1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
|
# $RCSFile$
#
# Complex numbers and associated mathematical functions
# -- Raphael Manfredi, Sept 1996
require Exporter;
package Math::Complex; @ISA = qw(Exporter);
@EXPORT = qw(
pi i Re Im arg
log10 logn cbrt root
tan cotan asin acos atan acotan
sinh cosh tanh cotanh asinh acosh atanh acotanh
cplx cplxe
);
use overload
'+' => \&plus,
'-' => \&minus,
'*' => \&multiply,
'/' => \÷,
'**' => \&power,
'<=>' => \&spaceship,
'neg' => \&negate,
'~' => \&conjugate,
'abs' => \&abs,
'sqrt' => \&sqrt,
'exp' => \&exp,
'log' => \&log,
'sin' => \&sin,
'cos' => \&cos,
'atan2' => \&atan2,
qw("" stringify);
#
# Package globals
#
$package = 'Math::Complex'; # Package name
$display = 'cartesian'; # Default display format
#
# Object attributes (internal):
# cartesian [real, imaginary] -- cartesian form
# polar [rho, theta] -- polar form
# c_dirty cartesian form not up-to-date
# p_dirty polar form not up-to-date
# display display format (package's global when not set)
#
#
# ->make
#
# Create a new complex number (cartesian form)
#
sub make {
my $self = bless {}, shift;
my ($re, $im) = @_;
$self->{cartesian} = [$re, $im];
$self->{c_dirty} = 0;
$self->{p_dirty} = 1;
return $self;
}
#
# ->emake
#
# Create a new complex number (exponential form)
#
sub emake {
my $self = bless {}, shift;
my ($rho, $theta) = @_;
$theta += pi() if $rho < 0;
$self->{polar} = [abs($rho), $theta];
$self->{p_dirty} = 0;
$self->{c_dirty} = 1;
return $self;
}
sub new { &make } # For backward compatibility only.
#
# cplx
#
# Creates a complex number from a (re, im) tuple.
# This avoids the burden of writing Math::Complex->make(re, im).
#
sub cplx {
my ($re, $im) = @_;
return $package->make($re, $im);
}
#
# cplxe
#
# Creates a complex number from a (rho, theta) tuple.
# This avoids the burden of writing Math::Complex->emake(rho, theta).
#
sub cplxe {
my ($rho, $theta) = @_;
return $package->emake($rho, $theta);
}
#
# pi
#
# The number defined as 2 * pi = 360 degrees
#
sub pi () {
$pi = 4 * atan2(1, 1) unless $pi;
return $pi;
}
#
# i
#
# The number defined as i*i = -1;
#
sub i () {
$i = bless {} unless $i; # There can be only one i
$i->{cartesian} = [0, 1];
$i->{polar} = [1, pi/2];
$i->{c_dirty} = 0;
$i->{p_dirty} = 0;
return $i;
}
#
# Attribute access/set routines
#
sub cartesian {$_[0]->{c_dirty} ? $_[0]->update_cartesian : $_[0]->{cartesian}}
sub polar {$_[0]->{p_dirty} ? $_[0]->update_polar : $_[0]->{polar}}
sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{cartesian} = $_[1] }
sub set_polar { $_[0]->{c_dirty}++; $_[0]->{polar} = $_[1] }
#
# ->update_cartesian
#
# Recompute and return the cartesian form, given accurate polar form.
#
sub update_cartesian {
my $self = shift;
my ($r, $t) = @{$self->{polar}};
$self->{c_dirty} = 0;
return $self->{cartesian} = [$r * cos $t, $r * sin $t];
}
#
#
# ->update_polar
#
# Recompute and return the polar form, given accurate cartesian form.
#
sub update_polar {
my $self = shift;
my ($x, $y) = @{$self->{cartesian}};
$self->{p_dirty} = 0;
return $self->{polar} = [0, 0] if $x == 0 && $y == 0;
return $self->{polar} = [sqrt($x*$x + $y*$y), atan2($y, $x)];
}
#
# (plus)
#
# Computes z1+z2.
#
sub plus {
my ($z1, $z2, $regular) = @_;
my ($re1, $im1) = @{$z1->cartesian};
my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
unless (defined $regular) {
$z1->set_cartesian([$re1 + $re2, $im1 + $im2]);
return $z1;
}
return (ref $z1)->make($re1 + $re2, $im1 + $im2);
}
#
# (minus)
#
# Computes z1-z2.
#
sub minus {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1) = @{$z1->cartesian};
my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
unless (defined $inverted) {
$z1->set_cartesian([$re1 - $re2, $im1 - $im2]);
return $z1;
}
return $inverted ?
(ref $z1)->make($re2 - $re1, $im2 - $im1) :
(ref $z1)->make($re1 - $re2, $im1 - $im2);
}
#
# (multiply)
#
# Computes z1*z2.
#
sub multiply {
my ($z1, $z2, $regular) = @_;
my ($r1, $t1) = @{$z1->polar};
my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi);
unless (defined $regular) {
$z1->set_polar([$r1 * $r2, $t1 + $t2]);
return $z1;
}
return (ref $z1)->emake($r1 * $r2, $t1 + $t2);
}
#
# (divide)
#
# Computes z1/z2.
#
sub divide {
my ($z1, $z2, $inverted) = @_;
my ($r1, $t1) = @{$z1->polar};
my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi);
unless (defined $inverted) {
$z1->set_polar([$r1 / $r2, $t1 - $t2]);
return $z1;
}
return $inverted ?
(ref $z1)->emake($r2 / $r1, $t2 - $t1) :
(ref $z1)->emake($r1 / $r2, $t1 - $t2);
}
#
# (power)
#
# Computes z1**z2 = exp(z2 * log z1)).
#
sub power {
my ($z1, $z2, $inverted) = @_;
return exp($z1 * log $z2) if defined $inverted && $inverted;
return exp($z2 * log $z1);
}
#
# (spaceship)
#
# Computes z1 <=> z2.
# Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i.
#
sub spaceship {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1) = @{$z1->cartesian};
my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
my $sgn = $inverted ? -1 : 1;
return $sgn * ($re1 <=> $re2) if $re1 != $re2;
return $sgn * ($im1 <=> $im2);
}
#
# (negate)
#
# Computes -z.
#
sub negate {
my ($z) = @_;
if ($z->{c_dirty}) {
my ($r, $t) = @{$z->polar};
return (ref $z)->emake($r, pi + $t);
}
my ($re, $im) = @{$z->cartesian};
return (ref $z)->make(-$re, -$im);
}
#
# (conjugate)
#
# Compute complex's conjugate.
#
sub conjugate {
my ($z) = @_;
if ($z->{c_dirty}) {
my ($r, $t) = @{$z->polar};
return (ref $z)->emake($r, -$t);
}
my ($re, $im) = @{$z->cartesian};
return (ref $z)->make($re, -$im);
}
#
# (abs)
#
# Compute complex's norm (rho).
#
sub abs {
my ($z) = @_;
my ($r, $t) = @{$z->polar};
return abs($r);
}
#
# arg
#
# Compute complex's argument (theta).
#
sub arg {
my ($z) = @_;
return 0 unless ref $z;
my ($r, $t) = @{$z->polar};
return $t;
}
#
# (sqrt)
#
# Compute sqrt(z) (positive only).
#
sub sqrt {
my ($z) = @_;
my ($r, $t) = @{$z->polar};
return (ref $z)->emake(sqrt($r), $t/2);
}
#
# cbrt
#
# Compute cbrt(z) (cubic root, primary only).
#
sub cbrt {
my ($z) = @_;
return $z ** (1/3) unless ref $z;
my ($r, $t) = @{$z->polar};
return (ref $z)->emake($r**(1/3), $t/3);
}
#
# root
#
# Computes all nth root for z, returning an array whose size is n.
# `n' must be a positive integer.
#
# The roots are given by (for k = 0..n-1):
#
# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
#
sub root {
my ($z, $n) = @_;
$n = int($n + 0.5);
return undef unless $n > 0;
my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi);
my @root;
my $k;
my $theta_inc = 2 * pi / $n;
my $rho = $r ** (1/$n);
my $theta;
my $complex = ref($z) || $package;
for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) {
push(@root, $complex->emake($rho, $theta));
}
return @root;
}
#
# Re
#
# Return Re(z).
#
sub Re {
my ($z) = @_;
return $z unless ref $z;
my ($re, $im) = @{$z->cartesian};
return $re;
}
#
# Im
#
# Return Im(z).
#
sub Im {
my ($z) = @_;
return 0 unless ref $z;
my ($re, $im) = @{$z->cartesian};
return $im;
}
#
# (exp)
#
# Computes exp(z).
#
sub exp {
my ($z) = @_;
my ($x, $y) = @{$z->cartesian};
return (ref $z)->emake(exp($x), $y);
}
#
# (log)
#
# Compute log(z).
#
sub log {
my ($z) = @_;
my ($r, $t) = @{$z->polar};
return (ref $z)->make(log($r), $t);
}
#
# log10
#
# Compute log10(z).
#
sub log10 {
my ($z) = @_;
$log10 = log(10) unless defined $log10;
return log($z) / $log10 unless ref $z;
my ($r, $t) = @{$z->polar};
return (ref $z)->make(log($r) / $log10, $t / $log10);
}
#
# logn
#
# Compute logn(z,n) = log(z) / log(n)
#
sub logn {
my ($z, $n) = @_;
my $logn = $logn{$n};
$logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n)
return log($z) / log($n);
}
#
# (cos)
#
# Compute cos(z) = (exp(iz) + exp(-iz))/2.
#
sub cos {
my ($z) = @_;
my ($x, $y) = @{$z->cartesian};
my $ey = exp($y);
my $ey_1 = 1 / $ey;
return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, sin($x) * ($ey_1 - $ey)/2);
}
#
# (sin)
#
# Compute sin(z) = (exp(iz) - exp(-iz))/2.
#
sub sin {
my ($z) = @_;
my ($x, $y) = @{$z->cartesian};
my $ey = exp($y);
my $ey_1 = 1 / $ey;
return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, cos($x) * ($ey - $ey_1)/2);
}
#
# tan
#
# Compute tan(z) = sin(z) / cos(z).
#
sub tan {
my ($z) = @_;
return sin($z) / cos($z);
}
#
# cotan
#
# Computes cotan(z) = 1 / tan(z).
#
sub cotan {
my ($z) = @_;
return cos($z) / sin($z);
}
#
# acos
#
# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
#
sub acos {
my ($z) = @_;
my $cz = $z*$z - 1;
$cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
return ~i * log($z + sqrt $cz); # ~i is -i
}
#
# asin
#
# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
#
sub asin {
my ($z) = @_;
my $cz = 1 - $z*$z;
$cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
return ~i * log(i * $z + sqrt $cz); # ~i is -i
}
#
# atan
#
# Computes the arc tagent atan(z) = i/2 log((i+z) / (i-z)).
#
sub atan {
my ($z) = @_;
return i/2 * log((i + $z) / (i - $z));
}
#
# acotan
#
# Computes the arc cotangent acotan(z) = -i/2 log((i+z) / (z-i))
#
sub acotan {
my ($z) = @_;
return i/-2 * log((i + $z) / ($z - i));
}
#
# cosh
#
# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
#
sub cosh {
my ($z) = @_;
my ($x, $y) = ref $z ? @{$z->cartesian} : ($z);
my $ex = exp($x);
my $ex_1 = 1 / $ex;
return ($ex + $ex_1)/2 unless ref $z;
return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, sin($y) * ($ex - $ex_1)/2);
}
#
# sinh
#
# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
#
sub sinh {
my ($z) = @_;
my ($x, $y) = ref $z ? @{$z->cartesian} : ($z);
my $ex = exp($x);
my $ex_1 = 1 / $ex;
return ($ex - $ex_1)/2 unless ref $z;
return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, sin($y) * ($ex + $ex_1)/2);
}
#
# tanh
#
# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
#
sub tanh {
my ($z) = @_;
return sinh($z) / cosh($z);
}
#
# cotanh
#
# Comptutes the hyperbolic cotangent cotanh(z) = cosh(z) / sinh(z).
#
sub cotanh {
my ($z) = @_;
return cosh($z) / sinh($z);
}
#
# acosh
#
# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
#
sub acosh {
my ($z) = @_;
my $cz = $z*$z - 1;
$cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
return log($z + sqrt $cz);
}
#
# asinh
#
# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1))
#
sub asinh {
my ($z) = @_;
my $cz = $z*$z + 1; # Already complex if <0
return log($z + sqrt $cz);
}
#
# atanh
#
# Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
#
sub atanh {
my ($z) = @_;
my $cz = (1 + $z) / (1 - $z);
$cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
return log($cz) / 2;
}
#
# acotanh
#
# Computes the arc hyperbolic cotangent acotanh(z) = 1/2 log((1+z) / (z-1)).
#
sub acotanh {
my ($z) = @_;
my $cz = (1 + $z) / ($z - 1);
$cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
return log($cz) / 2;
}
#
# (atan2)
#
# Compute atan(z1/z2).
#
sub atan2 {
my ($z1, $z2, $inverted) = @_;
my ($re1, $im1) = @{$z1->cartesian};
my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
my $tan;
if (defined $inverted && $inverted) { # atan(z2/z1)
return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0;
$tan = $z2 / $z1;
} else {
return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0;
$tan = $z1 / $z2;
}
return atan($tan);
}
#
# display_format
# ->display_format
#
# Set (fetch if no argument) display format for all complex numbers that
# don't happen to have overrriden it via ->display_format
#
# When called as a method, this actually sets the display format for
# the current object.
#
# Valid object formats are 'c' and 'p' for cartesian and polar. The first
# letter is used actually, so the type can be fully spelled out for clarity.
#
sub display_format {
my $self = shift;
my $format = undef;
if (ref $self) { # Called as a method
$format = shift;
} else { # Regular procedure call
$format = $self;
undef $self;
}
if (defined $self) {
return defined $self->{display} ? $self->{display} : $display
unless defined $format;
return $self->{display} = $format;
}
return $display unless defined $format;
return $display = $format;
}
#
# (stringify)
#
# Show nicely formatted complex number under its cartesian or polar form,
# depending on the current display format:
#
# . If a specific display format has been recorded for this object, use it.
# . Otherwise, use the generic current default for all complex numbers,
# which is a package global variable.
#
sub stringify {
my ($z) = shift;
my $format;
$format = $display;
$format = $z->{display} if defined $z->{display};
return $z->stringify_polar if $format =~ /^p/i;
return $z->stringify_cartesian;
}
#
# ->stringify_cartesian
#
# Stringify as a cartesian representation 'a+bi'.
#
sub stringify_cartesian {
my $z = shift;
my ($x, $y) = @{$z->cartesian};
my ($re, $im);
$re = "$x" if abs($x) >= 1e-14;
if ($y == 1) { $im = 'i' }
elsif ($y == -1) { $im = '-i' }
elsif (abs($y) >= 1e-14) { $im = "${y}i" }
my $str;
$str = $re if defined $re;
$str .= "+$im" if defined $im;
$str =~ s/\+-/-/;
$str =~ s/^\+//;
$str = '0' unless $str;
return $str;
}
#
# ->stringify_polar
#
# Stringify as a polar representation '[r,t]'.
#
sub stringify_polar {
my $z = shift;
my ($r, $t) = @{$z->polar};
my $theta;
return '[0,0]' if $r <= 1e-14;
my $tpi = 2 * pi;
my $nt = $t / $tpi;
$nt = ($nt - int($nt)) * $tpi;
$nt += $tpi if $nt < 0; # Range [0, 2pi]
if (abs($nt) <= 1e-14) { $theta = 0 }
elsif (abs(pi-$nt) <= 1e-14) { $theta = 'pi' }
return "\[$r,$theta\]" if defined $theta;
#
# Okay, number is not a real. Try to identify pi/n and friends...
#
$nt -= $tpi if $nt > pi;
my ($n, $k, $kpi);
for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) {
$n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5);
if (abs($kpi/$n - $nt) <= 1e-14) {
$theta = ($nt < 0 ? '-':'').($k == 1 ? 'pi':"${k}pi").'/'.abs($n);
last;
}
}
$theta = $nt unless defined $theta;
return "\[$r,$theta\]";
}
1;
__END__
=head1 NAME
Math::Complex - complex numbers and associated mathematical functions
=head1 SYNOPSIS
use Math::Complex;
$z = Math::Complex->make(5, 6);
$t = 4 - 3*i + $z;
$j = cplxe(1, 2*pi/3);
=head1 DESCRIPTION
This package lets you create and manipulate complex numbers. By default,
I<Perl> limits itself to real numbers, but an extra C<use> statement brings
full complex support, along with a full set of mathematical functions
typically associated with and/or extended to complex numbers.
If you wonder what complex numbers are, they were invented to be able to solve
the following equation:
x*x = -1
and by definition, the solution is noted I<i> (engineers use I<j> instead since
I<i> usually denotes an intensity, but the name does not matter). The number
I<i> is a pure I<imaginary> number.
The arithmetics with pure imaginary numbers works just like you would expect
it with real numbers... you just have to remember that
i*i = -1
so you have:
5i + 7i = i * (5 + 7) = 12i
4i - 3i = i * (4 - 3) = i
4i * 2i = -8
6i / 2i = 3
1 / i = -i
Complex numbers are numbers that have both a real part and an imaginary
part, and are usually noted:
a + bi
where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
arithmetic with complex numbers is straightforward. You have to
keep track of the real and the imaginary parts, but otherwise the
rules used for real numbers just apply:
(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
A graphical representation of complex numbers is possible in a plane
(also called the I<complex plane>, but it's really a 2D plane).
The number
z = a + bi
is the point whose coordinates are (a, b). Actually, it would
be the vector originating from (0, 0) to (a, b). It follows that the addition
of two complex numbers is a vectorial addition.
Since there is a bijection between a point in the 2D plane and a complex
number (i.e. the mapping is unique and reciprocal), a complex number
can also be uniquely identified with polar coordinates:
[rho, theta]
where C<rho> is the distance to the origin, and C<theta> the angle between
the vector and the I<x> axis. There is a notation for this using the
exponential form, which is:
rho * exp(i * theta)
where I<i> is the famous imaginary number introduced above. Conversion
between this form and the cartesian form C<a + bi> is immediate:
a = rho * cos(theta)
b = rho * sin(theta)
which is also expressed by this formula:
z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
In other words, it's the projection of the vector onto the I<x> and I<y>
axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
the I<argument> of the complex number. The I<norm> of C<z> will be
noted C<abs(z)>.
The polar notation (also known as the trigonometric
representation) is much more handy for performing multiplications and
divisions of complex numbers, whilst the cartesian notation is better
suited for additions and substractions. Real numbers are on the I<x>
axis, and therefore I<theta> is zero.
All the common operations that can be performed on a real number have
been defined to work on complex numbers as well, and are merely
I<extensions> of the operations defined on real numbers. This means
they keep their natural meaning when there is no imaginary part, provided
the number is within their definition set.
For instance, the C<sqrt> routine which computes the square root of
its argument is only defined for positive real numbers and yields a
positive real number (it is an application from B<R+> to B<R+>).
If we allow it to return a complex number, then it can be extended to
negative real numbers to become an application from B<R> to B<C> (the
set of complex numbers):
sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
It can also be extended to be an application from B<C> to B<C>,
whilst its restriction to B<R> behaves as defined above by using
the following definition:
sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
Indeed, a negative real number can be noted C<[x,pi]>
(the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a
negative number)
and the above definition states that
sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
which is exactly what we had defined for negative real numbers above.
All the common mathematical functions defined on real numbers that
are extended to complex numbers share that same property of working
I<as usual> when the imaginary part is zero (otherwise, it would not
be called an extension, would it?).
A I<new> operation possible on a complex number that is
the identity for real numbers is called the I<conjugate>, and is noted
with an horizontal bar above the number, or C<~z> here.
z = a + bi
~z = a - bi
Simple... Now look:
z * ~z = (a + bi) * (a - bi) = a*a + b*b
We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
distance to the origin, also known as:
rho = abs(z) = sqrt(a*a + b*b)
so
z * ~z = abs(z) ** 2
If z is a pure real number (i.e. C<b == 0>), then the above yields:
a * a = abs(a) ** 2
which is true (C<abs> has the regular meaning for real number, i.e. stands
for the absolute value). This example explains why the norm of C<z> is
noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
is the regular C<abs> we know when the complex number actually has no
imaginary part... This justifies I<a posteriori> our use of the C<abs>
notation for the norm.
=head1 OPERATIONS
Given the following notations:
z1 = a + bi = r1 * exp(i * t1)
z2 = c + di = r2 * exp(i * t2)
z = <any complex or real number>
the following (overloaded) operations are supported on complex numbers:
z1 + z2 = (a + c) + i(b + d)
z1 - z2 = (a - c) + i(b - d)
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
z1 ** z2 = exp(z2 * log z1)
~z1 = a - bi
abs(z1) = r1 = sqrt(a*a + b*b)
sqrt(z1) = sqrt(r1) * exp(i * t1/2)
exp(z1) = exp(a) * exp(i * b)
log(z1) = log(r1) + i*t1
sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1))
cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1))
abs(z1) = r1
atan2(z1, z2) = atan(z1/z2)
The following extra operations are supported on both real and complex
numbers:
Re(z) = a
Im(z) = b
arg(z) = t
cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) = log(z) / log(n)
tan(z) = sin(z) / cos(z)
cotan(z) = 1 / tan(z)
asin(z) = -i * log(i*z + sqrt(1-z*z))
acos(z) = -i * log(z + sqrt(z*z-1))
atan(z) = i/2 * log((i+z) / (i-z))
acotan(z) = -i/2 * log((i+z) / (z-i))
sinh(z) = 1/2 (exp(z) - exp(-z))
cosh(z) = 1/2 (exp(z) + exp(-z))
tanh(z) = sinh(z) / cosh(z)
cotanh(z) = 1 / tanh(z)
asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z-1))
atanh(z) = 1/2 * log((1+z) / (1-z))
acotanh(z) = 1/2 * log((1+z) / (z-1))
The I<root> function is available to compute all the I<n>th
roots of some complex, where I<n> is a strictly positive integer.
There are exactly I<n> such roots, returned as a list. Getting the
number mathematicians call C<j> such that:
1 + j + j*j = 0;
is a simple matter of writing:
$j = ((root(1, 3))[1];
The I<k>th root for C<z = [r,t]> is given by:
(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
The I<spaceshift> operation is also defined. In order to ensure its
restriction to real numbers is conform to what you would expect, the
comparison is run on the real part of the complex number first,
and imaginary parts are compared only when the real parts match.
=head1 CREATION
To create a complex number, use either:
$z = Math::Complex->make(3, 4);
$z = cplx(3, 4);
if you know the cartesian form of the number, or
$z = 3 + 4*i;
if you like. To create a number using the trigonometric form, use either:
$z = Math::Complex->emake(5, pi/3);
$x = cplxe(5, pi/3);
instead. The first argument is the modulus, the second is the angle (in radians).
(Mnmemonic: C<e> is used as a notation for complex numbers in the trigonometric
form).
It is possible to write:
$x = cplxe(-3, pi/4);
but that will be silently converted into C<[3,-3pi/4]>, since the modulus
must be positive (it represents the distance to the origin in the complex
plane).
=head1 STRINGIFICATION
When printed, a complex number is usually shown under its cartesian
form I<a+bi>, but there are legitimate cases where the polar format
I<[r,t]> is more appropriate.
By calling the routine C<Math::Complex::display_format> and supplying either
C<"polar"> or C<"cartesian">, you override the default display format,
which is C<"cartesian">. Not supplying any argument returns the current
setting.
This default can be overridden on a per-number basis by calling the
C<display_format> method instead. As before, not supplying any argument
returns the current display format for this number. Otherwise whatever you
specify will be the new display format for I<this> particular number.
For instance:
use Math::Complex;
Math::Complex::display_format('polar');
$j = ((root(1, 3))[1];
print "j = $j\n"; # Prints "j = [1,2pi/3]
$j->display_format('cartesian');
print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
The polar format attempts to emphasize arguments like I<k*pi/n>
(where I<n> is a positive integer and I<k> an integer within [-9,+9]).
=head1 USAGE
Thanks to overloading, the handling of arithmetics with complex numbers
is simple and almost transparent.
Here are some examples:
use Math::Complex;
$j = cplxe(1, 2*pi/3); # $j ** 3 == 1
print "j = $j, j**3 = ", $j ** 3, "\n";
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
$z = -16 + 0*i; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";
$k = exp(i * 2*pi/3);
print "$j - $k = ", $j - $k, "\n";
=head1 BUGS
Saying C<use Math::Complex;> exports many mathematical routines in the caller
environment. This is construed as a feature by the Author, actually... ;-)
The code is not optimized for speed, although we try to use the cartesian
form for addition-like operators and the trigonometric form for all
multiplication-like operators.
The arg() routine does not ensure the angle is within the range [-pi,+pi]
(a side effect caused by multiplication and division using the trigonometric
representation).
All routines expect to be given real or complex numbers. Don't attempt to
use BigFloat, since Perl has currently no rule to disambiguate a '+'
operation (for instance) between two overloaded entities.
=head1 AUTHOR
Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>>
|