summaryrefslogtreecommitdiff
path: root/lib/Math/BigFloat.pm
blob: 1a9195e18572b7ae52e7f62d4fb3be121d7cd9f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
package Math::BigFloat;

use Math::BigInt;

use Exporter;  # just for use to be happy
@ISA = (Exporter);

use overload
'+'	=>	sub {new Math::BigFloat &fadd},
'-'	=>	sub {new Math::BigFloat
		       $_[2]? fsub($_[1],${$_[0]}) : fsub(${$_[0]},$_[1])},
'<=>'	=>	sub {$_[2]? fcmp($_[1],${$_[0]}) : fcmp(${$_[0]},$_[1])},
'cmp'	=>	sub {$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
'*'	=>	sub {new Math::BigFloat &fmul},
'/'	=>	sub {new Math::BigFloat 
		       $_[2]? scalar fdiv($_[1],${$_[0]}) :
			 scalar fdiv(${$_[0]},$_[1])},
'neg'	=>	sub {new Math::BigFloat &fneg},
'abs'	=>	sub {new Math::BigFloat &fabs},

qw(
""	stringify
0+	numify)			# Order of arguments unsignificant
;

sub new {
  my ($class) = shift;
  my ($foo) = fnorm(shift);
  bless \$foo, $class;
}

sub numify { 0 + "${$_[0]}" }	# Not needed, additional overhead
				# comparing to direct compilation based on
				# stringify
sub stringify {
    my $n = ${$_[0]};

    my $minus = ($n =~ s/^([+-])// && $1 eq '-');
    $n =~ s/E//;

    $n =~ s/([-+]\d+)$//;

    my $e = $1;
    my $ln = length($n);

    if ($e > 0) {
	$n .= "0" x $e . '.';
    } elsif (abs($e) < $ln) {
	substr($n, $ln + $e, 0) = '.';
    } else {
	$n = '.' . ("0" x (abs($e) - $ln)) . $n;
    }
    $n = "-$n" if $minus;

    # 1 while $n =~ s/(.*\d)(\d\d\d)/$1,$2/;

    return $n;
}

$div_scale = 40;

# Rounding modes one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.

$rnd_mode = 'even';

sub fadd; sub fsub; sub fmul; sub fdiv;
sub fneg; sub fabs; sub fcmp;
sub fround; sub ffround;
sub fnorm; sub fsqrt;

# Convert a number to canonical string form.
#   Takes something that looks like a number and converts it to
#   the form /^[+-]\d+E[+-]\d+$/.
sub fnorm { #(string) return fnum_str
    local($_) = @_;
    s/\s+//g;                               # strip white space
    local $^W = 0;	# $4 and $5 below might legitimately be undefined
    if (/^([+-]?)(\d*)(\.(\d*))?([Ee]([+-]?\d+))?$/ && "$2$4" ne '') {
	&norm(($1 ? "$1$2$4" : "+$2$4"),(($4 ne '') ? $6-length($4) : $6));
    } else {
	'NaN';
    }
}

# normalize number -- for internal use
sub norm { #(mantissa, exponent) return fnum_str
    local($_, $exp) = @_;
    if ($_ eq 'NaN') {
	'NaN';
    } else {
	s/^([+-])0+/$1/;                        # strip leading zeros
	if (length($_) == 1) {
	    '+0E+0';
	} else {
	    $exp += length($1) if (s/(0+)$//);  # strip trailing zeros
	    sprintf("%sE%+ld", $_, $exp);
	}
    }
}

# negation
sub fneg { #(fnum_str) return fnum_str
    local($_) = fnorm($_[$[]);
    vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0E+0'; # flip sign
    s/^H/N/;
    $_;
}

# absolute value
sub fabs { #(fnum_str) return fnum_str
    local($_) = fnorm($_[$[]);
    s/^-/+/;		                       # mash sign
    $_;
}

# multiplication
sub fmul { #(fnum_str, fnum_str) return fnum_str
    local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1]));
    if ($x eq 'NaN' || $y eq 'NaN') {
	'NaN';
    } else {
	local($xm,$xe) = split('E',$x);
	local($ym,$ye) = split('E',$y);
	&norm(Math::BigInt::bmul($xm,$ym),$xe+$ye);
    }
}

# addition
sub fadd { #(fnum_str, fnum_str) return fnum_str
    local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1]));
    if ($x eq 'NaN' || $y eq 'NaN') {
	'NaN';
    } else {
	local($xm,$xe) = split('E',$x);
	local($ym,$ye) = split('E',$y);
	($xm,$xe,$ym,$ye) = ($ym,$ye,$xm,$xe) if ($xe < $ye);
	&norm(Math::BigInt::badd($ym,$xm.('0' x ($xe-$ye))),$ye);
    }
}

# subtraction
sub fsub { #(fnum_str, fnum_str) return fnum_str
    fadd($_[$[],fneg($_[$[+1]));    
}

# division
#   args are dividend, divisor, scale (optional)
#   result has at most max(scale, length(dividend), length(divisor)) digits
sub fdiv #(fnum_str, fnum_str[,scale]) return fnum_str
{
    local($x,$y,$scale) = (fnorm($_[$[]),fnorm($_[$[+1]),$_[$[+2]);
    if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') {
	'NaN';
    } else {
	local($xm,$xe) = split('E',$x);
	local($ym,$ye) = split('E',$y);
	$scale = $div_scale if (!$scale);
	$scale = length($xm)-1 if (length($xm)-1 > $scale);
	$scale = length($ym)-1 if (length($ym)-1 > $scale);
	$scale = $scale + length($ym) - length($xm);
	&norm(&round(Math::BigInt::bdiv($xm.('0' x $scale),$ym),
		    Math::BigInt::babs($ym)),
	    $xe-$ye-$scale);
    }
}

# round int $q based on fraction $r/$base using $rnd_mode
sub round { #(int_str, int_str, int_str) return int_str
    local($q,$r,$base) = @_;
    if ($q eq 'NaN' || $r eq 'NaN') {
	'NaN';
    } elsif ($rnd_mode eq 'trunc') {
	$q;                         # just truncate
    } else {
	local($cmp) = Math::BigInt::bcmp(Math::BigInt::bmul($r,'+2'),$base);
	if ( $cmp < 0 ||
		 ($cmp == 0 &&
		  ( $rnd_mode eq 'zero'                             ||
		   ($rnd_mode eq '-inf' && (substr($q,$[,1) eq '+')) ||
		   ($rnd_mode eq '+inf' && (substr($q,$[,1) eq '-')) ||
		   ($rnd_mode eq 'even' && $q =~ /[24680]$/)        ||
		   ($rnd_mode eq 'odd'  && $q =~ /[13579]$/)        )) ) {
	    $q;                     # round down
	} else {
	    Math::BigInt::badd($q, ((substr($q,$[,1) eq '-') ? '-1' : '+1'));
				    # round up
	}
    }
}

# round the mantissa of $x to $scale digits
sub fround { #(fnum_str, scale) return fnum_str
    local($x,$scale) = (fnorm($_[$[]),$_[$[+1]);
    if ($x eq 'NaN' || $scale <= 0) {
	$x;
    } else {
	local($xm,$xe) = split('E',$x);
	if (length($xm)-1 <= $scale) {
	    $x;
	} else {
	    &norm(&round(substr($xm,$[,$scale+1),
			 "+0".substr($xm,$[+$scale+1,1),"+10"),
		  $xe+length($xm)-$scale-1);
	}
    }
}

# round $x at the 10 to the $scale digit place
sub ffround { #(fnum_str, scale) return fnum_str
    local($x,$scale) = (fnorm($_[$[]),$_[$[+1]);
    if ($x eq 'NaN') {
	'NaN';
    } else {
	local($xm,$xe) = split('E',$x);
	if ($xe >= $scale) {
	    $x;
	} else {
	    $xe = length($xm)+$xe-$scale;
	    if ($xe < 1) {
		'+0E+0';
	    } elsif ($xe == 1) {
		# The first substr preserves the sign, passing a non-
		# normalized "-0" to &round when rounding -0.006 (for
		# example), purely so &round won't lose the sign.
		&norm(&round(substr($xm,$[,1).'0',
		      "+0".substr($xm,$[+1,1),"+10"), $scale);
	    } else {
		&norm(&round(substr($xm,$[,$xe),
		      "+0".substr($xm,$[+$xe,1),"+10"), $scale);
	    }
	}
    }
}
    
# compare 2 values returns one of undef, <0, =0, >0
#   returns undef if either or both input value are not numbers
sub fcmp #(fnum_str, fnum_str) return cond_code
{
    local($x, $y) = (fnorm($_[$[]),fnorm($_[$[+1]));
    if ($x eq "NaN" || $y eq "NaN") {
	undef;
    } else {
	local($xm,$xe,$ym,$ye) = split('E', $x."E$y");
	if ($xm eq '+0' || $ym eq '+0') {
	    return $xm <=> $ym;
	}
	ord($y) <=> ord($x)
	|| ($xe <=> $ye) * (substr($x,$[,1).'1')
	|| Math::BigInt::cmp($xm,$ym);
    }
}

# square root by Newtons method.
sub fsqrt { #(fnum_str[, scale]) return fnum_str
    local($x, $scale) = (fnorm($_[$[]), $_[$[+1]);
    if ($x eq 'NaN' || $x =~ /^-/) {
	'NaN';
    } elsif ($x eq '+0E+0') {
	'+0E+0';
    } else {
	local($xm, $xe) = split('E',$x);
	$scale = $div_scale if (!$scale);
	$scale = length($xm)-1 if ($scale < length($xm)-1);
	local($gs, $guess) = (1, sprintf("1E%+d", (length($xm)+$xe-1)/2));
	while ($gs < 2*$scale) {
	    $guess = fmul(fadd($guess,fdiv($x,$guess,$gs*2)),".5");
	    $gs *= 2;
	}
	new Math::BigFloat &fround($guess, $scale);
    }
}

1;
__END__

=head1 NAME

Math::BigFloat - Arbitrary length float math package

=head1 SYNOPSIS

  use Math::BigFloat;
  $f = Math::BigFloat->new($string);

  $f->fadd(NSTR) return NSTR            addition
  $f->fsub(NSTR) return NSTR            subtraction
  $f->fmul(NSTR) return NSTR            multiplication
  $f->fdiv(NSTR[,SCALE]) returns NSTR   division to SCALE places
  $f->fneg() return NSTR                negation
  $f->fabs() return NSTR                absolute value
  $f->fcmp(NSTR) return CODE            compare undef,<0,=0,>0
  $f->fround(SCALE) return NSTR         round to SCALE digits
  $f->ffround(SCALE) return NSTR        round at SCALEth place
  $f->fnorm() return (NSTR)             normalize
  $f->fsqrt([SCALE]) return NSTR        sqrt to SCALE places

=head1 DESCRIPTION

All basic math operations are overloaded if you declare your big
floats as

    $float = new Math::BigFloat "2.123123123123123123123123123123123";

=over 2

=item number format

canonical strings have the form /[+-]\d+E[+-]\d+/ .  Input values can
have embedded whitespace.

=item Error returns 'NaN'

An input parameter was "Not a Number" or divide by zero or sqrt of
negative number.

=item Division is computed to 

C<max($Math::BigFloat::div_scale,length(dividend)+length(divisor))>
digits by default.
Also used for default sqrt scale.

=item Rounding is performed

according to the value of
C<$Math::BigFloat::rnd_mode>:

  trunc     truncate the value
  zero      round towards 0
  +inf      round towards +infinity (round up)
  -inf      round towards -infinity (round down)
  even      round to the nearest, .5 to the even digit
  odd       round to the nearest, .5 to the odd digit

The default is C<even> rounding.

=back

=head1 BUGS

The current version of this module is a preliminary version of the
real thing that is currently (as of perl5.002) under development.

The printf subroutine does not use the value of
C<$Math::BigFloat::rnd_mode> when rounding values for printing.
Consequently, the way to print rounded values is
to specify the number of digits both as an
argument to C<ffround> and in the C<%f> printf string,
as follows:

  printf "%.3f\n", $bigfloat->ffround(-3);

=head1 AUTHOR

Mark Biggar

=cut