1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
package bigint;
# arbitrary size integer math package
#
# by Mark Biggar
#
# Canonical Big integer value are strings of the form
# /^[+-]\d+$/ with leading zeros suppressed
# Input values to these routines may be strings of the form
# /^\s*[+-]?[\d\s]+$/.
# Examples:
# '+0' canonical zero value
# ' -123 123 123' canonical value '-123123123'
# '1 23 456 7890' canonical value '+1234567890'
# Output values always always in canonical form
#
# Actual math is done in an internal format consisting of an array
# whose first element is the sign (/^[+-]$/) and whose remaining
# elements are base 100000 digits with the least significant digit first.
# The string 'NaN' is used to represent the result when input arguments
# are not numbers, as well as the result of dividing by zero
#
# routines provided are:
#
# bneg(BINT) return BINT negation
# babs(BINT) return BINT absolute value
# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
# badd(BINT,BINT) return BINT addition
# bsub(BINT,BINT) return BINT subtraction
# bmul(BINT,BINT) return BINT multiplication
# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
# bmod(BINT,BINT) return BINT modulus
# bgcd(BINT,BINT) return BINT greatest common divisor
# bnorm(BINT) return BINT normalization
#
# normalize string form of number. Strip leading zeros. Strip any
# white space and add a sign, if missing.
# Strings that are not numbers result the value 'NaN'.
sub main'bnorm { #(num_str) return num_str
local($_) = @_;
s/\s+//g; # strip white space
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
substr($_,0,0) = '+' unless $1; # Add missing sign
s/^-0/+0/;
$_;
} else {
'NaN';
}
}
# Convert a number from string format to internal base 100000 format.
# Assumes normalized value as input.
sub internal { #(num_str) return int_num_array
local($d) = @_;
($is,$il) = (substr($d,0,1),length($d)-2);
substr($d,0,1) = '';
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
}
# Convert a number from internal base 100000 format to string format.
# This routine scribbles all over input array.
sub external { #(int_num_array) return num_str
$es = shift;
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
&'bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
}
# Negate input value.
sub main'bneg { #(num_str) return num_str
local($_) = &'bnorm(@_);
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
s/^H/N/;
$_;
}
# Returns the absolute value of the input.
sub main'babs { #(num_str) return num_str
&abs(&'bnorm(@_));
}
sub abs { # post-normalized abs for internal use
local($_) = @_;
s/^-/+/;
$_;
}
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
sub main'bcmp { #(num_str, num_str) return cond_code
local($x,$y) = (&'bnorm($_[0]),&'bnorm($_[1]));
if ($x eq 'NaN') {
undef;
} elsif ($y eq 'NaN') {
undef;
} else {
&cmp($x,$y);
}
}
sub cmp { # post-normalized compare for internal use
local($cx, $cy) = @_;
$cx cmp $cy
&&
(
ord($cy) <=> ord($cx)
||
($cx cmp ',') * (length($cy) <=> length($cx) || $cy cmp $cx)
);
}
sub main'badd { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&'bnorm($_[0]),&'bnorm($_[1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x); # convert to internal form
@y = &internal($y);
local($sx, $sy) = (shift @x, shift @y); # get signs
if ($sx eq $sy) {
&external($sx, &add(*x, *y)); # if same sign add
} else {
($x, $y) = (&abs($x),&abs($y)); # make abs
if (&cmp($y,$x) > 0) {
&external($sy, &sub(*y, *x));
} else {
&external($sx, &sub(*x, *y));
}
}
}
}
sub main'bsub { #(num_str, num_str) return num_str
&'badd($_[0],&'bneg($_[1]));
}
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
sub main'bgcd { #(num_str, num_str) return num_str
local($x,$y) = (&'bnorm($_[0]),&'bnorm($_[1]));
if ($x eq 'NaN' || $y eq 'NaN') {
'NaN';
} else {
($x, $y) = ($y,&'bmod($x,$y)) while $y ne '+0';
$x;
}
}
# routine to add two base 1e5 numbers
# stolen from Knuth Vol 2 Algorithm A pg 231
# there are separate routines to add and sub as per Kunth pg 233
sub add { #(int_num_array, int_num_array) return int_num_array
local(*x, *y) = @_;
$car = 0;
for $x (@x) {
last unless @y || $car;
$x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5);
}
for $y (@y) {
last unless $car;
$y -= 1e5 if $car = (($y += $car) >= 1e5);
}
(@x, @y, $car);
}
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
sub sub { #(int_num_array, int_num_array) return int_num_array
local(*sx, *sy) = @_;
$bar = 0;
for $sx (@sx) {
last unless @y || $bar;
$sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
}
@sx;
}
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
sub main'bmul { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&'bnorm($_[0]), &'bnorm($_[1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x);
@y = &internal($y);
local($signr) = (shift @x ne shift @y) ? '-' : '+';
@prod = ();
for $x (@x) {
($car, $cty) = (0, 0);
for $y (@y) {
$prod = $x * $y + $prod[$cty] + $car;
$prod[$cty++] =
$prod - ($car = int($prod * 1e-5)) * 1e5;
}
$prod[$cty] += $car if $car;
$x = shift @prod;
}
&external($signr, @x, @prod);
}
}
# modulus
sub main'bmod { #(num_str, num_str) return num_str
(&'bdiv(@_))[1];
}
sub main'bdiv { #(dividend: num_str, divisor: num_str) return num_str
local (*x, *y); ($x, $y) = (&'bnorm($_[0]), &'bnorm($_[1]));
return wantarray ? ('NaN','NaN') : 'NaN'
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
@x = &internal($x); @y = &internal($y);
$srem = $y[0];
$sr = (shift @x ne shift @y) ? '-' : '+';
$car = $bar = $prd = 0;
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
for $x (@x) {
$x = $x * $dd + $car;
$x -= ($car = int($x * 1e-5)) * 1e5;
}
push(@x, $car); $car = 0;
for $y (@y) {
$y = $y * $dd + $car;
$y -= ($car = int($y * 1e-5)) * 1e5;
}
}
else {
push(@x, 0);
}
@q = (); ($v2,$v1) = @y[$#y-1,$#y];
while ($#x > $#y) {
($u2,$u1,$u0) = @x[($#x-2)..$#x];
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
if ($q) {
($car, $bar) = (0,0);
for ($y = 0, $x = $#x-$#y-1; $y <= $#y; ++$y,++$x) {
$prd = $q * $y[$y] + $car;
$prd -= ($car = int($prd * 1e-5)) * 1e5;
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
}
if ($x[$#x] < $car + $bar) {
$car = 0; --$q;
for ($y = 0, $x = $#x-$#y-1; $y <= $#y; ++$y,++$x) {
$x[$x] -= 1e5
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
}
}
}
pop(@x); unshift(@q, $q);
}
if (wantarray) {
@d = ();
if ($dd != 1) {
$car = 0;
for $x (reverse @x) {
$prd = $car * 1e5 + $x;
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
unshift(@d, $tmp);
}
}
else {
@d = @x;
}
(&external($sr, @q), &external($srem, @d, 0));
} else {
&external($sr, @q);
}
}
1;
|