summaryrefslogtreecommitdiff
path: root/lib/Module/Build/Cookbook.pm
blob: 738daee216c7b80b1e3b70597bda4d8e445c5833 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
package Module::Build::Cookbook;


=head1 NAME

Module::Build::Cookbook - Examples of Module::Build Usage


=head1 DESCRIPTION

C<Module::Build> isn't conceptually very complicated, but examples are
always helpful.  I got the idea for writing this cookbook when
attending Brian Ingerson's "Extreme Programming Tools for Module
Authors" presentation at YAPC 2003, when he said, straightforwardly,
"Write A Cookbook."

The definitional of how stuff works is in the main C<Module::Build>
documentation.  It's best to get familiar with that too.


=head1 BASIC RECIPES


=head2 The basic installation recipe for modules that use Module::Build

In most cases, you can just issue the following commands:

  perl Build.PL
  ./Build
  ./Build test
  ./Build install

There's nothing complicated here - first you're running a script
called F<Build.PL>, then you're running a (newly-generated) script
called F<Build> and passing it various arguments.

The exact commands may vary a bit depending on how you invoke perl
scripts on your system.  For instance, if you have multiple versions
of perl installed, you can install to one particular perl's library
directories like so:

  /usr/bin/perl5.8.1 Build.PL
  ./Build
  ./Build test
  ./Build install

If you're on Windows where the current directory is always searched
first for scripts, you'll probably do something like this:

  perl Build.PL
  Build
  Build test
  Build install

On the old Mac OS (version 9 or lower) using MacPerl, you can
double-click on the F<Build.PL> script to create the F<Build> script,
then double-click on the F<Build> script to run its C<build>, C<test>,
and C<install> actions.

The F<Build> script knows what perl was used to run C<Build.PL>, so
you don't need to re-invoke the F<Build> script with the complete perl
path each time.  If you invoke it with the I<wrong> perl path, you'll
get a warning or a fatal error.


=head2 Making a CPAN.pm-compatible distribution

New versions of CPAN.pm understand how to use a F<Build.PL> script,
but old versions don't.  If you want to help users who have old
versions, do the following:

Create a file in your distribution named F<Makefile.PL>, with the
following contents:

  use Module::Build::Compat;
  Module::Build::Compat->run_build_pl(args => \@ARGV);
  Module::Build::Compat->write_makefile();

Now CPAN will work as usual, i.e.: `perl Makefile.PL`, `make`, `make
test`, and `make install`, provided the end-user already has
C<Module::Build> installed.

If the end-user might not have C<Module::Build> installed, it's
probably best to supply a "traditional" F<Makefile.PL>.  The
C<Module::Build::Compat> module has some very helpful tools for
keeping a F<Makefile.PL> in sync with a F<Build.PL>.  See its
documentation, and also the C<create_makefile_pl> parameter to the
C<< Module::Build->new() >> method.


=head2 Installing modules using the programmatic interface

If you need to build, test, and/or install modules from within some
other perl code (as opposed to having the user type installation
commands at the shell), you can use the programmatic interface.
Create a Module::Build object (or an object of a custom Module::Build
subclass) and then invoke its C<dispatch()> method to run various
actions.

  my $build = Module::Build->new
    (
     module_name => 'Foo::Bar',
     license     => 'perl',
     requires    => { 'Some::Module'   => '1.23' },
    );
  $build->dispatch('build');
  $build->dispatch('test', verbose => 1);
  $build->dispatch('install');

The first argument to C<dispatch()> is the name of the action, and any
following arguments are named parameters.

This is the interface we use to test Module::Build itself in the
regression tests.


=head2 Installing to a temporary directory

To create packages for package managers like RedHat's C<rpm> or
Debian's C<deb>, you may need to install to a temporary directory
first and then create the package from that temporary installation.
To do this, specify the C<destdir> parameter to the C<install> action:

  ./Build install --destdir /tmp/my-package-1.003

This essentially just prepends all the installation paths with the
F</tmp/my-package-1.003> directory.

=head2 Installing to a non-standard directory

To install to a non-standard directory (for example, if you don't have
permission to install in the system-wide directories), you can use the
C<install_base> or C<prefix> parameters:

  ./Build install --install_base /foo/bar
   or
  ./Build install --prefix /foo/bar

Note that these have somewhat different effects - C<prefix> is an
emulation of C<ExtUtils::MakeMaker>'s old C<PREFIX> setting, and
inherits all its nasty gotchas.  C<install_base> is more predictable,
and newer versions of C<ExtUtils::MakeMaker> also support it, so it's
often your best choice.

See L<Module::Build/"INSTALL PATHS"> for a much more complete
discussion of how installation paths are determined.

=head2 Running a single test file

C<Module::Builde> supports running a single test, which enables you to
track down errors more quickly.  Use the following format:

  ./Build test --test_files t/mytest.t

In addition, you may want to run the test in verbose mode to get more
informative output:

  ./Build test --test_files t/mytest.t --verbose 1

I run this so frequently that I actually define the following shell alias:

  alias t './Build test --verbose 1 --test_files'

So then I can just execute C<t t/mytest.t> to run a single test.


=head1 ADVANCED RECIPES


=head2 Changing the order of the build process

The C<build_elements> property specifies the steps C<Module::Build>
will take when building a distribution.  To change the build order,
change the order of the entries in that property:

  # Process pod files first
  my @e = @{$build->build_elements};
  my $i = grep {$e[$_] eq 'pod'} 0..$#e;
  unshift @e, splice @e, $i, 1;

Currently, C<build_elements> has the following default value:

  [qw( PL support pm xs pod script )]

Do take care when altering this property, since there may be
non-obvious (and non-documented!) ordering dependencies in the
C<Module::Build> code.


=head2 Adding new file types to the build process

Sometimes you might have extra types of files that you want to install
alongside the standard types like F<.pm> and F<.pod> files.  For
instance, you might have a F<Bar.dat> file containing some data
related to the C<Foo::Bar> module.  Assuming the data doesn't need to
be created on the fly, the best place for it to end up is probably as
F<Foo/Bar.dat> somewhere in perl's C<@INC> path so C<Foo::Bar> can
access it easily at runtime.  The following code from a sample
C<Build.PL> file demonstrates how to accomplish this:

  use Module::Build;
  my $build = Module::Build->new
    (
     module_name => 'Foo::Bar',
     ...other stuff here...
    );
  $build->add_build_element('dat');
  $build->create_build_script;

This will find all F<.dat> files in the F<lib/> directory, copy them
to the F<blib/lib/> directory during the C<build> action, and install
them during the C<install> action.

If your extra files aren't in the C<lib/> directory, you can
explicitly say where they are, just as you'd do with F<.pm> or F<.pod>
files:

  use Module::Build;
  my $build = new Module::Build
    (
     module_name => 'Foo::Bar',
     dat_files => {'some/dir/Bar.dat' => 'lib/Foo/Bar.dat'},
     ...other stuff here...
    );
  $build->add_build_element('dat');
  $build->create_build_script;

If your extra files actually need to be created on the user's machine,
or if they need some other kind of special processing, you'll probably
want to create a special method to do so, named
C<process_${kind}_files()>:

  use Module::Build;
  my $class = Module::Build->subclass(code => <<'EOF');
    sub process_dat_files {
      my $self = shift;
      ... locate and process *.dat files,
      ... and create something in blib/lib/
    }
  EOF
  my $build = $class->new
    (
     module_name => 'Foo::Bar',
     ...other stuff here...
    );
  $build->add_build_element('dat');
  $build->create_build_script;

If your extra files don't go in F<lib/> but in some other place, see
L<"Adding new elements to the install process"> for how to actually
get them installed.

Please note that these examples use some capabilities of Module::Build
that first appeared in version 0.26.  Before that it could certainly
still be done, but the simple cases took a bit more work.


=head2 Adding new elements to the install process

By default, Module::Build creates seven subdirectories of the F<blib/>
directory during the build process: F<lib/>, F<arch/>, F<bin/>,
F<script/>, F<bindoc/>, F<libdoc/>, and F<html/> (some of these may be
missing or empty if there's nothing to go in them).  Anything copied
to these directories during the build will eventually be installed
during the C<install> action (see L<Module::Build/"INSTALL PATHS">.

If you need to create a new type of installable element, e.g. C<conf>,
then you need to tell Module::Build where things in F<blib/conf/>
should be installed.  To do this, use the C<install_path> parameter to
the C<new()> method:

  my $build = Module::Build->new
    (
     ...other stuff here...
     install_path => { conf => $installation_path }
    );

Or you can call the C<install_path()> method later:

  $build->install_path->{conf} || $installation_path;

(Sneakily, or perhaps uglily, C<install_path()> returns a reference to
a hash of install paths, and you can modify that hash to your heart's
content.)

The user may also specify the path on the command line:

  perl Build.PL --install_path conf=/foo/path/etc

The important part, though, is that I<somehow> the install path needs
to be set, or else nothing in the F<blib/conf/> directory will get
installed.

See also L<"Adding new file types to the build process"> for how to
create the stuff in F<blib/conf/> in the first place.


=head1 EXAMPLES ON CPAN

Several distributions on CPAN are making good use of various features
of Module::Build.  They can serve as real-world examples for others.


=head2 SVN-Notify-Mirror

L<http://search.cpan.org/~jpeacock/SVN-Notify-Mirror/>

John Peacock, author of the C<SVN-Notify-Mirror> distribution, says:

=over 4

=item 1. Using C<auto_features>, I check to see whether two optional
modules are available - SVN::Notify::Config and Net::SSH;

=item 2. If the S::N::Config module is loaded, I automatically
generate testfiles for it during Build (using the C<PL_files>
property).

=item 3. If the C<ssh_feature> is available, I ask if the user wishes
to perform the ssh tests (since it requires a little preliminary
setup);

=item 4. Only if the user has C<ssh_feature> and answers yes to the
testing, do I generate a test file.

I'm sure I could not have handled this complexity with EU::MM, but it
was very easy to do with M::B.

=back 4


=head2 Modifying an action

Sometimes you might need an to have an action, say C<./Build install>,
do something unusual.  For instance, you might need to change the
ownership of a file or do something else peculiar to your application.

You can subclass C<Module::Build> on the fly using the C<subclass()>
method and override the methods that perform the actions. You may need
to read through C<Module::Build::Authoring> to find the methods you
want to override, but the general pattern is C<ACTION_> followed by
the name of the action you want to modify.  Here's an example of how
it would work for C<install>:

  # Build.PL
  use Module::Build;
  my $class = Module::Build->subclass(
      class => "Module::Build::Custom",
      code => <<'SUBCLASS' );
  
  sub ACTION_install {
      my $self = shift;
      # YOUR CODE HERE
      $self->SUPER::ACTION_install;
  }
  SUBCLASS
  
  $class->new(
      module_name => 'Your::Module',
      # rest of the usual Module::Build parameters
  )->create_build_script;

See the C<Module::Build::Authoring> pod in 0.27 or above for more
complete documentation on this.

=head1 AUTHOR

Ken Williams <ken@cpan.org>


=head1 COPYRIGHT

Copyright (c) 2001-2005 Ken Williams.  All rights reserved.

This library is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.


=head1 SEE ALSO

perl(1), Module::Build(3)

=cut