summaryrefslogtreecommitdiff
path: root/lib/Math/BigInt.pm
blob: f854ec0747fc3618065eddf414b4d68bd8599955 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
#!/usr/bin/perl -w

# Qs: what exactly happens on numify of HUGE numbers? overflow?
#     $a = -$a is much slower (making copy of $a) than $a->bneg(), hm!?
#     (copy_on_write will help there, but that is not yet implemented)

# The following hash values are used:
#   value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
#   sign : +,-,NaN,+inf,-inf
#   _a   : accuracy
#   _p   : precision
#   _f   : flags, used by MBF to flag parts of a float as untouchable
#   _cow : copy on write: number of objects that share the data (NRY)

# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!

package Math::BigInt;
my $class = "Math::BigInt";
require 5.005;

$VERSION = '1.45';
use Exporter;
@ISA =       qw( Exporter );
@EXPORT_OK = qw( bneg babs bcmp badd bmul bdiv bmod bnorm bsub
                 bgcd blcm
		 bround 
                 blsft brsft band bior bxor bnot bpow bnan bzero 
                 bacmp bstr bsstr binc bdec binf bfloor bceil
                 is_odd is_even is_zero is_one is_nan is_inf sign
		 is_positive is_negative
		 length as_number
		 objectify _swap
               ); 
#@EXPORT = qw( );
use vars qw/$round_mode $accuracy $precision $div_scale/;
use strict;

# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third paramater indicates this
# swapping. To make it work, we use a helper routine which not only reswaps the
# params, but also makes a new object in this case. See _swap() for details,
# especially the cases of operators with different classes.

# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.

# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.

use overload
'='     =>      sub { $_[0]->copy(); },

# '+' and '-' do not use _swap, since it is a triffle slower. If you want to
# override _swap (if ever), then override overload of '+' and '-', too!
# for sub it is a bit tricky to keep b: b-a => -a+b
'-'	=>	sub { my $c = $_[0]->copy; $_[2] ?
                   $c->bneg()->badd($_[1]) :
                   $c->bsub( $_[1]) },
'+'	=>	sub { $_[0]->copy()->badd($_[1]); },

# some shortcuts for speed (assumes that reversed order of arguments is routed
# to normal '+' and we thus can always modify first arg. If this is changed,
# this breaks and must be adjusted.)
'+='	=>	sub { $_[0]->badd($_[1]); },
'-='	=>	sub { $_[0]->bsub($_[1]); },
'*='	=>	sub { $_[0]->bmul($_[1]); },
'/='	=>	sub { scalar $_[0]->bdiv($_[1]); },
'**='	=>	sub { $_[0]->bpow($_[1]); },

'<=>'	=>	sub { $_[2] ?
                      ref($_[0])->bcmp($_[1],$_[0]) : 
                      ref($_[0])->bcmp($_[0],$_[1])},
'cmp'	=>	sub { 
         $_[2] ? 
               $_[1] cmp $_[0]->bstr() :
               $_[0]->bstr() cmp $_[1] },

'int'	=>	sub { $_[0]->copy(); }, 
'neg'	=>	sub { $_[0]->copy()->bneg(); }, 
'abs'	=>	sub { $_[0]->copy()->babs(); },
'~'	=>	sub { $_[0]->copy()->bnot(); },

'*'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->bmul($a[1]); },
'/'	=>	sub { my @a = ref($_[0])->_swap(@_);scalar $a[0]->bdiv($a[1]);},
'%'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->bmod($a[1]); },
'**'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->bpow($a[1]); },
'<<'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->blsft($a[1]); },
'>>'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->brsft($a[1]); },

'&'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->band($a[1]); },
'|'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->bior($a[1]); },
'^'	=>	sub { my @a = ref($_[0])->_swap(@_); $a[0]->bxor($a[1]); },

# can modify arg of ++ and --, so avoid a new-copy for speed, but don't
# use $_[0]->__one(), it modifies $_[0] to be 1!
'++'	=>	sub { $_[0]->binc() },
'--'	=>	sub { $_[0]->bdec() },

# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
'bool'  =>	sub {
  # this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
  # v5.6.1 dumps on that: return !$_[0]->is_zero() || undef;		    :-(
  my $t = !$_[0]->is_zero();
  undef $t if $t == 0;
  return $t;
  },

qw(
""	bstr
0+	numify),		# Order of arguments unsignificant
;

##############################################################################
# global constants, flags and accessory

use constant MB_NEVER_ROUND => 0x0001;

my $NaNOK=1; 				# are NaNs ok?
my $nan = 'NaN'; 			# constants for easier life

my $CALC = 'Math::BigInt::Calc';	# module to do low level math
sub _core_lib () { return $CALC; }	# for test suite

$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
$accuracy   = undef;
$precision  = undef;
$div_scale  = 40;

sub round_mode
  {
  no strict 'refs';
  # make Class->round_mode() work
  my $self = shift;
  my $class = ref($self) || $self || __PACKAGE__;
  if (defined $_[0])
    {
    my $m = shift;
    die "Unknown round mode $m"
     if $m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/;
    ${"${class}::round_mode"} = $m; return $m;
    }
  return ${"${class}::round_mode"};
  }

sub div_scale
  {
  no strict 'refs';
  # make Class->round_mode() work
  my $self = shift;
  my $class = ref($self) || $self || __PACKAGE__;
  if (defined $_[0])
    {
    die ('div_scale must be greater than zero') if $_[0] < 0;
    ${"${class}::div_scale"} = shift;
    }
  return ${"${class}::div_scale"};
  }

sub accuracy
  {
  # $x->accuracy($a);		ref($x)	$a
  # $x->accuracy();		ref($x)
  # Class->accuracy();		class
  # Class->accuracy($a);	class $a

  my $x = shift;
  my $class = ref($x) || $x || __PACKAGE__;

  no strict 'refs';
  # need to set new value?
  if (@_ > 0)
    {
    my $a = shift;
    die ('accuracy must not be zero') if defined $a && $a == 0;
    if (ref($x))
      {
      # $object->accuracy() or fallback to global
      $x->bround($a) if defined $a;
      $x->{_a} = $a;			# set/overwrite, even if not rounded
      $x->{_p} = undef;			# clear P
      }
    else
      {
      # set global
      ${"${class}::accuracy"} = $a;
      }
    return $a;				# shortcut
    }

  if (ref($x))
    {
    # $object->accuracy() or fallback to global
    return $x->{_a} || ${"${class}::accuracy"};
    }
  return ${"${class}::accuracy"};
  } 

sub precision
  {
  # $x->precision($p);		ref($x)	$p
  # $x->precision();		ref($x)
  # Class->precision();		class
  # Class->precision($p);	class $p

  my $x = shift;
  my $class = ref($x) || $x || __PACKAGE__;

  no strict 'refs';
  # need to set new value?
  if (@_ > 0)
    {
    my $p = shift;
    if (ref($x))
      {
      # $object->precision() or fallback to global
      $x->bfround($p) if defined $p;
      $x->{_p} = $p;			# set/overwrite, even if not rounded
      $x->{_a} = undef;			# clear P
      }
    else
      {
      # set global
      ${"${class}::precision"} = $p;
      }
    return $p;				# shortcut
    }

  if (ref($x))
    {
    # $object->precision() or fallback to global
    return $x->{_p} || ${"${class}::precision"};
    }
  return ${"${class}::precision"};
  } 

sub _scale_a
  { 
  # select accuracy parameter based on precedence,
  # used by bround() and bfround(), may return undef for scale (means no op)
  my ($x,$s,$m,$scale,$mode) = @_;
  $scale = $x->{_a} if !defined $scale;
  $scale = $s if (!defined $scale);
  $mode = $m if !defined $mode;
  return ($scale,$mode);
  }

sub _scale_p
  { 
  # select precision parameter based on precedence,
  # used by bround() and bfround(), may return undef for scale (means no op)
  my ($x,$s,$m,$scale,$mode) = @_;
  $scale = $x->{_p} if !defined $scale;
  $scale = $s if (!defined $scale);
  $mode = $m if !defined $mode;
  return ($scale,$mode);
  }

##############################################################################
# constructors

sub copy
  {
  my ($c,$x);
  if (@_ > 1)
    {
    # if two arguments, the first one is the class to "swallow" subclasses
    ($c,$x) = @_;
    }
  else
    {
    $x = shift;
    $c = ref($x);
    }
  return unless ref($x); # only for objects

  my $self = {}; bless $self,$c;
  foreach my $k (keys %$x)
    {
    if ($k eq 'value')
      {
      $self->{$k} = $CALC->_copy($x->{$k});
      }
    elsif (ref($x->{$k}) eq 'SCALAR')
      {
      $self->{$k} = \${$x->{$k}};
      }
    elsif (ref($x->{$k}) eq 'ARRAY')
      {
      $self->{$k} = [ @{$x->{$k}} ];
      }
    elsif (ref($x->{$k}) eq 'HASH')
      {
      # only one level deep!
      foreach my $h (keys %{$x->{$k}})
        {
        $self->{$k}->{$h} = $x->{$k}->{$h};
        }
      }
    elsif (ref($x->{$k}))
      {
      my $c = ref($x->{$k});
      $self->{$k} = $c->new($x->{$k}); # no copy() due to deep rec
      }
    else
      {
      $self->{$k} = $x->{$k};
      }
    }
  $self;
  }

sub new 
  {
  # create a new BigInt object from a string or another BigInt object. 
  # see hash keys documented at top

  # the argument could be an object, so avoid ||, && etc on it, this would
  # cause costly overloaded code to be called. The only allowed ops are
  # ref() and defined.

  my $class = shift;
 
  my $wanted = shift; # avoid numify call by not using || here
  return $class->bzero() if !defined $wanted;	# default to 0
  return $class->copy($wanted) if ref($wanted);

  my $self = {}; bless $self, $class;
  # handle '+inf', '-inf' first
  if ($wanted =~ /^[+-]?inf$/)
    {
    $self->{value} = $CALC->_zero();
    $self->{sign} = $wanted; $self->{sign} = '+inf' if $self->{sign} eq 'inf';
    return $self;
    }
  # split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
  my ($mis,$miv,$mfv,$es,$ev) = _split(\$wanted);
  if (!ref $mis)
    {
    die "$wanted is not a number initialized to $class" if !$NaNOK;
    #print "NaN 1\n";
    $self->{value} = $CALC->_zero();
    $self->{sign} = $nan;
    return $self;
    }
  if (!ref $miv)
    {
    # _from_hex or _from_bin
    $self->{value} = $mis->{value};
    $self->{sign} = $mis->{sign};
    return $self;	# throw away $mis
    }
  # make integer from mantissa by adjusting exp, then convert to bigint
  $self->{sign} = $$mis;			# store sign
  $self->{value} = $CALC->_zero();		# for all the NaN cases
  my $e = int("$$es$$ev");			# exponent (avoid recursion)
  if ($e > 0)
    {
    my $diff = $e - CORE::length($$mfv);
    if ($diff < 0)				# Not integer
      {
      #print "NOI 1\n";
      $self->{sign} = $nan;
      }
    else					# diff >= 0
      {
      # adjust fraction and add it to value
      # print "diff > 0 $$miv\n";
      $$miv = $$miv . ($$mfv . '0' x $diff);
      }
    }
  else
    {
    if ($$mfv ne '')				# e <= 0
      {
      # fraction and negative/zero E => NOI
      #print "NOI 2 \$\$mfv '$$mfv'\n";
      $self->{sign} = $nan;
      }
    elsif ($e < 0)
      {
      # xE-y, and empty mfv
      #print "xE-y\n";
      $e = abs($e);
      if ($$miv !~ s/0{$e}$//)		# can strip so many zero's?
        {
        #print "NOI 3\n";
        $self->{sign} = $nan;
        }
      }
    }
  $self->{sign} = '+' if $$miv eq '0';			# normalize -0 => +0
  $self->{value} = $CALC->_new($miv) if $self->{sign} =~ /^[+-]$/;
  # if any of the globals is set, use them to round and store them inside $self
  $self->round($accuracy,$precision,$round_mode)
   if defined $accuracy || defined $precision;
  return $self;
  }

sub bnan
  {
  # create a bigint 'NaN', if given a BigInt, set it to 'NaN'
  my $self = shift;
  $self = $class if !defined $self;
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  return if $self->modify('bnan');
  $self->{value} = $CALC->_zero();
  $self->{sign} = $nan;
  return $self;
  }

sub binf
  {
  # create a bigint '+-inf', if given a BigInt, set it to '+-inf'
  # the sign is either '+', or if given, used from there
  my $self = shift;
  my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
  $self = $class if !defined $self;
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  return if $self->modify('binf');
  $self->{value} = $CALC->_zero();
  $self->{sign} = $sign.'inf';
  return $self;
  }

sub bzero
  {
  # create a bigint '+0', if given a BigInt, set it to 0
  my $self = shift;
  $self = $class if !defined $self;
 
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  return if $self->modify('bzero');
  $self->{value} = $CALC->_zero();
  $self->{sign} = '+';
  return $self;
  }

sub bone
  {
  # create a bigint '+1' (or -1 if given sign '-'),
  # if given a BigInt, set it to +1 or -1, respecively
  my $self = shift;
  my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
  $self = $class if !defined $self;
 
  if (!ref($self))
    {
    my $c = $self; $self = {}; bless $self, $c;
    }
  return if $self->modify('bone');
  $self->{value} = $CALC->_one();
  $self->{sign} = $sign;
  return $self;
  }

##############################################################################
# string conversation

sub bsstr
  {
  # (ref to BFLOAT or num_str ) return num_str
  # Convert number from internal format to scientific string format.
  # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
  my $x = shift; $class = ref($x) || $x; $x = $class->new(shift) if !ref($x); 
  # my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 

  if ($x->{sign} !~ /^[+-]$/)
    {
    return $x->{sign} unless $x->{sign} eq '+inf';	# -inf, NaN
    return 'inf';					# +inf
    }
  my ($m,$e) = $x->parts();
  # e can only be positive
  my $sign = 'e+';	
  # MBF: my $s = $e->{sign}; $s = '' if $s eq '-'; my $sep = 'e'.$s;
  return $m->bstr().$sign.$e->bstr();
  }

sub bstr 
  {
  # make a string from bigint object
  my $x = shift; $class = ref($x) || $x; $x = $class->new(shift) if !ref($x); 
  # my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 
  
  if ($x->{sign} !~ /^[+-]$/)
    {
    return $x->{sign} unless $x->{sign} eq '+inf';	# -inf, NaN
    return 'inf';					# +inf
    }
  my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
  return $es.${$CALC->_str($x->{value})};
  }

sub numify 
  {
  # Make a number from a BigInt object
  my $x = shift; $x = $class->new($x) unless ref $x;
  return $x->{sign} if $x->{sign} !~ /^[+-]$/;
  my $num = $CALC->_num($x->{value});
  return -$num if $x->{sign} eq '-';
  return $num;
  }

##############################################################################
# public stuff (usually prefixed with "b")

sub sign
  {
  # return the sign of the number: +/-/NaN
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_); 
  
  return $x->{sign};
  }

sub _find_round_parameters
  {
  # After any operation or when calling round(), the result is rounded by
  # regarding the A & P from arguments, local parameters, or globals.
  # The result's A or P are set by the rounding, but not inspected beforehand
  # (aka only the arguments enter into it). This works because the given
  # 'first' argument is both the result and true first argument with unchanged
  # A and P settings.
  # This does not yet handle $x with A, and $y with P (which should be an
  # error).
  my $self = shift;
  my $a    = shift;	# accuracy, if given by caller
  my $p    = shift;	# precision, if given by caller
  my $r    = shift;	# round_mode, if given by caller
  my @args = @_;	# all 'other' arguments (0 for unary, 1 for binary ops)

  $self = new($self) unless ref($self); 	# if not object, make one
  my $c = ref($self);				# find out class of argument(s)
  unshift @args,$self;				# add 'first' argument
        
  # leave bigfloat parts alone
  return ($self) if exists $self->{_f} && $self->{_f} & MB_NEVER_ROUND != 0;

  no strict 'refs';

  # now pick $a or $p, but only if we have got "arguments"
  if ((!defined $a) && (!defined $p) && (@args > 0))
    {
    foreach (@args)
      {
      # take the defined one, or if both defined, the one that is smaller
      $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
      }
    if (!defined $a) 		# if it still is not defined, take p
      {
      foreach (@args)
        {
        # take the defined one, or if both defined, the one that is bigger
        # -2 > -3, and 3 > 2
        $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
        }
      # if none defined, use globals (#2)
      if (!defined $p) 
        {
        my $z = "$c\::accuracy"; my $a = $$z; 
        if (!defined $a)
          {
          $z = "$c\::precision"; $p = $$z;
          }
        }
      } # endif !$a
    } # endif !$a || !$P && args > 0
  my @params = ($self);
  if (defined $a || defined $p)
    {
    $r = $r || ${"$c\::round_mode"};
    die "Unknown round mode '$r'"
     if $r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/;
    push @params, ($a,$p,$r);
    }
  return @params;
  }

sub round
  {
  # round $self according to given parameters, or given second argument's
  # parameters or global defaults 
  my $self = shift;
  
  my @params = $self->_find_round_parameters(@_);
  return $self->bnorm() if @params == 1;	# no-op

  # now round, by calling fround or ffround:
  if (defined $params[1])
    {
    $self->bround($params[1],$params[3]);
    }
  else
    {
    $self->bfround($params[2],$params[3]);
    }
  return $self->bnorm();			# after round, normalize
  }

sub bnorm
  { 
  # (numstr or or BINT) return BINT
  # Normalize number -- no-op here
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
  return $x;
  }

sub babs 
  {
  # (BINT or num_str) return BINT
  # make number absolute, or return absolute BINT from string
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  return $x if $x->modify('babs');
  # post-normalized abs for internal use (does nothing for NaN)
  $x->{sign} =~ s/^-/+/;
  $x;
  }

sub bneg 
  { 
  # (BINT or num_str) return BINT
  # negate number or make a negated number from string
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
  
  return $x if $x->modify('bneg');
  # for +0 dont negate (to have always normalized)
  return $x if $x->is_zero();
  $x->{sign} =~ tr/+\-/-+/; # does nothing for NaN
  $x;
  }

sub bcmp 
  {
  # Compares 2 values.  Returns one of undef, <0, =0, >0. (suitable for sort)
  # (BINT or num_str, BINT or num_str) return cond_code
  my ($self,$x,$y) = objectify(2,@_);

  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
    {
    # handle +-inf and NaN
    return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
    return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
    return +1 if $x->{sign} eq '+inf';
    return -1 if $x->{sign} eq '-inf';
    return -1 if $y->{sign} eq '+inf';
    return +1 if $y->{sign} eq '-inf';
    }
  # check sign for speed first
  return 1 if $x->{sign} eq '+' && $y->{sign} eq '-';	# does also 0 <=> -y
  return -1 if $x->{sign} eq '-' && $y->{sign} eq '+';  # does also -x <=> 0 

  # shortcut
  my $xz = $x->is_zero();
  my $yz = $y->is_zero();
  return 0 if $xz && $yz;                               # 0 <=> 0
  return -1 if $xz && $y->{sign} eq '+';                # 0 <=> +y
  return 1 if $yz && $x->{sign} eq '+';                 # +x <=> 0
  
  # post-normalized compare for internal use (honors signs)
  if ($x->{sign} eq '+') 
    {
    return 1 if $y->{sign} eq '-'; # 0 check handled above
    return $CALC->_acmp($x->{value},$y->{value});
    }

  # $x->{sign} eq '-'
  return -1 if $y->{sign} eq '+';
  return $CALC->_acmp($y->{value},$x->{value});	# swaped

  # &cmp($x->{value},$y->{value},$x->{sign},$y->{sign}) <=> 0;
  }

sub bacmp 
  {
  # Compares 2 values, ignoring their signs. 
  # Returns one of undef, <0, =0, >0. (suitable for sort)
  # (BINT, BINT) return cond_code
  my ($self,$x,$y) = objectify(2,@_);
  
  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
    {
    # handle +-inf and NaN
    return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
    return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
    return +1;	# inf is always bigger
    }
  $CALC->_acmp($x->{value},$y->{value}) <=> 0;
  }

sub badd 
  {
  # add second arg (BINT or string) to first (BINT) (modifies first)
  # return result as BINT
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);

  return $x if $x->modify('badd');

  # inf and NaN handling
  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
    {
    # NaN first
    return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
    # inf handline
   if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
      {
      # + and + => +, - and - => -, + and - => 0, - and + => 0
      return $x->bzero() if $x->{sign} ne $y->{sign};
      return $x;
      }
    # +-inf + something => +inf
    # something +-inf => +-inf
    $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
    return $x;
    }
    
  my @bn = ($a,$p,$r,$y); 			# make array for round calls
  # speed: no add for 0+y or x+0
  return $x->round(@bn) if $y->is_zero();			# x+0
  if ($x->is_zero())						# 0+y
    {
    # make copy, clobbering up x
    $x->{value} = $CALC->_copy($y->{value});
    $x->{sign} = $y->{sign} || $nan;
    return $x->round(@bn);
    }

  my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs

  if ($sx eq $sy)  
    {
    $x->{value} = $CALC->_add($x->{value},$y->{value});	# same sign, abs add
    $x->{sign} = $sx;
    }
  else 
    {
    my $a = $CALC->_acmp ($y->{value},$x->{value});	# absolute compare
    if ($a > 0)                           
      {
      #print "swapped sub (a=$a)\n";
      $x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
      $x->{sign} = $sy;
      } 
    elsif ($a == 0)
      {
      # speedup, if equal, set result to 0
      #print "equal sub, result = 0\n";
      $x->{value} = $CALC->_zero();
      $x->{sign} = '+';
      }
    else # a < 0
      {
      #print "unswapped sub (a=$a)\n";
      $x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
      $x->{sign} = $sx;
      }
    }
  return $x->round(@bn);
  }

sub bsub 
  {
  # (BINT or num_str, BINT or num_str) return num_str
  # subtract second arg from first, modify first
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);

  return $x if $x->modify('bsub');
  $x->badd($y->bneg()); # badd does not leave internal zeros
  $y->bneg();           # refix y, assumes no one reads $y in between
  return $x->round($a,$p,$r,$y);
  }

sub binc
  {
  # increment arg by one
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
  return $x if $x->modify('binc');
  $x->badd($self->__one())->round($a,$p,$r);
  }

sub bdec
  {
  # decrement arg by one
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
  return $x if $x->modify('bdec');
  $x->badd($self->__one('-'))->round($a,$p,$r);
  } 

sub blcm 
  { 
  # (BINT or num_str, BINT or num_str) return BINT
  # does not modify arguments, but returns new object
  # Lowest Common Multiplicator

  my $y = shift; my ($x);
  if (ref($y))
    {
    $x = $y->copy();
    }
  else
    {
    $x = $class->new($y);
    }
  while (@_) { $x = __lcm($x,shift); } 
  $x;
  }

sub bgcd 
  { 
  # (BINT or num_str, BINT or num_str) return BINT
  # does not modify arguments, but returns new object
  # GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff)

  my $y = shift;
  $y = __PACKAGE__->new($y) if !ref($y);
  my $self = ref($y);
  my $x = $y->copy();		# keep arguments
  if ($CALC->can('_gcd'))
    {
    while (@_)
      {
      $y = shift; $y = $self->new($y) if !ref($y);
      next if $y->is_zero();
      return $x->bnan() if $y->{sign} !~ /^[+-]$/;	# y NaN?
      $x->{value} = $CALC->_gcd($x->{value},$y->{value}); last if $x->is_one();
      }
    }
  else
    {
    while (@_)
      {
      $y = shift; $y = $self->new($y) if !ref($y);
      $x = __gcd($x,$y->copy()); last if $x->is_one();	# _gcd handles NaN
      } 
    }
  $x->babs();
  }

sub bnot 
  {
  # (num_str or BINT) return BINT
  # represent ~x as twos-complement number
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
 
  return $x if $x->modify('bnot');
  $x->bneg(); $x->bdec(); 		# was: bsub(-1,$x);, time it someday
  return $x->round($a,$p,$r);
  }

sub is_zero
  {
  # return true if arg (BINT or num_str) is zero (array '+', '0')
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  return 0 if $x->{sign} !~ /^\+$/;			# -, NaN & +-inf aren't
  $CALC->_is_zero($x->{value});
  }

sub is_nan
  {
  # return true if arg (BINT or num_str) is NaN
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  return 1 if $x->{sign} eq $nan;
  return 0;
  }

sub is_inf
  {
  # return true if arg (BINT or num_str) is +-inf
  my ($self,$x,$sign) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);

  $sign = '' if !defined $sign;
  return 0 if $sign !~ /^([+-]|)$/;

  if ($sign eq '')
    {
    return 1 if ($x->{sign} =~ /^[+-]inf$/); 
    return 0;
    }
  $sign = quotemeta($sign.'inf');
  return 1 if ($x->{sign} =~ /^$sign$/);
  return 0;
  }

sub is_one
  {
  # return true if arg (BINT or num_str) is +1
  # or -1 if sign is given
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
    
  $sign = '' if !defined $sign; $sign = '+' if $sign ne '-';
 
  return 0 if $x->{sign} ne $sign; 	# -1 != +1, NaN, +-inf aren't either
  return $CALC->_is_one($x->{value});
  }

sub is_odd
  {
  # return true when arg (BINT or num_str) is odd, false for even
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  return 0 if $x->{sign} !~ /^[+-]$/;			# NaN & +-inf aren't
  return $CALC->_is_odd($x->{value});
  }

sub is_even
  {
  # return true when arg (BINT or num_str) is even, false for odd
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);

  return 0 if $x->{sign} !~ /^[+-]$/;			# NaN & +-inf aren't
  return $CALC->_is_even($x->{value});
  }

sub is_positive
  {
  # return true when arg (BINT or num_str) is positive (>= 0)
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  return 1 if $x->{sign} =~ /^\+/;
  return 0;
  }

sub is_negative
  {
  # return true when arg (BINT or num_str) is negative (< 0)
  # we don't need $self, so undef instead of ref($_[0]) make it slightly faster
  my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
  
  return 1 if ($x->{sign} =~ /^-/);
  return 0;
  }

###############################################################################

sub bmul 
  { 
  # multiply two numbers -- stolen from Knuth Vol 2 pg 233
  # (BINT or num_str, BINT or num_str) return BINT
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
  
  return $x if $x->modify('bmul');
  return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
  # handle result = 0
  return $x if $x->is_zero();
  return $x->bzero() if $y->is_zero();
  # inf handling
  if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
    {
    # result will always be +-inf:
    # +inf * +/+inf => +inf, -inf * -/-inf => +inf
    # +inf * -/-inf => -inf, -inf * +/+inf => -inf
    return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); 
    return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); 
    return $x->binf('-');
    }

  $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +

  $x->{value} = $CALC->_mul($x->{value},$y->{value});  # do actual math
  return $x->round($a,$p,$r,$y);

 # from http://groups.google.com/groups?selm=3BBF69A6.72E1%40pointecom.net
 #
 # my $yc = $y->copy();	# make copy of second argument
 # my $carry = $self->bzero();
 #
 # # XXX 
 # while ($yc > 1)
 #   {
 #   #print "$x\t$yc\t$carry\n";
 #   $carry += $x if $yc->is_odd();
 #   $yc->brsft(1,2);
 #   $x->blsft(1,2);
 #   }
 # $x += $carry;
 # #print "result $x\n";
 #
 # return $x->round($a,$p,$r,$y);
  }

sub _div_inf
  {
  # helper function that handles +-inf cases for bdiv()/bmod() to reuse code
  my ($self,$x,$y) = @_;

  # NaN if x == NaN or y == NaN or x==y==0
  return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
   if (($x->is_nan() || $y->is_nan())   ||
       ($x->is_zero() && $y->is_zero()));
 
  # +inf / +inf == -inf / -inf == 1, remainder is 0 (A / A = 1, remainder 0)
  if (($x->{sign} eq $y->{sign}) &&
    ($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
    {
    return wantarray ? ($x->bone(),$self->bzero()) : $x->bone();
    }
  # +inf / -inf == -inf / +inf == -1, remainder 0
  if (($x->{sign} ne $y->{sign}) &&
    ($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
    {
    return wantarray ? ($x->bone('-'),$self->bzero()) : $x->bone('-');
    }
  # x / +-inf => 0, remainder x (works even if x == 0)
  if ($y->{sign} =~ /^[+-]inf$/)
    {
    my $t = $x->copy();		# binf clobbers up $x
    return wantarray ? ($x->bzero(),$t) : $x->bzero()
    }
  
  # 5 / 0 => +inf, -6 / 0 => -inf
  # +inf / 0 = inf, inf,  and -inf / 0 => -inf, -inf 
  # exception:   -8 / 0 has remainder -8, not 8
  # exception: -inf / 0 has remainder -inf, not inf
  if ($y->is_zero())
    {
    # +-inf / 0 => special case for -inf
    return wantarray ?  ($x,$x->copy()) : $x if $x->is_inf();
    if (!$x->is_zero() && !$x->is_inf())
      {
      my $t = $x->copy();		# binf clobbers up $x
      return wantarray ?
       ($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
      }
    }
  
  # last case: +-inf / ordinary number
  my $sign = '+inf';
  $sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
  $x->{sign} = $sign;
  return wantarray ? ($x,$self->bzero()) : $x;
  }

sub bdiv 
  {
  # (dividend: BINT or num_str, divisor: BINT or num_str) return 
  # (BINT,BINT) (quo,rem) or BINT (only rem)
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);

  return $x if $x->modify('bdiv');

  return $self->_div_inf($x,$y)
   if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());

  # 0 / something
  return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
 
  # Is $x in the interval [0, $y) ?
  my $cmp = $CALC->_acmp($x->{value},$y->{value});
  if (($cmp < 0) and ($x->{sign} eq $y->{sign}))
    {
    return $x->bzero() unless wantarray;
    my $t = $x->copy();      # make copy first, because $x->bzero() clobbers $x
    return ($x->bzero(),$t);
    }
  elsif ($cmp == 0)
    {
    # shortcut, both are the same, so set to +/- 1
    $x->__one( ($x->{sign} ne $y->{sign} ? '-' : '+') ); 
    return $x unless wantarray;
    return ($x,$self->bzero());
    }
   
  # calc new sign and in case $y == +/- 1, return $x
  my $xsign = $x->{sign};				# keep
  $x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+'); 
  # check for / +-1 (cant use $y->is_one due to '-'
  if (($y == 1) || ($y == -1))				# slow!
    {
    return wantarray ? ($x,$self->bzero()) : $x; 
    }

  # call div here 
  my $rem = $self->bzero(); 
  ($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
  # do not leave result "-0";
  $x->{sign} = '+' if $CALC->_is_zero($x->{value});
  $x->round($a,$p,$r,$y); 

#  print "in div round ",$a||'a undef'," ",$p|| 'p undef'," $r\n";
  if (wantarray)
    {
    if (! $CALC->_is_zero($rem->{value}))
      {
      $rem->{sign} = $y->{sign};
      $rem = $y-$rem if $xsign ne $y->{sign};	# one of them '-'
      }
    else
      {
      $rem->{sign} = '+';			# dont leave -0
      }
    $rem->round($a,$p,$r,$x,$y);
    return ($x,$rem);
    }
  return $x; 
  }

sub bmod 
  {
  # modulus (or remainder)
  # (BINT or num_str, BINT or num_str) return BINT
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
  
  return $x if $x->modify('bmod');
  if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
    {
    my ($d,$r) = $self->_div_inf($x,$y);
    return $r;
    }

  if ($CALC->can('_mod'))
    {
    # calc new sign and in case $y == +/- 1, return $x
    $x->{value} = $CALC->_mod($x->{value},$y->{value});
    my $xsign = $x->{sign};
    if (!$CALC->_is_zero($x->{value}))
      {
      $x->{sign} = $y->{sign};
      $x = $y-$x if $xsign ne $y->{sign};	# one of them '-'
      }
    else
      {
      $x->{sign} = '+';				# dont leave -0
      }
    }
  else
    {
    $x = (&bdiv($self,$x,$y))[1];
    }
  $x->bround($a,$p,$r);
  }

sub bpow 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute power of two numbers -- stolen from Knuth Vol 2 pg 233
  # modifies first argument
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);

  return $x if $x->modify('bpow');
 
  return $x if $x->{sign} =~ /^[+-]inf$/;	# -inf/+inf ** x
  return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
  return $x->__one() if $y->is_zero();
  return $x         if $x->is_one() || $y->is_one();
  #if ($x->{sign} eq '-' && @{$x->{value}} == 1 && $x->{value}->[0] == 1)
  if ($x->{sign} eq '-' && $CALC->_is_one($x->{value}))
    {
    # if $x == -1 and odd/even y => +1/-1
    return $y->is_odd() ? $x : $x->babs();
    # my Casio FX-5500L has a bug here: -1 ** 2 is -1, but -1 * -1 is 1;
    }
  # 1 ** -y => 1 / (1 ** |y|)
  # so do test for negative $y after above's clause
  return $x->bnan() if $y->{sign} eq '-';
  return $x         if $x->is_zero();  # 0**y => 0 (if not y <= 0)

  if ($CALC->can('_pow'))
    {
    $x->{value} = $CALC->_pow($x->{value},$y->{value});
    return $x->round($a,$p,$r);
    }
  # based on the assumption that shifting in base 10 is fast, and that mul
  # works faster if numbers are small: we count trailing zeros (this step is
  # O(1)..O(N), but in case of O(N) we save much more time due to this),
  # stripping them out of the multiplication, and add $count * $y zeros
  # afterwards like this:
  # 300 ** 3 == 300*300*300 == 3*3*3 . '0' x 2 * 3 == 27 . '0' x 6
  # creates deep recursion?
#  my $zeros = $x->_trailing_zeros();
#  if ($zeros > 0)
#    {
#    $x->brsft($zeros,10);	# remove zeros
#    $x->bpow($y);		# recursion (will not branch into here again)
#    $zeros = $y * $zeros; 	# real number of zeros to add
#    $x->blsft($zeros,10);
#    return $x->round($a,$p,$r);
#    }

  my $pow2 = $self->__one();
  my $y1 = $class->new($y);
  my ($res);
  my $two = $self->new(2);
  while (!$y1->is_one())
    {
    # thats a tad (between 8 and 17%) faster for small results 
    # 7777 ** 7777 is not faster, but 2 ** 150, 3 ** 16, 3 ** 256 etc are
    $pow2->bmul($x) if $y1->is_odd();
    $y1->bdiv($two);
    $x->bmul($x) unless $y1->is_zero(); 

    # ($y1,$res)=&bdiv($y1,2);
    # if (!$res->is_zero()) { &bmul($pow2,$x); }
    # if (!$y1->is_zero())  { &bmul($x,$x); }
    }
  $x->bmul($pow2) unless $pow2->is_one();
  return $x->round($a,$p,$r);
  }

sub blsft 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute x << y, base n, y >= 0
  my ($self,$x,$y,$n) = objectify(2,@_);
  
  return $x if $x->modify('blsft');
  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);

  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';

  my $t = $CALC->_lsft($x->{value},$y->{value},$n) if $CALC->can('_lsft');
  if (defined $t)
    {
    $x->{value} = $t; return $x;
    }
  # fallback
  return $x->bmul( $self->bpow($n, $y) );
  }

sub brsft 
  {
  # (BINT or num_str, BINT or num_str) return BINT
  # compute x >> y, base n, y >= 0
  my ($self,$x,$y,$n) = objectify(2,@_);

  return $x if $x->modify('brsft');
  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);

  $n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';

  my $t = $CALC->_rsft($x->{value},$y->{value},$n) if $CALC->can('_rsft');
  if (defined $t)
    {
    $x->{value} = $t; return $x;
    }
  # fallback
  return scalar bdiv($x, $self->bpow($n, $y));
  }

sub band 
  {
  #(BINT or num_str, BINT or num_str) return BINT
  # compute x & y
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
  
  return $x if $x->modify('band');

  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
  return $x->bzero() if $y->is_zero();

  my $sign = 0;					# sign of result
  $sign = 1 if ($x->{sign} eq '-') && ($y->{sign} eq '-');
  my $sx = 1; $sx = -1 if $x->{sign} eq '-';
  my $sy = 1; $sy = -1 if $y->{sign} eq '-';
  
  if ($CALC->can('_and') && $sx == 1 && $sy == 1)
    {
    $x->{value} = $CALC->_and($x->{value},$y->{value});
    return $x->round($a,$p,$r);
    }

  my $m = new Math::BigInt 1; my ($xr,$yr);
  my $x10000 = new Math::BigInt (0x1000);
  my $y1 = copy(ref($x),$y);	 		# make copy
  $y1->babs();					# and positive
  my $x1 = $x->copy()->babs(); $x->bzero();	# modify x in place!
  use integer;					# need this for negative bools
  while (!$x1->is_zero() && !$y1->is_zero())
    {
    ($x1, $xr) = bdiv($x1, $x10000);
    ($y1, $yr) = bdiv($y1, $x10000);
    # make both op's numbers!
    $x->badd( bmul( $class->new(
       abs($sx*int($xr->numify()) & $sy*int($yr->numify()))), 
      $m));
    $m->bmul($x10000);
    }
  $x->bneg() if $sign;
  return $x->round($a,$p,$r);
  }

sub bior 
  {
  #(BINT or num_str, BINT or num_str) return BINT
  # compute x | y
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);

  return $x if $x->modify('bior');

  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
  return $x if $y->is_zero();

  my $sign = 0;					# sign of result
  $sign = 1 if ($x->{sign} eq '-') || ($y->{sign} eq '-');
  my $sx = 1; $sx = -1 if $x->{sign} eq '-';
  my $sy = 1; $sy = -1 if $y->{sign} eq '-';

  # don't use lib for negative values
  if ($CALC->can('_or') && $sx == 1 && $sy == 1)
    {
    $x->{value} = $CALC->_or($x->{value},$y->{value});
    return $x->round($a,$p,$r);
    }

  my $m = new Math::BigInt 1; my ($xr,$yr);
  my $x10000 = new Math::BigInt (0x10000);
  my $y1 = copy(ref($x),$y);	 		# make copy
  $y1->babs();					# and positive
  my $x1 = $x->copy()->babs(); $x->bzero();	# modify x in place!
  use integer;					# need this for negative bools
  while (!$x1->is_zero() || !$y1->is_zero())
    {
    ($x1, $xr) = bdiv($x1,$x10000);
    ($y1, $yr) = bdiv($y1,$x10000);
    # make both op's numbers!
    $x->badd( bmul( $class->new(
       abs($sx*int($xr->numify()) | $sy*int($yr->numify()))), 
      $m));
    $m->bmul($x10000);
    }
  $x->bneg() if $sign;
  return $x->round($a,$p,$r);
  }

sub bxor 
  {
  #(BINT or num_str, BINT or num_str) return BINT
  # compute x ^ y
  my ($self,$x,$y,$a,$p,$r) = objectify(2,@_);

  return $x if $x->modify('bxor');

  return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
  return $x if $y->is_zero();
  return $x->bzero() if $x == $y; # shortcut
  
  my $sign = 0;					# sign of result
  $sign = 1 if $x->{sign} ne $y->{sign};
  my $sx = 1; $sx = -1 if $x->{sign} eq '-';
  my $sy = 1; $sy = -1 if $y->{sign} eq '-';

  # don't use lib for negative values
  if ($CALC->can('_xor') && $sx == 1 && $sy == 1)
    {
    $x->{value} = $CALC->_xor($x->{value},$y->{value});
    return $x->round($a,$p,$r);
    }

  my $m = new Math::BigInt 1; my ($xr,$yr);
  my $x10000 = new Math::BigInt (0x10000);
  my $y1 = copy(ref($x),$y);	 		# make copy
  $y1->babs();					# and positive
  my $x1 = $x->copy()->babs(); $x->bzero();	# modify x in place!
  use integer;					# need this for negative bools
  while (!$x1->is_zero() || !$y1->is_zero())
    {
    ($x1, $xr) = bdiv($x1, $x10000);
    ($y1, $yr) = bdiv($y1, $x10000);
    # make both op's numbers!
    $x->badd( bmul( $class->new(
       abs($sx*int($xr->numify()) ^ $sy*int($yr->numify()))), 
      $m));
    $m->bmul($x10000);
    }
  $x->bneg() if $sign;
  return $x->round($a,$p,$r);
  }

sub length
  {
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  my $e = $CALC->_len($x->{value}); 
  return wantarray ? ($e,0) : $e;
  }

sub digit
  {
  # return the nth decimal digit, negative values count backward, 0 is right
  my $x = shift;
  my $n = shift || 0; 

  return $CALC->_digit($x->{value},$n);
  }

sub _trailing_zeros
  {
  # return the amount of trailing zeros in $x
  my $x = shift;
  $x = $class->new($x) unless ref $x;

  return 0 if $x->is_zero() || $x->is_odd() || $x->{sign} !~ /^[+-]$/;

  return $CALC->_zeros($x->{value}) if $CALC->can('_zeros');

  # if not: since we do not know underlying internal representation:
  my $es = "$x"; $es =~ /([0]*)$/;
 
  return 0 if !defined $1;	# no zeros
  return CORE::length("$1");	# as string, not as +0!
  }

sub bsqrt
  {
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  return $x->bnan() if $x->{sign} =~ /\-|$nan/;	# -x or NaN => NaN
  return $x->bzero() if $x->is_zero();		# 0 => 0
  return $x if $x == 1;				# 1 => 1

  my $y = $x->copy();				# give us one more digit accur.
  my $l = int($x->length()/2);
  
  $x->bzero(); 
  $x->binc();		# keep ref($x), but modify it
  $x *= 10 ** $l;

  # print "x: $y guess $x\n";

  my $last = $self->bzero();
  while ($last != $x)
    {
    $last = $x; 
    $x += $y / $x; 
    $x /= 2;
    }
  return $x;
  }

sub exponent
  {
  # return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
 
  if ($x->{sign} !~ /^[+-]$/)
    {
    my $s = $x->{sign}; $s =~ s/^[+-]//;
    return $self->new($s); 		# -inf,+inf => inf
    }
  my $e = $class->bzero();
  return $e->binc() if $x->is_zero();
  $e += $x->_trailing_zeros();
  return $e;
  }

sub mantissa
  {
  # return the mantissa (compatible to Math::BigFloat, e.g. reduced)
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  if ($x->{sign} !~ /^[+-]$/)
    {
    my $s = $x->{sign}; $s =~ s/^[+]//;
    return $self->new($s); 		# +inf => inf
    }
  my $m = $x->copy();
  # that's inefficient
  my $zeros = $m->_trailing_zeros();
  $m /= 10 ** $zeros if $zeros != 0;
  return $m;
  }

sub parts
  {
  # return a copy of both the exponent and the mantissa
  my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);

  return ($x->mantissa(),$x->exponent());
  }
   
##############################################################################
# rounding functions

sub bfround
  {
  # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
  # $n == 0 || $n == 1 => round to integer
  my $x = shift; $x = $class->new($x) unless ref $x;
  my ($scale,$mode) = $x->_scale_p($x->precision(),$x->round_mode(),@_);
  return $x if !defined $scale;		# no-op

  # no-op for BigInts if $n <= 0
  if ($scale <= 0)
    {
    $x->{_p} = $scale; return $x;
    }

  $x->bround( $x->length()-$scale, $mode);
  $x->{_a} = undef;				# bround sets {_a}
  $x->{_p} = $scale;				# so correct it
  $x;
  }

sub _scan_for_nonzero
  {
  my $x = shift;
  my $pad = shift;
  my $xs = shift;
 
  my $len = $x->length();
  return 0 if $len == 1;		# '5' is trailed by invisible zeros
  my $follow = $pad - 1;
  return 0 if $follow > $len || $follow < 1;
  #print "checking $x $r\n";

  # since we do not know underlying represention of $x, use decimal string
  #my $r = substr ($$xs,-$follow);
  my $r = substr ("$x",-$follow);
  return 1 if $r =~ /[^0]/; return 0;
  }

sub fround
  {
  # to make life easier for switch between MBF and MBI (autoload fxxx()
  # like MBF does for bxxx()?)
  my $x = shift;
  return $x->bround(@_);
  }

sub bround
  {
  # accuracy: +$n preserve $n digits from left,
  #           -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
  # no-op for $n == 0
  # and overwrite the rest with 0's, return normalized number
  # do not return $x->bnorm(), but $x
  my $x = shift; $x = $class->new($x) unless ref $x;
  my ($scale,$mode) = $x->_scale_a($x->accuracy(),$x->round_mode(),@_);
  return $x if !defined $scale;		# no-op
  
  # print "MBI round: $x to $scale $mode\n";
  return $x if $x->{sign} !~ /^[+-]$/ || $x->is_zero() || $scale == 0;

  # we have fewer digits than we want to scale to
  my $len = $x->length();
  # print "$scale $len\n";
  # scale < 0, but > -len (not >=!)
  if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
    {
    $x->{_a} = $scale if !defined $x->{_a};	# if not yet defined overwrite
    return $x; 
    }
   
  # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
  my ($pad,$digit_round,$digit_after);
  $pad = $len - $scale;
  $pad = abs($scale-1) if $scale < 0;

  # do not use digit(), it is costly for binary => decimal
  #$digit_round = '0'; $digit_round = $x->digit($pad) if $pad < $len;
  #$digit_after = '0'; $digit_after = $x->digit($pad-1) if $pad > 0;

  my $xs = $CALC->_str($x->{value});
  my $pl = -$pad-1;
 
  # print "pad $pad pl $pl scale $scale len $len\n";
  # pad:   123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
  # pad+1: 123: 0 => 0,  at 1 => -1, at 2 => -2, at 3 => -3
  $digit_round = '0'; $digit_round = substr($$xs,$pl,1) if $pad <= $len;
  $pl++; $pl ++ if $pad >= $len;
  $digit_after = '0'; $digit_after = substr($$xs,$pl,1)
   if $pad > 0;

 #  print "$pad $pl $$xs dr $digit_round da $digit_after\n";

  # in case of 01234 we round down, for 6789 up, and only in case 5 we look
  # closer at the remaining digits of the original $x, remember decision
  my $round_up = 1;					# default round up
  $round_up -- if
    ($mode eq 'trunc')				||	# trunc by round down
    ($digit_after =~ /[01234]/)			|| 	# round down anyway,
							# 6789 => round up
    ($digit_after eq '5')			&&	# not 5000...0000
    ($x->_scan_for_nonzero($pad,$xs) == 0)		&&
    (
     ($mode eq 'even') && ($digit_round =~ /[24680]/) ||
     ($mode eq 'odd')  && ($digit_round =~ /[13579]/) ||
     ($mode eq '+inf') && ($x->{sign} eq '-')   ||
     ($mode eq '-inf') && ($x->{sign} eq '+')   ||
     ($mode eq 'zero')		# round down if zero, sign adjusted below
    );
  # allow rounding one place left of mantissa
  #print "$pad $len $scale\n";
  # this is triggering warnings, and buggy for $scale < 0
  #if (-$scale != $len)
    {
    # old code, depend on internal representation
    # split mantissa at $pad and then pad with zeros
    #my $s5 = int($pad / 5);
    #my $i = 0;
    #while ($i < $s5)
    #  {
    #  $x->{value}->[$i++] = 0;				# replace with 5 x 0
    #  }
    #$x->{value}->[$s5] = '00000'.$x->{value}->[$s5];	# pad with 0
    #my $rem = $pad % 5;				# so much left over
    #if ($rem > 0)
    #  {
    #  #print "remainder $rem\n";
    ##  #print "elem      $x->{value}->[$s5]\n";
    #  substr($x->{value}->[$s5],-$rem,$rem) = '0' x $rem;	# stamp w/ '0'
    #  }
    #$x->{value}->[$s5] = int ($x->{value}->[$s5]);	# str '05' => int '5'
    #print ${$CALC->_str($pad->{value})}," $len\n";
    if (($pad > 0) && ($pad <= $len))
      {
      substr($$xs,-$pad,$pad) = '0' x $pad;
      $x->{value} = $CALC->_new($xs);			# put back in
      }
    elsif ($pad > $len)
      {
      $x->bzero();					# round to '0'
      }
  #   print "res $pad $len $x $$xs\n";
    }
  # move this later on after the inc of the string
  #$x->{value} = $CALC->_new($xs);			# put back in
  if ($round_up)					# what gave test above?
    {
    #print " $pad => ";
    $pad = $len if $scale < 0;				# tlr: whack 0.51=>1.0	
    # modify $x in place, undef, undef to avoid rounding
    # str creation much faster than 10 ** something
    #print " $pad, $x => ";
    $x->badd( Math::BigInt->new($x->{sign}.'1'.'0'x$pad) );
    #print "$x\n";
    # increment string in place, to avoid dec=>hex for the '1000...000'
    # $xs ...blah foo
    }
  # to here:
  #$x->{value} = $CALC->_new($xs);			# put back in

  $x->{_a} = $scale if $scale >= 0;
  if ($scale < 0)
    {
    $x->{_a} = $len+$scale;
    $x->{_a} = 0 if $scale < -$len;
    }
  $x;
  }

sub bfloor
  {
  # return integer less or equal then number, since it is already integer,
  # always returns $self
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);

  # not needed: return $x if $x->modify('bfloor');
  return $x->round($a,$p,$r);
  }

sub bceil
  {
  # return integer greater or equal then number, since it is already integer,
  # always returns $self
  my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);

  # not needed: return $x if $x->modify('bceil');
  return $x->round($a,$p,$r);
  }

##############################################################################
# private stuff (internal use only)

sub __one
  {
  # internal speedup, set argument to 1, or create a +/- 1
  my $self = shift;
  my $x = $self->bone(); # $x->{value} = $CALC->_one();
  $x->{sign} = shift || '+';
  return $x;
  }

sub _swap
  {
  # Overload will swap params if first one is no object ref so that the first
  # one is always an object ref. In this case, third param is true.
  # This routine is to overcome the effect of scalar,$object creating an object
  # of the class of this package, instead of the second param $object. This
  # happens inside overload, when the overload section of this package is
  # inherited by sub classes.
  # For overload cases (and this is used only there), we need to preserve the
  # args, hence the copy().
  # You can override this method in a subclass, the overload section will call
  # $object->_swap() to make sure it arrives at the proper subclass, with some
  # exceptions like '+' and '-'.

  # object, (object|scalar) => preserve first and make copy
  # scalar, object	    => swapped, re-swap and create new from first
  #                            (using class of second object, not $class!!)
  my $self = shift;			# for override in subclass
  #print "swap $self 0:$_[0] 1:$_[1] 2:$_[2]\n";
  if ($_[2])
    {
    my $c = ref ($_[0]) || $class; 	# fallback $class should not happen
    return ( $c->new($_[1]), $_[0] );
    }
  return ( $_[0]->copy(), $_[1] );
  }

sub objectify
  {
  # check for strings, if yes, return objects instead
 
  # the first argument is number of args objectify() should look at it will
  # return $count+1 elements, the first will be a classname. This is because
  # overloaded '""' calls bstr($object,undef,undef) and this would result in
  # useless objects beeing created and thrown away. So we cannot simple loop
  # over @_. If the given count is 0, all arguments will be used.
 
  # If the second arg is a ref, use it as class.
  # If not, try to use it as classname, unless undef, then use $class 
  # (aka Math::BigInt). The latter shouldn't happen,though.

  # caller:			   gives us:
  # $x->badd(1);                => ref x, scalar y
  # Class->badd(1,2);           => classname x (scalar), scalar x, scalar y
  # Class->badd( Class->(1),2); => classname x (scalar), ref x, scalar y
  # Math::BigInt::badd(1,2);    => scalar x, scalar y
  # In the last case we check number of arguments to turn it silently into
  # $class,1,2. (We can not take '1' as class ;o)
  # badd($class,1) is not supported (it should, eventually, try to add undef)
  # currently it tries 'Math::BigInt' + 1, which will not work.

  # some shortcut for the common cases

  # $x->unary_op();
  return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
  # $x->binary_op($y);
  #return (ref($_[1]),$_[1],$_[2]) if (@_ == 3) && ($_[0]||0 == 2)
  # && ref($_[1]) && ref($_[2]);

#  print "obj '",join ("' '", @_),"'\n";

  my $count = abs(shift || 0);
  
#  print "MBI ",caller(),"\n";
 
  my @a;			# resulting array 
  if (ref $_[0])
    {
    # okay, got object as first
    $a[0] = ref $_[0];
    }
  else
    {
    # nope, got 1,2 (Class->xxx(1) => Class,1 and not supported)
    $a[0] = $class;
    #print "@_\n"; sleep(1); 
    $a[0] = shift if $_[0] =~ /^[A-Z].*::/;	# classname as first?
    }
  #print caller(),"\n";
  # print "Now in objectify, my class is today $a[0]\n";
  my $k; 
  if ($count == 0)
    {
    while (@_)
      {
      $k = shift;
      if (!ref($k))
        {
        $k = $a[0]->new($k);
        }
      elsif (ref($k) ne $a[0])
	{
	# foreign object, try to convert to integer
        $k->can('as_number') ?  $k = $k->as_number() : $k = $a[0]->new($k);
	}
      push @a,$k;
      }
    }
  else
    {
    while ($count > 0)
      {
      #print "$count\n";
      $count--; 
      $k = shift; 
#      print "$k (",ref($k),") => \n";
      if (!ref($k))
        {
        $k = $a[0]->new($k);
        }
      elsif (ref($k) ne $a[0])
	{
	# foreign object, try to convert to integer
        $k->can('as_number') ?  $k = $k->as_number() : $k = $a[0]->new($k);
	}
   #   print "$k (",ref($k),")\n";
      push @a,$k;
      }
    push @a,@_;		# return other params, too
    }
  #my $i = 0;
  #foreach (@a)
  #  {
  #  print "o $i $a[0]\n" if $i == 0;
  #  print "o $i ",ref($_),"\n" if $i != 0; $i++;
  #  }
  #print "objectify done: would return ",scalar @a," values\n";
  #print caller(1),"\n" unless wantarray;
  die "$class objectify needs list context" unless wantarray;
  @a;
  }

sub import 
  {
  my $self = shift;
  #print "import $self @_\n";
  my @a = @_; my $l = scalar @_; my $j = 0;
  for ( my $i = 0; $i < $l ; $i++,$j++ )
    {
    if ($_[$i] eq ':constant')
      {
      # this causes overlord er load to step in
      overload::constant integer => sub { $self->new(shift) };
      splice @a, $j, 1; $j --;
      }
    elsif ($_[$i] =~ /^lib$/i)
      {
      # this causes a different low lib to take care...
      $CALC = $_[$i+1] || $CALC;
      my $s = 2; $s = 1 if @a-$j < 2; # avoid "can not modify non-existant..."
      splice @a, $j, $s; $j -= $s;
      }
    }
  # any non :constant stuff is handled by our parent, Exporter
  # even if @_ is empty, to give it a chance 
  $self->SUPER::import(@a);			# need it for subclasses
  $self->export_to_level(1,$self,@a);		# need it for MBF

  # try to load core math lib
  my @c = split /\s*,\s*/,$CALC;
  push @c,'Calc';				# if all fail, try this
  foreach my $lib (@c)
    {
    $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
    $lib =~ s/\.pm$//;
    if ($] < 5.6)
      {
      # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
      # used in the same script, or eval inside import().
      (my $mod = $lib . '.pm') =~ s!::!/!g;
      # require does not automatically :: => /, so portability problems arise
      eval { require $mod; $lib->import( @c ); }
      }
    else
      {
      eval "use $lib @c;";
      }
    $CALC = $lib, last if $@ eq '';	# no error in loading lib?
    }
  }

sub __from_hex
  {
  # convert a (ref to) big hex string to BigInt, return undef for error
  my $hs = shift;

  my $x = Math::BigInt->bzero();
  return $x->bnan() if $$hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/;

  my $sign = '+'; $sign = '-' if ($$hs =~ /^-/);

  $$hs =~ s/^[+-]//;			# strip sign
  if ($CALC->can('_from_hex'))
    {
    $x->{value} = $CALC->_from_hex($hs);
    }
  else
    {
    # fallback to pure perl
    my $mul = Math::BigInt->bzero(); $mul++;
    my $x65536 = Math::BigInt->new(65536);
    my $len = CORE::length($$hs)-2;
    $len = int($len/4);			# 4-digit parts, w/o '0x'
    my $val; my $i = -4;
    while ($len >= 0)
      {
      $val = substr($$hs,$i,4);
      $val =~ s/^[+-]?0x// if $len == 0;	# for last part only because
      $val = hex($val); 			# hex does not like wrong chars
      # print "$val ",substr($$hs,$i,4),"\n";
      $i -= 4; $len --;
      $x += $mul * $val if $val != 0;
      $mul *= $x65536 if $len >= 0;		# skip last mul
      }
    }
  $x->{sign} = $sign if !$x->is_zero();		# no '-0'
  return $x;
  }

sub __from_bin
  {
  # convert a (ref to) big binary string to BigInt, return undef for error
  my $bs = shift;

  my $x = Math::BigInt->bzero();
  return $x->bnan() if $$bs !~ /^[+-]?0b[01]+$/;

  my $mul = Math::BigInt->bzero(); $mul++;
  my $x256 = Math::BigInt->new(256);

  my $sign = '+'; $sign = '-' if ($$bs =~ /^\-/);
  $$bs =~ s/^[+-]//;				# strip sign
  if ($CALC->can('_from_bin'))
    {
    $x->{value} = $CALC->_from_bin($bs);
    }
  else
    {
    my $len = CORE::length($$bs)-2;
    $len = int($len/8);				# 8-digit parts, w/o '0b'
    my $val; my $i = -8;
    while ($len >= 0)
      {
      $val = substr($$bs,$i,8);
      $val =~ s/^[+-]?0b// if $len == 0;	# for last part only
      #$val = oct('0b'.$val);	# does not work on Perl prior to 5.6.0
      $val = ('0' x (8-CORE::length($val))).$val if CORE::length($val) < 8;
      $val = ord(pack('B8',$val));
      # print "$val ",substr($$bs,$i,16),"\n";
      $i -= 8; $len --;
      $x += $mul * $val if $val != 0;
      $mul *= $x256 if $len >= 0;		# skip last mul
      }
    }
  $x->{sign} = $sign if !$x->is_zero();
  return $x;
  }

sub _split
  {
  # (ref to num_str) return num_str
  # internal, take apart a string and return the pieces
  # strip leading/trailing whitespace, leading zeros, underscore and reject
  # invalid input
  my $x = shift;

  # strip white space at front, also extranous leading zeros
  $$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g;	# will not strip '  .2'
  $$x =~ s/^\s+//;			# but this will			
  $$x =~ s/\s+$//g;			# strip white space at end

  # shortcut, if nothing to split, return early
  if ($$x =~ /^[+-]?\d+$/)
    {
    $$x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
    return (\$sign, $x, \'', \'', \0);
    }

  # invalid starting char?
  return if $$x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;

  $$x =~ s/(\d)_(\d)/$1$2/g;		# strip underscores between digits
  $$x =~ s/(\d)_(\d)/$1$2/g;		# do twice for 1_2_3
  
  return __from_hex($x) if $$x =~ /^[\-\+]?0x/;	# hex string
  return __from_bin($x) if $$x =~ /^[\-\+]?0b/;	# binary string

  # some possible inputs: 
  # 2.1234 # 0.12        # 1 	      # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 
  # .2 	   # 1_2_3.4_5_6 # 1.4E1_2_3  # 1e3 # +.2

  #print "input: '$$x' ";
  my ($m,$e) = split /[Ee]/,$$x;
  $e = '0' if !defined $e || $e eq "";
  # print "m '$m' e '$e'\n";
  # sign,value for exponent,mantint,mantfrac
  my ($es,$ev,$mis,$miv,$mfv);
  # valid exponent?
  if ($e =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
    {
    $es = $1; $ev = $2;
    #print "'$m' '$e' e: $es $ev ";
    # valid mantissa?
    return if $m eq '.' || $m eq '';
    my ($mi,$mf) = split /\./,$m;
    $mi = '0' if !defined $mi;
    $mi .= '0' if $mi =~ /^[\-\+]?$/;
    $mf = '0' if !defined $mf || $mf eq '';
    if ($mi =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
      {
      $mis = $1||'+'; $miv = $2;
      # print "$mis $miv";
      # valid, existing fraction part of mantissa?
      return unless ($mf =~ /^(\d*?)0*$/);	# strip trailing zeros
      $mfv = $1;
      #print " split: $mis $miv . $mfv E $es $ev\n";
      return (\$mis,\$miv,\$mfv,\$es,\$ev);
      }
    }
  return; # NaN, not a number
  }

sub as_number
  {
  # an object might be asked to return itself as bigint on certain overloaded
  # operations, this does exactly this, so that sub classes can simple inherit
  # it or override with their own integer conversion routine
  my $self = shift;

  $self->copy();
  }

sub as_hex
  {
  # return as hex string, with prefixed 0x
  my $x = shift; $x = $class->new($x) if !ref($x);

  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc
  return '0x0' if $x->is_zero();

  my $es = ''; my $s = '';
  $s = $x->{sign} if $x->{sign} eq '-';
  if ($CALC->can('_as_hex'))
    {
    $es = ${$CALC->_as_hex($x->{value})};
    }
  else
    {
    my $x1 = $x->copy()->babs(); my $xr;
    my $x100 = Math::BigInt->new (0x100);
    while (!$x1->is_zero())
      {
      ($x1, $xr) = bdiv($x1,$x100);
      $es .= unpack('h2',pack('C',$xr->numify()));
      }
    $es = reverse $es;
    $es =~ s/^[0]+//; 	# strip leading zeros
    $s .= '0x';
    }
  $s . $es;
  }

sub as_bin
  {
  # return as binary string, with prefixed 0b
  my $x = shift; $x = $class->new($x) if !ref($x);

  return $x->bstr() if $x->{sign} !~ /^[+-]$/;	# inf, nan etc
  return '0b0' if $x->is_zero();

  my $es = ''; my $s = '';
  $s = $x->{sign} if $x->{sign} eq '-';
  if ($CALC->can('_as_bin'))
    {
    $es = ${$CALC->_as_bin($x->{value})};
    }
  else
    {
    my $x1 = $x->copy()->babs(); my $xr;
    my $x100 = Math::BigInt->new (0x100);
    while (!$x1->is_zero())
      {
      ($x1, $xr) = bdiv($x1,$x100);
      $es .= unpack('b8',pack('C',$xr->numify()));
      }
    $es = reverse $es; 
    $es =~ s/^[0]+//; 	# strip leading zeros
    $s .= '0b';
    }
  $s . $es;
  }

##############################################################################
# internal calculation routines (others are in Math::BigInt::Calc etc)

sub __lcm 
  { 
  # (BINT or num_str, BINT or num_str) return BINT
  # does modify first argument
  # LCM
 
  my $x = shift; my $ty = shift;
  return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
  return $x * $ty / bgcd($x,$ty);
  }

sub __gcd
  { 
  # (BINT or num_str, BINT or num_str) return BINT
  # does modify both arguments
  # GCD -- Euclids algorithm E, Knuth Vol 2 pg 296
  my ($x,$ty) = @_;

  return $x->bnan() if $x->{sign} !~ /^[+-]$/ || $ty->{sign} !~ /^[+-]$/;

  while (!$ty->is_zero())
    {
    ($x, $ty) = ($ty,bmod($x,$ty));
    }
  $x;
  }

###############################################################################
# this method return 0 if the object can be modified, or 1 for not
# We use a fast use constant statement here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)

sub modify () { 0; }

1;
__END__

=head1 NAME

Math::BigInt - Arbitrary size integer math package

=head1 SYNOPSIS

  use Math::BigInt;

  # Number creation	
  $x = Math::BigInt->new($str);		# defaults to 0
  $nan  = Math::BigInt->bnan(); 	# create a NotANumber
  $zero = Math::BigInt->bzero();	# create a +0
  $inf = Math::BigInt->binf();		# create a +inf
  $inf = Math::BigInt->binf('-');	# create a -inf
  $one = Math::BigInt->bone();		# create a +1
  $one = Math::BigInt->bone('-');	# create a -1

  # Testing
  $x->is_zero();		# true if arg is +0
  $x->is_nan();			# true if arg is NaN
  $x->is_one();			# true if arg is +1
  $x->is_one('-');		# true if arg is -1
  $x->is_odd();			# true if odd, false for even
  $x->is_even();		# true if even, false for odd
  $x->is_positive();		# true if >= 0
  $x->is_negative();		# true if <  0
  $x->is_inf(sign);		# true if +inf, or -inf (sign is default '+')

  $x->bcmp($y);			# compare numbers (undef,<0,=0,>0)
  $x->bacmp($y);		# compare absolutely (undef,<0,=0,>0)
  $x->sign();			# return the sign, either +,- or NaN
  $x->digit($n);		# return the nth digit, counting from right
  $x->digit(-$n);		# return the nth digit, counting from left

  # The following all modify their first argument:

  # set 
  $x->bzero();			# set $x to 0
  $x->bnan();			# set $x to NaN
  $x->bone();			# set $x to +1
  $x->bone('-');		# set $x to -1

  $x->bneg();			# negation
  $x->babs();			# absolute value
  $x->bnorm();			# normalize (no-op)
  $x->bnot();			# two's complement (bit wise not)
  $x->binc();			# increment x by 1
  $x->bdec();			# decrement x by 1
  
  $x->badd($y);			# addition (add $y to $x)
  $x->bsub($y);			# subtraction (subtract $y from $x)
  $x->bmul($y);			# multiplication (multiply $x by $y)
  $x->bdiv($y);			# divide, set $x to quotient
				# return (quo,rem) or quo if scalar

  $x->bmod($y);			# modulus (x % y)
  $x->bpow($y);			# power of arguments (x ** y)
  $x->blsft($y);		# left shift
  $x->brsft($y);		# right shift 
  $x->blsft($y,$n);		# left shift, by base $n (like 10)
  $x->brsft($y,$n);		# right shift, by base $n (like 10)
  
  $x->band($y);			# bitwise and
  $x->bior($y);			# bitwise inclusive or
  $x->bxor($y);			# bitwise exclusive or
  $x->bnot();			# bitwise not (two's complement)

  $x->bsqrt();			# calculate square-root

  $x->round($A,$P,$round_mode); # round to accuracy or precision using mode $r
  $x->bround($N);               # accuracy: preserve $N digits
  $x->bfround($N);              # round to $Nth digit, no-op for BigInts

  # The following do not modify their arguments in BigInt, but do in BigFloat:
  $x->bfloor();			# return integer less or equal than $x
  $x->bceil();			# return integer greater or equal than $x
  
  # The following do not modify their arguments:

  bgcd(@values);		# greatest common divisor (no OO style)
  blcm(@values);		# lowest common multiplicator (no OO style)
 
  $x->length();			# return number of digits in number
  ($x,$f) = $x->length();	# length of number and length of fraction part,
				# latter is always 0 digits long for BigInt's

  $x->exponent();		# return exponent as BigInt
  $x->mantissa();		# return (signed) mantissa as BigInt
  $x->parts();			# return (mantissa,exponent) as BigInt
  $x->copy();			# make a true copy of $x (unlike $y = $x;)
  $x->as_number();		# return as BigInt (in BigInt: same as copy())
  
  # conversation to string 
  $x->bstr();			# normalized string
  $x->bsstr();			# normalized string in scientific notation
  $x->as_hex();			# as signed hexadecimal string with prefixed 0x
  $x->as_bin();			# as signed binary string with prefixed 0b

=head1 DESCRIPTION

All operators (inlcuding basic math operations) are overloaded if you
declare your big integers as

  $i = new Math::BigInt '123_456_789_123_456_789';

Operations with overloaded operators preserve the arguments which is
exactly what you expect.

=over 2

=item Canonical notation

Big integer values are strings of the form C</^[+-]\d+$/> with leading
zeros suppressed.

   '-0'                            canonical value '-0', normalized '0'
   '   -123_123_123'               canonical value '-123123123'
   '1_23_456_7890'                 canonical value '1234567890'

=item Input

Input values to these routines may be either Math::BigInt objects or
strings of the form C</^\s*[+-]?[\d]+\.?[\d]*E?[+-]?[\d]*$/>.

You can include one underscore between any two digits.

This means integer values like 1.01E2 or even 1000E-2 are also accepted.
Non integer values result in NaN.

Math::BigInt::new() defaults to 0, while Math::BigInt::new('') results
in 'NaN'.

bnorm() on a BigInt object is now effectively a no-op, since the numbers 
are always stored in normalized form. On a string, it creates a BigInt 
object.

=item Output

Output values are BigInt objects (normalized), except for bstr(), which
returns a string in normalized form.
Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
return either undef, <0, 0 or >0 and are suited for sort.

=back

=head1 ACCURACY and PRECISION

Since version v1.33, Math::BigInt and Math::BigFloat have full support for
accuracy and precision based rounding, both automatically after every
operation as well as manually.

This section describes the accuracy/precision handling in Math::Big* as it
used to be and as it is now, complete with an explanation of all terms and
abbreviations.

Not yet implemented things (but with correct description) are marked with '!',
things that need to be answered are marked with '?'.

In the next paragraph follows a short description of terms used here (because
these may differ from terms used by others people or documentation).

During the rest of this document, the shortcuts A (for accuracy), P (for
precision), F (fallback) and R (rounding mode) will be used.

=head2 Precision P

A fixed number of digits before (positive) or after (negative)
the decimal point. For example, 123.45 has a precision of -2. 0 means an
integer like 123 (or 120). A precision of 2 means two digits to the left
of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
numbers with zeros before the decimal point may have different precisions,
because 1200 can have p = 0, 1 or 2 (depending on what the inital value
was). It could also have p < 0, when the digits after the decimal point
are zero.

The string output (of floating point numbers) will be padded with zeros:
 
	Initial value   P       A	Result          String
	------------------------------------------------------------
	1234.01         -3      	1000            1000
	1234            -2      	1200            1200
	1234.5          -1      	1230            1230
	1234.001        1       	1234            1234.0
	1234.01         0       	1234            1234
	1234.01         2       	1234.01		1234.01
	1234.01         5       	1234.01		1234.01000

For BigInts, no padding occurs.

=head2 Accuracy A

Number of significant digits. Leading zeros are not counted. A
number may have an accuracy greater than the non-zero digits
when there are zeros in it or trailing zeros. For example, 123.456 has
A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.

The string output (of floating point numbers) will be padded with zeros:

	Initial value   P       A	Result          String
	------------------------------------------------------------
	1234.01			3	1230		1230
	1234.01			6	1234.01		1234.01
	1234.1			8	1234.1		1234.1000

For BigInts, no padding occurs.

=head2 Fallback F

When both A and P are undefined, this is used as a fallback accuracy when
dividing numbers.

=head2 Rounding mode R

When rounding a number, different 'styles' or 'kinds'
of rounding are possible. (Note that random rounding, as in
Math::Round, is not implemented.)

=over 2

=item 'trunc'

truncation invariably removes all digits following the
rounding place, replacing them with zeros. Thus, 987.65 rounded
to tens (P=1) becomes 980, and rounded to the fourth sigdig
becomes 987.6 (A=4). 123.456 rounded to the second place after the
decimal point (P=-2) becomes 123.46.

All other implemented styles of rounding attempt to round to the
"nearest digit." If the digit D immediately to the right of the
rounding place (skipping the decimal point) is greater than 5, the
number is incremented at the rounding place (possibly causing a
cascade of incrementation): e.g. when rounding to units, 0.9 rounds
to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
truncated at the rounding place: e.g. when rounding to units, 0.4
rounds to 0, and -19.4 rounds to -19.

However the results of other styles of rounding differ if the
digit immediately to the right of the rounding place (skipping the
decimal point) is 5 and if there are no digits, or no digits other
than 0, after that 5. In such cases:

=item 'even'

rounds the digit at the rounding place to 0, 2, 4, 6, or 8
if it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.

=item 'odd'

rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.

=item '+inf'

round to plus infinity, i.e. always round up. E.g., when
rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5,
and 0.4501 also becomes 0.5.

=item '-inf'

round to minus infinity, i.e. always round down. E.g., when
rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6,
but 0.4501 becomes 0.5.

=item 'zero'

round to zero, i.e. positive numbers down, negative ones up.
E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
becomes -0.5, but 0.4501 becomes 0.5.

=back

The handling of A & P in MBI/MBF (the old core code shipped with Perl
versions <= 5.7.2) is like this:

=over 2

=item Precision

  * ffround($p) is able to round to $p number of digits after the decimal
    point
  * otherwise P is unused

=item Accuracy (significant digits)

  * fround($a) rounds to $a significant digits
  * only fdiv() and fsqrt() take A as (optional) paramater
    + other operations simply create the same number (fneg etc), or more (fmul)
      of digits
    + rounding/truncating is only done when explicitly calling one of fround
      or ffround, and never for BigInt (not implemented)
  * fsqrt() simply hands its accuracy argument over to fdiv.
  * the documentation and the comment in the code indicate two different ways
    on how fdiv() determines the maximum number of digits it should calculate,
    and the actual code does yet another thing
    POD:
      max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
    Comment:
      result has at most max(scale, length(dividend), length(divisor)) digits
    Actual code:
      scale = max(scale, length(dividend)-1,length(divisor)-1);
      scale += length(divisior) - length(dividend);
    So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
    Actually, the 'difference' added to the scale is calculated from the
    number of "significant digits" in dividend and divisor, which is derived
    by looking at the length of the mantissa. Which is wrong, since it includes
    the + sign (oups) and actually gets 2 for '+100' and 4 for '+101'. Oups
    again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
    assumption that 124 has 3 significant digits, while 120/7 will get you
    '17', not '17.1' since 120 is thought to have 2 significant digits.
    The rounding after the division then uses the remainder and $y to determine
    wether it must round up or down.
 ?  I have no idea which is the right way. That's why I used a slightly more
 ?  simple scheme and tweaked the few failing testcases to match it.

=back

This is how it works now:

=over 2

=item Setting/Accessing

  * You can set the A global via $Math::BigInt::accuracy or
    $Math::BigFloat::accuracy or whatever class you are using.
  * You can also set P globally by using $Math::SomeClass::precision likewise.
  * Globals are classwide, and not inherited by subclasses.
  * to undefine A, use $Math::SomeCLass::accuracy = undef
  * to undefine P, use $Math::SomeClass::precision = undef
  * To be valid, A must be > 0, P can have any value.
  * If P is negative, this means round to the P'th place to the right of the
    decimal point; positive values mean to the left of the decimal point.
    P of 0 means round to integer.
  * to find out the current global A, take $Math::SomeClass::accuracy
  * use $x->accuracy() for the local setting of $x.
  * to find out the current global P, take $Math::SomeClass::precision
  * use $x->precision() for the local setting

=item Creating numbers

 !* When you create a number, there should be a way to define its A & P
  * When a number without specific A or P is created, but the globals are
    defined, these should be used to round the number immediately and also
    stored locally with the number. Thus changing the global defaults later on
    will not change the A or P of previously created numbers (i.e., A and P of
    $x will be what was in effect when $x was created) 

=item Usage

  * If A or P are enabled/defined, they are used to round the result of each
    operation according to the rules below
  * Negative P is ignored in Math::BigInt, since BigInts never have digits
    after the decimal point
  * Math::BigFloat uses Math::BigInts internally, but setting A or P inside
    Math::BigInt as globals should not tamper with the parts of a BigFloat.
    Thus a flag is used to mark all Math::BigFloat numbers as 'never round'

=item Precedence

  * It only makes sense that a number has only one of A or P at a time.
    Since you can set/get both A and P, there is a rule that will practically
    enforce only A or P to be in effect at a time, even if both are set.
    This is called precedence.
 !* If two objects are involved in an operation, and one of them has A in
 !  effect, and the other P, this should result in a warning or an error,
 !  probably in NaN.
  * A takes precendence over P (Hint: A comes before P). If A is defined, it
    is used, otherwise P is used. If neither of them is defined, nothing is
    used, i.e. the result will have as many digits as it can (with an
    exception for fdiv/fsqrt) and will not be rounded.
  * There is another setting for fdiv() (and thus for fsqrt()). If neither of
    A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
    If either the dividend's or the divisor's mantissa has more digits than
    the value of F, the higher value will be used instead of F.
    This is to limit the digits (A) of the result (just consider what would
    happen with unlimited A and P in the case of 1/3 :-)
  * fdiv will calculate 1 more digit than required (determined by
    A, P or F), and, if F is not used, round the result
    (this will still fail in the case of a result like 0.12345000000001 with A
    or P of 5, but this can not be helped - or can it?)
  * Thus you can have the math done by on Math::Big* class in three modes:
    + never round (this is the default):
      This is done by setting A and P to undef. No math operation
      will round the result, with fdiv() and fsqrt() as exceptions to guard
      against overflows. You must explicitely call bround(), bfround() or
      round() (the latter with parameters).
      Note: Once you have rounded a number, the settings will 'stick' on it
      and 'infect' all other numbers engaged in math operations with it, since
      local settings have the highest precedence. So, to get SaferRound[tm],
      use a copy() before rounding like this:

        $x = Math::BigFloat->new(12.34);
        $y = Math::BigFloat->new(98.76);
        $z = $x * $y;                           # 1218.6984
        print $x->copy()->fround(3);            # 12.3 (but A is now 3!)
        $z = $x * $y;                           # still 1218.6984, without
                                                # copy would have been 1210!

    + round after each op:
      After each single operation (except for testing like is_zero()), the
      method round() is called and the result is rounded appropriately. By
      setting proper values for A and P, you can have all-the-same-A or
      all-the-same-P modes. For example, Math::Currency might set A to undef,
      and P to -2, globally.

 ?Maybe an extra option that forbids local A & P settings would be in order,
 ?so that intermediate rounding does not 'poison' further math? 

=item Overriding globals

  * you will be able to give A, P and R as an argument to all the calculation
    routines; the second parameter is A, the third one is P, and the fourth is
    R (shift place by one for binary operations like add). P is used only if
    the first parameter (A) is undefined. These three parameters override the
    globals in the order detailed as follows, i.e. the first defined value
    wins:
    (local: per object, global: global default, parameter: argument to sub)
      + parameter A
      + parameter P
      + local A (if defined on both of the operands: smaller one is taken)
      + local P (if defined on both of the operands: smaller one is taken)
      + global A
      + global P
      + global F
  * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
    arguments (A and P) instead of one

=item Local settings

  * You can set A and P locally by using $x->accuracy() and $x->precision()
    and thus force different A and P for different objects/numbers.
  * Setting A or P this way immediately rounds $x to the new value.

=item Rounding

  * the rounding routines will use the respective global or local settings.
    fround()/bround() is for accuracy rounding, while ffround()/bfround()
    is for precision
  * the two rounding functions take as the second parameter one of the
    following rounding modes (R):
    'even', 'odd', '+inf', '-inf', 'zero', 'trunc'
  * you can set and get the global R by using Math::SomeClass->round_mode()
    or by setting $Math::SomeClass::round_mode
  * after each operation, $result->round() is called, and the result may
    eventually be rounded (that is, if A or P were set either locally,
    globally or as parameter to the operation)
  * to manually round a number, call $x->round($A,$P,$round_mode);
    this will round the number by using the appropriate rounding function
    and then normalize it.
  * rounding modifies the local settings of the number:

        $x = Math::BigFloat->new(123.456);
        $x->accuracy(5);
        $x->bround(4);

    Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
    will be 4 from now on.

=item Default values

  * R: 'even'
  * F: 40
  * A: undef
  * P: undef

=item Remarks

  * The defaults are set up so that the new code gives the same results as
    the old code (except in a few cases on fdiv):
    + Both A and P are undefined and thus will not be used for rounding
      after each operation.
    + round() is thus a no-op, unless given extra parameters A and P

=back

=head1 INTERNALS

The actual numbers are stored as unsigned big integers (with seperate sign).
You should neither care about nor depend on the internal representation; it
might change without notice. Use only method calls like C<< $x->sign(); >>
instead relying on the internal hash keys like in C<< $x->{sign}; >>. 

=head2 MATH LIBRARY

Math with the numbers is done (by default) by a module called
Math::BigInt::Calc. This is equivalent to saying:

	use Math::BigInt lib => 'Calc';

You can change this by using:

	use Math::BigInt lib => 'BitVect';

The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:

	use Math::BigInt lib => 'Foo,Math::BigInt::Bar';

Calc.pm uses as internal format an array of elements of some decimal base
(usually 1e5, but this might change to 1e7) with the least significant digit
first, while BitVect.pm uses a bit vector of base 2, most significant bit
first. Other modules might use even different means of representing the
numbers. See the respective module documentation for further details.

=head2 SIGN

The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.

A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You will get '+inf' when dividing a positive number by 0, and
'-inf' when dividing any negative number by 0.

=head2 mantissa(), exponent() and parts()

C<mantissa()> and C<exponent()> return the said parts of the BigInt such
that:

        $m = $x->mantissa();
        $e = $x->exponent();
        $y = $m * ( 10 ** $e );
        print "ok\n" if $x == $y;

C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
in one go. Both the returned mantissa and exponent have a sign.

Currently, for BigInts C<$e> will be always 0, except for NaN, +inf and -inf,
where it will be NaN; and for $x == 0, where it will be 1
(to be compatible with Math::BigFloat's internal representation of a zero as
C<0E1>).

C<$m> will always be a copy of the original number. The relation between $e
and $m might change in the future, but will always be equivalent in a
numerical sense, e.g. $m might get minimized.

=head1 EXAMPLES
 
  use Math::BigInt qw(bstr);

  sub bint { Math::BigInt->new(shift); }

  $x = bstr("1234")                  	# string "1234"
  $x = "$x";                         	# same as bstr()
  $x = bneg("1234")                  	# Bigint "-1234"
  $x = Math::BigInt->bneg("1234");   	# Bigint "-1234"
  $x = Math::BigInt->babs("-12345"); 	# Bigint "12345"
  $x = Math::BigInt->bnorm("-0 00"); 	# BigInt "0"
  $x = bint(1) + bint(2);            	# BigInt "3"
  $x = bint(1) + "2";                	# ditto (auto-BigIntify of "2")
  $x = bint(1);                      	# BigInt "1"
  $x = $x + 5 / 2;                   	# BigInt "3"
  $x = $x ** 3;                      	# BigInt "27"
  $x *= 2;                           	# BigInt "54"
  $x = new Math::BigInt;             	# BigInt "0"
  $x--;                              	# BigInt "-1"
  $x = Math::BigInt->badd(4,5)		# BigInt "9"
  $x = Math::BigInt::badd(4,5)		# BigInt "9"
  print $x->bsstr();			# 9e+0

Examples for rounding:

  use Math::BigFloat;
  use Test;

  $x = Math::BigFloat->new(123.4567);
  $y = Math::BigFloat->new(123.456789);
  $Math::BigFloat::accuracy = 4;	# no more A than 4

  ok ($x->copy()->fround(),123.4);	# even rounding
  print $x->copy()->fround(),"\n";	# 123.4
  Math::BigFloat->round_mode('odd');	# round to odd
  print $x->copy()->fround(),"\n";	# 123.5
  $Math::BigFloat::accuracy = 5;	# no more A than 5
  Math::BigFloat->round_mode('odd');	# round to odd
  print $x->copy()->fround(),"\n";	# 123.46
  $y = $x->copy()->fround(4),"\n";	# A = 4: 123.4
  print "$y, ",$y->accuracy(),"\n";	# 123.4, 4

  $Math::BigFloat::accuracy = undef;    # A not important
  $Math::BigFloat::precision = 2;       # P important
  print $x->copy()->bnorm(),"\n";       # 123.46
  print $x->copy()->fround(),"\n";      # 123.46

Examples for converting:

  my $x = Math::BigInt->new('0b1'.'01' x 123);
  print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";

=head1 Autocreating constants

After C<use Math::BigInt ':constant'> all the B<integer> decimal constants
in the given scope are converted to C<Math::BigInt>. This conversion
happens at compile time.

In particular,

  perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'

prints the integer value of C<2**100>.  Note that without conversion of 
constants the expression 2**100 will be calculated as perl scalar.

Please note that strings and floating point constants are not affected,
so that

  	use Math::BigInt qw/:constant/;

	$x = 1234567890123456789012345678901234567890
		+ 123456789123456789;
	$y = '1234567890123456789012345678901234567890'
		+ '123456789123456789';

do not work. You need an explicit Math::BigInt->new() around one of the
operands.

=head1 PERFORMANCE

Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
must be made in the second case. For long numbers, the copy can eat up to 20%
of the work (in the case of addition/subtraction, less for
multiplication/division). If $y is very small compared to $x, the form
$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
more time then the actual addition.

With a technique called copy-on-write, the cost of copying with overload could
be minimized or even completely avoided. This is currently not implemented.

The new version of this module is slower on new(), bstr() and numify(). Some
operations may be slower for small numbers, but are significantly faster for
big numbers. Other operations are now constant (O(1), like bneg(), babs()
etc), instead of O(N) and thus nearly always take much less time.

If you find the Calc module to slow, try to install any of the replacement
modules and see if they help you. 

=head2 Alternative math libraries

You can use an alternative library to drive Math::BigInt via:

	use Math::BigInt lib => 'Module';

The default is called Math::BigInt::Calc and is a pure-perl implementation
that consists mainly of the standard routine present in earlier versions of
Math::BigInt.

There are also Math::BigInt::Scalar (primarily for testing) and
Math::BigInt::BitVect; as well as Math::BigInt::Pari and likely others.
All these can be found via L<http://search.cpan.org/>:

	use Math::BigInt lib => 'BitVect';

	my $x = Math::BigInt->new(2);
	print $x ** (1024*1024);

For more benchmark results see http://bloodgate.com/perl/benchmarks.html

=head1 BUGS

=over 2

=item Out of Memory!

Under Perl prior to 5.6.0 having an C<use Math::BigInt ':constant';> and 
C<eval()> in your code will crash with "Out of memory". This is probably an
overload/exporter bug. You can workaround by not having C<eval()> 
and ':constant' at the same time or upgrade your Perl to a newer version.

=item Fails to load Calc on Perl prior 5.6.0

Since eval(' use ...') can not be used in conjunction with ':constant', BigInt
will fall back to eval { require ... } when loading the math lib on Perls
prior to 5.6.0. This simple replaces '::' with '/' and thus might fail on
filesystems using a different seperator.  

=back

=head1 CAVEATS

Some things might not work as you expect them. Below is documented what is
known to be troublesome:

=over 1

=item stringify, bstr(), bsstr() and 'cmp'

Both stringify and bstr() now drop the leading '+'. The old code would return
'+3', the new returns '3'. This is to be consistent with Perl and to make
cmp (especially with overloading) to work as you expect. It also solves
problems with Test.pm, it's ok() uses 'eq' internally. 

Mark said, when asked about to drop the '+' altogether, or make only cmp work:

	I agree (with the first alternative), don't add the '+' on positive
	numbers.  It's not as important anymore with the new internal 
	form for numbers.  It made doing things like abs and neg easier,
	but those have to be done differently now anyway.

So, the following examples will now work all as expected:

	use Test;
        BEGIN { plan tests => 1 }
	use Math::BigInt;

	my $x = new Math::BigInt 3*3;
	my $y = new Math::BigInt 3*3;

	ok ($x,3*3);
	print "$x eq 9" if $x eq $y;
	print "$x eq 9" if $x eq '9';
	print "$x eq 9" if $x eq 3*3;

Additionally, the following still works:
	
	print "$x == 9" if $x == $y;
	print "$x == 9" if $x == 9;
	print "$x == 9" if $x == 3*3;

There is now a C<bsstr()> method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparisation, but Perl will represent some numbers as 100 and others
as 1e+308. If in doubt, convert both arguments to Math::BigInt before doing eq:

	use Test;
        BEGIN { plan tests => 3 }
	use Math::BigInt;

	$x = Math::BigInt->new('1e56'); $y = 1e56;
	ok ($x,$y);			# will fail
	ok ($x->bsstr(),$y);		# okay
	$y = Math::BigInt->new($y);
	ok ($x,$y);			# okay

There is not yet a way to get a number automatically represented in exactly
the way Perl represents it.

=item int()

C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a 
Perl scalar:

	$x = Math::BigInt->new(123);
	$y = int($x);				# BigInt 123
	$x = Math::BigFloat->new(123.45);
	$y = int($x);				# BigInt 123

In all Perl versions you can use C<as_number()> for the same effect:

	$x = Math::BigFloat->new(123.45);
	$y = $x->as_number();			# BigInt 123

This also works for other subclasses, like Math::String.

It is yet unlcear whether overloaded int() should return a scalar or a BigInt.

=item length

The following will probably not do what you expect:

	$c = Math::BigInt->new(123);
	print $c->length(),"\n";		# prints 30

It prints both the number of digits in the number and in the fraction part
since print calls C<length()> in list context. Use something like: 
	
	print scalar $c->length(),"\n";		# prints 3 

=item bdiv

The following will probably not do what you expect:

	print $c->bdiv(10000),"\n";

It prints both quotient and remainder since print calls C<bdiv()> in list
context. Also, C<bdiv()> will modify $c, so be carefull. You probably want
to use
	
	print $c / 10000,"\n";
	print scalar $c->bdiv(10000),"\n";  # or if you want to modify $c

instead.

The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
nonzero) always has the same sign as the second operand; so, for
example,

	  1 / 4  => ( 0, 1)
	  1 / -4 => (-1,-3)
	 -3 / 4  => (-1, 1)
	 -3 / -4 => ( 0,-3)
	-11 / 2  => (-5,1)
	 11 /-2  => (-5,-1)

As a consequence, the behavior of the operator % agrees with the
behavior of Perl's built-in % operator (as documented in the perlop
manpage), and the equation

	$x == ($x / $y) * $y + ($x % $y)

holds true for any $x and $y, which justifies calling the two return
values of bdiv() the quotient and remainder. The only exception to this rule
are when $y == 0 and $x is negative, then the remainder will also be
negative. See below under "infinity handling" for the reasoning behing this.

Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
not change BigInt's way to do things. This is because under 'use integer' Perl
will do what the underlying C thinks is right and this is different for each
system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
the author to implement it ;)

=item infinity handling

Here are some examples that explain the reasons why certain results occur while
handling infinity:

The following table shows the result of the division and the remainder, so that
the equation above holds true. Some "ordinary" cases are strewn in to show more
clearly the reasoning:

	A /  B  =   C,     R so that C *    B +    R =    A
     =========================================================
	5 /   8 =   0,     5 	     0 *    8 +    5 =    5
	0 /   8 =   0,     0	     0 *    8 +    0 =    0
	0 / inf =   0,     0	     0 *  inf +    0 =    0
	0 /-inf =   0,     0	     0 * -inf +    0 =    0
	5 / inf =   0,     5	     0 *  inf +    5 =    5
	5 /-inf =   0,     5	     0 * -inf +    5 =    5
	-5/ inf =   0,    -5	     0 *  inf +   -5 =   -5
	-5/-inf =   0,    -5	     0 * -inf +   -5 =   -5
       inf/   5 =  inf,    0	   inf *    5 +    0 =  inf
      -inf/   5 = -inf,    0      -inf *    5 +    0 = -inf
       inf/  -5 = -inf,    0	  -inf *   -5 +    0 =  inf
      -inf/  -5 =  inf,    0       inf *   -5 +    0 = -inf
	 5/   5 =    1,    0         1 *    5 +    0 =    5
	-5/  -5 =    1,    0         1 *   -5 +    0 =   -5
       inf/ inf =    1,    0         1 *  inf +    0 =  inf
      -inf/-inf =    1,    0         1 * -inf +    0 = -inf
       inf/-inf =   -1,    0        -1 * -inf +    0 =  inf
      -inf/ inf =   -1,    0         1 * -inf +    0 = -inf
	 8/   0 =  inf,    8       inf *    0 +    8 =    8 
       inf/   0 =  inf,  inf       inf *    0 +  inf =  inf 
         0/   0 =  NaN

These cases below violate the "remainder has the sign of the second of the two
arguments", since they wouldn't match up otherwise.

	A /  B  =   C,     R so that C *    B +    R =    A
     ========================================================
      -inf/   0 = -inf, -inf      -inf *    0 +  inf = -inf 
	-8/   0 = -inf,   -8      -inf *    0 +    8 = -8 

=item Modifying and =

Beware of:

        $x = Math::BigFloat->new(5);
        $y = $x;

It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B<same> object and stores it in $y. Thus anything
that modifies $x (except overloaded operators) will modify $y, and vice versa.
Or in other words, C<=> is only safe if you modify your BigInts only via
overloaded math. As soon as you use a method call it breaks:

        $x->bmul(2);
        print "$x, $y\n";       # prints '10, 10'

If you want a true copy of $x, use:

        $y = $x->copy();

You can also chain the calls like this, this will make first a copy and then
multiply it by 2:

        $y = $x->copy()->bmul(2);

See also the documentation for overload.pm regarding C<=>.

=item bpow

C<bpow()> (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C<badd()> etc. The first three will
modify $x, the last one won't:

	print bpow($x,$i),"\n"; 	# modify $x
	print $x->bpow($i),"\n"; 	# ditto
	print $x **= $i,"\n";		# the same
	print $x ** $i,"\n";		# leave $x alone 

The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.

=item Overloading -$x

The following:

	$x = -$x;

is slower than

	$x->bneg();

since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
needs to preserve $x since it does not know that it later will get overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).

With Copy-On-Write, this issue will be gone. Stay tuned...

=item Mixing different object types

In Perl you will get a floating point value if you do one of the following:

	$float = 5.0 + 2;
	$float = 2 + 5.0;
	$float = 5 / 2;

With overloaded math, only the first two variants will result in a BigFloat:

	use Math::BigInt;
	use Math::BigFloat;
	
	$mbf = Math::BigFloat->new(5);
	$mbi2 = Math::BigInteger->new(5);
	$mbi = Math::BigInteger->new(2);

					# what actually gets called:
	$float = $mbf + $mbi;		# $mbf->badd()
	$float = $mbf / $mbi;		# $mbf->bdiv()
	$integer = $mbi + $mbf;		# $mbi->badd()
	$integer = $mbi2 / $mbi;	# $mbi2->bdiv()
	$integer = $mbi2 / $mbf;	# $mbi2->bdiv()

This is because math with overloaded operators follows the first (dominating)
operand, this one's operation is called and returns thus the result. So,
Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
the result should be a Math::BigFloat or the second operant is one.

To get a Math::BigFloat you either need to call the operation manually,
make sure the operands are already of the proper type or casted to that type
via Math::BigFloat->new():
	
	$float = Math::BigFloat->new($mbi2) / $mbi;	# = 2.5

Beware of simple "casting" the entire expression, this would only convert
the already computed result:

	$float = Math::BigFloat->new($mbi2 / $mbi);	# = 2.0 thus wrong!

Beware also of the order of more complicated expressions like:

	$integer = ($mbi2 + $mbi) / $mbf;		# int / float => int
	$integer = $mbi2 / Math::BigFloat->new($mbi);	# ditto

If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.

Scalar values are a bit different, since:
	
	$float = 2 + $mbf;
	$float = $mbf + 2;

will both result in the proper type due to the way the overloaded math works.

This section also applies to other overloaded math packages, like Math::String.

=item bsqrt()

C<bsqrt()> works only good if the result is an big integer, e.g. the square
root of 144 is 12, but from 12 the square root is 3, regardless of rounding
mode.

If you want a better approximation of the square root, then use:

	$x = Math::BigFloat->new(12);
	$Math::BigFloat::precision = 0;
	Math::BigFloat->round_mode('even');
	print $x->copy->bsqrt(),"\n";		# 4

	$Math::BigFloat::precision = 2;
	print $x->bsqrt(),"\n";			# 3.46
	print $x->bsqrt(3),"\n";		# 3.464

=back

=head1 LICENSE

This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.

=head1 SEE ALSO

L<Math::BigFloat> and L<Math::Big>.

L<Math::BigInt::BitVect> and L<Math::BigInt::Pari>.

=head1 AUTHORS

Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in late 2000, 2001.

=cut