summaryrefslogtreecommitdiff
path: root/lib/Module/Build/Authoring.pod
blob: a92a81b0f5f4baf568c204f90adcb54e3c55ceec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
=head1 NAME

Module::Build::Authoring - Authoring Module::Build modules


=head1 DESCRIPTION

When creating a C<Build.PL> script for a module, something like the
following code will typically be used:

  use Module::Build;
  my $build = Module::Build->new
    (
     module_name => 'Foo::Bar',
     license  => 'perl',
     requires => {
                  'perl'          => '5.6.1',
                  'Some::Module'  => '1.23',
                  'Other::Module' => '>= 1.2, != 1.5, < 2.0',
                 },
    );
  $build->create_build_script;

A simple module could get away with something as short as this for its
C<Build.PL> script:

  use Module::Build;
  Module::Build->new(
    module_name => 'Foo::Bar',
    license     => 'perl',
  )->create_build_script;

The model used by C<Module::Build> is a lot like the C<MakeMaker>
metaphor, with the following correspondences:

   In Module::Build                 In ExtUtils::MakeMaker
  ---------------------------      ------------------------
   Build.PL (initial script)        Makefile.PL (initial script)
   Build (a short perl script)      Makefile (a long Makefile)
   _build/ (saved state info)       various config text in the Makefile

Any customization can be done simply by subclassing C<Module::Build>
and adding a method called (for example) C<ACTION_test>, overriding
the default 'test' action.  You could also add a method called
C<ACTION_whatever>, and then you could perform the action C<Build
whatever>.

For information on providing compatibility with
C<ExtUtils::MakeMaker>, see L<Module::Build::Compat> and
L<http://www.makemaker.org/wiki/index.cgi?ModuleBuildConversionGuide>.


=head1 API

I list here some of the most important methods in C<Module::Build>.
Normally you won't need to deal with these methods unless you want to
subclass C<Module::Build>.  But since one of the reasons I created
this module in the first place was so that subclassing is possible
(and easy), I will certainly write more docs as the interface
stabilizes.


=head2 CONSTRUCTORS


=over 4

=item current()

This method returns a reasonable facsimile of the currently-executing
C<Module::Build> object representing the current build.  You can use
this object to query its C<notes()> method, inquire about installed
modules, and so on.  This is a great way to share information between
different parts of your build process.  For instance, you can ask
the user a question during C<perl Build.PL>, then use their answer
during a regression test:

  # In Build.PL:
  my $color = $build->prompt("What is your favorite color?");
  $build->notes(color => $color);

  # In t/colortest.t:
  use Module::Build;
  my $build = Module::Build->current;
  my $color = $build->notes('color');
  ...

The way the C<current()> method is currently implemented, there may be
slight differences between the C<$build> object in Build.PL and the
one in C<t/colortest.t>.  It is our goal to minimize these differences
in future releases of Module::Build, so please report any anomalies
you find.

One important caveat: in its current implementation, C<current()> will
B<NOT> work correctly if you have changed out of the directory that
C<Module::Build> was invoked from.

=item new()

Creates a new Module::Build object.  Arguments to the new() method are
listed below.  Most arguments are optional, but you must provide
either the C<module_name> argument, or C<dist_name> and one of
C<dist_version> or C<dist_version_from>.  In other words, you must
provide enough information to determine both a distribution name and
version.


=over 4

=item add_to_cleanup

An array reference of files to be cleaned up when the C<clean> action
is performed.  See also the add_to_cleanup() method.

=item auto_features

This parameter supports the setting of features (see
L<feature($name)>) automatically based on a set of prerequisites.  For
instance, for a module that could optionally use either MySQL or
PostgreSQL databases, you might use C<auto_features> like this:

  my $build = Module::Build->new
    (
     ...other stuff here...
     auto_features => {
       pg_support    => {
                         description => "Interface with Postgres databases",
                         requires    => { 'DBD::Pg' => 23.3,
                                          'DateTime::Format::Pg' => 0 },
                        },
       mysql_support => {
                         description => "Interface with MySQL databases",
                         requires    => { 'DBD::mysql' => 17.9,
                                          'DateTime::Format::MySQL' => 0 },
                        },
     }
    );

For each feature named, the required prerequisites will be checked, and
if there are no failures, the feature will be enabled (set to C<1>).
Otherwise the failures will be displayed to the user and the feature
will be disabled (set to C<0>).

See the documentation for L<requires> for the details of how
requirements can be specified.

=item autosplit

An optional C<autosplit> argument specifies a file which should be run
through the C<Autosplit::autosplit()> function.  If multiple files
should be split, the argument may be given as an array of the files to
split.

In general I don't consider autosplitting a great idea, because it's
not always clear that autosplitting achieves its intended performance
benefits.  It may even harm performance in environments like mod_perl,
where as much as possible of a module's code should be loaded during
startup.

=item build_class

The Module::Build class or subclass to use in the build
script.  Defaults to "Module::Build" or the class name passed to or
created by a call to C<subclass()>.  This property is useful if you're
writing a custom Module::Build subclass and have a bootstrapping
problem--that is, your subclass requires modules that may not be
installed when C<perl Build.PL> is executed, but you've listed in
C<build_requires> so that they should be available when C<./Build> is
executed.

=item build_requires

Modules listed in this section are necessary to build and install the
given module, but are not necessary for regular usage of it.  This is
actually an important distinction - it allows for tighter control over
the body of installed modules, and facilitates correct dependency
checking on binary/packaged distributions of the module.

See the documentation for L<"PREREQUISITES"> for the details of how
requirements can be specified.

=item c_source

An optional C<c_source> argument specifies a directory which contains
C source files that the rest of the build may depend on.  Any C<.c>
files in the directory will be compiled to object files.  The
directory will be added to the search path during the compilation and
linking phases of any C or XS files.

=item conflicts

Modules listed in this section conflict in some serious way with the
given module.  C<Module::Build> (or some higher-level tool) will
refuse to install the given module if the given module/version is also
installed.

See the documentation for L<"PREREQUISITES"> for the details of how
requirements can be specified.

=item create_makefile_pl

This parameter lets you use Module::Build::Compat during the
C<distdir> (or C<dist>) action to automatically create a Makefile.PL
for compatibility with ExtUtils::MakeMaker.  The parameter's value
should be one of the styles named in the Module::Build::Compat
documentation.

=item create_readme

This parameter tells Module::Build to automatically create a F<README>
file at the top level of your distribution.  Currently it will simply
use C<Pod::Text> (or C<Pod::Readme> if it's installed) on the file
indicated by C<dist_version_from> and put the result in the F<README>
file.  This is by no means the only recommended style for writing a
README, but it seems to be one common one used on the CPAN.

If you generate a F<README> in this way, it's probably a good idea to
create a separate F<INSTALL> file if that information isn't in the
generated F<README>.

=item dist_abstract

This should be a short description of the distribution.  This is used
when generating metadata for F<META.yml> and PPD files.  If it is not
given then C<Module::Build> looks in the POD of the module from which
it gets the distribution's version.  It looks for the first line
matching C<$package\s-\s(.+)>, and uses the captured text as the
abstract.

=item dist_author

This should be something like "John Doe <jdoe@example.com>", or if
there are multiple authors, an anonymous array of strings may be
specified.  This is used when generating metadata for F<META.yml> and
PPD files.  If this is not specified, then C<Module::Build> looks at
the module from which it gets the distribution's version.  If it finds
a POD section marked "=head1 AUTHOR", then it uses the contents of
this section.

=item dist_name

Specifies the name for this distribution.  Most authors won't need to
set this directly, they can use C<module_name> to set C<dist_name> to
a reasonable default.  However, some agglomerative distributions like
C<libwww-perl> or C<bioperl> have names that don't correspond directly
to a module name, so C<dist_name> can be set independently.

=item dist_version

Specifies a version number for the distribution.  See C<module_name>
or C<dist_version_from> for ways to have this set automatically from a
C<$VERSION> variable in a module.  One way or another, a version
number needs to be set.

=item dist_version_from

Specifies a file to look for the distribution version in.  Most
authors won't need to set this directly, they can use C<module_name>
to set it to a reasonable default.

The version is extracted from the specified file according to the same
rules as C<ExtUtils::MakeMaker> and C<CPAN.pm>.  It involves finding
the first line that matches the regular expression

   /([\$*])(([\w\:\']*)\bVERSION)\b.*\=/

eval()-ing that line, then checking the value of the C<$VERSION>
variable.  Quite ugly, really, but all the modules on CPAN depend on
this process, so there's no real opportunity to change to something
better.

=item dynamic_config

A boolean flag indicating whether the F<Build.PL> file must be
executed, or whether this module can be built, tested and installed
solely from consulting its metadata file.  The main reason to set this
to a true value is that your module performs some dynamic
configuration as part of its build/install process.  If the flag is
omitted, the F<META.yml> spec says that installation tools should
treat it as 1 (true), because this is a safer way to behave.

Currently C<Module::Build> doesn't actually do anything with this flag
- it's up to higher-level tools like C<CPAN.pm> to do
something useful with it.  It can potentially bring lots of security,
packaging, and convenience improvements.

=item extra_compiler_flags

=item extra_linker_flags

These parameters can contain array references (or strings, in which
case they will be split into arrays) to pass through to the compiler
and linker phases when compiling/linking C code.  For example, to tell
the compiler that your code is C++, you might do:

  my $build = Module::Build->new
    (
     module_name          => 'Foo::Bar',
     extra_compiler_flags => ['-x', 'c++'],
    );

To link your XS code against glib you might write something like:

  my $build = Module::Build->new
    (
     module_name          => 'Foo::Bar',
     dynamic_config       => 1,
     extra_compiler_flags => scalar `glib-config --cflags`,
     extra_linker_flags   => scalar `glib-config --libs`,
    );

=item get_options

You can pass arbitrary command line options to F<Build.PL> or
F<Build>, and they will be stored in the Module::Build object and can
be accessed via the C<args()> method.  However, sometimes you want
more flexibility out of your argument processing than this allows.  In
such cases, use the C<get_options> parameter to pass in a hash
reference of argument specifications, and the list of arguments to
F<Build.PL> or F<Build> will be processed according to those
specifications before they're passed on to C<Module::Build>'s own
argument processing.

The supported option specification hash keys are:


=over 4

=item type

The type of option.  The types are those supported by Getopt::Long; consult
its documentation for a complete list.  Typical types are C<=s> for strings,
C<+> for additive options, and C<!> for negatable options.  If the
type is not specified, it will be considered a boolean, i.e. no
argument is taken and a value of 1 will be assigned when the option is
encountered.

=item store

A reference to a scalar in which to store the value passed to the option.
If not specified, the value will be stored under the option name in the
hash returned by the C<args()> method.

=item default

A default value for the option.  If no default value is specified and no option
is passed, then the option key will not exist in the hash returned by
C<args()>.

=back


You can combine references to your own variables or subroutines with
unreferenced specifications, for which the result will also be stored in the
hash returned by C<args()>.  For example:

  my $loud = 0;
  my $build = Module::Build->new
    (
     module_name => 'Foo::Bar',
     get_options => {
                     loud =>     { store => \$loud },
                     dbd  =>     { type  => '=s'   },
                     quantity => { type  => '+'    },
                    }
    );

  print STDERR "HEY, ARE YOU LISTENING??\n" if $loud;
  print "We'll use the ", $build->args('dbd'), " DBI driver\n";
  print "Are you sure you want that many?\n"
    if $build->args('quantity') > 2;

The arguments for such a specification can be called like so:

  perl Build.PL --loud --dbd=DBD::pg --quantity --quantity --quantity

B<WARNING:> Any option specifications that conflict with Module::Build's own
options (defined by its properties) will throw an exception.

Consult the Getopt::Long documentation for details on its usage.

=item include_dirs

Specifies any additional directories in which to search for C header
files.  May be given as a string indicating a single directory, or as
a list reference indicating multiple directories.

=item install_path

You can set paths for individual installable elements by using the
C<install_path> parameter:

  my $build = Module::Build->new
    (
     ...other stuff here...
     install_path => {
                      lib  => '/foo/lib',
                      arch => '/foo/lib/arch',
                     }
    );

=item installdirs

Determines where files are installed within the normal perl hierarchy
as determined by F<Config.pm>.  Valid values are: C<core>, C<site>,
C<vendor>.  The default is C<site>.  See
L<Module::Build/"INSTALL PATHS">

=item license

Specifies the licensing terms of your distribution.  Valid options include:


=over 4

=item apache

The distribution is licensed under the Apache Software License
(http://opensource.org/licenses/apachepl.php).

=item artistic

The distribution is licensed under the Artistic License, as specified
by the F<Artistic> file in the standard perl distribution.

=item bsd

The distribution is licensed under the BSD License
(http://www.opensource.org/licenses/bsd-license.php).

=item gpl

The distribution is licensed under the terms of the Gnu General
Public License (http://www.opensource.org/licenses/gpl-license.php).

=item lgpl

The distribution is licensed under the terms of the Gnu Lesser
General Public License
(http://www.opensource.org/licenses/lgpl-license.php).

=item mit

The distribution is licensed under the MIT License
(http://opensource.org/licenses/mit-license.php).

=item mozilla

The distribution is licensed under the Mozilla Public
License.  (http://opensource.org/licenses/mozilla1.0.php or
http://opensource.org/licenses/mozilla1.1.php)

=item open_source

The distribution is licensed under some other Open Source
Initiative-approved license listed at
http://www.opensource.org/licenses/ .

=item perl

The distribution may be copied and redistributed under the same terms
as perl itself (this is by far the most common licensing option for
modules on CPAN).  This is a dual license, in which the user may
choose between either the GPL or the Artistic license.

=item restrictive

The distribution may not be redistributed without special permission
from the author and/or copyright holder.

=item unrestricted

The distribution is licensed under a license that is B<not> approved
by www.opensource.org but that allows distribution without
restrictions.

=back


Note that you must still include the terms of your license in your
documentation - this field only lets automated tools figure out your
licensing restrictions.  Humans still need something to read.  If you
choose to provide this field, you should make sure that you keep it in
sync with your written documentation if you ever change your licensing
terms.

It is a fatal error to use a license other than the ones mentioned
above.  This is not because I wish to impose licensing terms on you -
please let me know if you would like another license option to be
added to the list.  You may also use a license type of C<unknown> if
you don't wish to specify your terms (but this is usually not a good
idea for you to do!).

I just started out with a small set of licenses to keep things simple,
figuring I'd let people with actual working knowledge in this area
tell me what to do.  So if that's you, drop me a line.

=item meta_add

A hash of key/value pairs that should be added to the F<META.yml> file
during the C<distmeta> action.  Any existing entries with the same
names will be overridden.

=item meta_merge

A hash of key/value pairs that should be merged into the F<META.yml>
file during the C<distmeta> action.  Any existing entries with the
same names will be overridden.

The only difference between C<meta_add> and C<meta_merge> is their
behavior on hash-valued and array-valued entries: C<meta_add> will
completely blow away the existing hash or array value, but
C<meta_merge> will merge the supplied data into the existing hash or
array value.

=item module_name

The C<module_name> is a shortcut for setting default values of
C<dist_name> and C<dist_version_from>, reflecting the fact that the
majority of CPAN distributions are centered around one "main" module.
For instance, if you set C<module_name> to C<Foo::Bar>, then
C<dist_name> will default to C<Foo-Bar> and C<dist_version_from> will
default to C<lib/Foo/Bar.pm>.  C<dist_version_from> will in turn be
used to set C<dist_version>.

Setting C<module_name> won't override a C<dist_*> parameter you
specify explicitly.

=item PL_files

An optional parameter specifying a set of C<.PL> files in your
distribution.  These will be run as Perl scripts prior to processing
the rest of the files in your distribution.  They are usually used as
templates for creating other files dynamically, so that a file like
C<lib/Foo/Bar.pm.PL> might create the file C<lib/Foo/Bar.pm>.

The files are specified with the C<.PL> files as hash keys, and the
file(s) they generate as hash values, like so:

  my $build = Module::Build->new
    (
     module_name => 'Foo::Bar',
     ...
     PL_files => { 'lib/Foo/Bar.pm.PL' => 'lib/Foo/Bar.pm' },
    );

Note that the path specifications are I<always> given in Unix-like
format, not in the style of the local system.

If your C<.PL> scripts don't create any files, or if they create files
with unexpected names, or even if they create multiple files, you can
indicate that so that Module::Build can properly handle these created
files:

  PL_files => {
               'lib/Foo/Bar.pm.PL' => 'lib/Foo/Bar.pm',
               'lib/something.PL'  => ['/lib/something', '/lib/else'],
               'lib/funny.PL'      => [],
              }

=item pm_files

An optional parameter specifying the set of C<.pm> files in this
distribution, specified as a hash reference whose keys are the files'
locations in the distributions, and whose values are their logical
locations based on their package name, i.e. where they would be found
in a "normal" Module::Build-style distribution.  This parameter is
mainly intended to support alternative layouts of files.

For instance, if you have an old-style MakeMaker distribution for a
module called C<Foo::Bar> and a F<Bar.pm> file at the top level of the
distribution, you could specify your layout in your C<Build.PL> like
this:

  my $build = Module::Build->new
    (
     module_name => 'Foo::Bar',
     ...
     pm_files => { 'Bar.pm' => 'lib/Foo/Bar.pm' },
    );

Note that the values should include C<lib/>, because this is where
they would be found in a "normal" Module::Build-style distribution.

Note also that the path specifications are I<always> given in
Unix-like format, not in the style of the local system.

=item pod_files

Just like C<pm_files>, but used for specifying the set of C<.pod>
files in your distribution.

=item recommends

This is just like the C<requires> argument, except that modules listed
in this section aren't essential, just a good idea.  We'll just print
a friendly warning if one of these modules aren't found, but we'll
continue running.

If a module is recommended but not required, all tests should still
pass if the module isn't installed.  This may mean that some tests
may be skipped if recommended dependencies aren't present.

Automated tools like CPAN.pm should inform the user when recommended
modules aren't installed, and it should offer to install them if it
wants to be helpful.

See the documentation for L<"PREREQUISITES"> for the details of how
requirements can be specified.

=item requires

An optional C<requires> argument specifies any module prerequisites
that the current module depends on.

One note: currently C<Module::Build> doesn't actually I<require> the
user to have dependencies installed, it just strongly urges.  In the
future we may require it.  There's also a C<recommends> section for
things that aren't absolutely required.

Automated tools like CPAN.pm should refuse to install a module if one
of its dependencies isn't satisfied, unless a "force" command is given
by the user.  If the tools are helpful, they should also offer to
install the dependencies.

A synonym for C<requires> is C<prereq>, to help succour people
transitioning from C<ExtUtils::MakeMaker>.  The C<requires> term is
preferred, but the C<prereq> term will remain valid in future
distributions.

See the documentation for L<"PREREQUISITES"> for the details of how
requirements can be specified.

=item script_files

An optional parameter specifying a set of files that should be
installed as executable perl scripts when the module is installed.
May be given as an array reference of the files, or as a hash
reference whose keys are the files (and whose values will currently be
ignored).

The default is to install no script files - in other words, there is
no default location where Module::Build will look for script files to
install.

For backward compatibility, you may use the parameter C<scripts>
instead of C<script_files>.  Please consider this usage deprecated,
though it will continue to exist for several version releases.

=item sign

If a true value is specified for this parameter, C<Module::Signature>
will be used (via the 'distsign' action) to create a SIGNATURE file
for your distribution during the 'distdir' action, and to add the
SIGNATURE file to the MANIFEST (therefore, don't add it yourself).

The default value is false.  In the future, the default may change to
true if you have C<Module::Signature> installed on your system.

=item test_files

An optional parameter specifying a set of files that should be used as
C<Test::Harness>-style regression tests to be run during the C<test>
action.  May be given as an array reference of the files, or as a hash
reference whose keys are the files (and whose values will currently be
ignored).  If the argument is given as a single string (not in an
array reference), that string will be treated as a C<glob()> pattern
specifying the files to use.

The default is to look for a F<test.pl> script in the top-level
directory of the distribution, and any files matching the glob pattern
C<*.t> in the F<t/> subdirectory.  If the C<recursive_test_files>
property is true, then the C<t/> directory will be scanned recursively
for C<*.t> files.

=item xs_files

Just like C<pm_files>, but used for specifying the set of C<.xs>
files in your distribution.

=back


=item new_from_context(%args)

When called from a directory containing a F<Build.PL> script and a
F<META.yml> file (in other words, the base directory of a
distribution), this method will run the F<Build.PL> and return the
resulting C<Module::Build> object to the caller.  Any key-value
arguments given to C<new_from_context()> are essentially like
command line arguments given to the F<Build.PL> script, so for example
you could pass C<< verbose => 1 >> to this method to turn on
verbosity.

=item resume()

You'll probably never call this method directly, it's only called from
the auto-generated C<Build> script.  The C<new()> method is only
called once, when the user runs C<perl Build.PL>.  Thereafter, when
the user runs C<Build test> or another action, the C<Module::Build>
object is created using the C<resume()> method to re-instantiate with
the settings given earlier to C<new()>.

=item subclass()

This creates a new C<Module::Build> subclass on the fly, as described
in the L<"SUBCLASSING"> section.  The caller must provide either a
C<class> or C<code> parameter, or both.  The C<class> parameter
indicates the name to use for the new subclass, and defaults to
C<MyModuleBuilder>.  The C<code> parameter specifies Perl code to use
as the body of the subclass.

=back


=head2 METHODS


=over 4

=item add_build_element($type)

Adds a new type of entry to the build process.  Accepts a single
string specifying its type-name.  There must also be a method defined
to process things of that type, e.g. if you add a build element called
C<'foo'>, then you must also define a method called
C<process_foo_files()>.

See also L<Module::Build::Cookbook/"Adding new file types to the build process">.

=item add_to_cleanup(@files)

You may call C<< $self->add_to_cleanup(@patterns) >> to tell
C<Module::Build> that certain files should be removed when the user
performs the C<Build clean> action.  The arguments to the method are
patterns suitable for passing to Perl's C<glob()> function, specified
in either Unix format or the current machine's native format.  It's
usually convenient to use Unix format when you hard-code the filenames
(e.g. in F<Build.PL>) and the native format when the names are
programmatically generated (e.g. in a testing script).

I decided to provide a dynamic method of the C<$build> object, rather
than just use a static list of files named in the F<Build.PL>, because
these static lists can get difficult to manage.  I usually prefer to
keep the responsibility for registering temporary files close to the
code that creates them.

=item args()

  my $args_href = $build->args;
  my %args = $build->args;
  my $arg_value = $build->args($key);
  $build->args($key, $value);

This method is the preferred interface for retrieving the arguments passed via
command line options to F<Build.PL> or F<Build>, minus the Module-Build
specific options.

When called in in a scalar context with no arguments, this method returns a
reference to the hash storing all of the arguments; in an array context, it
returns the hash itself.  When passed a single argument, it returns the value
stored in the args hash for that option key.  When called with two arguments,
the second argument is assigned to the args hash under the key passed as the
first argument.

=item autosplit_file($from, $to)

Invokes the C<AutoSplit> module on the C<$from> file, sending the
output to the C<lib/auto> directory inside C<$to>.  C<$to> is
typically the C<blib/> directory.

=item base_dir()

Returns a string containing the root-level directory of this build,
i.e. where the C<Build.PL> script and the C<lib> directory can be
found.  This is usually the same as the current working directory,
because the C<Build> script will C<chdir()> into this directory as
soon as it begins execution.

=item build_requires()

Returns a hash reference indicating the C<build_requires>
prerequisites that were passed to the C<new()> method.

=item check_installed_status($module, $version)

This method returns a hash reference indicating whether a version
dependency on a certain module is satisfied.  The C<$module> argument
is given as a string like C<"Data::Dumper"> or C<"perl">, and the
C<$version> argument can take any of the forms described in L<requires>
above.  This allows very fine-grained version checking.

The returned hash reference has the following structure:

  {
   ok => $whether_the_dependency_is_satisfied,
   have => $version_already_installed,
   need => $version_requested, # Same as incoming $version argument
   message => $informative_error_message,
  }

If no version of C<$module> is currently installed, the C<have> value
will be the string C<< "<none>" >>.  Otherwise the C<have> value will
simply be the version of the installed module.  Note that this means
that if C<$module> is installed but doesn't define a version number,
the C<have> value will be C<undef> - this is why we don't use C<undef>
for the case when C<$module> isn't installed at all.

This method may be called either as an object method
(C<< $build->check_installed_status($module, $version) >>)
or as a class method 
(C<< Module::Build->check_installed_status($module, $version) >>).

=item check_installed_version($module, $version)

Like C<check_installed_status()>, but simply returns true or false
depending on whether module C<$module> satisfies the dependency
C<$version>.

If the check succeeds, the return value is the actual version of
C<$module> installed on the system.  This allows you to do the
following:

  my $installed = $build->check_installed_version('DBI', '1.15');
  if ($installed) {
    print "Congratulations, version $installed of DBI is installed.\n";
  } else {
    die "Sorry, you must install DBI.\n";
  }

If the check fails, we return false and set C<$@> to an informative
error message.

If C<$version> is any non-true value (notably zero) and any version of
C<$module> is installed, we return true.  In this case, if C<$module>
doesn't define a version, or if its version is zero, we return the
special value "0 but true", which is numerically zero, but logically
true.

In general you might prefer to use C<check_installed_status> if you
need detailed information, or this method if you just need a yes/no
answer.

=item compare_versions($v1, $op, $v2)

Compares two module versions C<$v1> and C<$v2> using the operator
C<$op>, which should be one of Perl's numeric operators like C<!=> or
C<< >= >> or the like.  We do at least a halfway-decent job of
handling versions that aren't strictly numeric, like C<0.27_02>, but
exotic stuff will likely cause problems.

In the future, the guts of this method might be replaced with a call
out to C<version.pm>.

=item config()

Returns a hash reference containing the C<Config.pm> hash, including
any changes the author or user has specified.  This is a reference to
the actual internal hash we use, so you probably shouldn't modify
stuff there.

=item config_data($name)

=item config_data($name => $value)

With a single argument, returns the value of the configuration
variable C<$name>.  With two arguments, sets the given configuration
variable to the given value.  The value may be any perl scalar that's
serializable with C<Data::Dumper>.  For instance, if you write a
module that can use a MySQL or PostgreSQL back-end, you might create
configuration variables called C<mysql_connect> and
C<postgres_connect>, and set each to an array of connection parameters
for C<< DBI->connect() >>.

Configuration values set in this way using the Module::Build object
will be available for querying during the build/test process and after
installation via the generated C<...::ConfigData> module, as
C<< ...::ConfigData->config($name) >>.

The C<feature()> and C<config_data()> methods represent
Module::Build's main support for configuration of installed modules.
See also L<SAVING CONFIGURATION INFORMATION>.

=item conflicts()

Returns a hash reference indicating the C<conflicts> prerequisites
that were passed to the C<new()> method.

=item contains_pod($file)

[Deprecated] Please see L<Module::Build::ModuleInfo> instead.

Returns true if the given file appears to contain POD documentation.
Currently this checks whether the file has a line beginning with
'=pod', '=head', or '=item', but the exact semantics may change in the
future.

=item copy_if_modified(%parameters)

Takes the file in the C<from> parameter and copies it to the file in
the C<to> parameter, or the directory in the C<to_dir> parameter, if
the file has changed since it was last copied (or if it doesn't exist
in the new location).  By default the entire directory structure of
C<from> will be copied into C<to_dir>; an optional C<flatten>
parameter will copy into C<to_dir> without doing so.

Returns the path to the destination file, or C<undef> if nothing
needed to be copied.

Any directories that need to be created in order to perform the
copying will be automatically created.

=item create_build_script()

Creates an executable script called C<Build> in the current directory
that will be used to execute further user actions.  This script is
roughly analogous (in function, not in form) to the Makefile created
by C<ExtUtils::MakeMaker>.  This method also creates some temporary
data in a directory called C<_build/>.  Both of these will be removed
when the C<realclean> action is performed.

=item current_action()

Returns the name of the currently-running action, such as "build" or
"test".  This action is not necessarily the action that was originally
invoked by the user.  For example, if the user invoked the "test"
action, current_action() would initially return "test".  However,
action "test" depends on action "code", so current_action() will
return "code" while that dependency is being executed.  Once that
action has completed, current_action() will again return "test".

If you need to know the name of the original action invoked by the
user, see L<invoked_action()> below.

=item depends_on(@actions)

Invokes the named action or list of actions in sequence.  Using this
method is preferred to calling the action explicitly because it
performs some internal record-keeping, and it ensures that the same
action is not invoked multiple times (note: in future versions of
Module::Build it's conceivable that this run-only-once mechanism will
be changed to something more intelligent).

Note that the name of this method is something of a misnomer; it
should really be called something like
C<invoke_actions_unless_already_invoked()> or something, but for
better or worse (perhaps better!) we were still thinking in
C<make>-like dependency terms when we created this method.

See also C<dispatch()>.  The main distinction between the two is that
C<depends_on()> is meant to call an action from inside another action,
whereas C<dispatch()> is meant to set the very top action in motion.

=item dir_contains($first_dir, $second_dir)

Returns true if the first directory logically contains the second
directory.  This is just a convenience function because C<File::Spec>
doesn't really provide an easy way to figure this out (but
C<Path::Class> does...).

=item dispatch($action, %args)

Invokes the build action C<$action>.  Optionally, a list of options
and their values can be passed in.  This is equivalent to invoking an
action at the command line, passing in a list of options.

Custom options that have not been registered must be passed in as a
hash reference in a key named "args":

  $build->dispatch('foo', verbose => 1, args => { my_option => 'value' });

This method is intended to be used to programmatically invoke build
actions, e.g. by applications controlling Module::Build-based builds
rather than by subclasses.

See also C<depends_on()>.  The main distinction between the two is that
C<depends_on()> is meant to call an action from inside another action,
whereas C<dispatch()> is meant to set the very top action in motion.

=item dist_dir()

Returns the name of the directory that will be created during the
C<dist> action.  The name is derived from the C<dist_name> and
C<dist_version> properties.

=item dist_name()

Returns the name of the current distribution, as passed to the
C<new()> method in a C<dist_name> or modified C<module_name>
parameter.

=item dist_version()

Returns the version of the current distribution, as determined by the
C<new()> method from a C<dist_version>, C<dist_version_from>, or
C<module_name> parameter.

=item do_system($cmd, @args)

This is a fairly simple wrapper around Perl's C<system()> built-in
command.  Given a command and an array of optional arguments, this
method will print the command to C<STDOUT>, and then execute it using
Perl's C<system()>.  It returns true or false to indicate success or
failure (the opposite of how C<system()> works, but more intuitive).

Note that if you supply a single argument to C<do_system()>, it
will/may be processed by the systems's shell, and any special
characters will do their special things.  If you supply multiple
arguments, no shell will get involved and the command will be executed
directly.

=item feature($name)

=item feature($name => $value)

With a single argument, returns true if the given feature is set.
With two arguments, sets the given feature to the given boolean value.
In this context, a "feature" is any optional functionality of an
installed module.  For instance, if you write a module that could
optionally support a MySQL or PostgreSQL backend, you might create
features called C<mysql_support> and C<postgres_support>, and set them
to true/false depending on whether the user has the proper databases
installed and configured.

Features set in this way using the Module::Build object will be
available for querying during the build/test process and after
installation via the generated C<...::ConfigData> module, as 
C<< ...::ConfigData->feature($name) >>.

The C<feature()> and C<config_data()> methods represent
Module::Build's main support for configuration of installed modules.
See also L<SAVING CONFIGURATION INFORMATION>.

=item have_c_compiler()

Returns true if the current system seems to have a working C compiler.
We currently determine this by attempting to compile a simple C source
file and reporting whether the attempt was successful.

=item install_destination($type)

Returns the directory in which items of type C<$type> (e.g. C<lib>,
C<arch>, C<bin>, or anything else returned by the C<install_types()>
method) will be installed during the C<install> action.  Any settings
for C<install_path>, C<install_base>, and C<prefix> are taken into
account when determining the return value.

=item install_types()

Returns a list of installable types that this build knows about.
These types each correspond to the name of a directory in F<blib/>,
and the list usually includes items such as C<lib>, C<arch>, C<bin>,
C<script>, C<libdoc>, C<bindoc>, and if HTML documentation is to be
built, C<libhtml> and C<binhtml>.  Other user-defined types may also
exist.

=item invoked_action()

This is the name of the original action invoked by the user.  This
value is set when the user invokes F<Build.PL>, the F<Build> script,
or programatically through the L<dispatch()> method.  It does not
change as sub-actions are executed as dependencies are evaluated.

To get the name of the currently executing dependency, see
L<current_action()> above.

=item notes()

=item notes($key)

=item notes($key => $value)

The C<notes()> value allows you to store your own persistent
information about the build, and to share that information among
different entities involved in the build.  See the example in the
C<current()> method.

The C<notes()> method is essentally a glorified hash access.  With no
arguments, C<notes()> returns the entire hash of notes.  With one argument,
C<notes($key)> returns the value associated with the given key.  With two
arguments, C<notes($key, $value)> sets the value associated with the given key
to C<$value> and returns the new value.

The lifetime of the C<notes> data is for "a build" - that is, the
C<notes> hash is created when C<perl Build.PL> is run (or when the
C<new()> method is run, if the Module::Build Perl API is being used
instead of called from a shell), and lasts until C<perl Build.PL> is
run again or the C<clean> action is run.

=item orig_dir()

Returns a string containing the working directory that was in effect
before the F<Build> script chdir()-ed into the C<base_dir>.  This
might be useful for writing wrapper tools that might need to chdir()
back out.

=item rscan_dir($dir, $pattern)

Uses C<File::Find> to traverse the directory C<$dir>, returning a
reference to an array of entries matching C<$pattern>.  C<$pattern>
may either be a regular expression (using C<qr//> or just a plain
string), or a reference to a subroutine that will return true for
wanted entries.  If C<$pattern> is not given, all entries will be
returned.

Examples:

 # All the *.pm files in lib/
 $m->rscan_dir('lib', qr/\.pm$/)
 
 # All the files in blib/ that aren't *.html files
 $m->rscan_dir('blib', sub {-f $_ and not /\.html$/});

 # All the files in t/
 $m->rscan_dir('t');

=item runtime_params()

=item runtime_params($key)

The C<runtime_params()> method stores the values passed on the command line
for valid properties (that is, any command line options for which
C<valid_property()> returns a true value).  The value on the command line may
override the default value for a property, as well as any value specified in a
call to C<new()>.  This allows you to programmatically tell if C<perl Build.PL>
or any execution of C<./Build> had command line options specified that
override valid properties.

The C<runtime_params()> method is essentally a glorified read-only hash.  With
no arguments, C<runtime_params()> returns the entire hash of properties
specified on the command line.  With one argument, C<runtime_params($key)>
returns the value associated with the given key.

The lifetime of the C<runtime_params> data is for "a build" - that is, the
C<runtime_params> hash is created when C<perl Build.PL> is run (or when the
C<new()> method is called, if the Module::Build Perl API is being used instead
of called from a shell), and lasts until C<perl Build.PL> is run again or the
C<clean> action is run.

=item os_type()

If you're subclassing Module::Build and some code needs to alter its
behavior based on the current platform, you may only need to know
whether you're running on Windows, Unix, MacOS, VMS, etc., and not the
fine-grained value of Perl's C<$^O> variable.  The C<os_type()> method
will return a string like C<Windows>, C<Unix>, C<MacOS>, C<VMS>, or
whatever is appropriate.  If you're running on an unknown platform, it
will return C<undef> - there shouldn't be many unknown platforms
though.

=item prepare_metadata()

This method is provided for authors to override to customize the
fields of F<META.yml>.  It is passed a YAML::Node node object which can
be modified as desired and then returned.  E.g.

  package My::Builder;
  use base 'Module::Build';

  sub prepare_metadata {
    my $self = shift;
    my $node = $self->SUPER::prepare_metadata( shift );
    $node->{custom_field} = 'foo';
    return $node;
  }

=item prereq_failures()

Returns a data structure containing information about any failed
prerequisites (of any of the types described above), or C<undef> if
all prerequisites are met.

The data structure returned is a hash reference.  The top level keys
are the type of prerequisite failed, one of "requires",
"build_requires", "conflicts", or "recommends".  The associated values
are hash references whose keys are the names of required (or
conflicting) modules.  The associated values of those are hash
references indicating some information about the failure.  For example:

  {
   have => '0.42',
   need => '0.59',
   message => 'Version 0.42 is installed, but we need version 0.59',
  }

or

  {
   have => '<none>',
   need => '0.59',
   message => 'Prerequisite Foo isn't installed',
  }

This hash has the same structure as the hash returned by the
C<check_installed_status()> method, except that in the case of
"conflicts" dependencies we change the "need" key to "conflicts" and
construct a proper message.

Examples:

  # Check a required dependency on Foo::Bar
  if ( $build->prereq_failures->{requires}{Foo::Bar} ) { ...

  # Check whether there were any failures
  if ( $build->prereq_failures ) { ...

  # Show messages for all failures
  my $failures = $build->prereq_failures;
  while (my ($type, $list) = each %$failures) {
    while (my ($name, $hash) = each %$list) {
      print "Failure for $name: $hash->{message}\n";
    }
  }

=item prereq_report()

Returns a human-readable (table-form) string showing all
prerequisites, the versions required, and the versions actually
installed.  This can be useful for reviewing the configuration of your
system prior to a build, or when compiling data to send for a bug
report.  The C<prereq_report> action is just a thin wrapper around the
C<prereq_report()> method.

=item prompt($message, $default)

Asks the user a question and returns their response as a string.  The
first argument specifies the message to display to the user (for
example, C<"Where do you keep your money?">).  The second argument,
which is optional, specifies a default answer (for example,
C<"wallet">).  The user will be asked the question once.

If C<prompt()> detects that it is not running interactively and there
is nothing on STDIN or if the PERL_MM_USE_DEFAULT environment variable
is set to true, the $default will be used without prompting.  This
prevents automated processes from blocking on user input.

If no $default is provided an empty string will be used instead.

This method may be called as a class or object method.

=item recommends()

Returns a hash reference indicating the C<recommends> prerequisites
that were passed to the C<new()> method.

=item requires()

Returns a hash reference indicating the C<requires> prerequisites that
were passed to the C<new()> method.

=item script_files()

Returns a hash reference whose keys are the perl script files to be
installed, if any.  This corresponds to the C<script_files> parameter to the
C<new()> method.  With an optional argument, this parameter may be set
dynamically.

For backward compatibility, the C<scripts()> method does exactly the
same thing as C<script_files()>.  C<scripts()> is deprecated, but it
will stay around for several versions to give people time to
transition.

=item up_to_date($source_file, $derived_file)

=item up_to_date(\@source_files, \@derived_files)

This method can be used to compare a set of source files to a set of
derived files.  If any of the source files are newer than any of the
derived files, it returns false.  Additionally, if any of the derived
files do not exist, it returns false.  Otherwise it returns true.

The arguments may be either a scalar or an array reference of file
names.

=item y_n($message, $default)

Asks the user a yes/no question using C<prompt()> and returns true or
false accordingly.  The user will be asked the question repeatedly
until they give an answer that looks like "yes" or "no".

The first argument specifies the message to display to the user (for
example, C<"Shall I invest your money for you?">), and the second
argument specifies the default answer (for example, C<"y">).

Note that the default is specified as a string like C<"y"> or C<"n">,
and the return value is a Perl boolean value like 1 or 0.  I thought
about this for a while and this seemed like the most useful way to do
it.

This method may be called as a class or object method.

=back


=head2 Autogenerated Accessors

In addition to the aforementioned methods, there are also some get/set
accessor methods for the following properties:

=over 4

=item PL_files()

=item autosplit()

=item base_dir()

=item bindoc_dirs()

=item blib()

=item build_bat()

=item build_class()

=item build_elements()

=item build_requires()

=item build_script()

=item c_source()

=item config()

=item config_dir()

=item conflicts()

=item create_makefile_pl()

=item create_readme()

=item debugger()

=item destdir()

=item get_options()

=item html_css()

=item include_dirs()

=item install_base()

=item install_path()

=item install_sets()

=item installdirs()

=item libdoc_dirs()

=item license()

=item magic_number()

=item mb_version()

=item meta_add()

=item meta_merge()

=item metafile()

=item module_name()

=item orig_dir()

=item original_prefix()

=item perl()

=item pm_files()

=item pod_files()

=item pollute()

=item prefix()

=item prereq_action_types()

=item quiet()

=item recommends()

=item recurse_into()

=item recursive_test_files()

=item requires()

=item scripts()

=item use_rcfile()

=item verbose()

=item xs_files()

=back


=head1 PREREQUISITES

There are three basic types of prerequisites that can be defined: 1)
"requires" - are versions of modules that are required for certain
functionality to be available; 2) "recommends" - are versions of
modules that are recommended to provide enhanced functionality; and 3)
"conflicts" - are versions of modules that conflict with, and that can
cause problems with the distribution.

Each of the three types of prerequisites listed above can be applied
to different aspects of the Build process.  For the module distribution
itself you simply define "requires", "recommends", or "conflicts".  The
types can also apply to other aspects of the Build process.  Currently,
only "build_requires" is defined which is used for modules which are
required during the Build process.


=head2 Format of prerequisites

The prerequisites are given in a hash reference, where the keys are
the module names and the values are version specifiers:

  requires => {
               Foo::Module => '2.4',
               Bar::Module => 0,
               Ken::Module => '>= 1.2, != 1.5, < 2.0',
               perl => '5.6.0'
              },

These four version specifiers have different effects.  The value
C<'2.4'> means that B<at least> version 2.4 of C<Foo::Module> must be
installed.  The value C<0> means that B<any> version of C<Bar::Module>
is acceptable, even if C<Bar::Module> doesn't define a version.  The
more verbose value C<'E<gt>= 1.2, != 1.5, E<lt> 2.0'> means that
C<Ken::Module>'s version must be B<at least> 1.2, B<less than> 2.0,
and B<not equal to> 1.5.  The list of criteria is separated by commas,
and all criteria must be satisfied.

A special C<perl> entry lets you specify the versions of the Perl
interpreter that are supported by your module.  The same version
dependency-checking semantics are available, except that we also
understand perl's new double-dotted version numbers.


=head1 SAVING CONFIGURATION INFORMATION

Module::Build provides a very convenient way to save configuration
information that your installed modules (or your regression tests) can
access.  If your Build process calls the C<feature()> or
C<config_data()> methods, then a C<Foo::Bar::ConfigData> module will
automatically be created for you, where C<Foo::Bar> is the
C<module_name> parameter as passed to C<new()>.  This module provides
access to the data saved by these methods, and a way to update the
values.  There is also a utility script called C<config_data>
distributed with Module::Build that provides a command line interface
to this same functionality.  See also the generated
C<Foo::Bar::ConfigData> documentation, and the C<config_data>
script's documentation, for more information.


=head1 AUTOMATION

One advantage of Module::Build is that since it's implemented as Perl
methods, you can invoke these methods directly if you want to install
a module non-interactively.  For instance, the following Perl script
will invoke the entire build/install procedure:

  my $build = Module::Build->new(module_name => 'MyModule');
  $build->dispatch('build');
  $build->dispatch('test');
  $build->dispatch('install');

If any of these steps encounters an error, it will throw a fatal
exception.

You can also pass arguments as part of the build process:

  my $build = Module::Build->new(module_name => 'MyModule');
  $build->dispatch('build');
  $build->dispatch('test', verbose => 1);
  $build->dispatch('install', sitelib => '/my/secret/place/');

Building and installing modules in this way skips creating the
C<Build> script.


=head1 STRUCTURE

Module::Build creates a class hierarchy conducive to customization.
Here is the parent-child class hierarchy in classy ASCII art:

   /--------------------\
   |   Your::Parent     |  (If you subclass Module::Build)
   \--------------------/
            |
            |
   /--------------------\  (Doesn't define any functionality
   |   Module::Build    |   of its own - just figures out what
   \--------------------/   other modules to load.)
            |
            |
   /-----------------------------------\  (Some values of $^O may
   |   Module::Build::Platform::$^O    |   define specialized functionality.
   \-----------------------------------/   Otherwise it's ...::Default, a
            |                              pass-through class.)
            |
   /--------------------------\
   |   Module::Build::Base    |  (Most of the functionality of 
   \--------------------------/   Module::Build is defined here.)


=head1 SUBCLASSING

Right now, there are two ways to subclass Module::Build.  The first
way is to create a regular module (in a C<.pm> file) that inherits
from Module::Build, and use that module's class instead of using
Module::Build directly:

  ------ in Build.PL: ----------
  #!/usr/bin/perl

  use lib q(/nonstandard/library/path);
  use My::Builder;  # Or whatever you want to call it

  my $build = My::Builder->new
    (
     module_name => 'Foo::Bar',  # All the regular args...
     license     => 'perl',
     dist_author => 'A N Other <me@here.net.au>',
     requires    => { Carp => 0 }
    );
  $build->create_build_script;

This is relatively straightforward, and is the best way to do things
if your My::Builder class contains lots of code.  The
C<create_build_script()> method will ensure that the current value of
C<@INC> (including the C</nonstandard/library/path>) is propogated to
the Build script, so that My::Builder can be found when running build
actions.

For very small additions, Module::Build provides a C<subclass()>
method that lets you subclass Module::Build more conveniently, without
creating a separate file for your module:

  ------ in Build.PL: ----------
  #!/usr/bin/perl

  use Module::Build;
  my $class = Module::Build->subclass
    (
     class => 'My::Builder',
     code => q{
       sub ACTION_foo {
         print "I'm fooing to death!\n";
       }
     },
    );

  my $build = $class->new
    (
     module_name => 'Foo::Bar',  # All the regular args...
     license     => 'perl',
     dist_author => 'A N Other <me@here.net.au>',
     requires    => { Carp => 0 }
    );
  $build->create_build_script;

Behind the scenes, this actually does create a C<.pm> file, since the
code you provide must persist after Build.PL is run if it is to be
very useful.

See also the documentation for the C<subclass()> method.


=head1 STARTING MODULE DEVELOPMENT

When starting development on a new module, it's rarely worth your time
to create a tree of all the files by hand.  Some automatic
module-creators are available: the oldest is C<h2xs>, which has
shipped with perl itself for a long time.  Its name reflects the fact
that modules were originally conceived of as a way to wrap up a C
library (thus the C<h> part) into perl extensions (thus the C<xs>
part).

These days, C<h2xs> has largely been superseded by modules like
C<ExtUtils::ModuleMaker>, C<Module::Starter>, and C<Module::Maker>.
They have varying degrees of support for C<Module::Build>.


=head1 MIGRATION

Note that if you want to provide both a F<Makefile.PL> and a
F<Build.PL> for your distribution, you probably want to add the
following to C<WriteMakefile> in your F<Makefile.PL> so that MakeMaker
doesn't try to run your F<Build.PL> as a normal F<.PL> file:

  PL_FILES => {},

You may also be interested in looking at the C<Module::Build::Compat>
module, which can automatically create various kinds of F<Makefile.PL>
compatibility layers.


=head1 AUTHOR

Ken Williams, kwilliams@cpan.org

Development questions, bug reports, and patches should be sent to the
Module-Build mailing list at module-build-general@lists.sourceforge.net .

Bug reports are also welcome at
http://rt.cpan.org/NoAuth/Bugs.html?Dist=Module-Build .

An anonymous CVS repository containing the latest development version
is available; see http://sourceforge.net/cvs/?group_id=45731 for the
details of how to access it.


=head1 SEE ALSO

perl(1), Module::Build(3), Module::Build::Cookbook(3),
ExtUtils::MakeMaker(3), YAML(3)

F<META.yml> Specification:
L<http://module-build.sourceforge.net/META-spec-v1.2.html>

L<http://www.dsmit.com/cons/>

=cut