1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
/* numeric.c
*
* Copyright (c) 2001, Larry Wall
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* "That only makes eleven (plus one mislaid) and not fourteen, unless
* wizards count differently to other people."
*/
#include "EXTERN.h"
#define PERL_IN_NUMERIC_C
#include "perl.h"
U32
Perl_cast_ulong(pTHX_ NV f)
{
if (f < 0.0)
return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
if (f < U32_MAX_P1) {
#if CASTFLAGS & 2
if (f < U32_MAX_P1_HALF)
return (U32) f;
f -= U32_MAX_P1_HALF;
return ((U32) f) | (1 + U32_MAX >> 1);
#else
return (U32) f;
#endif
}
return f > 0 ? U32_MAX : 0 /* NaN */;
}
I32
Perl_cast_i32(pTHX_ NV f)
{
if (f < I32_MAX_P1)
return f < I32_MIN ? I32_MIN : (I32) f;
if (f < U32_MAX_P1) {
#if CASTFLAGS & 2
if (f < U32_MAX_P1_HALF)
return (I32)(U32) f;
f -= U32_MAX_P1_HALF;
return (I32)(((U32) f) | (1 + U32_MAX >> 1));
#else
return (I32)(U32) f;
#endif
}
return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
}
IV
Perl_cast_iv(pTHX_ NV f)
{
if (f < IV_MAX_P1)
return f < IV_MIN ? IV_MIN : (IV) f;
if (f < UV_MAX_P1) {
#if CASTFLAGS & 2
/* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
if (f < UV_MAX_P1_HALF)
return (IV)(UV) f;
f -= UV_MAX_P1_HALF;
return (IV)(((UV) f) | (1 + UV_MAX >> 1));
#else
return (IV)(UV) f;
#endif
}
return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
}
UV
Perl_cast_uv(pTHX_ NV f)
{
if (f < 0.0)
return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
if (f < UV_MAX_P1) {
#if CASTFLAGS & 2
if (f < UV_MAX_P1_HALF)
return (UV) f;
f -= UV_MAX_P1_HALF;
return ((UV) f) | (1 + UV_MAX >> 1);
#else
return (UV) f;
#endif
}
return f > 0 ? UV_MAX : 0 /* NaN */;
}
#if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL))
/*
* This hack is to force load of "huge" support from libm.a
* So it is in perl for (say) POSIX to use.
* Needed for SunOS with Sun's 'acc' for example.
*/
NV
Perl_huge(void)
{
# if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)
return HUGE_VALL;
# endif
return HUGE_VAL;
}
#endif
NV
Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen)
{
register char *s = start;
register NV rnv = 0.0;
register UV ruv = 0;
register bool seenb = FALSE;
register bool overflowed = FALSE;
for (; len-- && *s; s++) {
if (!(*s == '0' || *s == '1')) {
if (*s == '_' && len && *retlen
&& (s[1] == '0' || s[1] == '1'))
{
--len;
++s;
}
else if (seenb == FALSE && *s == 'b' && ruv == 0) {
/* Disallow 0bbb0b0bbb... */
seenb = TRUE;
continue;
}
else {
if (ckWARN(WARN_DIGIT))
Perl_warner(aTHX_ WARN_DIGIT,
"Illegal binary digit '%c' ignored", *s);
break;
}
}
if (!overflowed) {
register UV xuv = ruv << 1;
if ((xuv >> 1) != ruv) {
overflowed = TRUE;
rnv = (NV) ruv;
if (ckWARN_d(WARN_OVERFLOW))
Perl_warner(aTHX_ WARN_OVERFLOW,
"Integer overflow in binary number");
}
else
ruv = xuv | (*s - '0');
}
if (overflowed) {
rnv *= 2;
/* If an NV has not enough bits in its mantissa to
* represent an UV this summing of small low-order numbers
* is a waste of time (because the NV cannot preserve
* the low-order bits anyway): we could just remember when
* did we overflow and in the end just multiply rnv by the
* right amount. */
rnv += (*s - '0');
}
}
if (!overflowed)
rnv = (NV) ruv;
if ( ( overflowed && rnv > 4294967295.0)
#if UVSIZE > 4
|| (!overflowed && ruv > 0xffffffff )
#endif
) {
if (ckWARN(WARN_PORTABLE))
Perl_warner(aTHX_ WARN_PORTABLE,
"Binary number > 0b11111111111111111111111111111111 non-portable");
}
*retlen = s - start;
return rnv;
}
NV
Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen)
{
register char *s = start;
register NV rnv = 0.0;
register UV ruv = 0;
register bool overflowed = FALSE;
for (; len-- && *s; s++) {
if (!(*s >= '0' && *s <= '7')) {
if (*s == '_' && len && *retlen
&& (s[1] >= '0' && s[1] <= '7'))
{
--len;
++s;
}
else {
/* Allow \octal to work the DWIM way (that is, stop scanning
* as soon as non-octal characters are seen, complain only iff
* someone seems to want to use the digits eight and nine). */
if (*s == '8' || *s == '9') {
if (ckWARN(WARN_DIGIT))
Perl_warner(aTHX_ WARN_DIGIT,
"Illegal octal digit '%c' ignored", *s);
}
break;
}
}
if (!overflowed) {
register UV xuv = ruv << 3;
if ((xuv >> 3) != ruv) {
overflowed = TRUE;
rnv = (NV) ruv;
if (ckWARN_d(WARN_OVERFLOW))
Perl_warner(aTHX_ WARN_OVERFLOW,
"Integer overflow in octal number");
}
else
ruv = xuv | (*s - '0');
}
if (overflowed) {
rnv *= 8.0;
/* If an NV has not enough bits in its mantissa to
* represent an UV this summing of small low-order numbers
* is a waste of time (because the NV cannot preserve
* the low-order bits anyway): we could just remember when
* did we overflow and in the end just multiply rnv by the
* right amount of 8-tuples. */
rnv += (NV)(*s - '0');
}
}
if (!overflowed)
rnv = (NV) ruv;
if ( ( overflowed && rnv > 4294967295.0)
#if UVSIZE > 4
|| (!overflowed && ruv > 0xffffffff )
#endif
) {
if (ckWARN(WARN_PORTABLE))
Perl_warner(aTHX_ WARN_PORTABLE,
"Octal number > 037777777777 non-portable");
}
*retlen = s - start;
return rnv;
}
NV
Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen)
{
register char *s = start;
register NV rnv = 0.0;
register UV ruv = 0;
register bool overflowed = FALSE;
char *hexdigit;
if (len > 2) {
if (s[0] == 'x') {
s++;
len--;
}
else if (len > 3 && s[0] == '0' && s[1] == 'x') {
s+=2;
len-=2;
}
}
for (; len-- && *s; s++) {
hexdigit = strchr((char *) PL_hexdigit, *s);
if (!hexdigit) {
if (*s == '_' && len && *retlen && s[1]
&& (hexdigit = strchr((char *) PL_hexdigit, s[1])))
{
--len;
++s;
}
else {
if (ckWARN(WARN_DIGIT))
Perl_warner(aTHX_ WARN_DIGIT,
"Illegal hexadecimal digit '%c' ignored", *s);
break;
}
}
if (!overflowed) {
register UV xuv = ruv << 4;
if ((xuv >> 4) != ruv) {
overflowed = TRUE;
rnv = (NV) ruv;
if (ckWARN_d(WARN_OVERFLOW))
Perl_warner(aTHX_ WARN_OVERFLOW,
"Integer overflow in hexadecimal number");
}
else
ruv = xuv | ((hexdigit - PL_hexdigit) & 15);
}
if (overflowed) {
rnv *= 16.0;
/* If an NV has not enough bits in its mantissa to
* represent an UV this summing of small low-order numbers
* is a waste of time (because the NV cannot preserve
* the low-order bits anyway): we could just remember when
* did we overflow and in the end just multiply rnv by the
* right amount of 16-tuples. */
rnv += (NV)((hexdigit - PL_hexdigit) & 15);
}
}
if (!overflowed)
rnv = (NV) ruv;
if ( ( overflowed && rnv > 4294967295.0)
#if UVSIZE > 4
|| (!overflowed && ruv > 0xffffffff )
#endif
) {
if (ckWARN(WARN_PORTABLE))
Perl_warner(aTHX_ WARN_PORTABLE,
"Hexadecimal number > 0xffffffff non-portable");
}
*retlen = s - start;
return rnv;
}
/*
=for apidoc grok_numeric_radix
Scan and skip for a numeric decimal separator (radix).
=cut
*/
bool
Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
{
#ifdef USE_LOCALE_NUMERIC
if (PL_numeric_radix_sv && IN_LOCALE) {
STRLEN len;
char* radix = SvPV(PL_numeric_radix_sv, len);
if (*sp + len <= send && memEQ(*sp, radix, len)) {
*sp += len;
return TRUE;
}
}
/* always try "." if numeric radix didn't match because
* we may have data from different locales mixed */
#endif
if (*sp < send && **sp == '.') {
++*sp;
return TRUE;
}
return FALSE;
}
/*
=for apidoc grok_number
Recognise (or not) a number. The type of the number is returned
(0 if unrecognised), otherwise it is a bit-ORed combination of
IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
IS_NUMBER_NEG, IS_NUMBER_INFINITY (defined in perl.h).
If the value of the number can fit an in UV, it is returned in the *valuep
IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
will never be set unless *valuep is valid, but *valuep may have been assigned
to during processing even though IS_NUMBER_IN_UV is not set on return.
If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
valuep is non-NULL, but no actual assignment (or SEGV) will occur.
IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
seen (in which case *valuep gives the true value truncated to an integer), and
IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
number is larger than a UV.
=cut
*/
int
Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
{
const char *s = pv;
const char *send = pv + len;
const UV max_div_10 = UV_MAX / 10;
const char max_mod_10 = UV_MAX % 10;
int numtype = 0;
int sawinf = 0;
while (s < send && isSPACE(*s))
s++;
if (s == send) {
return 0;
} else if (*s == '-') {
s++;
numtype = IS_NUMBER_NEG;
}
else if (*s == '+')
s++;
if (s == send)
return 0;
/* next must be digit or the radix separator or beginning of infinity */
if (isDIGIT(*s)) {
/* UVs are at least 32 bits, so the first 9 decimal digits cannot
overflow. */
UV value = *s - '0';
/* This construction seems to be more optimiser friendly.
(without it gcc does the isDIGIT test and the *s - '0' separately)
With it gcc on arm is managing 6 instructions (6 cycles) per digit.
In theory the optimiser could deduce how far to unroll the loop
before checking for overflow. */
if (s < send) {
int digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
digit = *++s - '0';
if (digit >= 0 && digit <= 9) {
value = value * 10 + digit;
if (s < send) {
/* Now got 9 digits, so need to check
each time for overflow. */
digit = *++s - '0';
while (digit >= 0 && digit <= 9
&& (value < max_div_10
|| (value == max_div_10
&& digit <= max_mod_10))) {
value = value * 10 + digit;
if (s < send)
digit = *++s - '0';
else
break;
}
if (digit >= 0 && digit <= 9
&& (s < send)) {
/* value overflowed.
skip the remaining digits, don't
worry about setting *valuep. */
do {
s++;
} while (s < send && isDIGIT(*s));
numtype |=
IS_NUMBER_GREATER_THAN_UV_MAX;
goto skip_value;
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
numtype |= IS_NUMBER_IN_UV;
if (valuep)
*valuep = value;
skip_value:
if (GROK_NUMERIC_RADIX(&s, send)) {
numtype |= IS_NUMBER_NOT_INT;
while (s < send && isDIGIT(*s)) /* optional digits after the radix */
s++;
}
}
else if (GROK_NUMERIC_RADIX(&s, send)) {
numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
/* no digits before the radix means we need digits after it */
if (s < send && isDIGIT(*s)) {
do {
s++;
} while (s < send && isDIGIT(*s));
if (valuep) {
/* integer approximation is valid - it's 0. */
*valuep = 0;
}
}
else
return 0;
} else if (*s == 'I' || *s == 'i') {
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
s++; if (s < send && (*s == 'I' || *s == 'i')) {
s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
s++;
}
sawinf = 1;
} else /* Add test for NaN here. */
return 0;
if (sawinf) {
numtype &= IS_NUMBER_NEG; /* Keep track of sign */
numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
} else if (s < send) {
/* we can have an optional exponent part */
if (*s == 'e' || *s == 'E') {
/* The only flag we keep is sign. Blow away any "it's UV" */
numtype &= IS_NUMBER_NEG;
numtype |= IS_NUMBER_NOT_INT;
s++;
if (s < send && (*s == '-' || *s == '+'))
s++;
if (s < send && isDIGIT(*s)) {
do {
s++;
} while (s < send && isDIGIT(*s));
}
else
return 0;
}
}
while (s < send && isSPACE(*s))
s++;
if (s >= send)
return numtype;
if (len == 10 && memEQ(pv, "0 but true", 10)) {
if (valuep)
*valuep = 0;
return IS_NUMBER_IN_UV;
}
return 0;
}
NV
S_mulexp10(NV value, I32 exponent)
{
NV result = 1.0;
NV power = 10.0;
bool negative = 0;
I32 bit;
if (exponent == 0)
return value;
else if (exponent < 0) {
negative = 1;
exponent = -exponent;
}
#ifdef __VAX /* avoid %SYSTEM-F-FLTOVF_F sans VAXC$ESTABLISH */
# if defined(__DECC_VER) && __DECC_VER <= 50390006
/* __F_FLT_MAX_10_EXP - 5 == 33 */
if (!negative &&
(log10(value) + exponent) >= (__F_FLT_MAX_10_EXP - 5))
return NV_MAX;
# endif
#endif
for (bit = 1; exponent; bit <<= 1) {
if (exponent & bit) {
exponent ^= bit;
result *= power;
}
power *= power;
}
return negative ? value / result : value * result;
}
NV
Perl_my_atof(pTHX_ const char* s)
{
NV x = 0.0;
#ifdef USE_LOCALE_NUMERIC
if (PL_numeric_local && IN_LOCALE) {
NV y;
/* Scan the number twice; once using locale and once without;
* choose the larger result (in absolute value). */
Perl_atof2(aTHX_ s, &x);
SET_NUMERIC_STANDARD();
Perl_atof2(aTHX_ s, &y);
SET_NUMERIC_LOCAL();
if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
return y;
}
else
Perl_atof2(aTHX_ s, &x);
#else
Perl_atof2(aTHX_ s, &x);
#endif
return x;
}
char*
Perl_my_atof2(pTHX_ const char* orig, NV* value)
{
NV result = 0.0;
bool negative = 0;
char* s = (char*)orig;
char* send = s + strlen(orig) - 1;
bool seendigit = 0;
I32 expextra = 0;
I32 exponent = 0;
I32 i;
/* this is arbitrary */
#define PARTLIM 6
/* we want the largest integers we can usefully use */
#if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
# define PARTSIZE ((int)TYPE_DIGITS(U64)-1)
U64 part[PARTLIM];
#else
# define PARTSIZE ((int)TYPE_DIGITS(U32)-1)
U32 part[PARTLIM];
#endif
I32 ipart = 0; /* index into part[] */
I32 offcount; /* number of digits in least significant part */
/* sign */
switch (*s) {
case '-':
negative = 1;
/* fall through */
case '+':
++s;
}
part[0] = offcount = 0;
if (isDIGIT(*s)) {
seendigit = 1; /* get this over with */
/* skip leading zeros */
while (*s == '0')
++s;
}
/* integer digits */
while (isDIGIT(*s)) {
if (++offcount > PARTSIZE) {
if (++ipart < PARTLIM) {
part[ipart] = 0;
offcount = 1; /* ++0 */
}
else {
/* limits of precision reached */
--ipart;
--offcount;
if (*s >= '5')
++part[ipart];
while (isDIGIT(*s)) {
++expextra;
++s;
}
/* warn of loss of precision? */
break;
}
}
part[ipart] = part[ipart] * 10 + (*s++ - '0');
}
/* decimal point */
if (GROK_NUMERIC_RADIX((const char **)&s, send)) {
if (isDIGIT(*s))
seendigit = 1; /* get this over with */
/* decimal digits */
while (isDIGIT(*s)) {
if (++offcount > PARTSIZE) {
if (++ipart < PARTLIM) {
part[ipart] = 0;
offcount = 1; /* ++0 */
}
else {
/* limits of precision reached */
--ipart;
--offcount;
if (*s >= '5')
++part[ipart];
while (isDIGIT(*s))
++s;
/* warn of loss of precision? */
break;
}
}
--expextra;
part[ipart] = part[ipart] * 10 + (*s++ - '0');
}
}
/* combine components of mantissa */
for (i = 0; i <= ipart; ++i)
result += S_mulexp10((NV)part[ipart - i],
i ? offcount + (i - 1) * PARTSIZE : 0);
if (seendigit && (*s == 'e' || *s == 'E')) {
bool expnegative = 0;
++s;
switch (*s) {
case '-':
expnegative = 1;
/* fall through */
case '+':
++s;
}
while (isDIGIT(*s))
exponent = exponent * 10 + (*s++ - '0');
if (expnegative)
exponent = -exponent;
}
/* now apply the exponent */
exponent += expextra;
result = S_mulexp10(result, exponent);
/* now apply the sign */
if (negative)
result = -result;
*value = result;
return s;
}
|