## SO_LINGER optimized away at compile time.
This forces the C<AUTOLOAD> for C<SO_LINGER> to take place before
SO_LINGER is encountered later in C<My> package.
If you are writing a package that C<AUTOLOAD>s, consider forcing
an C<AUTOLOAD> for any constants explicitly imported by other packages
or which are usually used when your package is C<use>d.
=cut
|