1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
package Math::BigInt;
%OVERLOAD = (
# Anonymous subroutines:
'+' => sub {new BigInt &badd},
'-' => sub {new BigInt
$_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])},
'<=>' => sub {new BigInt
$_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])},
'cmp' => sub {new BigInt
$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
'*' => sub {new BigInt &bmul},
'/' => sub {new BigInt
$_[2]? scalar bdiv($_[1],${$_[0]}) :
scalar bdiv(${$_[0]},$_[1])},
'%' => sub {new BigInt
$_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])},
'**' => sub {new BigInt
$_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])},
'neg' => sub {new BigInt &bneg},
'abs' => sub {new BigInt &babs},
qw(
"" stringify
0+ numify) # Order of arguments unsignificant
);
sub new {
my $foo = bnorm($_[1]);
die "Not a number initialized to BigInt" if $foo eq "NaN";
bless \$foo;
}
sub stringify { "${$_[0]}" }
sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
# comparing to direct compilation based on
# stringify
# arbitrary size integer math package
#
# by Mark Biggar
#
# Canonical Big integer value are strings of the form
# /^[+-]\d+$/ with leading zeros suppressed
# Input values to these routines may be strings of the form
# /^\s*[+-]?[\d\s]+$/.
# Examples:
# '+0' canonical zero value
# ' -123 123 123' canonical value '-123123123'
# '1 23 456 7890' canonical value '+1234567890'
# Output values always always in canonical form
#
# Actual math is done in an internal format consisting of an array
# whose first element is the sign (/^[+-]$/) and whose remaining
# elements are base 100000 digits with the least significant digit first.
# The string 'NaN' is used to represent the result when input arguments
# are not numbers, as well as the result of dividing by zero
#
# routines provided are:
#
# bneg(BINT) return BINT negation
# babs(BINT) return BINT absolute value
# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
# badd(BINT,BINT) return BINT addition
# bsub(BINT,BINT) return BINT subtraction
# bmul(BINT,BINT) return BINT multiplication
# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
# bmod(BINT,BINT) return BINT modulus
# bgcd(BINT,BINT) return BINT greatest common divisor
# bnorm(BINT) return BINT normalization
#
$zero = 0;
# normalize string form of number. Strip leading zeros. Strip any
# white space and add a sign, if missing.
# Strings that are not numbers result the value 'NaN'.
sub bnorm { #(num_str) return num_str
local($_) = @_;
s/\s+//g; # strip white space
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
substr($_,$[,0) = '+' unless $1; # Add missing sign
s/^-0/+0/;
$_;
} else {
'NaN';
}
}
# Convert a number from string format to internal base 100000 format.
# Assumes normalized value as input.
sub internal { #(num_str) return int_num_array
local($d) = @_;
($is,$il) = (substr($d,$[,1),length($d)-2);
substr($d,$[,1) = '';
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
}
# Convert a number from internal base 100000 format to string format.
# This routine scribbles all over input array.
sub external { #(int_num_array) return num_str
$es = shift;
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
&bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
}
# Negate input value.
sub bneg { #(num_str) return num_str
local($_) = &bnorm(@_);
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
s/^H/N/;
$_;
}
# Returns the absolute value of the input.
sub babs { #(num_str) return num_str
&abs(&bnorm(@_));
}
sub abs { # post-normalized abs for internal use
local($_) = @_;
s/^-/+/;
$_;
}
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
sub bcmp { #(num_str, num_str) return cond_code
local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
if ($x eq 'NaN') {
undef;
} elsif ($y eq 'NaN') {
undef;
} else {
&cmp($x,$y);
}
}
sub cmp { # post-normalized compare for internal use
local($cx, $cy) = @_;
$cx cmp $cy
&&
(
ord($cy) <=> ord($cx)
||
($cx cmp ',') * (length($cy) <=> length($cx) || $cy cmp $cx)
);
}
sub badd { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x); # convert to internal form
@y = &internal($y);
local($sx, $sy) = (shift @x, shift @y); # get signs
if ($sx eq $sy) {
&external($sx, &add(*x, *y)); # if same sign add
} else {
($x, $y) = (&abs($x),&abs($y)); # make abs
if (&cmp($y,$x) > 0) {
&external($sy, &sub(*y, *x));
} else {
&external($sx, &sub(*x, *y));
}
}
}
}
sub bsub { #(num_str, num_str) return num_str
&badd($_[$[],&bneg($_[$[+1]));
}
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
sub bgcd { #(num_str, num_str) return num_str
local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
if ($x eq 'NaN' || $y eq 'NaN') {
'NaN';
} else {
($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0';
$x;
}
}
# routine to add two base 1e5 numbers
# stolen from Knuth Vol 2 Algorithm A pg 231
# there are separate routines to add and sub as per Kunth pg 233
sub add { #(int_num_array, int_num_array) return int_num_array
local(*x, *y) = @_;
$car = 0;
for $x (@x) {
last unless @y || $car;
$x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5);
}
for $y (@y) {
last unless $car;
$y -= 1e5 if $car = (($y += $car) >= 1e5);
}
(@x, @y, $car);
}
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
sub sub { #(int_num_array, int_num_array) return int_num_array
local(*sx, *sy) = @_;
$bar = 0;
for $sx (@sx) {
last unless @y || $bar;
$sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
}
@sx;
}
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
sub bmul { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x);
@y = &internal($y);
&external(&mul(*x,*y));
}
}
# multiply two numbers in internal representation
# destroys the arguments, supposes that two arguments are different
sub mul { #(*int_num_array, *int_num_array) return int_num_array
local(*x, *y) = (shift, shift);
local($signr) = (shift @x ne shift @y) ? '-' : '+';
@prod = ();
for $x (@x) {
($car, $cty) = (0, $[);
for $y (@y) {
$prod = $x * $y + $prod[$cty] + $car;
$prod[$cty++] =
$prod - ($car = int($prod * 1e-5)) * 1e5;
}
$prod[$cty] += $car if $car;
$x = shift @prod;
}
($signr, @x, @prod);
}
# modulus
sub bmod { #(num_str, num_str) return num_str
(&bdiv(@_))[$[+1];
}
sub bdiv { #(dividend: num_str, divisor: num_str) return num_str
local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
return wantarray ? ('NaN','NaN') : 'NaN'
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
@x = &internal($x); @y = &internal($y);
$srem = $y[$[];
$sr = (shift @x ne shift @y) ? '-' : '+';
$car = $bar = $prd = 0;
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
for $x (@x) {
$x = $x * $dd + $car;
$x -= ($car = int($x * 1e-5)) * 1e5;
}
push(@x, $car); $car = 0;
for $y (@y) {
$y = $y * $dd + $car;
$y -= ($car = int($y * 1e-5)) * 1e5;
}
}
else {
push(@x, 0);
}
@q = (); ($v2,$v1) = @y[-2,-1];
while ($#x > $#y) {
($u2,$u1,$u0) = @x[-3..-1];
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
if ($q) {
($car, $bar) = (0,0);
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
$prd = $q * $y[$y] + $car;
$prd -= ($car = int($prd * 1e-5)) * 1e5;
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
}
if ($x[$#x] < $car + $bar) {
$car = 0; --$q;
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
$x[$x] -= 1e5
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
}
}
}
pop(@x); unshift(@q, $q);
}
if (wantarray) {
@d = ();
if ($dd != 1) {
$car = 0;
for $x (reverse @x) {
$prd = $car * 1e5 + $x;
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
unshift(@d, $tmp);
}
}
else {
@d = @x;
}
(&external($sr, @q), &external($srem, @d, $zero));
} else {
&external($sr, @q);
}
}
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
sub bpow { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} elsif ($x eq '+1') {
'+1';
} elsif ($x eq '-1') {
&bmod($x,2) ? '-1': '+1';
} elsif ($y =~ /^-/) {
'NaN';
} elsif ($x eq '+0' && $y eq '+0') {
'NaN';
} else {
@x = &internal($x);
local(@pow2)=@x;
local(@pow)=&internal("+1");
local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul
while ($y ne '+0') {
($y,$res)=&bdiv($y,2);
if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);}
if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);}
}
&external(@pow);
}
}
1;
|