1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
package Math::BigInt;
use overload
'+' => sub {new Math::BigInt &badd},
'-' => sub {new Math::BigInt
$_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])},
'<=>' => sub {new Math::BigInt
$_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])},
'cmp' => sub {new Math::BigInt
$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
'*' => sub {new Math::BigInt &bmul},
'/' => sub {new Math::BigInt
$_[2]? scalar bdiv($_[1],${$_[0]}) :
scalar bdiv(${$_[0]},$_[1])},
'%' => sub {new Math::BigInt
$_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])},
'**' => sub {new Math::BigInt
$_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])},
'neg' => sub {new Math::BigInt &bneg},
'abs' => sub {new Math::BigInt &babs},
qw(
"" stringify
0+ numify) # Order of arguments unsignificant
;
$NaNOK=1;
sub new {
my($class) = shift;
my($foo) = bnorm(shift);
die "Not a number initialized to Math::BigInt" if !$NaNOK && $foo eq "NaN";
bless \$foo, $class;
}
sub stringify { "${$_[0]}" }
sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
# comparing to direct compilation based on
# stringify
sub import {
shift;
return unless @_;
die "unknown import: @_" unless @_ == 1 and $_[0] eq ':constant';
overload::constant integer => sub {Math::BigInt->new(shift)};
}
$zero = 0;
# normalize string form of number. Strip leading zeros. Strip any
# white space and add a sign, if missing.
# Strings that are not numbers result the value 'NaN'.
sub bnorm { #(num_str) return num_str
local($_) = @_;
s/\s+//g; # strip white space
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
substr($_,$[,0) = '+' unless $1; # Add missing sign
s/^-0/+0/;
$_;
} else {
'NaN';
}
}
# Convert a number from string format to internal base 100000 format.
# Assumes normalized value as input.
sub internal { #(num_str) return int_num_array
local($d) = @_;
($is,$il) = (substr($d,$[,1),length($d)-2);
substr($d,$[,1) = '';
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
}
# Convert a number from internal base 100000 format to string format.
# This routine scribbles all over input array.
sub external { #(int_num_array) return num_str
$es = shift;
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
&bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
}
# Negate input value.
sub bneg { #(num_str) return num_str
local($_) = &bnorm(@_);
return $_ if $_ eq '+0' or $_ eq 'NaN';
vec($_,0,8) ^= ord('+') ^ ord('-');
$_;
}
# Returns the absolute value of the input.
sub babs { #(num_str) return num_str
&abs(&bnorm(@_));
}
sub abs { # post-normalized abs for internal use
local($_) = @_;
s/^-/+/;
$_;
}
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
sub bcmp { #(num_str, num_str) return cond_code
local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
if ($x eq 'NaN') {
undef;
} elsif ($y eq 'NaN') {
undef;
} else {
&cmp($x,$y) <=> 0;
}
}
sub cmp { # post-normalized compare for internal use
local($cx, $cy) = @_;
return 0 if ($cx eq $cy);
local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
local($ld);
if ($sx eq '+') {
return 1 if ($sy eq '-' || $cy eq '+0');
$ld = length($cx) - length($cy);
return $ld if ($ld);
return $cx cmp $cy;
} else { # $sx eq '-'
return -1 if ($sy eq '+');
$ld = length($cy) - length($cx);
return $ld if ($ld);
return $cy cmp $cx;
}
}
sub badd { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x); # convert to internal form
@y = &internal($y);
local($sx, $sy) = (shift @x, shift @y); # get signs
if ($sx eq $sy) {
&external($sx, &add(*x, *y)); # if same sign add
} else {
($x, $y) = (&abs($x),&abs($y)); # make abs
if (&cmp($y,$x) > 0) {
&external($sy, &sub(*y, *x));
} else {
&external($sx, &sub(*x, *y));
}
}
}
}
sub bsub { #(num_str, num_str) return num_str
&badd($_[$[],&bneg($_[$[+1]));
}
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
sub bgcd { #(num_str, num_str) return num_str
local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
if ($x eq 'NaN' || $y eq 'NaN') {
'NaN';
} else {
($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0';
$x;
}
}
# routine to add two base 1e5 numbers
# stolen from Knuth Vol 2 Algorithm A pg 231
# there are separate routines to add and sub as per Kunth pg 233
sub add { #(int_num_array, int_num_array) return int_num_array
local(*x, *y) = @_;
$car = 0;
for $x (@x) {
last unless @y || $car;
$x -= 1e5 if $car = (($x += (@y ? shift(@y) : 0) + $car) >= 1e5) ? 1 : 0;
}
for $y (@y) {
last unless $car;
$y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
}
(@x, @y, $car);
}
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
sub sub { #(int_num_array, int_num_array) return int_num_array
local(*sx, *sy) = @_;
$bar = 0;
for $sx (@sx) {
last unless @sy || $bar;
$sx += 1e5 if $bar = (($sx -= (@sy ? shift(@sy) : 0) + $bar) < 0);
}
@sx;
}
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
sub bmul { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x);
@y = &internal($y);
&external(&mul(*x,*y));
}
}
# multiply two numbers in internal representation
# destroys the arguments, supposes that two arguments are different
sub mul { #(*int_num_array, *int_num_array) return int_num_array
local(*x, *y) = (shift, shift);
local($signr) = (shift @x ne shift @y) ? '-' : '+';
@prod = ();
for $x (@x) {
($car, $cty) = (0, $[);
for $y (@y) {
$prod = $x * $y + ($prod[$cty] || 0) + $car;
$prod[$cty++] =
$prod - ($car = int($prod * 1e-5)) * 1e5;
}
$prod[$cty] += $car if $car;
$x = shift @prod;
}
($signr, @x, @prod);
}
# modulus
sub bmod { #(num_str, num_str) return num_str
(&bdiv(@_))[$[+1];
}
sub bdiv { #(dividend: num_str, divisor: num_str) return num_str
local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
return wantarray ? ('NaN','NaN') : 'NaN'
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
@x = &internal($x); @y = &internal($y);
$srem = $y[$[];
$sr = (shift @x ne shift @y) ? '-' : '+';
$car = $bar = $prd = 0;
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
for $x (@x) {
$x = $x * $dd + $car;
$x -= ($car = int($x * 1e-5)) * 1e5;
}
push(@x, $car); $car = 0;
for $y (@y) {
$y = $y * $dd + $car;
$y -= ($car = int($y * 1e-5)) * 1e5;
}
}
else {
push(@x, 0);
}
@q = (); ($v2,$v1) = ($y[-2] || 0, $y[-1]);
while ($#x > $#y) {
($u2,$u1,$u0) = ($x[-3] || 0, $x[-2] || 0, $x[-1]);
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
if ($q) {
($car, $bar) = (0,0);
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
$prd = $q * $y[$y] + $car;
$prd -= ($car = int($prd * 1e-5)) * 1e5;
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
}
if ($x[$#x] < $car + $bar) {
$car = 0; --$q;
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
$x[$x] -= 1e5
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
}
}
}
pop(@x); unshift(@q, $q);
}
if (wantarray) {
@d = ();
if ($dd != 1) {
$car = 0;
for $x (reverse @x) {
$prd = $car * 1e5 + $x;
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
unshift(@d, $tmp);
}
}
else {
@d = @x;
}
(&external($sr, @q), &external($srem, @d, $zero));
} else {
&external($sr, @q);
}
}
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
sub bpow { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} elsif ($x eq '+1') {
'+1';
} elsif ($x eq '-1') {
&bmod($x,2) ? '-1': '+1';
} elsif ($y =~ /^-/) {
'NaN';
} elsif ($x eq '+0' && $y eq '+0') {
'NaN';
} else {
@x = &internal($x);
local(@pow2)=@x;
local(@pow)=&internal("+1");
local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul
while ($y ne '+0') {
($y,$res)=&bdiv($y,2);
if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);}
if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);}
}
&external(@pow);
}
}
1;
__END__
=head1 NAME
Math::BigInt - Arbitrary size integer math package
=head1 SYNOPSIS
use Math::BigInt;
$i = Math::BigInt->new($string);
$i->bneg return BINT negation
$i->babs return BINT absolute value
$i->bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
$i->badd(BINT) return BINT addition
$i->bsub(BINT) return BINT subtraction
$i->bmul(BINT) return BINT multiplication
$i->bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
$i->bmod(BINT) return BINT modulus
$i->bgcd(BINT) return BINT greatest common divisor
$i->bnorm return BINT normalization
=head1 DESCRIPTION
All basic math operations are overloaded if you declare your big
integers as
$i = new Math::BigInt '123 456 789 123 456 789';
=over 2
=item Canonical notation
Big integer value are strings of the form C</^[+-]\d+$/> with leading
zeros suppressed.
=item Input
Input values to these routines may be strings of the form
C</^\s*[+-]?[\d\s]+$/>.
=item Output
Output values always always in canonical form
=back
Actual math is done in an internal format consisting of an array
whose first element is the sign (/^[+-]$/) and whose remaining
elements are base 100000 digits with the least significant digit first.
The string 'NaN' is used to represent the result when input arguments
are not numbers, as well as the result of dividing by zero.
=head1 EXAMPLES
'+0' canonical zero value
' -123 123 123' canonical value '-123123123'
'1 23 456 7890' canonical value '+1234567890'
=head1 Autocreating constants
After C<use Math::BigInt ':constant'> all the integer decimal constants
in the given scope are converted to C<Math::BigInt>. This conversion
happens at compile time.
In particular
perl -MMath::BigInt=:constant -e 'print 2**100'
print the integer value of C<2**100>. Note that without convertion of
constants the expression 2**100 will be calculatted as floating point number.
=head1 BUGS
The current version of this module is a preliminary version of the
real thing that is currently (as of perl5.002) under development.
=head1 AUTHOR
Mark Biggar, overloaded interface by Ilya Zakharevich.
=cut
|