1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
|
#line 2 "op.c"
/* op.c
*
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* 'You see: Mr. Drogo, he married poor Miss Primula Brandybuck. She was
* our Mr. Bilbo's first cousin on the mother's side (her mother being the
* youngest of the Old Took's daughters); and Mr. Drogo was his second
* cousin. So Mr. Frodo is his first *and* second cousin, once removed
* either way, as the saying is, if you follow me.' --the Gaffer
*
* [p.23 of _The Lord of the Rings_, I/i: "A Long-Expected Party"]
*/
/* This file contains the functions that create, manipulate and optimize
* the OP structures that hold a compiled perl program.
*
* Note that during the build of miniperl, a temporary copy of this file
* is made, called opmini.c.
*
* A Perl program is compiled into a tree of OP nodes. Each op contains:
* * structural OP pointers to its children and siblings (op_sibling,
* op_first etc) that define the tree structure;
* * execution order OP pointers (op_next, plus sometimes op_other,
* op_lastop etc) that define the execution sequence plus variants;
* * a pointer to the C "pp" function that would execute the op;
* * any data specific to that op.
* For example, an OP_CONST op points to the pp_const() function and to an
* SV containing the constant value. When pp_const() is executed, its job
* is to push that SV onto the stack.
*
* OPs are mainly created by the newFOO() functions, which are mainly
* called from the parser (in perly.y) as the code is parsed. For example
* the Perl code $a + $b * $c would cause the equivalent of the following
* to be called (oversimplifying a bit):
*
* newBINOP(OP_ADD, flags,
* newSVREF($a),
* newBINOP(OP_MULTIPLY, flags, newSVREF($b), newSVREF($c))
* )
*
* As the parser reduces low-level rules, it creates little op subtrees;
* as higher-level rules are resolved, these subtrees get joined together
* as branches on a bigger subtree, until eventually a top-level rule like
* a subroutine definition is reduced, at which point there is one large
* parse tree left.
*
* The execution order pointers (op_next) are generated as the subtrees
* are joined together. Consider this sub-expression: A*B + C/D: at the
* point when it's just been parsed, the op tree looks like:
*
* [+]
* |
* [*]------[/]
* | |
* A---B C---D
*
* with the intended execution order being:
*
* [PREV] => A => B => [*] => C => D => [/] => [+] => [NEXT]
*
* At this point all the nodes' op_next pointers will have been set,
* except that:
* * we don't know what the [NEXT] node will be yet;
* * we don't know what the [PREV] node will be yet, but when it gets
* created and needs its op_next set, it needs to be set to point to
* A, which is non-obvious.
* To handle both those cases, we temporarily set the top node's
* op_next to point to the first node to be executed in this subtree (A in
* this case). This means that initially a subtree's op_next chain,
* starting from the top node, will visit each node in execution sequence
* then point back at the top node.
* When we embed this subtree in a larger tree, its top op_next is used
* to get the start node, then is set to point to its new neighbour.
* For example the two separate [*],A,B and [/],C,D subtrees would
* initially have had:
* [*] => A; A => B; B => [*]
* and
* [/] => C; C => D; D => [/]
* When these two subtrees were joined together to make the [+] subtree,
* [+]'s op_next was set to [*]'s op_next, i.e. A; then [*]'s op_next was
* set to point to [/]'s op_next, i.e. C.
*
* This op_next linking is done by the LINKLIST() macro and its underlying
* op_linklist() function. Given a top-level op, if its op_next is
* non-null, it's already been linked, so leave it. Otherwise link it with
* its children as described above, possibly recursively if any of the
* children have a null op_next.
*
* In summary: given a subtree, its top-level node's op_next will either
* be:
* NULL: the subtree hasn't been LINKLIST()ed yet;
* fake: points to the start op for this subtree;
* real: once the subtree has been embedded into a larger tree
*/
/*
Here's an older description from Larry.
Perl's compiler is essentially a 3-pass compiler with interleaved phases:
A bottom-up pass
A top-down pass
An execution-order pass
The bottom-up pass is represented by all the "newOP" routines and
the ck_ routines. The bottom-upness is actually driven by yacc.
So at the point that a ck_ routine fires, we have no idea what the
context is, either upward in the syntax tree, or either forward or
backward in the execution order. (The bottom-up parser builds that
part of the execution order it knows about, but if you follow the "next"
links around, you'll find it's actually a closed loop through the
top level node.)
Whenever the bottom-up parser gets to a node that supplies context to
its components, it invokes that portion of the top-down pass that applies
to that part of the subtree (and marks the top node as processed, so
if a node further up supplies context, it doesn't have to take the
plunge again). As a particular subcase of this, as the new node is
built, it takes all the closed execution loops of its subcomponents
and links them into a new closed loop for the higher level node. But
it's still not the real execution order.
The actual execution order is not known till we get a grammar reduction
to a top-level unit like a subroutine or file that will be called by
"name" rather than via a "next" pointer. At that point, we can call
into peep() to do that code's portion of the 3rd pass. It has to be
recursive, but it's recursive on basic blocks, not on tree nodes.
*/
/* To implement user lexical pragmas, there needs to be a way at run time to
get the compile time state of %^H for that block. Storing %^H in every
block (or even COP) would be very expensive, so a different approach is
taken. The (running) state of %^H is serialised into a tree of HE-like
structs. Stores into %^H are chained onto the current leaf as a struct
refcounted_he * with the key and the value. Deletes from %^H are saved
with a value of PL_sv_placeholder. The state of %^H at any point can be
turned back into a regular HV by walking back up the tree from that point's
leaf, ignoring any key you've already seen (placeholder or not), storing
the rest into the HV structure, then removing the placeholders. Hence
memory is only used to store the %^H deltas from the enclosing COP, rather
than the entire %^H on each COP.
To cause actions on %^H to write out the serialisation records, it has
magic type 'H'. This magic (itself) does nothing, but its presence causes
the values to gain magic type 'h', which has entries for set and clear.
C<Perl_magic_sethint> updates C<PL_compiling.cop_hints_hash> with a store
record, with deletes written by C<Perl_magic_clearhint>. C<SAVEHINTS>
saves the current C<PL_compiling.cop_hints_hash> on the save stack, so that
it will be correctly restored when any inner compiling scope is exited.
*/
#include "EXTERN.h"
#define PERL_IN_OP_C
#include "perl.h"
#include "keywords.h"
#include "feature.h"
#include "regcomp.h"
#include "invlist_inline.h"
#define CALL_PEEP(o) PL_peepp(aTHX_ o)
#define CALL_RPEEP(o) PL_rpeepp(aTHX_ o)
#define CALL_OPFREEHOOK(o) if (PL_opfreehook) PL_opfreehook(aTHX_ o)
static const char array_passed_to_stat[] = "Array passed to stat will be coerced to a scalar";
/* remove any leading "empty" ops from the op_next chain whose first
* node's address is stored in op_p. Store the updated address of the
* first node in op_p.
*/
STATIC void
S_prune_chain_head(OP** op_p)
{
while (*op_p
&& ( (*op_p)->op_type == OP_NULL
|| (*op_p)->op_type == OP_SCOPE
|| (*op_p)->op_type == OP_SCALAR
|| (*op_p)->op_type == OP_LINESEQ)
)
*op_p = (*op_p)->op_next;
}
/* See the explanatory comments above struct opslab in op.h. */
#ifdef PERL_DEBUG_READONLY_OPS
# define PERL_SLAB_SIZE 128
# define PERL_MAX_SLAB_SIZE 4096
# include <sys/mman.h>
#endif
#ifndef PERL_SLAB_SIZE
# define PERL_SLAB_SIZE 64
#endif
#ifndef PERL_MAX_SLAB_SIZE
# define PERL_MAX_SLAB_SIZE 2048
#endif
/* rounds up to nearest pointer */
#define SIZE_TO_PSIZE(x) (((x) + sizeof(I32 *) - 1)/sizeof(I32 *))
#define DIFF(o,p) ((size_t)((I32 **)(p) - (I32**)(o)))
/* requires double parens and aTHX_ */
#define DEBUG_S_warn(args) \
DEBUG_S( \
PerlIO_printf(Perl_debug_log, "%s", SvPVx_nolen(Perl_mess args)) \
)
/* malloc a new op slab (suitable for attaching to PL_compcv).
* sz is in units of pointers */
static OPSLAB *
S_new_slab(pTHX_ OPSLAB *head, size_t sz)
{
OPSLAB *slab;
/* opslot_offset is only U16 */
assert(sz < U16_MAX);
#ifdef PERL_DEBUG_READONLY_OPS
slab = (OPSLAB *) mmap(0, sz * sizeof(I32 *),
PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);
DEBUG_m(PerlIO_printf(Perl_debug_log, "mapped %lu at %p\n",
(unsigned long) sz, slab));
if (slab == MAP_FAILED) {
perror("mmap failed");
abort();
}
#else
slab = (OPSLAB *)PerlMemShared_calloc(sz, sizeof(I32 *));
#endif
slab->opslab_size = (U16)sz;
#ifndef WIN32
/* The context is unused in non-Windows */
PERL_UNUSED_CONTEXT;
#endif
slab->opslab_free_space = sz - DIFF(slab, &slab->opslab_slots);
slab->opslab_head = head ? head : slab;
DEBUG_S_warn((aTHX_ "allocated new op slab sz 0x%x, %p, head slab %p",
(unsigned int)slab->opslab_size, (void*)slab,
(void*)(slab->opslab_head)));
return slab;
}
/* Returns a sz-sized block of memory (suitable for holding an op) from
* a free slot in the chain of op slabs attached to PL_compcv.
* Allocates a new slab if necessary.
* if PL_compcv isn't compiling, malloc() instead.
*/
void *
Perl_Slab_Alloc(pTHX_ size_t sz)
{
OPSLAB *head_slab; /* first slab in the chain */
OPSLAB *slab2;
OPSLOT *slot;
OP *o;
size_t opsz;
/* We only allocate ops from the slab during subroutine compilation.
We find the slab via PL_compcv, hence that must be non-NULL. It could
also be pointing to a subroutine which is now fully set up (CvROOT()
pointing to the top of the optree for that sub), or a subroutine
which isn't using the slab allocator. If our sanity checks aren't met,
don't use a slab, but allocate the OP directly from the heap. */
if (!PL_compcv || CvROOT(PL_compcv)
|| (CvSTART(PL_compcv) && !CvSLABBED(PL_compcv)))
{
o = (OP*)PerlMemShared_calloc(1, sz);
goto gotit;
}
/* While the subroutine is under construction, the slabs are accessed via
CvSTART(), to avoid needing to expand PVCV by one pointer for something
unneeded at runtime. Once a subroutine is constructed, the slabs are
accessed via CvROOT(). So if CvSTART() is NULL, no slab has been
allocated yet. See the commit message for 8be227ab5eaa23f2 for more
details. */
if (!CvSTART(PL_compcv)) {
CvSTART(PL_compcv) =
(OP *)(head_slab = S_new_slab(aTHX_ NULL, PERL_SLAB_SIZE));
CvSLABBED_on(PL_compcv);
head_slab->opslab_refcnt = 2; /* one for the CV; one for the new OP */
}
else ++(head_slab = (OPSLAB *)CvSTART(PL_compcv))->opslab_refcnt;
opsz = SIZE_TO_PSIZE(sz);
sz = opsz + OPSLOT_HEADER_P;
/* The slabs maintain a free list of OPs. In particular, constant folding
will free up OPs, so it makes sense to re-use them where possible. A
freed up slot is used in preference to a new allocation. */
if (head_slab->opslab_freed) {
OP **too = &head_slab->opslab_freed;
o = *too;
DEBUG_S_warn((aTHX_ "found free op at %p, slab %p, head slab %p",
(void*)o,
(I32**)OpSLOT(o) - OpSLOT(o)->opslot_offset,
(void*)head_slab));
while (o && OpSLOT(o)->opslot_size < sz) {
DEBUG_S_warn((aTHX_ "Alas! too small"));
o = *(too = &o->op_next);
if (o) { DEBUG_S_warn((aTHX_ "found another free op at %p", (void*)o)); }
}
if (o) {
DEBUG_S_warn((aTHX_ "realloced op at %p, slab %p, head slab %p",
(void*)o,
(I32**)OpSLOT(o) - OpSLOT(o)->opslot_offset,
(void*)head_slab));
*too = o->op_next;
Zero(o, opsz, I32 *);
o->op_slabbed = 1;
goto gotit;
}
}
#define INIT_OPSLOT(s) \
slot->opslot_offset = DIFF(slab2, slot) ; \
slot->opslot_size = s; \
slab2->opslab_free_space -= s; \
o = &slot->opslot_op; \
o->op_slabbed = 1
/* The partially-filled slab is next in the chain. */
slab2 = head_slab->opslab_next ? head_slab->opslab_next : head_slab;
if (slab2->opslab_free_space < sz) {
/* Remaining space is too small. */
/* If we can fit a BASEOP, add it to the free chain, so as not
to waste it. */
if (slab2->opslab_free_space >= SIZE_TO_PSIZE(sizeof(OP)) + OPSLOT_HEADER_P) {
slot = &slab2->opslab_slots;
INIT_OPSLOT(slab2->opslab_free_space);
o->op_type = OP_FREED;
o->op_next = head_slab->opslab_freed;
head_slab->opslab_freed = o;
}
/* Create a new slab. Make this one twice as big. */
slab2 = S_new_slab(aTHX_ head_slab,
slab2->opslab_size > PERL_MAX_SLAB_SIZE / 2
? PERL_MAX_SLAB_SIZE
: slab2->opslab_size * 2);
slab2->opslab_next = head_slab->opslab_next;
head_slab->opslab_next = slab2;
}
assert(slab2->opslab_size >= sz);
/* Create a new op slot */
slot = (OPSLOT *)
((I32 **)&slab2->opslab_slots
+ slab2->opslab_free_space - sz);
assert(slot >= &slab2->opslab_slots);
INIT_OPSLOT(sz);
DEBUG_S_warn((aTHX_ "allocating op at %p, slab %p, head slab %p",
(void*)o, (void*)slab2, (void*)head_slab));
gotit:
/* moresib == 0, op_sibling == 0 implies a solitary unattached op */
assert(!o->op_moresib);
assert(!o->op_sibparent);
return (void *)o;
}
#undef INIT_OPSLOT
#ifdef PERL_DEBUG_READONLY_OPS
void
Perl_Slab_to_ro(pTHX_ OPSLAB *slab)
{
PERL_ARGS_ASSERT_SLAB_TO_RO;
if (slab->opslab_readonly) return;
slab->opslab_readonly = 1;
for (; slab; slab = slab->opslab_next) {
/*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->ro %lu at %p\n",
(unsigned long) slab->opslab_size, slab));*/
if (mprotect(slab, slab->opslab_size * sizeof(I32 *), PROT_READ))
Perl_warn(aTHX_ "mprotect for %p %lu failed with %d", slab,
(unsigned long)slab->opslab_size, errno);
}
}
void
Perl_Slab_to_rw(pTHX_ OPSLAB *const slab)
{
OPSLAB *slab2;
PERL_ARGS_ASSERT_SLAB_TO_RW;
if (!slab->opslab_readonly) return;
slab2 = slab;
for (; slab2; slab2 = slab2->opslab_next) {
/*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->rw %lu at %p\n",
(unsigned long) size, slab2));*/
if (mprotect((void *)slab2, slab2->opslab_size * sizeof(I32 *),
PROT_READ|PROT_WRITE)) {
Perl_warn(aTHX_ "mprotect RW for %p %lu failed with %d", slab,
(unsigned long)slab2->opslab_size, errno);
}
}
slab->opslab_readonly = 0;
}
#else
# define Slab_to_rw(op) NOOP
#endif
/* This cannot possibly be right, but it was copied from the old slab
allocator, to which it was originally added, without explanation, in
commit 083fcd5. */
#ifdef NETWARE
# define PerlMemShared PerlMem
#endif
/* make freed ops die if they're inadvertently executed */
#ifdef DEBUGGING
static OP *
S_pp_freed(pTHX)
{
DIE(aTHX_ "panic: freed op 0x%p called\n", PL_op);
}
#endif
/* Return the block of memory used by an op to the free list of
* the OP slab associated with that op.
*/
void
Perl_Slab_Free(pTHX_ void *op)
{
OP * const o = (OP *)op;
OPSLAB *slab;
PERL_ARGS_ASSERT_SLAB_FREE;
#ifdef DEBUGGING
o->op_ppaddr = S_pp_freed;
#endif
if (!o->op_slabbed) {
if (!o->op_static)
PerlMemShared_free(op);
return;
}
slab = OpSLAB(o);
/* If this op is already freed, our refcount will get screwy. */
assert(o->op_type != OP_FREED);
o->op_type = OP_FREED;
o->op_next = slab->opslab_freed;
slab->opslab_freed = o;
DEBUG_S_warn((aTHX_ "freeing op at %p, slab %p, head slab %p",
(void*)o,
(I32**)OpSLOT(o) - OpSLOT(o)->opslot_offset,
(void*)slab));
OpslabREFCNT_dec_padok(slab);
}
void
Perl_opslab_free_nopad(pTHX_ OPSLAB *slab)
{
const bool havepad = !!PL_comppad;
PERL_ARGS_ASSERT_OPSLAB_FREE_NOPAD;
if (havepad) {
ENTER;
PAD_SAVE_SETNULLPAD();
}
opslab_free(slab);
if (havepad) LEAVE;
}
/* Free a chain of OP slabs. Should only be called after all ops contained
* in it have been freed. At this point, its reference count should be 1,
* because OpslabREFCNT_dec() skips doing rc-- when it detects that rc == 1,
* and just directly calls opslab_free().
* (Note that the reference count which PL_compcv held on the slab should
* have been removed once compilation of the sub was complete).
*
*
*/
void
Perl_opslab_free(pTHX_ OPSLAB *slab)
{
OPSLAB *slab2;
PERL_ARGS_ASSERT_OPSLAB_FREE;
PERL_UNUSED_CONTEXT;
DEBUG_S_warn((aTHX_ "freeing slab %p", (void*)slab));
assert(slab->opslab_refcnt == 1);
do {
slab2 = slab->opslab_next;
#ifdef DEBUGGING
slab->opslab_refcnt = ~(size_t)0;
#endif
#ifdef PERL_DEBUG_READONLY_OPS
DEBUG_m(PerlIO_printf(Perl_debug_log, "Deallocate slab at %p\n",
(void*)slab));
if (munmap(slab, slab->opslab_size * sizeof(I32 *))) {
perror("munmap failed");
abort();
}
#else
PerlMemShared_free(slab);
#endif
slab = slab2;
} while (slab);
}
/* like opslab_free(), but first calls op_free() on any ops in the slab
* not marked as OP_FREED
*/
void
Perl_opslab_force_free(pTHX_ OPSLAB *slab)
{
OPSLAB *slab2;
#ifdef DEBUGGING
size_t savestack_count = 0;
#endif
PERL_ARGS_ASSERT_OPSLAB_FORCE_FREE;
slab2 = slab;
do {
OPSLOT *slot = (OPSLOT*)
((I32**)&slab2->opslab_slots + slab2->opslab_free_space);
OPSLOT *end = (OPSLOT*)
((I32**)slab2 + slab2->opslab_size);
for (; slot < end;
slot = (OPSLOT*) ((I32**)slot + slot->opslot_size) )
{
if (slot->opslot_op.op_type != OP_FREED
&& !(slot->opslot_op.op_savefree
#ifdef DEBUGGING
&& ++savestack_count
#endif
)
) {
assert(slot->opslot_op.op_slabbed);
op_free(&slot->opslot_op);
if (slab->opslab_refcnt == 1) goto free;
}
}
} while ((slab2 = slab2->opslab_next));
/* > 1 because the CV still holds a reference count. */
if (slab->opslab_refcnt > 1) { /* still referenced by the savestack */
#ifdef DEBUGGING
assert(savestack_count == slab->opslab_refcnt-1);
#endif
/* Remove the CV’s reference count. */
slab->opslab_refcnt--;
return;
}
free:
opslab_free(slab);
}
#ifdef PERL_DEBUG_READONLY_OPS
OP *
Perl_op_refcnt_inc(pTHX_ OP *o)
{
if(o) {
OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
if (slab && slab->opslab_readonly) {
Slab_to_rw(slab);
++o->op_targ;
Slab_to_ro(slab);
} else {
++o->op_targ;
}
}
return o;
}
PADOFFSET
Perl_op_refcnt_dec(pTHX_ OP *o)
{
PADOFFSET result;
OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
PERL_ARGS_ASSERT_OP_REFCNT_DEC;
if (slab && slab->opslab_readonly) {
Slab_to_rw(slab);
result = --o->op_targ;
Slab_to_ro(slab);
} else {
result = --o->op_targ;
}
return result;
}
#endif
/*
* In the following definition, the ", (OP*)0" is just to make the compiler
* think the expression is of the right type: croak actually does a Siglongjmp.
*/
#define CHECKOP(type,o) \
((PL_op_mask && PL_op_mask[type]) \
? ( op_free((OP*)o), \
Perl_croak(aTHX_ "'%s' trapped by operation mask", PL_op_desc[type]), \
(OP*)0 ) \
: PL_check[type](aTHX_ (OP*)o))
#define RETURN_UNLIMITED_NUMBER (PERL_INT_MAX / 2)
#define OpTYPE_set(o,type) \
STMT_START { \
o->op_type = (OPCODE)type; \
o->op_ppaddr = PL_ppaddr[type]; \
} STMT_END
STATIC OP *
S_no_fh_allowed(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_NO_FH_ALLOWED;
yyerror(Perl_form(aTHX_ "Missing comma after first argument to %s function",
OP_DESC(o)));
return o;
}
STATIC OP *
S_too_few_arguments_pv(pTHX_ OP *o, const char* name, U32 flags)
{
PERL_ARGS_ASSERT_TOO_FEW_ARGUMENTS_PV;
yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %s", name), flags);
return o;
}
STATIC OP *
S_too_many_arguments_pv(pTHX_ OP *o, const char *name, U32 flags)
{
PERL_ARGS_ASSERT_TOO_MANY_ARGUMENTS_PV;
yyerror_pv(Perl_form(aTHX_ "Too many arguments for %s", name), flags);
return o;
}
STATIC void
S_bad_type_pv(pTHX_ I32 n, const char *t, const OP *o, const OP *kid)
{
PERL_ARGS_ASSERT_BAD_TYPE_PV;
yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %s must be %s (not %s)",
(int)n, PL_op_desc[(o)->op_type], t, OP_DESC(kid)), 0);
}
/* remove flags var, its unused in all callers, move to to right end since gv
and kid are always the same */
STATIC void
S_bad_type_gv(pTHX_ I32 n, GV *gv, const OP *kid, const char *t)
{
SV * const namesv = cv_name((CV *)gv, NULL, 0);
PERL_ARGS_ASSERT_BAD_TYPE_GV;
yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %" SVf " must be %s (not %s)",
(int)n, SVfARG(namesv), t, OP_DESC(kid)), SvUTF8(namesv));
}
STATIC void
S_no_bareword_allowed(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_NO_BAREWORD_ALLOWED;
qerror(Perl_mess(aTHX_
"Bareword \"%" SVf "\" not allowed while \"strict subs\" in use",
SVfARG(cSVOPo_sv)));
o->op_private &= ~OPpCONST_STRICT; /* prevent warning twice about the same OP */
}
/* "register" allocation */
PADOFFSET
Perl_allocmy(pTHX_ const char *const name, const STRLEN len, const U32 flags)
{
PADOFFSET off;
const bool is_our = (PL_parser->in_my == KEY_our);
PERL_ARGS_ASSERT_ALLOCMY;
if (flags & ~SVf_UTF8)
Perl_croak(aTHX_ "panic: allocmy illegal flag bits 0x%" UVxf,
(UV)flags);
/* complain about "my $<special_var>" etc etc */
if ( len
&& !( is_our
|| isALPHA(name[1])
|| ( (flags & SVf_UTF8)
&& isIDFIRST_utf8_safe((U8 *)name+1, name + len))
|| (name[1] == '_' && len > 2)))
{
const char * const type =
PL_parser->in_my == KEY_sigvar ? "subroutine signature" :
PL_parser->in_my == KEY_state ? "\"state\"" : "\"my\"";
if (!(flags & SVf_UTF8 && UTF8_IS_START(name[1]))
&& isASCII(name[1])
&& (!isPRINT(name[1]) || memCHRs("\t\n\r\f", name[1]))) {
/* diag_listed_as: Can't use global %s in %s */
yyerror(Perl_form(aTHX_ "Can't use global %c^%c%.*s in %s",
name[0], toCTRL(name[1]),
(int)(len - 2), name + 2,
type));
} else {
yyerror_pv(Perl_form(aTHX_ "Can't use global %.*s in %s",
(int) len, name,
type), flags & SVf_UTF8);
}
}
/* allocate a spare slot and store the name in that slot */
off = pad_add_name_pvn(name, len,
(is_our ? padadd_OUR :
PL_parser->in_my == KEY_state ? padadd_STATE : 0),
PL_parser->in_my_stash,
(is_our
/* $_ is always in main::, even with our */
? (PL_curstash && !memEQs(name,len,"$_")
? PL_curstash
: PL_defstash)
: NULL
)
);
/* anon sub prototypes contains state vars should always be cloned,
* otherwise the state var would be shared between anon subs */
if (PL_parser->in_my == KEY_state && CvANON(PL_compcv))
CvCLONE_on(PL_compcv);
return off;
}
/*
=head1 Optree Manipulation Functions
=for apidoc alloccopstash
Available only under threaded builds, this function allocates an entry in
C<PL_stashpad> for the stash passed to it.
=cut
*/
#ifdef USE_ITHREADS
PADOFFSET
Perl_alloccopstash(pTHX_ HV *hv)
{
PADOFFSET off = 0, o = 1;
bool found_slot = FALSE;
PERL_ARGS_ASSERT_ALLOCCOPSTASH;
if (PL_stashpad[PL_stashpadix] == hv) return PL_stashpadix;
for (; o < PL_stashpadmax; ++o) {
if (PL_stashpad[o] == hv) return PL_stashpadix = o;
if (!PL_stashpad[o] || SvTYPE(PL_stashpad[o]) != SVt_PVHV)
found_slot = TRUE, off = o;
}
if (!found_slot) {
Renew(PL_stashpad, PL_stashpadmax + 10, HV *);
Zero(PL_stashpad + PL_stashpadmax, 10, HV *);
off = PL_stashpadmax;
PL_stashpadmax += 10;
}
PL_stashpad[PL_stashpadix = off] = hv;
return off;
}
#endif
/* free the body of an op without examining its contents.
* Always use this rather than FreeOp directly */
static void
S_op_destroy(pTHX_ OP *o)
{
FreeOp(o);
}
/* Destructor */
/*
=for apidoc op_free
Free an op and its children. Only use this when an op is no longer linked
to from any optree.
=cut
*/
void
Perl_op_free(pTHX_ OP *o)
{
dVAR;
OPCODE type;
OP *top_op = o;
OP *next_op = o;
bool went_up = FALSE; /* whether we reached the current node by
following the parent pointer from a child, and
so have already seen this node */
if (!o || o->op_type == OP_FREED)
return;
if (o->op_private & OPpREFCOUNTED) {
/* if base of tree is refcounted, just decrement */
switch (o->op_type) {
case OP_LEAVESUB:
case OP_LEAVESUBLV:
case OP_LEAVEEVAL:
case OP_LEAVE:
case OP_SCOPE:
case OP_LEAVEWRITE:
{
PADOFFSET refcnt;
OP_REFCNT_LOCK;
refcnt = OpREFCNT_dec(o);
OP_REFCNT_UNLOCK;
if (refcnt) {
/* Need to find and remove any pattern match ops from
* the list we maintain for reset(). */
find_and_forget_pmops(o);
return;
}
}
break;
default:
break;
}
}
while (next_op) {
o = next_op;
/* free child ops before ourself, (then free ourself "on the
* way back up") */
if (!went_up && o->op_flags & OPf_KIDS) {
next_op = cUNOPo->op_first;
continue;
}
/* find the next node to visit, *then* free the current node
* (can't rely on o->op_* fields being valid after o has been
* freed) */
/* The next node to visit will be either the sibling, or the
* parent if no siblings left, or NULL if we've worked our way
* back up to the top node in the tree */
next_op = (o == top_op) ? NULL : o->op_sibparent;
went_up = cBOOL(!OpHAS_SIBLING(o)); /* parents are already visited */
/* Now process the current node */
/* Though ops may be freed twice, freeing the op after its slab is a
big no-no. */
assert(!o->op_slabbed || OpSLAB(o)->opslab_refcnt != ~(size_t)0);
/* During the forced freeing of ops after compilation failure, kidops
may be freed before their parents. */
if (!o || o->op_type == OP_FREED)
continue;
type = o->op_type;
/* an op should only ever acquire op_private flags that we know about.
* If this fails, you may need to fix something in regen/op_private.
* Don't bother testing if:
* * the op_ppaddr doesn't match the op; someone may have
* overridden the op and be doing strange things with it;
* * we've errored, as op flags are often left in an
* inconsistent state then. Note that an error when
* compiling the main program leaves PL_parser NULL, so
* we can't spot faults in the main code, only
* evaled/required code */
#ifdef DEBUGGING
if ( o->op_ppaddr == PL_ppaddr[type]
&& PL_parser
&& !PL_parser->error_count)
{
assert(!(o->op_private & ~PL_op_private_valid[type]));
}
#endif
/* Call the op_free hook if it has been set. Do it now so that it's called
* at the right time for refcounted ops, but still before all of the kids
* are freed. */
CALL_OPFREEHOOK(o);
if (type == OP_NULL)
type = (OPCODE)o->op_targ;
if (o->op_slabbed)
Slab_to_rw(OpSLAB(o));
/* COP* is not cleared by op_clear() so that we may track line
* numbers etc even after null() */
if (type == OP_NEXTSTATE || type == OP_DBSTATE) {
cop_free((COP*)o);
}
op_clear(o);
FreeOp(o);
if (PL_op == o)
PL_op = NULL;
}
}
/* S_op_clear_gv(): free a GV attached to an OP */
STATIC
#ifdef USE_ITHREADS
void S_op_clear_gv(pTHX_ OP *o, PADOFFSET *ixp)
#else
void S_op_clear_gv(pTHX_ OP *o, SV**svp)
#endif
{
GV *gv = (o->op_type == OP_GV || o->op_type == OP_GVSV
|| o->op_type == OP_MULTIDEREF)
#ifdef USE_ITHREADS
&& PL_curpad
? ((GV*)PAD_SVl(*ixp)) : NULL;
#else
? (GV*)(*svp) : NULL;
#endif
/* It's possible during global destruction that the GV is freed
before the optree. Whilst the SvREFCNT_inc is happy to bump from
0 to 1 on a freed SV, the corresponding SvREFCNT_dec from 1 to 0
will trigger an assertion failure, because the entry to sv_clear
checks that the scalar is not already freed. A check of for
!SvIS_FREED(gv) turns out to be invalid, because during global
destruction the reference count can be forced down to zero
(with SVf_BREAK set). In which case raising to 1 and then
dropping to 0 triggers cleanup before it should happen. I
*think* that this might actually be a general, systematic,
weakness of the whole idea of SVf_BREAK, in that code *is*
allowed to raise and lower references during global destruction,
so any *valid* code that happens to do this during global
destruction might well trigger premature cleanup. */
bool still_valid = gv && SvREFCNT(gv);
if (still_valid)
SvREFCNT_inc_simple_void(gv);
#ifdef USE_ITHREADS
if (*ixp > 0) {
pad_swipe(*ixp, TRUE);
*ixp = 0;
}
#else
SvREFCNT_dec(*svp);
*svp = NULL;
#endif
if (still_valid) {
int try_downgrade = SvREFCNT(gv) == 2;
SvREFCNT_dec_NN(gv);
if (try_downgrade)
gv_try_downgrade(gv);
}
}
void
Perl_op_clear(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_OP_CLEAR;
switch (o->op_type) {
case OP_NULL: /* Was holding old type, if any. */
/* FALLTHROUGH */
case OP_ENTERTRY:
case OP_ENTEREVAL: /* Was holding hints. */
case OP_ARGDEFELEM: /* Was holding signature index. */
o->op_targ = 0;
break;
default:
if (!(o->op_flags & OPf_REF) || !OP_IS_STAT(o->op_type))
break;
/* FALLTHROUGH */
case OP_GVSV:
case OP_GV:
case OP_AELEMFAST:
#ifdef USE_ITHREADS
S_op_clear_gv(aTHX_ o, &(cPADOPx(o)->op_padix));
#else
S_op_clear_gv(aTHX_ o, &(cSVOPx(o)->op_sv));
#endif
break;
case OP_METHOD_REDIR:
case OP_METHOD_REDIR_SUPER:
#ifdef USE_ITHREADS
if (cMETHOPx(o)->op_rclass_targ) {
pad_swipe(cMETHOPx(o)->op_rclass_targ, 1);
cMETHOPx(o)->op_rclass_targ = 0;
}
#else
SvREFCNT_dec(cMETHOPx(o)->op_rclass_sv);
cMETHOPx(o)->op_rclass_sv = NULL;
#endif
/* FALLTHROUGH */
case OP_METHOD_NAMED:
case OP_METHOD_SUPER:
SvREFCNT_dec(cMETHOPx(o)->op_u.op_meth_sv);
cMETHOPx(o)->op_u.op_meth_sv = NULL;
#ifdef USE_ITHREADS
if (o->op_targ) {
pad_swipe(o->op_targ, 1);
o->op_targ = 0;
}
#endif
break;
case OP_CONST:
case OP_HINTSEVAL:
SvREFCNT_dec(cSVOPo->op_sv);
cSVOPo->op_sv = NULL;
#ifdef USE_ITHREADS
/** Bug #15654
Even if op_clear does a pad_free for the target of the op,
pad_free doesn't actually remove the sv that exists in the pad;
instead it lives on. This results in that it could be reused as
a target later on when the pad was reallocated.
**/
if(o->op_targ) {
pad_swipe(o->op_targ,1);
o->op_targ = 0;
}
#endif
break;
case OP_DUMP:
case OP_GOTO:
case OP_NEXT:
case OP_LAST:
case OP_REDO:
if (o->op_flags & (OPf_SPECIAL|OPf_STACKED|OPf_KIDS))
break;
/* FALLTHROUGH */
case OP_TRANS:
case OP_TRANSR:
if ( (o->op_type == OP_TRANS || o->op_type == OP_TRANSR)
&& (o->op_private & OPpTRANS_USE_SVOP))
{
#ifdef USE_ITHREADS
if (cPADOPo->op_padix > 0) {
pad_swipe(cPADOPo->op_padix, TRUE);
cPADOPo->op_padix = 0;
}
#else
SvREFCNT_dec(cSVOPo->op_sv);
cSVOPo->op_sv = NULL;
#endif
}
else {
PerlMemShared_free(cPVOPo->op_pv);
cPVOPo->op_pv = NULL;
}
break;
case OP_SUBST:
op_free(cPMOPo->op_pmreplrootu.op_pmreplroot);
goto clear_pmop;
case OP_SPLIT:
if ( (o->op_private & OPpSPLIT_ASSIGN) /* @array = split */
&& !(o->op_flags & OPf_STACKED)) /* @{expr} = split */
{
if (o->op_private & OPpSPLIT_LEX)
pad_free(cPMOPo->op_pmreplrootu.op_pmtargetoff);
else
#ifdef USE_ITHREADS
pad_swipe(cPMOPo->op_pmreplrootu.op_pmtargetoff, TRUE);
#else
SvREFCNT_dec(MUTABLE_SV(cPMOPo->op_pmreplrootu.op_pmtargetgv));
#endif
}
/* FALLTHROUGH */
case OP_MATCH:
case OP_QR:
clear_pmop:
if (!(cPMOPo->op_pmflags & PMf_CODELIST_PRIVATE))
op_free(cPMOPo->op_code_list);
cPMOPo->op_code_list = NULL;
forget_pmop(cPMOPo);
cPMOPo->op_pmreplrootu.op_pmreplroot = NULL;
/* we use the same protection as the "SAFE" version of the PM_ macros
* here since sv_clean_all might release some PMOPs
* after PL_regex_padav has been cleared
* and the clearing of PL_regex_padav needs to
* happen before sv_clean_all
*/
#ifdef USE_ITHREADS
if(PL_regex_pad) { /* We could be in destruction */
const IV offset = (cPMOPo)->op_pmoffset;
ReREFCNT_dec(PM_GETRE(cPMOPo));
PL_regex_pad[offset] = &PL_sv_undef;
sv_catpvn_nomg(PL_regex_pad[0], (const char *)&offset,
sizeof(offset));
}
#else
ReREFCNT_dec(PM_GETRE(cPMOPo));
PM_SETRE(cPMOPo, NULL);
#endif
break;
case OP_ARGCHECK:
PerlMemShared_free(cUNOP_AUXo->op_aux);
break;
case OP_MULTICONCAT:
{
UNOP_AUX_item *aux = cUNOP_AUXo->op_aux;
/* aux[PERL_MULTICONCAT_IX_PLAIN_PV] and/or
* aux[PERL_MULTICONCAT_IX_UTF8_PV] point to plain and/or
* utf8 shared strings */
char *p1 = aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv;
char *p2 = aux[PERL_MULTICONCAT_IX_UTF8_PV].pv;
if (p1)
PerlMemShared_free(p1);
if (p2 && p1 != p2)
PerlMemShared_free(p2);
PerlMemShared_free(aux);
}
break;
case OP_MULTIDEREF:
{
UNOP_AUX_item *items = cUNOP_AUXo->op_aux;
UV actions = items->uv;
bool last = 0;
bool is_hash = FALSE;
while (!last) {
switch (actions & MDEREF_ACTION_MASK) {
case MDEREF_reload:
actions = (++items)->uv;
continue;
case MDEREF_HV_padhv_helem:
is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_padav_aelem:
pad_free((++items)->pad_offset);
goto do_elem;
case MDEREF_HV_gvhv_helem:
is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_gvav_aelem:
#ifdef USE_ITHREADS
S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
#else
S_op_clear_gv(aTHX_ o, &((++items)->sv));
#endif
goto do_elem;
case MDEREF_HV_gvsv_vivify_rv2hv_helem:
is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_gvsv_vivify_rv2av_aelem:
#ifdef USE_ITHREADS
S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
#else
S_op_clear_gv(aTHX_ o, &((++items)->sv));
#endif
goto do_vivify_rv2xv_elem;
case MDEREF_HV_padsv_vivify_rv2hv_helem:
is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_padsv_vivify_rv2av_aelem:
pad_free((++items)->pad_offset);
goto do_vivify_rv2xv_elem;
case MDEREF_HV_pop_rv2hv_helem:
case MDEREF_HV_vivify_rv2hv_helem:
is_hash = TRUE;
/* FALLTHROUGH */
do_vivify_rv2xv_elem:
case MDEREF_AV_pop_rv2av_aelem:
case MDEREF_AV_vivify_rv2av_aelem:
do_elem:
switch (actions & MDEREF_INDEX_MASK) {
case MDEREF_INDEX_none:
last = 1;
break;
case MDEREF_INDEX_const:
if (is_hash) {
#ifdef USE_ITHREADS
/* see RT #15654 */
pad_swipe((++items)->pad_offset, 1);
#else
SvREFCNT_dec((++items)->sv);
#endif
}
else
items++;
break;
case MDEREF_INDEX_padsv:
pad_free((++items)->pad_offset);
break;
case MDEREF_INDEX_gvsv:
#ifdef USE_ITHREADS
S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
#else
S_op_clear_gv(aTHX_ o, &((++items)->sv));
#endif
break;
}
if (actions & MDEREF_FLAG_last)
last = 1;
is_hash = FALSE;
break;
default:
assert(0);
last = 1;
break;
} /* switch */
actions >>= MDEREF_SHIFT;
} /* while */
/* start of malloc is at op_aux[-1], where the length is
* stored */
PerlMemShared_free(cUNOP_AUXo->op_aux - 1);
}
break;
}
if (o->op_targ > 0) {
pad_free(o->op_targ);
o->op_targ = 0;
}
}
STATIC void
S_cop_free(pTHX_ COP* cop)
{
PERL_ARGS_ASSERT_COP_FREE;
CopFILE_free(cop);
if (! specialWARN(cop->cop_warnings))
PerlMemShared_free(cop->cop_warnings);
cophh_free(CopHINTHASH_get(cop));
if (PL_curcop == cop)
PL_curcop = NULL;
}
STATIC void
S_forget_pmop(pTHX_ PMOP *const o)
{
HV * const pmstash = PmopSTASH(o);
PERL_ARGS_ASSERT_FORGET_PMOP;
if (pmstash && !SvIS_FREED(pmstash) && SvMAGICAL(pmstash)) {
MAGIC * const mg = mg_find((const SV *)pmstash, PERL_MAGIC_symtab);
if (mg) {
PMOP **const array = (PMOP**) mg->mg_ptr;
U32 count = mg->mg_len / sizeof(PMOP**);
U32 i = count;
while (i--) {
if (array[i] == o) {
/* Found it. Move the entry at the end to overwrite it. */
array[i] = array[--count];
mg->mg_len = count * sizeof(PMOP**);
/* Could realloc smaller at this point always, but probably
not worth it. Probably worth free()ing if we're the
last. */
if(!count) {
Safefree(mg->mg_ptr);
mg->mg_ptr = NULL;
}
break;
}
}
}
}
if (PL_curpm == o)
PL_curpm = NULL;
}
STATIC void
S_find_and_forget_pmops(pTHX_ OP *o)
{
OP* top_op = o;
PERL_ARGS_ASSERT_FIND_AND_FORGET_PMOPS;
while (1) {
switch (o->op_type) {
case OP_SUBST:
case OP_SPLIT:
case OP_MATCH:
case OP_QR:
forget_pmop((PMOP*)o);
}
if (o->op_flags & OPf_KIDS) {
o = cUNOPo->op_first;
continue;
}
while (1) {
if (o == top_op)
return; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o)) {
o = o->op_sibparent; /* process next sibling */
break;
}
o = o->op_sibparent; /*try parent's next sibling */
}
}
}
/*
=for apidoc op_null
Neutralizes an op when it is no longer needed, but is still linked to from
other ops.
=cut
*/
void
Perl_op_null(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_OP_NULL;
if (o->op_type == OP_NULL)
return;
op_clear(o);
o->op_targ = o->op_type;
OpTYPE_set(o, OP_NULL);
}
void
Perl_op_refcnt_lock(pTHX)
PERL_TSA_ACQUIRE(PL_op_mutex)
{
#ifdef USE_ITHREADS
dVAR;
#endif
PERL_UNUSED_CONTEXT;
OP_REFCNT_LOCK;
}
void
Perl_op_refcnt_unlock(pTHX)
PERL_TSA_RELEASE(PL_op_mutex)
{
#ifdef USE_ITHREADS
dVAR;
#endif
PERL_UNUSED_CONTEXT;
OP_REFCNT_UNLOCK;
}
/*
=for apidoc op_sibling_splice
A general function for editing the structure of an existing chain of
op_sibling nodes. By analogy with the perl-level C<splice()> function, allows
you to delete zero or more sequential nodes, replacing them with zero or
more different nodes. Performs the necessary op_first/op_last
housekeeping on the parent node and op_sibling manipulation on the
children. The last deleted node will be marked as as the last node by
updating the op_sibling/op_sibparent or op_moresib field as appropriate.
Note that op_next is not manipulated, and nodes are not freed; that is the
responsibility of the caller. It also won't create a new list op for an
empty list etc; use higher-level functions like op_append_elem() for that.
C<parent> is the parent node of the sibling chain. It may passed as C<NULL> if
the splicing doesn't affect the first or last op in the chain.
C<start> is the node preceding the first node to be spliced. Node(s)
following it will be deleted, and ops will be inserted after it. If it is
C<NULL>, the first node onwards is deleted, and nodes are inserted at the
beginning.
C<del_count> is the number of nodes to delete. If zero, no nodes are deleted.
If -1 or greater than or equal to the number of remaining kids, all
remaining kids are deleted.
C<insert> is the first of a chain of nodes to be inserted in place of the nodes.
If C<NULL>, no nodes are inserted.
The head of the chain of deleted ops is returned, or C<NULL> if no ops were
deleted.
For example:
action before after returns
------ ----- ----- -------
P P
splice(P, A, 2, X-Y-Z) | | B-C
A-B-C-D A-X-Y-Z-D
P P
splice(P, NULL, 1, X-Y) | | A
A-B-C-D X-Y-B-C-D
P P
splice(P, NULL, 3, NULL) | | A-B-C
A-B-C-D D
P P
splice(P, B, 0, X-Y) | | NULL
A-B-C-D A-B-X-Y-C-D
For lower-level direct manipulation of C<op_sibparent> and C<op_moresib>,
see C<L</OpMORESIB_set>>, C<L</OpLASTSIB_set>>, C<L</OpMAYBESIB_set>>.
=cut
*/
OP *
Perl_op_sibling_splice(OP *parent, OP *start, int del_count, OP* insert)
{
OP *first;
OP *rest;
OP *last_del = NULL;
OP *last_ins = NULL;
if (start)
first = OpSIBLING(start);
else if (!parent)
goto no_parent;
else
first = cLISTOPx(parent)->op_first;
assert(del_count >= -1);
if (del_count && first) {
last_del = first;
while (--del_count && OpHAS_SIBLING(last_del))
last_del = OpSIBLING(last_del);
rest = OpSIBLING(last_del);
OpLASTSIB_set(last_del, NULL);
}
else
rest = first;
if (insert) {
last_ins = insert;
while (OpHAS_SIBLING(last_ins))
last_ins = OpSIBLING(last_ins);
OpMAYBESIB_set(last_ins, rest, NULL);
}
else
insert = rest;
if (start) {
OpMAYBESIB_set(start, insert, NULL);
}
else {
assert(parent);
cLISTOPx(parent)->op_first = insert;
if (insert)
parent->op_flags |= OPf_KIDS;
else
parent->op_flags &= ~OPf_KIDS;
}
if (!rest) {
/* update op_last etc */
U32 type;
OP *lastop;
if (!parent)
goto no_parent;
/* ought to use OP_CLASS(parent) here, but that can't handle
* ex-foo OP_NULL ops. Also note that XopENTRYCUSTOM() can't
* either */
type = parent->op_type;
if (type == OP_CUSTOM) {
dTHX;
type = XopENTRYCUSTOM(parent, xop_class);
}
else {
if (type == OP_NULL)
type = parent->op_targ;
type = PL_opargs[type] & OA_CLASS_MASK;
}
lastop = last_ins ? last_ins : start ? start : NULL;
if ( type == OA_BINOP
|| type == OA_LISTOP
|| type == OA_PMOP
|| type == OA_LOOP
)
cLISTOPx(parent)->op_last = lastop;
if (lastop)
OpLASTSIB_set(lastop, parent);
}
return last_del ? first : NULL;
no_parent:
Perl_croak_nocontext("panic: op_sibling_splice(): NULL parent");
}
/*
=for apidoc op_parent
Returns the parent OP of C<o>, if it has a parent. Returns C<NULL> otherwise.
=cut
*/
OP *
Perl_op_parent(OP *o)
{
PERL_ARGS_ASSERT_OP_PARENT;
while (OpHAS_SIBLING(o))
o = OpSIBLING(o);
return o->op_sibparent;
}
/* replace the sibling following start with a new UNOP, which becomes
* the parent of the original sibling; e.g.
*
* op_sibling_newUNOP(P, A, unop-args...)
*
* P P
* | becomes |
* A-B-C A-U-C
* |
* B
*
* where U is the new UNOP.
*
* parent and start args are the same as for op_sibling_splice();
* type and flags args are as newUNOP().
*
* Returns the new UNOP.
*/
STATIC OP *
S_op_sibling_newUNOP(pTHX_ OP *parent, OP *start, I32 type, I32 flags)
{
OP *kid, *newop;
kid = op_sibling_splice(parent, start, 1, NULL);
newop = newUNOP(type, flags, kid);
op_sibling_splice(parent, start, 0, newop);
return newop;
}
/* lowest-level newLOGOP-style function - just allocates and populates
* the struct. Higher-level stuff should be done by S_new_logop() /
* newLOGOP(). This function exists mainly to avoid op_first assignment
* being spread throughout this file.
*/
LOGOP *
Perl_alloc_LOGOP(pTHX_ I32 type, OP *first, OP* other)
{
dVAR;
LOGOP *logop;
OP *kid = first;
NewOp(1101, logop, 1, LOGOP);
OpTYPE_set(logop, type);
logop->op_first = first;
logop->op_other = other;
if (first)
logop->op_flags = OPf_KIDS;
while (kid && OpHAS_SIBLING(kid))
kid = OpSIBLING(kid);
if (kid)
OpLASTSIB_set(kid, (OP*)logop);
return logop;
}
/* Contextualizers */
/*
=for apidoc op_contextualize
Applies a syntactic context to an op tree representing an expression.
C<o> is the op tree, and C<context> must be C<G_SCALAR>, C<G_ARRAY>,
or C<G_VOID> to specify the context to apply. The modified op tree
is returned.
=cut
*/
OP *
Perl_op_contextualize(pTHX_ OP *o, I32 context)
{
PERL_ARGS_ASSERT_OP_CONTEXTUALIZE;
switch (context) {
case G_SCALAR: return scalar(o);
case G_ARRAY: return list(o);
case G_VOID: return scalarvoid(o);
default:
Perl_croak(aTHX_ "panic: op_contextualize bad context %ld",
(long) context);
}
}
/*
=for apidoc op_linklist
This function is the implementation of the L</LINKLIST> macro. It should
not be called directly.
=cut
*/
OP *
Perl_op_linklist(pTHX_ OP *o)
{
OP **prevp;
OP *kid;
OP * top_op = o;
PERL_ARGS_ASSERT_OP_LINKLIST;
while (1) {
/* Descend down the tree looking for any unprocessed subtrees to
* do first */
if (!o->op_next) {
if (o->op_flags & OPf_KIDS) {
o = cUNOPo->op_first;
continue;
}
o->op_next = o; /* leaf node; link to self initially */
}
/* if we're at the top level, there either weren't any children
* to process, or we've worked our way back to the top. */
if (o == top_op)
return o->op_next;
/* o is now processed. Next, process any sibling subtrees */
if (OpHAS_SIBLING(o)) {
o = OpSIBLING(o);
continue;
}
/* Done all the subtrees at this level. Go back up a level and
* link the parent in with all its (processed) children.
*/
o = o->op_sibparent;
assert(!o->op_next);
prevp = &(o->op_next);
kid = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL;
while (kid) {
*prevp = kid->op_next;
prevp = &(kid->op_next);
kid = OpSIBLING(kid);
}
*prevp = o;
}
}
static OP *
S_scalarkids(pTHX_ OP *o)
{
if (o && o->op_flags & OPf_KIDS) {
OP *kid;
for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
scalar(kid);
}
return o;
}
STATIC OP *
S_scalarboolean(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_SCALARBOOLEAN;
if ((o->op_type == OP_SASSIGN && cBINOPo->op_first->op_type == OP_CONST &&
!(cBINOPo->op_first->op_flags & OPf_SPECIAL)) ||
(o->op_type == OP_NOT && cUNOPo->op_first->op_type == OP_SASSIGN &&
cBINOPx(cUNOPo->op_first)->op_first->op_type == OP_CONST &&
!(cBINOPx(cUNOPo->op_first)->op_first->op_flags & OPf_SPECIAL))) {
if (ckWARN(WARN_SYNTAX)) {
const line_t oldline = CopLINE(PL_curcop);
if (PL_parser && PL_parser->copline != NOLINE) {
/* This ensures that warnings are reported at the first line
of the conditional, not the last. */
CopLINE_set(PL_curcop, PL_parser->copline);
}
Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "Found = in conditional, should be ==");
CopLINE_set(PL_curcop, oldline);
}
}
return scalar(o);
}
static SV *
S_op_varname_subscript(pTHX_ const OP *o, int subscript_type)
{
assert(o);
assert(o->op_type == OP_PADAV || o->op_type == OP_RV2AV ||
o->op_type == OP_PADHV || o->op_type == OP_RV2HV);
{
const char funny = o->op_type == OP_PADAV
|| o->op_type == OP_RV2AV ? '@' : '%';
if (o->op_type == OP_RV2AV || o->op_type == OP_RV2HV) {
GV *gv;
if (cUNOPo->op_first->op_type != OP_GV
|| !(gv = cGVOPx_gv(cUNOPo->op_first)))
return NULL;
return varname(gv, funny, 0, NULL, 0, subscript_type);
}
return
varname(MUTABLE_GV(PL_compcv), funny, o->op_targ, NULL, 0, subscript_type);
}
}
static SV *
S_op_varname(pTHX_ const OP *o)
{
return S_op_varname_subscript(aTHX_ o, 1);
}
static void
S_op_pretty(pTHX_ const OP *o, SV **retsv, const char **retpv)
{ /* or not so pretty :-) */
if (o->op_type == OP_CONST) {
*retsv = cSVOPo_sv;
if (SvPOK(*retsv)) {
SV *sv = *retsv;
*retsv = sv_newmortal();
pv_pretty(*retsv, SvPVX_const(sv), SvCUR(sv), 32, NULL, NULL,
PERL_PV_PRETTY_DUMP |PERL_PV_ESCAPE_UNI_DETECT);
}
else if (!SvOK(*retsv))
*retpv = "undef";
}
else *retpv = "...";
}
static void
S_scalar_slice_warning(pTHX_ const OP *o)
{
OP *kid;
const bool h = o->op_type == OP_HSLICE
|| (o->op_type == OP_NULL && o->op_targ == OP_HSLICE);
const char lbrack =
h ? '{' : '[';
const char rbrack =
h ? '}' : ']';
SV *name;
SV *keysv = NULL; /* just to silence compiler warnings */
const char *key = NULL;
if (!(o->op_private & OPpSLICEWARNING))
return;
if (PL_parser && PL_parser->error_count)
/* This warning can be nonsensical when there is a syntax error. */
return;
kid = cLISTOPo->op_first;
kid = OpSIBLING(kid); /* get past pushmark */
/* weed out false positives: any ops that can return lists */
switch (kid->op_type) {
case OP_BACKTICK:
case OP_GLOB:
case OP_READLINE:
case OP_MATCH:
case OP_RV2AV:
case OP_EACH:
case OP_VALUES:
case OP_KEYS:
case OP_SPLIT:
case OP_LIST:
case OP_SORT:
case OP_REVERSE:
case OP_ENTERSUB:
case OP_CALLER:
case OP_LSTAT:
case OP_STAT:
case OP_READDIR:
case OP_SYSTEM:
case OP_TMS:
case OP_LOCALTIME:
case OP_GMTIME:
case OP_ENTEREVAL:
return;
}
/* Don't warn if we have a nulled list either. */
if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST)
return;
assert(OpSIBLING(kid));
name = S_op_varname(aTHX_ OpSIBLING(kid));
if (!name) /* XS module fiddling with the op tree */
return;
S_op_pretty(aTHX_ kid, &keysv, &key);
assert(SvPOK(name));
sv_chop(name,SvPVX(name)+1);
if (key)
/* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"Scalar value @%" SVf "%c%s%c better written as $%" SVf
"%c%s%c",
SVfARG(name), lbrack, key, rbrack, SVfARG(name),
lbrack, key, rbrack);
else
/* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"Scalar value @%" SVf "%c%" SVf "%c better written as $%"
SVf "%c%" SVf "%c",
SVfARG(name), lbrack, SVfARG(keysv), rbrack,
SVfARG(name), lbrack, SVfARG(keysv), rbrack);
}
/* apply scalar context to the o subtree */
OP *
Perl_scalar(pTHX_ OP *o)
{
OP * top_op = o;
while (1) {
OP *next_kid = NULL; /* what op (if any) to process next */
OP *kid;
/* assumes no premature commitment */
if (!o || (PL_parser && PL_parser->error_count)
|| (o->op_flags & OPf_WANT)
|| o->op_type == OP_RETURN)
{
goto do_next;
}
o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_SCALAR;
switch (o->op_type) {
case OP_REPEAT:
scalar(cBINOPo->op_first);
/* convert what initially looked like a list repeat into a
* scalar repeat, e.g. $s = (1) x $n
*/
if (o->op_private & OPpREPEAT_DOLIST) {
kid = cLISTOPx(cUNOPo->op_first)->op_first;
assert(kid->op_type == OP_PUSHMARK);
if (OpHAS_SIBLING(kid) && !OpHAS_SIBLING(OpSIBLING(kid))) {
op_null(cLISTOPx(cUNOPo->op_first)->op_first);
o->op_private &=~ OPpREPEAT_DOLIST;
}
}
break;
case OP_OR:
case OP_AND:
case OP_COND_EXPR:
/* impose scalar context on everything except the condition */
next_kid = OpSIBLING(cUNOPo->op_first);
break;
default:
if (o->op_flags & OPf_KIDS)
next_kid = cUNOPo->op_first; /* do all kids */
break;
/* the children of these ops are usually a list of statements,
* except the leaves, whose first child is a corresponding enter
*/
case OP_SCOPE:
case OP_LINESEQ:
case OP_LIST:
kid = cLISTOPo->op_first;
goto do_kids;
case OP_LEAVE:
case OP_LEAVETRY:
kid = cLISTOPo->op_first;
scalar(kid);
kid = OpSIBLING(kid);
do_kids:
while (kid) {
OP *sib = OpSIBLING(kid);
/* Apply void context to all kids except the last, which
* is scalar (ignoring a trailing ex-nextstate in determining
* if it's the last kid). E.g.
* $scalar = do { void; void; scalar }
* Except that 'when's are always scalar, e.g.
* $scalar = do { given(..) {
* when (..) { scalar }
* when (..) { scalar }
* ...
* }}
*/
if (!sib
|| ( !OpHAS_SIBLING(sib)
&& sib->op_type == OP_NULL
&& ( sib->op_targ == OP_NEXTSTATE
|| sib->op_targ == OP_DBSTATE )
)
)
{
/* tail call optimise calling scalar() on the last kid */
next_kid = kid;
goto do_next;
}
else if (kid->op_type == OP_LEAVEWHEN)
scalar(kid);
else
scalarvoid(kid);
kid = sib;
}
NOT_REACHED; /* NOTREACHED */
break;
case OP_SORT:
Perl_ck_warner(aTHX_ packWARN(WARN_VOID), "Useless use of sort in scalar context");
break;
case OP_KVHSLICE:
case OP_KVASLICE:
{
/* Warn about scalar context */
const char lbrack = o->op_type == OP_KVHSLICE ? '{' : '[';
const char rbrack = o->op_type == OP_KVHSLICE ? '}' : ']';
SV *name;
SV *keysv;
const char *key = NULL;
/* This warning can be nonsensical when there is a syntax error. */
if (PL_parser && PL_parser->error_count)
break;
if (!ckWARN(WARN_SYNTAX)) break;
kid = cLISTOPo->op_first;
kid = OpSIBLING(kid); /* get past pushmark */
assert(OpSIBLING(kid));
name = S_op_varname(aTHX_ OpSIBLING(kid));
if (!name) /* XS module fiddling with the op tree */
break;
S_op_pretty(aTHX_ kid, &keysv, &key);
assert(SvPOK(name));
sv_chop(name,SvPVX(name)+1);
if (key)
/* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"%%%" SVf "%c%s%c in scalar context better written "
"as $%" SVf "%c%s%c",
SVfARG(name), lbrack, key, rbrack, SVfARG(name),
lbrack, key, rbrack);
else
/* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"%%%" SVf "%c%" SVf "%c in scalar context better "
"written as $%" SVf "%c%" SVf "%c",
SVfARG(name), lbrack, SVfARG(keysv), rbrack,
SVfARG(name), lbrack, SVfARG(keysv), rbrack);
}
} /* switch */
/* If next_kid is set, someone in the code above wanted us to process
* that kid and all its remaining siblings. Otherwise, work our way
* back up the tree */
do_next:
while (!next_kid) {
if (o == top_op)
return top_op; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o))
next_kid = o->op_sibparent;
else {
o = o->op_sibparent; /*try parent's next sibling */
switch (o->op_type) {
case OP_SCOPE:
case OP_LINESEQ:
case OP_LIST:
case OP_LEAVE:
case OP_LEAVETRY:
/* should really restore PL_curcop to its old value, but
* setting it to PL_compiling is better than do nothing */
PL_curcop = &PL_compiling;
}
}
}
o = next_kid;
} /* while */
}
/* apply void context to the optree arg */
OP *
Perl_scalarvoid(pTHX_ OP *arg)
{
dVAR;
OP *kid;
SV* sv;
OP *o = arg;
PERL_ARGS_ASSERT_SCALARVOID;
while (1) {
U8 want;
SV *useless_sv = NULL;
const char* useless = NULL;
OP * next_kid = NULL;
if (o->op_type == OP_NEXTSTATE
|| o->op_type == OP_DBSTATE
|| (o->op_type == OP_NULL && (o->op_targ == OP_NEXTSTATE
|| o->op_targ == OP_DBSTATE)))
PL_curcop = (COP*)o; /* for warning below */
/* assumes no premature commitment */
want = o->op_flags & OPf_WANT;
if ((want && want != OPf_WANT_SCALAR)
|| (PL_parser && PL_parser->error_count)
|| o->op_type == OP_RETURN || o->op_type == OP_REQUIRE || o->op_type == OP_LEAVEWHEN)
{
goto get_next_op;
}
if ((o->op_private & OPpTARGET_MY)
&& (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
{
/* newASSIGNOP has already applied scalar context, which we
leave, as if this op is inside SASSIGN. */
goto get_next_op;
}
o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
switch (o->op_type) {
default:
if (!(PL_opargs[o->op_type] & OA_FOLDCONST))
break;
/* FALLTHROUGH */
case OP_REPEAT:
if (o->op_flags & OPf_STACKED)
break;
if (o->op_type == OP_REPEAT)
scalar(cBINOPo->op_first);
goto func_ops;
case OP_CONCAT:
if ((o->op_flags & OPf_STACKED) &&
!(o->op_private & OPpCONCAT_NESTED))
break;
goto func_ops;
case OP_SUBSTR:
if (o->op_private == 4)
break;
/* FALLTHROUGH */
case OP_WANTARRAY:
case OP_GV:
case OP_SMARTMATCH:
case OP_AV2ARYLEN:
case OP_REF:
case OP_REFGEN:
case OP_SREFGEN:
case OP_DEFINED:
case OP_HEX:
case OP_OCT:
case OP_LENGTH:
case OP_VEC:
case OP_INDEX:
case OP_RINDEX:
case OP_SPRINTF:
case OP_KVASLICE:
case OP_KVHSLICE:
case OP_UNPACK:
case OP_PACK:
case OP_JOIN:
case OP_LSLICE:
case OP_ANONLIST:
case OP_ANONHASH:
case OP_SORT:
case OP_REVERSE:
case OP_RANGE:
case OP_FLIP:
case OP_FLOP:
case OP_CALLER:
case OP_FILENO:
case OP_EOF:
case OP_TELL:
case OP_GETSOCKNAME:
case OP_GETPEERNAME:
case OP_READLINK:
case OP_TELLDIR:
case OP_GETPPID:
case OP_GETPGRP:
case OP_GETPRIORITY:
case OP_TIME:
case OP_TMS:
case OP_LOCALTIME:
case OP_GMTIME:
case OP_GHBYNAME:
case OP_GHBYADDR:
case OP_GHOSTENT:
case OP_GNBYNAME:
case OP_GNBYADDR:
case OP_GNETENT:
case OP_GPBYNAME:
case OP_GPBYNUMBER:
case OP_GPROTOENT:
case OP_GSBYNAME:
case OP_GSBYPORT:
case OP_GSERVENT:
case OP_GPWNAM:
case OP_GPWUID:
case OP_GGRNAM:
case OP_GGRGID:
case OP_GETLOGIN:
case OP_PROTOTYPE:
case OP_RUNCV:
func_ops:
useless = OP_DESC(o);
break;
case OP_GVSV:
case OP_PADSV:
case OP_PADAV:
case OP_PADHV:
case OP_PADANY:
case OP_AELEM:
case OP_AELEMFAST:
case OP_AELEMFAST_LEX:
case OP_ASLICE:
case OP_HELEM:
case OP_HSLICE:
if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)))
/* Otherwise it's "Useless use of grep iterator" */
useless = OP_DESC(o);
break;
case OP_SPLIT:
if (!(o->op_private & OPpSPLIT_ASSIGN))
useless = OP_DESC(o);
break;
case OP_NOT:
kid = cUNOPo->op_first;
if (kid->op_type != OP_MATCH && kid->op_type != OP_SUBST &&
kid->op_type != OP_TRANS && kid->op_type != OP_TRANSR) {
goto func_ops;
}
useless = "negative pattern binding (!~)";
break;
case OP_SUBST:
if (cPMOPo->op_pmflags & PMf_NONDESTRUCT)
useless = "non-destructive substitution (s///r)";
break;
case OP_TRANSR:
useless = "non-destructive transliteration (tr///r)";
break;
case OP_RV2GV:
case OP_RV2SV:
case OP_RV2AV:
case OP_RV2HV:
if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)) &&
(!OpHAS_SIBLING(o) || OpSIBLING(o)->op_type != OP_READLINE))
useless = "a variable";
break;
case OP_CONST:
sv = cSVOPo_sv;
if (cSVOPo->op_private & OPpCONST_STRICT)
no_bareword_allowed(o);
else {
if (ckWARN(WARN_VOID)) {
NV nv;
/* don't warn on optimised away booleans, eg
* use constant Foo, 5; Foo || print; */
if (cSVOPo->op_private & OPpCONST_SHORTCIRCUIT)
useless = NULL;
/* the constants 0 and 1 are permitted as they are
conventionally used as dummies in constructs like
1 while some_condition_with_side_effects; */
else if (SvNIOK(sv) && ((nv = SvNV(sv)) == 0.0 || nv == 1.0))
useless = NULL;
else if (SvPOK(sv)) {
SV * const dsv = newSVpvs("");
useless_sv
= Perl_newSVpvf(aTHX_
"a constant (%s)",
pv_pretty(dsv, SvPVX_const(sv),
SvCUR(sv), 32, NULL, NULL,
PERL_PV_PRETTY_DUMP
| PERL_PV_ESCAPE_NOCLEAR
| PERL_PV_ESCAPE_UNI_DETECT));
SvREFCNT_dec_NN(dsv);
}
else if (SvOK(sv)) {
useless_sv = Perl_newSVpvf(aTHX_ "a constant (%" SVf ")", SVfARG(sv));
}
else
useless = "a constant (undef)";
}
}
op_null(o); /* don't execute or even remember it */
break;
case OP_POSTINC:
OpTYPE_set(o, OP_PREINC); /* pre-increment is faster */
break;
case OP_POSTDEC:
OpTYPE_set(o, OP_PREDEC); /* pre-decrement is faster */
break;
case OP_I_POSTINC:
OpTYPE_set(o, OP_I_PREINC); /* pre-increment is faster */
break;
case OP_I_POSTDEC:
OpTYPE_set(o, OP_I_PREDEC); /* pre-decrement is faster */
break;
case OP_SASSIGN: {
OP *rv2gv;
UNOP *refgen, *rv2cv;
LISTOP *exlist;
if ((o->op_private & ~OPpASSIGN_BACKWARDS) != 2)
break;
rv2gv = ((BINOP *)o)->op_last;
if (!rv2gv || rv2gv->op_type != OP_RV2GV)
break;
refgen = (UNOP *)((BINOP *)o)->op_first;
if (!refgen || (refgen->op_type != OP_REFGEN
&& refgen->op_type != OP_SREFGEN))
break;
exlist = (LISTOP *)refgen->op_first;
if (!exlist || exlist->op_type != OP_NULL
|| exlist->op_targ != OP_LIST)
break;
if (exlist->op_first->op_type != OP_PUSHMARK
&& exlist->op_first != exlist->op_last)
break;
rv2cv = (UNOP*)exlist->op_last;
if (rv2cv->op_type != OP_RV2CV)
break;
assert ((rv2gv->op_private & OPpDONT_INIT_GV) == 0);
assert ((o->op_private & OPpASSIGN_CV_TO_GV) == 0);
assert ((rv2cv->op_private & OPpMAY_RETURN_CONSTANT) == 0);
o->op_private |= OPpASSIGN_CV_TO_GV;
rv2gv->op_private |= OPpDONT_INIT_GV;
rv2cv->op_private |= OPpMAY_RETURN_CONSTANT;
break;
}
case OP_AASSIGN: {
inplace_aassign(o);
break;
}
case OP_OR:
case OP_AND:
kid = cLOGOPo->op_first;
if (kid->op_type == OP_NOT
&& (kid->op_flags & OPf_KIDS)) {
if (o->op_type == OP_AND) {
OpTYPE_set(o, OP_OR);
} else {
OpTYPE_set(o, OP_AND);
}
op_null(kid);
}
/* FALLTHROUGH */
case OP_DOR:
case OP_COND_EXPR:
case OP_ENTERGIVEN:
case OP_ENTERWHEN:
next_kid = OpSIBLING(cUNOPo->op_first);
break;
case OP_NULL:
if (o->op_flags & OPf_STACKED)
break;
/* FALLTHROUGH */
case OP_NEXTSTATE:
case OP_DBSTATE:
case OP_ENTERTRY:
case OP_ENTER:
if (!(o->op_flags & OPf_KIDS))
break;
/* FALLTHROUGH */
case OP_SCOPE:
case OP_LEAVE:
case OP_LEAVETRY:
case OP_LEAVELOOP:
case OP_LINESEQ:
case OP_LEAVEGIVEN:
case OP_LEAVEWHEN:
kids:
next_kid = cLISTOPo->op_first;
break;
case OP_LIST:
/* If the first kid after pushmark is something that the padrange
optimisation would reject, then null the list and the pushmark.
*/
if ((kid = cLISTOPo->op_first)->op_type == OP_PUSHMARK
&& ( !(kid = OpSIBLING(kid))
|| ( kid->op_type != OP_PADSV
&& kid->op_type != OP_PADAV
&& kid->op_type != OP_PADHV)
|| kid->op_private & ~OPpLVAL_INTRO
|| !(kid = OpSIBLING(kid))
|| ( kid->op_type != OP_PADSV
&& kid->op_type != OP_PADAV
&& kid->op_type != OP_PADHV)
|| kid->op_private & ~OPpLVAL_INTRO)
) {
op_null(cUNOPo->op_first); /* NULL the pushmark */
op_null(o); /* NULL the list */
}
goto kids;
case OP_ENTEREVAL:
scalarkids(o);
break;
case OP_SCALAR:
scalar(o);
break;
}
if (useless_sv) {
/* mortalise it, in case warnings are fatal. */
Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
"Useless use of %" SVf " in void context",
SVfARG(sv_2mortal(useless_sv)));
}
else if (useless) {
Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
"Useless use of %s in void context",
useless);
}
get_next_op:
/* if a kid hasn't been nominated to process, continue with the
* next sibling, or if no siblings left, go back to the parent's
* siblings and so on
*/
while (!next_kid) {
if (o == arg)
return arg; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o))
next_kid = o->op_sibparent;
else
o = o->op_sibparent; /*try parent's next sibling */
}
o = next_kid;
}
return arg;
}
static OP *
S_listkids(pTHX_ OP *o)
{
if (o && o->op_flags & OPf_KIDS) {
OP *kid;
for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
list(kid);
}
return o;
}
/* apply list context to the o subtree */
OP *
Perl_list(pTHX_ OP *o)
{
OP * top_op = o;
while (1) {
OP *next_kid = NULL; /* what op (if any) to process next */
OP *kid;
/* assumes no premature commitment */
if (!o || (o->op_flags & OPf_WANT)
|| (PL_parser && PL_parser->error_count)
|| o->op_type == OP_RETURN)
{
goto do_next;
}
if ((o->op_private & OPpTARGET_MY)
&& (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
{
goto do_next; /* As if inside SASSIGN */
}
o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_LIST;
switch (o->op_type) {
case OP_REPEAT:
if (o->op_private & OPpREPEAT_DOLIST
&& !(o->op_flags & OPf_STACKED))
{
list(cBINOPo->op_first);
kid = cBINOPo->op_last;
/* optimise away (.....) x 1 */
if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)
&& SvIVX(kSVOP_sv) == 1)
{
op_null(o); /* repeat */
op_null(cUNOPx(cBINOPo->op_first)->op_first);/* pushmark */
/* const (rhs): */
op_free(op_sibling_splice(o, cBINOPo->op_first, 1, NULL));
}
}
break;
case OP_OR:
case OP_AND:
case OP_COND_EXPR:
/* impose list context on everything except the condition */
next_kid = OpSIBLING(cUNOPo->op_first);
break;
default:
if (!(o->op_flags & OPf_KIDS))
break;
/* possibly flatten 1..10 into a constant array */
if (!o->op_next && cUNOPo->op_first->op_type == OP_FLOP) {
list(cBINOPo->op_first);
gen_constant_list(o);
goto do_next;
}
next_kid = cUNOPo->op_first; /* do all kids */
break;
case OP_LIST:
if (cLISTOPo->op_first->op_type == OP_PUSHMARK) {
op_null(cUNOPo->op_first); /* NULL the pushmark */
op_null(o); /* NULL the list */
}
if (o->op_flags & OPf_KIDS)
next_kid = cUNOPo->op_first; /* do all kids */
break;
/* the children of these ops are usually a list of statements,
* except the leaves, whose first child is a corresponding enter
*/
case OP_SCOPE:
case OP_LINESEQ:
kid = cLISTOPo->op_first;
goto do_kids;
case OP_LEAVE:
case OP_LEAVETRY:
kid = cLISTOPo->op_first;
list(kid);
kid = OpSIBLING(kid);
do_kids:
while (kid) {
OP *sib = OpSIBLING(kid);
/* Apply void context to all kids except the last, which
* is list. E.g.
* @a = do { void; void; list }
* Except that 'when's are always list context, e.g.
* @a = do { given(..) {
* when (..) { list }
* when (..) { list }
* ...
* }}
*/
if (!sib) {
/* tail call optimise calling list() on the last kid */
next_kid = kid;
goto do_next;
}
else if (kid->op_type == OP_LEAVEWHEN)
list(kid);
else
scalarvoid(kid);
kid = sib;
}
NOT_REACHED; /* NOTREACHED */
break;
}
/* If next_kid is set, someone in the code above wanted us to process
* that kid and all its remaining siblings. Otherwise, work our way
* back up the tree */
do_next:
while (!next_kid) {
if (o == top_op)
return top_op; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o))
next_kid = o->op_sibparent;
else {
o = o->op_sibparent; /*try parent's next sibling */
switch (o->op_type) {
case OP_SCOPE:
case OP_LINESEQ:
case OP_LIST:
case OP_LEAVE:
case OP_LEAVETRY:
/* should really restore PL_curcop to its old value, but
* setting it to PL_compiling is better than do nothing */
PL_curcop = &PL_compiling;
}
}
}
o = next_kid;
} /* while */
}
static OP *
S_scalarseq(pTHX_ OP *o)
{
if (o) {
const OPCODE type = o->op_type;
if (type == OP_LINESEQ || type == OP_SCOPE ||
type == OP_LEAVE || type == OP_LEAVETRY)
{
OP *kid, *sib;
for (kid = cLISTOPo->op_first; kid; kid = sib) {
if ((sib = OpSIBLING(kid))
&& ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL
|| ( sib->op_targ != OP_NEXTSTATE
&& sib->op_targ != OP_DBSTATE )))
{
scalarvoid(kid);
}
}
PL_curcop = &PL_compiling;
}
o->op_flags &= ~OPf_PARENS;
if (PL_hints & HINT_BLOCK_SCOPE)
o->op_flags |= OPf_PARENS;
}
else
o = newOP(OP_STUB, 0);
return o;
}
STATIC OP *
S_modkids(pTHX_ OP *o, I32 type)
{
if (o && o->op_flags & OPf_KIDS) {
OP *kid;
for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
op_lvalue(kid, type);
}
return o;
}
/* for a helem/hslice/kvslice, if its a fixed hash, croak on invalid
* const fields. Also, convert CONST keys to HEK-in-SVs.
* rop is the op that retrieves the hash;
* key_op is the first key
* real if false, only check (and possibly croak); don't update op
*/
STATIC void
S_check_hash_fields_and_hekify(pTHX_ UNOP *rop, SVOP *key_op, int real)
{
PADNAME *lexname;
GV **fields;
bool check_fields;
/* find the padsv corresponding to $lex->{} or @{$lex}{} */
if (rop) {
if (rop->op_first->op_type == OP_PADSV)
/* @$hash{qw(keys here)} */
rop = (UNOP*)rop->op_first;
else {
/* @{$hash}{qw(keys here)} */
if (rop->op_first->op_type == OP_SCOPE
&& cLISTOPx(rop->op_first)->op_last->op_type == OP_PADSV)
{
rop = (UNOP*)cLISTOPx(rop->op_first)->op_last;
}
else
rop = NULL;
}
}
lexname = NULL; /* just to silence compiler warnings */
fields = NULL; /* just to silence compiler warnings */
check_fields =
rop
&& (lexname = padnamelist_fetch(PL_comppad_name, rop->op_targ),
SvPAD_TYPED(lexname))
&& (fields = (GV**)hv_fetchs(PadnameTYPE(lexname), "FIELDS", FALSE))
&& isGV(*fields) && GvHV(*fields);
for (; key_op; key_op = (SVOP*)OpSIBLING(key_op)) {
SV **svp, *sv;
if (key_op->op_type != OP_CONST)
continue;
svp = cSVOPx_svp(key_op);
/* make sure it's not a bareword under strict subs */
if (key_op->op_private & OPpCONST_BARE &&
key_op->op_private & OPpCONST_STRICT)
{
no_bareword_allowed((OP*)key_op);
}
/* Make the CONST have a shared SV */
if ( !SvIsCOW_shared_hash(sv = *svp)
&& SvTYPE(sv) < SVt_PVMG
&& SvOK(sv)
&& !SvROK(sv)
&& real)
{
SSize_t keylen;
const char * const key = SvPV_const(sv, *(STRLEN*)&keylen);
SV *nsv = newSVpvn_share(key, SvUTF8(sv) ? -keylen : keylen, 0);
SvREFCNT_dec_NN(sv);
*svp = nsv;
}
if ( check_fields
&& !hv_fetch_ent(GvHV(*fields), *svp, FALSE, 0))
{
Perl_croak(aTHX_ "No such class field \"%" SVf "\" "
"in variable %" PNf " of type %" HEKf,
SVfARG(*svp), PNfARG(lexname),
HEKfARG(HvNAME_HEK(PadnameTYPE(lexname))));
}
}
}
/* info returned by S_sprintf_is_multiconcatable() */
struct sprintf_ismc_info {
SSize_t nargs; /* num of args to sprintf (not including the format) */
char *start; /* start of raw format string */
char *end; /* bytes after end of raw format string */
STRLEN total_len; /* total length (in bytes) of format string, not
including '%s' and half of '%%' */
STRLEN variant; /* number of bytes by which total_len_p would grow
if upgraded to utf8 */
bool utf8; /* whether the format is utf8 */
};
/* is the OP_SPRINTF o suitable for converting into a multiconcat op?
* i.e. its format argument is a const string with only '%s' and '%%'
* formats, and the number of args is known, e.g.
* sprintf "a=%s f=%s", $a[0], scalar(f());
* but not
* sprintf "i=%d a=%s f=%s", $i, @a, f();
*
* If successful, the sprintf_ismc_info struct pointed to by info will be
* populated.
*/
STATIC bool
S_sprintf_is_multiconcatable(pTHX_ OP *o,struct sprintf_ismc_info *info)
{
OP *pm, *constop, *kid;
SV *sv;
char *s, *e, *p;
SSize_t nargs, nformats;
STRLEN cur, total_len, variant;
bool utf8;
/* if sprintf's behaviour changes, die here so that someone
* can decide whether to enhance this function or skip optimising
* under those new circumstances */
assert(!(o->op_flags & OPf_STACKED));
assert(!(PL_opargs[OP_SPRINTF] & OA_TARGLEX));
assert(!(o->op_private & ~OPpARG4_MASK));
pm = cUNOPo->op_first;
if (pm->op_type != OP_PUSHMARK) /* weird coreargs stuff */
return FALSE;
constop = OpSIBLING(pm);
if (!constop || constop->op_type != OP_CONST)
return FALSE;
sv = cSVOPx_sv(constop);
if (SvMAGICAL(sv) || !SvPOK(sv))
return FALSE;
s = SvPV(sv, cur);
e = s + cur;
/* Scan format for %% and %s and work out how many %s there are.
* Abandon if other format types are found.
*/
nformats = 0;
total_len = 0;
variant = 0;
for (p = s; p < e; p++) {
if (*p != '%') {
total_len++;
if (!UTF8_IS_INVARIANT(*p))
variant++;
continue;
}
p++;
if (p >= e)
return FALSE; /* lone % at end gives "Invalid conversion" */
if (*p == '%')
total_len++;
else if (*p == 's')
nformats++;
else
return FALSE;
}
if (!nformats || nformats > PERL_MULTICONCAT_MAXARG)
return FALSE;
utf8 = cBOOL(SvUTF8(sv));
if (utf8)
variant = 0;
/* scan args; they must all be in scalar cxt */
nargs = 0;
kid = OpSIBLING(constop);
while (kid) {
if ((kid->op_flags & OPf_WANT) != OPf_WANT_SCALAR)
return FALSE;
nargs++;
kid = OpSIBLING(kid);
}
if (nargs != nformats)
return FALSE; /* e.g. sprintf("%s%s", $a); */
info->nargs = nargs;
info->start = s;
info->end = e;
info->total_len = total_len;
info->variant = variant;
info->utf8 = utf8;
return TRUE;
}
/* S_maybe_multiconcat():
*
* given an OP_STRINGIFY, OP_SASSIGN, OP_CONCAT or OP_SPRINTF op, possibly
* convert it (and its children) into an OP_MULTICONCAT. See the code
* comments just before pp_multiconcat() for the full details of what
* OP_MULTICONCAT supports.
*
* Basically we're looking for an optree with a chain of OP_CONCATS down
* the LHS (or an OP_SPRINTF), with possibly an OP_SASSIGN, and/or
* OP_STRINGIFY, and/or OP_CONCAT acting as '.=' at its head, e.g.
*
* $x = "$a$b-$c"
*
* looks like
*
* SASSIGN
* |
* STRINGIFY -- PADSV[$x]
* |
* |
* ex-PUSHMARK -- CONCAT/S
* |
* CONCAT/S -- PADSV[$d]
* |
* CONCAT -- CONST["-"]
* |
* PADSV[$a] -- PADSV[$b]
*
* Note that at this stage the OP_SASSIGN may have already been optimised
* away with OPpTARGET_MY set on the OP_STRINGIFY or OP_CONCAT.
*/
STATIC void
S_maybe_multiconcat(pTHX_ OP *o)
{
dVAR;
OP *lastkidop; /* the right-most of any kids unshifted onto o */
OP *topop; /* the top-most op in the concat tree (often equals o,
unless there are assign/stringify ops above it */
OP *parentop; /* the parent op of topop (or itself if no parent) */
OP *targmyop; /* the op (if any) with the OPpTARGET_MY flag */
OP *targetop; /* the op corresponding to target=... or target.=... */
OP *stringop; /* the OP_STRINGIFY op, if any */
OP *nextop; /* used for recreating the op_next chain without consts */
OP *kid; /* general-purpose op pointer */
UNOP_AUX_item *aux;
UNOP_AUX_item *lenp;
char *const_str, *p;
struct sprintf_ismc_info sprintf_info;
/* store info about each arg in args[];
* toparg is the highest used slot; argp is a general
* pointer to args[] slots */
struct {
void *p; /* initially points to const sv (or null for op);
later, set to SvPV(constsv), with ... */
STRLEN len; /* ... len set to SvPV(..., len) */
} *argp, *toparg, args[PERL_MULTICONCAT_MAXARG*2 + 1];
SSize_t nargs = 0;
SSize_t nconst = 0;
SSize_t nadjconst = 0; /* adjacent consts - may be demoted to args */
STRLEN variant;
bool utf8 = FALSE;
bool kid_is_last = FALSE; /* most args will be the RHS kid of a concat op;
the last-processed arg will the LHS of one,
as args are processed in reverse order */
U8 stacked_last = 0; /* whether the last seen concat op was STACKED */
STRLEN total_len = 0; /* sum of the lengths of the const segments */
U8 flags = 0; /* what will become the op_flags and ... */
U8 private_flags = 0; /* ... op_private of the multiconcat op */
bool is_sprintf = FALSE; /* we're optimising an sprintf */
bool is_targable = FALSE; /* targetop is an OPpTARGET_MY candidate */
bool prev_was_const = FALSE; /* previous arg was a const */
/* -----------------------------------------------------------------
* Phase 1:
*
* Examine the optree non-destructively to determine whether it's
* suitable to be converted into an OP_MULTICONCAT. Accumulate
* information about the optree in args[].
*/
argp = args;
targmyop = NULL;
targetop = NULL;
stringop = NULL;
topop = o;
parentop = o;
assert( o->op_type == OP_SASSIGN
|| o->op_type == OP_CONCAT
|| o->op_type == OP_SPRINTF
|| o->op_type == OP_STRINGIFY);
Zero(&sprintf_info, 1, struct sprintf_ismc_info);
/* first see if, at the top of the tree, there is an assign,
* append and/or stringify */
if (topop->op_type == OP_SASSIGN) {
/* expr = ..... */
if (o->op_ppaddr != PL_ppaddr[OP_SASSIGN])
return;
if (o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV))
return;
assert(!(o->op_private & ~OPpARG2_MASK)); /* barf on unknown flags */
parentop = topop;
topop = cBINOPo->op_first;
targetop = OpSIBLING(topop);
if (!targetop) /* probably some sort of syntax error */
return;
}
else if ( topop->op_type == OP_CONCAT
&& (topop->op_flags & OPf_STACKED)
&& (!(topop->op_private & OPpCONCAT_NESTED))
)
{
/* expr .= ..... */
/* OPpTARGET_MY shouldn't be able to be set here. If it is,
* decide what to do about it */
assert(!(o->op_private & OPpTARGET_MY));
/* barf on unknown flags */
assert(!(o->op_private & ~(OPpARG2_MASK|OPpTARGET_MY)));
private_flags |= OPpMULTICONCAT_APPEND;
targetop = cBINOPo->op_first;
parentop = topop;
topop = OpSIBLING(targetop);
/* $x .= <FOO> gets optimised to rcatline instead */
if (topop->op_type == OP_READLINE)
return;
}
if (targetop) {
/* Can targetop (the LHS) if it's a padsv, be be optimised
* away and use OPpTARGET_MY instead?
*/
if ( (targetop->op_type == OP_PADSV)
&& !(targetop->op_private & OPpDEREF)
&& !(targetop->op_private & OPpPAD_STATE)
/* we don't support 'my $x .= ...' */
&& ( o->op_type == OP_SASSIGN
|| !(targetop->op_private & OPpLVAL_INTRO))
)
is_targable = TRUE;
}
if (topop->op_type == OP_STRINGIFY) {
if (topop->op_ppaddr != PL_ppaddr[OP_STRINGIFY])
return;
stringop = topop;
/* barf on unknown flags */
assert(!(o->op_private & ~(OPpARG4_MASK|OPpTARGET_MY)));
if ((topop->op_private & OPpTARGET_MY)) {
if (o->op_type == OP_SASSIGN)
return; /* can't have two assigns */
targmyop = topop;
}
private_flags |= OPpMULTICONCAT_STRINGIFY;
parentop = topop;
topop = cBINOPx(topop)->op_first;
assert(OP_TYPE_IS_OR_WAS_NN(topop, OP_PUSHMARK));
topop = OpSIBLING(topop);
}
if (topop->op_type == OP_SPRINTF) {
if (topop->op_ppaddr != PL_ppaddr[OP_SPRINTF])
return;
if (S_sprintf_is_multiconcatable(aTHX_ topop, &sprintf_info)) {
nargs = sprintf_info.nargs;
total_len = sprintf_info.total_len;
variant = sprintf_info.variant;
utf8 = sprintf_info.utf8;
is_sprintf = TRUE;
private_flags |= OPpMULTICONCAT_FAKE;
toparg = argp;
/* we have an sprintf op rather than a concat optree.
* Skip most of the code below which is associated with
* processing that optree. We also skip phase 2, determining
* whether its cost effective to optimise, since for sprintf,
* multiconcat is *always* faster */
goto create_aux;
}
/* note that even if the sprintf itself isn't multiconcatable,
* the expression as a whole may be, e.g. in
* $x .= sprintf("%d",...)
* the sprintf op will be left as-is, but the concat/S op may
* be upgraded to multiconcat
*/
}
else if (topop->op_type == OP_CONCAT) {
if (topop->op_ppaddr != PL_ppaddr[OP_CONCAT])
return;
if ((topop->op_private & OPpTARGET_MY)) {
if (o->op_type == OP_SASSIGN || targmyop)
return; /* can't have two assigns */
targmyop = topop;
}
}
/* Is it safe to convert a sassign/stringify/concat op into
* a multiconcat? */
assert((PL_opargs[OP_SASSIGN] & OA_CLASS_MASK) == OA_BINOP);
assert((PL_opargs[OP_CONCAT] & OA_CLASS_MASK) == OA_BINOP);
assert((PL_opargs[OP_STRINGIFY] & OA_CLASS_MASK) == OA_LISTOP);
assert((PL_opargs[OP_SPRINTF] & OA_CLASS_MASK) == OA_LISTOP);
STATIC_ASSERT_STMT( STRUCT_OFFSET(BINOP, op_last)
== STRUCT_OFFSET(UNOP_AUX, op_aux));
STATIC_ASSERT_STMT( STRUCT_OFFSET(LISTOP, op_last)
== STRUCT_OFFSET(UNOP_AUX, op_aux));
/* Now scan the down the tree looking for a series of
* CONCAT/OPf_STACKED ops on the LHS (with the last one not
* stacked). For example this tree:
*
* |
* CONCAT/STACKED
* |
* CONCAT/STACKED -- EXPR5
* |
* CONCAT/STACKED -- EXPR4
* |
* CONCAT -- EXPR3
* |
* EXPR1 -- EXPR2
*
* corresponds to an expression like
*
* (EXPR1 . EXPR2 . EXPR3 . EXPR4 . EXPR5)
*
* Record info about each EXPR in args[]: in particular, whether it is
* a stringifiable OP_CONST and if so what the const sv is.
*
* The reason why the last concat can't be STACKED is the difference
* between
*
* ((($a .= $a) .= $a) .= $a) .= $a
*
* and
* $a . $a . $a . $a . $a
*
* The main difference between the optrees for those two constructs
* is the presence of the last STACKED. As well as modifying $a,
* the former sees the changed $a between each concat, so if $s is
* initially 'a', the first returns 'a' x 16, while the latter returns
* 'a' x 5. And pp_multiconcat can't handle that kind of thing.
*/
kid = topop;
for (;;) {
OP *argop;
SV *sv;
bool last = FALSE;
if ( kid->op_type == OP_CONCAT
&& !kid_is_last
) {
OP *k1, *k2;
k1 = cUNOPx(kid)->op_first;
k2 = OpSIBLING(k1);
/* shouldn't happen except maybe after compile err? */
if (!k2)
return;
/* avoid turning (A . B . ($lex = C) ...) into (A . B . C ...) */
if (kid->op_private & OPpTARGET_MY)
kid_is_last = TRUE;
stacked_last = (kid->op_flags & OPf_STACKED);
if (!stacked_last)
kid_is_last = TRUE;
kid = k1;
argop = k2;
}
else {
argop = kid;
last = TRUE;
}
if ( nargs + nadjconst > PERL_MULTICONCAT_MAXARG - 2
|| (argp - args + 1) > (PERL_MULTICONCAT_MAXARG*2 + 1) - 2)
{
/* At least two spare slots are needed to decompose both
* concat args. If there are no slots left, continue to
* examine the rest of the optree, but don't push new values
* on args[]. If the optree as a whole is legal for conversion
* (in particular that the last concat isn't STACKED), then
* the first PERL_MULTICONCAT_MAXARG elements of the optree
* can be converted into an OP_MULTICONCAT now, with the first
* child of that op being the remainder of the optree -
* which may itself later be converted to a multiconcat op
* too.
*/
if (last) {
/* the last arg is the rest of the optree */
argp++->p = NULL;
nargs++;
}
}
else if ( argop->op_type == OP_CONST
&& ((sv = cSVOPx_sv(argop)))
/* defer stringification until runtime of 'constant'
* things that might stringify variantly, e.g. the radix
* point of NVs, or overloaded RVs */
&& (SvPOK(sv) || SvIOK(sv))
&& (!SvGMAGICAL(sv))
) {
if (argop->op_private & OPpCONST_STRICT)
no_bareword_allowed(argop);
argp++->p = sv;
utf8 |= cBOOL(SvUTF8(sv));
nconst++;
if (prev_was_const)
/* this const may be demoted back to a plain arg later;
* make sure we have enough arg slots left */
nadjconst++;
prev_was_const = !prev_was_const;
}
else {
argp++->p = NULL;
nargs++;
prev_was_const = FALSE;
}
if (last)
break;
}
toparg = argp - 1;
if (stacked_last)
return; /* we don't support ((A.=B).=C)...) */
/* look for two adjacent consts and don't fold them together:
* $o . "a" . "b"
* should do
* $o->concat("a")->concat("b")
* rather than
* $o->concat("ab")
* (but $o .= "a" . "b" should still fold)
*/
{
bool seen_nonconst = FALSE;
for (argp = toparg; argp >= args; argp--) {
if (argp->p == NULL) {
seen_nonconst = TRUE;
continue;
}
if (!seen_nonconst)
continue;
if (argp[1].p) {
/* both previous and current arg were constants;
* leave the current OP_CONST as-is */
argp->p = NULL;
nconst--;
nargs++;
}
}
}
/* -----------------------------------------------------------------
* Phase 2:
*
* At this point we have determined that the optree *can* be converted
* into a multiconcat. Having gathered all the evidence, we now decide
* whether it *should*.
*/
/* we need at least one concat action, e.g.:
*
* Y . Z
* X = Y . Z
* X .= Y
*
* otherwise we could be doing something like $x = "foo", which
* if treated as as a concat, would fail to COW.
*/
if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 2)
return;
/* Benchmarking seems to indicate that we gain if:
* * we optimise at least two actions into a single multiconcat
* (e.g concat+concat, sassign+concat);
* * or if we can eliminate at least 1 OP_CONST;
* * or if we can eliminate a padsv via OPpTARGET_MY
*/
if (
/* eliminated at least one OP_CONST */
nconst >= 1
/* eliminated an OP_SASSIGN */
|| o->op_type == OP_SASSIGN
/* eliminated an OP_PADSV */
|| (!targmyop && is_targable)
)
/* definitely a net gain to optimise */
goto optimise;
/* ... if not, what else? */
/* special-case '$lex1 = expr . $lex1' (where expr isn't lex1):
* multiconcat is faster (due to not creating a temporary copy of
* $lex1), whereas for a general $lex1 = $lex2 . $lex3, concat is
* faster.
*/
if ( nconst == 0
&& nargs == 2
&& targmyop
&& topop->op_type == OP_CONCAT
) {
PADOFFSET t = targmyop->op_targ;
OP *k1 = cBINOPx(topop)->op_first;
OP *k2 = cBINOPx(topop)->op_last;
if ( k2->op_type == OP_PADSV
&& k2->op_targ == t
&& ( k1->op_type != OP_PADSV
|| k1->op_targ != t)
)
goto optimise;
}
/* need at least two concats */
if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 3)
return;
/* -----------------------------------------------------------------
* Phase 3:
*
* At this point the optree has been verified as ok to be optimised
* into an OP_MULTICONCAT. Now start changing things.
*/
optimise:
/* stringify all const args and determine utf8ness */
variant = 0;
for (argp = args; argp <= toparg; argp++) {
SV *sv = (SV*)argp->p;
if (!sv)
continue; /* not a const op */
if (utf8 && !SvUTF8(sv))
sv_utf8_upgrade_nomg(sv);
argp->p = SvPV_nomg(sv, argp->len);
total_len += argp->len;
/* see if any strings would grow if converted to utf8 */
if (!utf8) {
variant += variant_under_utf8_count((U8 *) argp->p,
(U8 *) argp->p + argp->len);
}
}
/* create and populate aux struct */
create_aux:
aux = (UNOP_AUX_item*)PerlMemShared_malloc(
sizeof(UNOP_AUX_item)
* (
PERL_MULTICONCAT_HEADER_SIZE
+ ((nargs + 1) * (variant ? 2 : 1))
)
);
const_str = (char *)PerlMemShared_malloc(total_len ? total_len : 1);
/* Extract all the non-const expressions from the concat tree then
* dispose of the old tree, e.g. convert the tree from this:
*
* o => SASSIGN
* |
* STRINGIFY -- TARGET
* |
* ex-PUSHMARK -- CONCAT
* |
* CONCAT -- EXPR5
* |
* CONCAT -- EXPR4
* |
* CONCAT -- EXPR3
* |
* EXPR1 -- EXPR2
*
*
* to:
*
* o => MULTICONCAT
* |
* ex-PUSHMARK -- EXPR1 -- EXPR2 -- EXPR3 -- EXPR4 -- EXPR5 -- TARGET
*
* except that if EXPRi is an OP_CONST, it's discarded.
*
* During the conversion process, EXPR ops are stripped from the tree
* and unshifted onto o. Finally, any of o's remaining original
* childen are discarded and o is converted into an OP_MULTICONCAT.
*
* In this middle of this, o may contain both: unshifted args on the
* left, and some remaining original args on the right. lastkidop
* is set to point to the right-most unshifted arg to delineate
* between the two sets.
*/
if (is_sprintf) {
/* create a copy of the format with the %'s removed, and record
* the sizes of the const string segments in the aux struct */
char *q, *oldq;
lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
p = sprintf_info.start;
q = const_str;
oldq = q;
for (; p < sprintf_info.end; p++) {
if (*p == '%') {
p++;
if (*p != '%') {
(lenp++)->ssize = q - oldq;
oldq = q;
continue;
}
}
*q++ = *p;
}
lenp->ssize = q - oldq;
assert((STRLEN)(q - const_str) == total_len);
/* Attach all the args (i.e. the kids of the sprintf) to o (which
* may or may not be topop) The pushmark and const ops need to be
* kept in case they're an op_next entry point.
*/
lastkidop = cLISTOPx(topop)->op_last;
kid = cUNOPx(topop)->op_first; /* pushmark */
op_null(kid);
op_null(OpSIBLING(kid)); /* const */
if (o != topop) {
kid = op_sibling_splice(topop, NULL, -1, NULL); /* cut all args */
op_sibling_splice(o, NULL, 0, kid); /* and attach to o */
lastkidop->op_next = o;
}
}
else {
p = const_str;
lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
lenp->ssize = -1;
/* Concatenate all const strings into const_str.
* Note that args[] contains the RHS args in reverse order, so
* we scan args[] from top to bottom to get constant strings
* in L-R order
*/
for (argp = toparg; argp >= args; argp--) {
if (!argp->p)
/* not a const op */
(++lenp)->ssize = -1;
else {
STRLEN l = argp->len;
Copy(argp->p, p, l, char);
p += l;
if (lenp->ssize == -1)
lenp->ssize = l;
else
lenp->ssize += l;
}
}
kid = topop;
nextop = o;
lastkidop = NULL;
for (argp = args; argp <= toparg; argp++) {
/* only keep non-const args, except keep the first-in-next-chain
* arg no matter what it is (but nulled if OP_CONST), because it
* may be the entry point to this subtree from the previous
* op_next.
*/
bool last = (argp == toparg);
OP *prev;
/* set prev to the sibling *before* the arg to be cut out,
* e.g. when cutting EXPR:
*
* |
* kid= CONCAT
* |
* prev= CONCAT -- EXPR
* |
*/
if (argp == args && kid->op_type != OP_CONCAT) {
/* in e.g. '$x .= f(1)' there's no RHS concat tree
* so the expression to be cut isn't kid->op_last but
* kid itself */
OP *o1, *o2;
/* find the op before kid */
o1 = NULL;
o2 = cUNOPx(parentop)->op_first;
while (o2 && o2 != kid) {
o1 = o2;
o2 = OpSIBLING(o2);
}
assert(o2 == kid);
prev = o1;
kid = parentop;
}
else if (kid == o && lastkidop)
prev = last ? lastkidop : OpSIBLING(lastkidop);
else
prev = last ? NULL : cUNOPx(kid)->op_first;
if (!argp->p || last) {
/* cut RH op */
OP *aop = op_sibling_splice(kid, prev, 1, NULL);
/* and unshift to front of o */
op_sibling_splice(o, NULL, 0, aop);
/* record the right-most op added to o: later we will
* free anything to the right of it */
if (!lastkidop)
lastkidop = aop;
aop->op_next = nextop;
if (last) {
if (argp->p)
/* null the const at start of op_next chain */
op_null(aop);
}
else if (prev)
nextop = prev->op_next;
}
/* the last two arguments are both attached to the same concat op */
if (argp < toparg - 1)
kid = prev;
}
}
/* Populate the aux struct */
aux[PERL_MULTICONCAT_IX_NARGS].ssize = nargs;
aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv = utf8 ? NULL : const_str;
aux[PERL_MULTICONCAT_IX_PLAIN_LEN].ssize = utf8 ? 0 : total_len;
aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = const_str;
aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = total_len;
/* if variant > 0, calculate a variant const string and lengths where
* the utf8 version of the string will take 'variant' more bytes than
* the plain one. */
if (variant) {
char *p = const_str;
STRLEN ulen = total_len + variant;
UNOP_AUX_item *lens = aux + PERL_MULTICONCAT_IX_LENGTHS;
UNOP_AUX_item *ulens = lens + (nargs + 1);
char *up = (char*)PerlMemShared_malloc(ulen);
SSize_t n;
aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = up;
aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = ulen;
for (n = 0; n < (nargs + 1); n++) {
SSize_t i;
char * orig_up = up;
for (i = (lens++)->ssize; i > 0; i--) {
U8 c = *p++;
append_utf8_from_native_byte(c, (U8**)&up);
}
(ulens++)->ssize = (i < 0) ? i : up - orig_up;
}
}
if (stringop) {
/* if there was a top(ish)-level OP_STRINGIFY, we need to keep
* that op's first child - an ex-PUSHMARK - because the op_next of
* the previous op may point to it (i.e. it's the entry point for
* the o optree)
*/
OP *pmop =
(stringop == o)
? op_sibling_splice(o, lastkidop, 1, NULL)
: op_sibling_splice(stringop, NULL, 1, NULL);
assert(OP_TYPE_IS_OR_WAS_NN(pmop, OP_PUSHMARK));
op_sibling_splice(o, NULL, 0, pmop);
if (!lastkidop)
lastkidop = pmop;
}
/* Optimise
* target = A.B.C...
* target .= A.B.C...
*/
if (targetop) {
assert(!targmyop);
if (o->op_type == OP_SASSIGN) {
/* Move the target subtree from being the last of o's children
* to being the last of o's preserved children.
* Note the difference between 'target = ...' and 'target .= ...':
* for the former, target is executed last; for the latter,
* first.
*/
kid = OpSIBLING(lastkidop);
op_sibling_splice(o, kid, 1, NULL); /* cut target op */
op_sibling_splice(o, lastkidop, 0, targetop); /* and paste */
lastkidop->op_next = kid->op_next;
lastkidop = targetop;
}
else {
/* Move the target subtree from being the first of o's
* original children to being the first of *all* o's children.
*/
if (lastkidop) {
op_sibling_splice(o, lastkidop, 1, NULL); /* cut target op */
op_sibling_splice(o, NULL, 0, targetop); /* and paste*/
}
else {
/* if the RHS of .= doesn't contain a concat (e.g.
* $x .= "foo"), it gets missed by the "strip ops from the
* tree and add to o" loop earlier */
assert(topop->op_type != OP_CONCAT);
if (stringop) {
/* in e.g. $x .= "$y", move the $y expression
* from being a child of OP_STRINGIFY to being the
* second child of the OP_CONCAT
*/
assert(cUNOPx(stringop)->op_first == topop);
op_sibling_splice(stringop, NULL, 1, NULL);
op_sibling_splice(o, cUNOPo->op_first, 0, topop);
}
assert(topop == OpSIBLING(cBINOPo->op_first));
if (toparg->p)
op_null(topop);
lastkidop = topop;
}
}
if (is_targable) {
/* optimise
* my $lex = A.B.C...
* $lex = A.B.C...
* $lex .= A.B.C...
* The original padsv op is kept but nulled in case it's the
* entry point for the optree (which it will be for
* '$lex .= ... '
*/
private_flags |= OPpTARGET_MY;
private_flags |= (targetop->op_private & OPpLVAL_INTRO);
o->op_targ = targetop->op_targ;
targetop->op_targ = 0;
op_null(targetop);
}
else
flags |= OPf_STACKED;
}
else if (targmyop) {
private_flags |= OPpTARGET_MY;
if (o != targmyop) {
o->op_targ = targmyop->op_targ;
targmyop->op_targ = 0;
}
}
/* detach the emaciated husk of the sprintf/concat optree and free it */
for (;;) {
kid = op_sibling_splice(o, lastkidop, 1, NULL);
if (!kid)
break;
op_free(kid);
}
/* and convert o into a multiconcat */
o->op_flags = (flags|OPf_KIDS|stacked_last
|(o->op_flags & (OPf_WANT|OPf_PARENS)));
o->op_private = private_flags;
o->op_type = OP_MULTICONCAT;
o->op_ppaddr = PL_ppaddr[OP_MULTICONCAT];
cUNOP_AUXo->op_aux = aux;
}
/* do all the final processing on an optree (e.g. running the peephole
* optimiser on it), then attach it to cv (if cv is non-null)
*/
static void
S_process_optree(pTHX_ CV *cv, OP *optree, OP* start)
{
OP **startp;
/* XXX for some reason, evals, require and main optrees are
* never attached to their CV; instead they just hang off
* PL_main_root + PL_main_start or PL_eval_root + PL_eval_start
* and get manually freed when appropriate */
if (cv)
startp = &CvSTART(cv);
else
startp = PL_in_eval? &PL_eval_start : &PL_main_start;
*startp = start;
optree->op_private |= OPpREFCOUNTED;
OpREFCNT_set(optree, 1);
optimize_optree(optree);
CALL_PEEP(*startp);
finalize_optree(optree);
S_prune_chain_head(startp);
if (cv) {
/* now that optimizer has done its work, adjust pad values */
pad_tidy(optree->op_type == OP_LEAVEWRITE ? padtidy_FORMAT
: CvCLONE(cv) ? padtidy_SUBCLONE : padtidy_SUB);
}
}
/*
=for apidoc optimize_optree
This function applies some optimisations to the optree in top-down order.
It is called before the peephole optimizer, which processes ops in
execution order. Note that finalize_optree() also does a top-down scan,
but is called *after* the peephole optimizer.
=cut
*/
void
Perl_optimize_optree(pTHX_ OP* o)
{
PERL_ARGS_ASSERT_OPTIMIZE_OPTREE;
ENTER;
SAVEVPTR(PL_curcop);
optimize_op(o);
LEAVE;
}
/* helper for optimize_optree() which optimises one op then recurses
* to optimise any children.
*/
STATIC void
S_optimize_op(pTHX_ OP* o)
{
OP *top_op = o;
PERL_ARGS_ASSERT_OPTIMIZE_OP;
while (1) {
OP * next_kid = NULL;
assert(o->op_type != OP_FREED);
switch (o->op_type) {
case OP_NEXTSTATE:
case OP_DBSTATE:
PL_curcop = ((COP*)o); /* for warnings */
break;
case OP_CONCAT:
case OP_SASSIGN:
case OP_STRINGIFY:
case OP_SPRINTF:
S_maybe_multiconcat(aTHX_ o);
break;
case OP_SUBST:
if (cPMOPo->op_pmreplrootu.op_pmreplroot) {
/* we can't assume that op_pmreplroot->op_sibparent == o
* and that it is thus possible to walk back up the tree
* past op_pmreplroot. So, although we try to avoid
* recursing through op trees, do it here. After all,
* there are unlikely to be many nested s///e's within
* the replacement part of a s///e.
*/
optimize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
}
break;
default:
break;
}
if (o->op_flags & OPf_KIDS)
next_kid = cUNOPo->op_first;
/* if a kid hasn't been nominated to process, continue with the
* next sibling, or if no siblings left, go back to the parent's
* siblings and so on
*/
while (!next_kid) {
if (o == top_op)
return; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o))
next_kid = o->op_sibparent;
else
o = o->op_sibparent; /*try parent's next sibling */
}
/* this label not yet used. Goto here if any code above sets
* next-kid
get_next_op:
*/
o = next_kid;
}
}
/*
=for apidoc finalize_optree
This function finalizes the optree. Should be called directly after
the complete optree is built. It does some additional
checking which can't be done in the normal C<ck_>xxx functions and makes
the tree thread-safe.
=cut
*/
void
Perl_finalize_optree(pTHX_ OP* o)
{
PERL_ARGS_ASSERT_FINALIZE_OPTREE;
ENTER;
SAVEVPTR(PL_curcop);
finalize_op(o);
LEAVE;
}
#ifdef USE_ITHREADS
/* Relocate sv to the pad for thread safety.
* Despite being a "constant", the SV is written to,
* for reference counts, sv_upgrade() etc. */
PERL_STATIC_INLINE void
S_op_relocate_sv(pTHX_ SV** svp, PADOFFSET* targp)
{
PADOFFSET ix;
PERL_ARGS_ASSERT_OP_RELOCATE_SV;
if (!*svp) return;
ix = pad_alloc(OP_CONST, SVf_READONLY);
SvREFCNT_dec(PAD_SVl(ix));
PAD_SETSV(ix, *svp);
/* XXX I don't know how this isn't readonly already. */
if (!SvIsCOW(PAD_SVl(ix))) SvREADONLY_on(PAD_SVl(ix));
*svp = NULL;
*targp = ix;
}
#endif
/*
=for apidoc traverse_op_tree
Return the next op in a depth-first traversal of the op tree,
returning NULL when the traversal is complete.
The initial call must supply the root of the tree as both top and o.
For now it's static, but it may be exposed to the API in the future.
=cut
*/
STATIC OP*
S_traverse_op_tree(pTHX_ OP *top, OP *o) {
OP *sib;
PERL_ARGS_ASSERT_TRAVERSE_OP_TREE;
if ((o->op_flags & OPf_KIDS) && cUNOPo->op_first) {
return cUNOPo->op_first;
}
else if ((sib = OpSIBLING(o))) {
return sib;
}
else {
OP *parent = o->op_sibparent;
assert(!(o->op_moresib));
while (parent && parent != top) {
OP *sib = OpSIBLING(parent);
if (sib)
return sib;
parent = parent->op_sibparent;
}
return NULL;
}
}
STATIC void
S_finalize_op(pTHX_ OP* o)
{
OP * const top = o;
PERL_ARGS_ASSERT_FINALIZE_OP;
do {
assert(o->op_type != OP_FREED);
switch (o->op_type) {
case OP_NEXTSTATE:
case OP_DBSTATE:
PL_curcop = ((COP*)o); /* for warnings */
break;
case OP_EXEC:
if (OpHAS_SIBLING(o)) {
OP *sib = OpSIBLING(o);
if (( sib->op_type == OP_NEXTSTATE || sib->op_type == OP_DBSTATE)
&& ckWARN(WARN_EXEC)
&& OpHAS_SIBLING(sib))
{
const OPCODE type = OpSIBLING(sib)->op_type;
if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) {
const line_t oldline = CopLINE(PL_curcop);
CopLINE_set(PL_curcop, CopLINE((COP*)sib));
Perl_warner(aTHX_ packWARN(WARN_EXEC),
"Statement unlikely to be reached");
Perl_warner(aTHX_ packWARN(WARN_EXEC),
"\t(Maybe you meant system() when you said exec()?)\n");
CopLINE_set(PL_curcop, oldline);
}
}
}
break;
case OP_GV:
if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) {
GV * const gv = cGVOPo_gv;
if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) {
/* XXX could check prototype here instead of just carping */
SV * const sv = sv_newmortal();
gv_efullname3(sv, gv, NULL);
Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE),
"%" SVf "() called too early to check prototype",
SVfARG(sv));
}
}
break;
case OP_CONST:
if (cSVOPo->op_private & OPpCONST_STRICT)
no_bareword_allowed(o);
#ifdef USE_ITHREADS
/* FALLTHROUGH */
case OP_HINTSEVAL:
op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
#endif
break;
#ifdef USE_ITHREADS
/* Relocate all the METHOP's SVs to the pad for thread safety. */
case OP_METHOD_NAMED:
case OP_METHOD_SUPER:
case OP_METHOD_REDIR:
case OP_METHOD_REDIR_SUPER:
op_relocate_sv(&cMETHOPx(o)->op_u.op_meth_sv, &o->op_targ);
break;
#endif
case OP_HELEM: {
UNOP *rop;
SVOP *key_op;
OP *kid;
if ((key_op = cSVOPx(((BINOP*)o)->op_last))->op_type != OP_CONST)
break;
rop = (UNOP*)((BINOP*)o)->op_first;
goto check_keys;
case OP_HSLICE:
S_scalar_slice_warning(aTHX_ o);
/* FALLTHROUGH */
case OP_KVHSLICE:
kid = OpSIBLING(cLISTOPo->op_first);
if (/* I bet there's always a pushmark... */
OP_TYPE_ISNT_AND_WASNT_NN(kid, OP_LIST)
&& OP_TYPE_ISNT_NN(kid, OP_CONST))
{
break;
}
key_op = (SVOP*)(kid->op_type == OP_CONST
? kid
: OpSIBLING(kLISTOP->op_first));
rop = (UNOP*)((LISTOP*)o)->op_last;
check_keys:
if (o->op_private & OPpLVAL_INTRO || rop->op_type != OP_RV2HV)
rop = NULL;
S_check_hash_fields_and_hekify(aTHX_ rop, key_op, 1);
break;
}
case OP_NULL:
if (o->op_targ != OP_HSLICE && o->op_targ != OP_ASLICE)
break;
/* FALLTHROUGH */
case OP_ASLICE:
S_scalar_slice_warning(aTHX_ o);
break;
case OP_SUBST: {
if (cPMOPo->op_pmreplrootu.op_pmreplroot)
finalize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
break;
}
default:
break;
}
#ifdef DEBUGGING
if (o->op_flags & OPf_KIDS) {
OP *kid;
/* check that op_last points to the last sibling, and that
* the last op_sibling/op_sibparent field points back to the
* parent, and that the only ops with KIDS are those which are
* entitled to them */
U32 type = o->op_type;
U32 family;
bool has_last;
if (type == OP_NULL) {
type = o->op_targ;
/* ck_glob creates a null UNOP with ex-type GLOB
* (which is a list op. So pretend it wasn't a listop */
if (type == OP_GLOB)
type = OP_NULL;
}
family = PL_opargs[type] & OA_CLASS_MASK;
has_last = ( family == OA_BINOP
|| family == OA_LISTOP
|| family == OA_PMOP
|| family == OA_LOOP
);
assert( has_last /* has op_first and op_last, or ...
... has (or may have) op_first: */
|| family == OA_UNOP
|| family == OA_UNOP_AUX
|| family == OA_LOGOP
|| family == OA_BASEOP_OR_UNOP
|| family == OA_FILESTATOP
|| family == OA_LOOPEXOP
|| family == OA_METHOP
|| type == OP_CUSTOM
|| type == OP_NULL /* new_logop does this */
);
for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid)) {
if (!OpHAS_SIBLING(kid)) {
if (has_last)
assert(kid == cLISTOPo->op_last);
assert(kid->op_sibparent == o);
}
}
}
#endif
} while (( o = traverse_op_tree(top, o)) != NULL);
}
static void
S_mark_padname_lvalue(pTHX_ PADNAME *pn)
{
CV *cv = PL_compcv;
PadnameLVALUE_on(pn);
while (PadnameOUTER(pn) && PARENT_PAD_INDEX(pn)) {
cv = CvOUTSIDE(cv);
/* RT #127786: cv can be NULL due to an eval within the DB package
* called from an anon sub - anon subs don't have CvOUTSIDE() set
* unless they contain an eval, but calling eval within DB
* pretends the eval was done in the caller's scope.
*/
if (!cv)
break;
assert(CvPADLIST(cv));
pn =
PadlistNAMESARRAY(CvPADLIST(cv))[PARENT_PAD_INDEX(pn)];
assert(PadnameLEN(pn));
PadnameLVALUE_on(pn);
}
}
static bool
S_vivifies(const OPCODE type)
{
switch(type) {
case OP_RV2AV: case OP_ASLICE:
case OP_RV2HV: case OP_KVASLICE:
case OP_RV2SV: case OP_HSLICE:
case OP_AELEMFAST: case OP_KVHSLICE:
case OP_HELEM:
case OP_AELEM:
return 1;
}
return 0;
}
/* apply lvalue reference (aliasing) context to the optree o.
* E.g. in
* \($x,$y) = (...)
* o would be the list ($x,$y) and type would be OP_AASSIGN.
* It may descend and apply this to children too, for example in
* \( $cond ? $x, $y) = (...)
*/
static void
S_lvref(pTHX_ OP *o, I32 type)
{
dVAR;
OP *kid;
OP * top_op = o;
while (1) {
switch (o->op_type) {
case OP_COND_EXPR:
o = OpSIBLING(cUNOPo->op_first);
continue;
case OP_PUSHMARK:
goto do_next;
case OP_RV2AV:
if (cUNOPo->op_first->op_type != OP_GV) goto badref;
o->op_flags |= OPf_STACKED;
if (o->op_flags & OPf_PARENS) {
if (o->op_private & OPpLVAL_INTRO) {
yyerror(Perl_form(aTHX_ "Can't modify reference to "
"localized parenthesized array in list assignment"));
goto do_next;
}
slurpy:
OpTYPE_set(o, OP_LVAVREF);
o->op_private &= OPpLVAL_INTRO|OPpPAD_STATE;
o->op_flags |= OPf_MOD|OPf_REF;
goto do_next;
}
o->op_private |= OPpLVREF_AV;
goto checkgv;
case OP_RV2CV:
kid = cUNOPo->op_first;
if (kid->op_type == OP_NULL)
kid = cUNOPx(OpSIBLING(kUNOP->op_first))
->op_first;
o->op_private = OPpLVREF_CV;
if (kid->op_type == OP_GV)
o->op_flags |= OPf_STACKED;
else if (kid->op_type == OP_PADCV) {
o->op_targ = kid->op_targ;
kid->op_targ = 0;
op_free(cUNOPo->op_first);
cUNOPo->op_first = NULL;
o->op_flags &=~ OPf_KIDS;
}
else goto badref;
break;
case OP_RV2HV:
if (o->op_flags & OPf_PARENS) {
parenhash:
yyerror(Perl_form(aTHX_ "Can't modify reference to "
"parenthesized hash in list assignment"));
goto do_next;
}
o->op_private |= OPpLVREF_HV;
/* FALLTHROUGH */
case OP_RV2SV:
checkgv:
if (cUNOPo->op_first->op_type != OP_GV) goto badref;
o->op_flags |= OPf_STACKED;
break;
case OP_PADHV:
if (o->op_flags & OPf_PARENS) goto parenhash;
o->op_private |= OPpLVREF_HV;
/* FALLTHROUGH */
case OP_PADSV:
PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
break;
case OP_PADAV:
PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
if (o->op_flags & OPf_PARENS) goto slurpy;
o->op_private |= OPpLVREF_AV;
break;
case OP_AELEM:
case OP_HELEM:
o->op_private |= OPpLVREF_ELEM;
o->op_flags |= OPf_STACKED;
break;
case OP_ASLICE:
case OP_HSLICE:
OpTYPE_set(o, OP_LVREFSLICE);
o->op_private &= OPpLVAL_INTRO;
goto do_next;
case OP_NULL:
if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
goto badref;
else if (!(o->op_flags & OPf_KIDS))
goto do_next;
/* the code formerly only recursed into the first child of
* a non ex-list OP_NULL. if we ever encounter such a null op with
* more than one child, need to decide whether its ok to process
* *all* its kids or not */
assert(o->op_targ == OP_LIST
|| !(OpHAS_SIBLING(cBINOPo->op_first)));
/* FALLTHROUGH */
case OP_LIST:
o = cLISTOPo->op_first;
continue;
case OP_STUB:
if (o->op_flags & OPf_PARENS)
goto do_next;
/* FALLTHROUGH */
default:
badref:
/* diag_listed_as: Can't modify reference to %s in %s assignment */
yyerror(Perl_form(aTHX_ "Can't modify reference to %s in %s",
o->op_type == OP_NULL && o->op_flags & OPf_SPECIAL
? "do block"
: OP_DESC(o),
PL_op_desc[type]));
goto do_next;
}
OpTYPE_set(o, OP_LVREF);
o->op_private &=
OPpLVAL_INTRO|OPpLVREF_ELEM|OPpLVREF_TYPE|OPpPAD_STATE;
if (type == OP_ENTERLOOP)
o->op_private |= OPpLVREF_ITER;
do_next:
while (1) {
if (o == top_op)
return; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o)) {
o = o->op_sibparent;
break;
}
o = o->op_sibparent; /*try parent's next sibling */
}
} /* while */
}
PERL_STATIC_INLINE bool
S_potential_mod_type(I32 type)
{
/* Types that only potentially result in modification. */
return type == OP_GREPSTART || type == OP_ENTERSUB
|| type == OP_REFGEN || type == OP_LEAVESUBLV;
}
/*
=for apidoc op_lvalue
Propagate lvalue ("modifiable") context to an op and its children.
C<type> represents the context type, roughly based on the type of op that
would do the modifying, although C<local()> is represented by C<OP_NULL>,
because it has no op type of its own (it is signalled by a flag on
the lvalue op).
This function detects things that can't be modified, such as C<$x+1>, and
generates errors for them. For example, C<$x+1 = 2> would cause it to be
called with an op of type C<OP_ADD> and a C<type> argument of C<OP_SASSIGN>.
It also flags things that need to behave specially in an lvalue context,
such as C<$$x = 5> which might have to vivify a reference in C<$x>.
=cut
Perl_op_lvalue_flags() is a non-API lower-level interface to
op_lvalue(). The flags param has these bits:
OP_LVALUE_NO_CROAK: return rather than croaking on error
*/
OP *
Perl_op_lvalue_flags(pTHX_ OP *o, I32 type, U32 flags)
{
dVAR;
OP *top_op = o;
if (!o || (PL_parser && PL_parser->error_count))
return o;
while (1) {
OP *kid;
/* -1 = error on localize, 0 = ignore localize, 1 = ok to localize */
int localize = -1;
OP *next_kid = NULL;
if ((o->op_private & OPpTARGET_MY)
&& (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
{
goto do_next;
}
/* elements of a list might be in void context because the list is
in scalar context or because they are attribute sub calls */
if ((o->op_flags & OPf_WANT) == OPf_WANT_VOID)
goto do_next;
if (type == OP_PRTF || type == OP_SPRINTF) type = OP_ENTERSUB;
switch (o->op_type) {
case OP_UNDEF:
PL_modcount++;
goto do_next;
case OP_STUB:
if ((o->op_flags & OPf_PARENS))
break;
goto nomod;
case OP_ENTERSUB:
if ((type == OP_UNDEF || type == OP_REFGEN || type == OP_LOCK) &&
!(o->op_flags & OPf_STACKED)) {
OpTYPE_set(o, OP_RV2CV); /* entersub => rv2cv */
assert(cUNOPo->op_first->op_type == OP_NULL);
op_null(((LISTOP*)cUNOPo->op_first)->op_first);/* disable pushmark */
break;
}
else { /* lvalue subroutine call */
o->op_private |= OPpLVAL_INTRO;
PL_modcount = RETURN_UNLIMITED_NUMBER;
if (S_potential_mod_type(type)) {
o->op_private |= OPpENTERSUB_INARGS;
break;
}
else { /* Compile-time error message: */
OP *kid = cUNOPo->op_first;
CV *cv;
GV *gv;
SV *namesv;
if (kid->op_type != OP_PUSHMARK) {
if (kid->op_type != OP_NULL || kid->op_targ != OP_LIST)
Perl_croak(aTHX_
"panic: unexpected lvalue entersub "
"args: type/targ %ld:%" UVuf,
(long)kid->op_type, (UV)kid->op_targ);
kid = kLISTOP->op_first;
}
while (OpHAS_SIBLING(kid))
kid = OpSIBLING(kid);
if (!(kid->op_type == OP_NULL && kid->op_targ == OP_RV2CV)) {
break; /* Postpone until runtime */
}
kid = kUNOP->op_first;
if (kid->op_type == OP_NULL && kid->op_targ == OP_RV2SV)
kid = kUNOP->op_first;
if (kid->op_type == OP_NULL)
Perl_croak(aTHX_
"Unexpected constant lvalue entersub "
"entry via type/targ %ld:%" UVuf,
(long)kid->op_type, (UV)kid->op_targ);
if (kid->op_type != OP_GV) {
break;
}
gv = kGVOP_gv;
cv = isGV(gv)
? GvCV(gv)
: SvROK(gv) && SvTYPE(SvRV(gv)) == SVt_PVCV
? MUTABLE_CV(SvRV(gv))
: NULL;
if (!cv)
break;
if (CvLVALUE(cv))
break;
if (flags & OP_LVALUE_NO_CROAK)
return NULL;
namesv = cv_name(cv, NULL, 0);
yyerror_pv(Perl_form(aTHX_ "Can't modify non-lvalue "
"subroutine call of &%" SVf " in %s",
SVfARG(namesv), PL_op_desc[type]),
SvUTF8(namesv));
goto do_next;
}
}
/* FALLTHROUGH */
default:
nomod:
if (flags & OP_LVALUE_NO_CROAK) return NULL;
/* grep, foreach, subcalls, refgen */
if (S_potential_mod_type(type))
break;
yyerror(Perl_form(aTHX_ "Can't modify %s in %s",
(o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)
? "do block"
: OP_DESC(o)),
type ? PL_op_desc[type] : "local"));
goto do_next;
case OP_PREINC:
case OP_PREDEC:
case OP_POW:
case OP_MULTIPLY:
case OP_DIVIDE:
case OP_MODULO:
case OP_ADD:
case OP_SUBTRACT:
case OP_CONCAT:
case OP_LEFT_SHIFT:
case OP_RIGHT_SHIFT:
case OP_BIT_AND:
case OP_BIT_XOR:
case OP_BIT_OR:
case OP_I_MULTIPLY:
case OP_I_DIVIDE:
case OP_I_MODULO:
case OP_I_ADD:
case OP_I_SUBTRACT:
if (!(o->op_flags & OPf_STACKED))
goto nomod;
PL_modcount++;
break;
case OP_REPEAT:
if (o->op_flags & OPf_STACKED) {
PL_modcount++;
break;
}
if (!(o->op_private & OPpREPEAT_DOLIST))
goto nomod;
else {
const I32 mods = PL_modcount;
/* we recurse rather than iterate here because we need to
* calculate and use the delta applied to PL_modcount by the
* first child. So in something like
* ($x, ($y) x 3) = split;
* split knows that 4 elements are wanted
*/
modkids(cBINOPo->op_first, type);
if (type != OP_AASSIGN)
goto nomod;
kid = cBINOPo->op_last;
if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)) {
const IV iv = SvIV(kSVOP_sv);
if (PL_modcount != RETURN_UNLIMITED_NUMBER)
PL_modcount =
mods + (PL_modcount - mods) * (iv < 0 ? 0 : iv);
}
else
PL_modcount = RETURN_UNLIMITED_NUMBER;
}
break;
case OP_COND_EXPR:
localize = 1;
next_kid = OpSIBLING(cUNOPo->op_first);
break;
case OP_RV2AV:
case OP_RV2HV:
if (type == OP_REFGEN && o->op_flags & OPf_PARENS) {
PL_modcount = RETURN_UNLIMITED_NUMBER;
/* Treat \(@foo) like ordinary list, but still mark it as modi-
fiable since some contexts need to know. */
o->op_flags |= OPf_MOD;
goto do_next;
}
/* FALLTHROUGH */
case OP_RV2GV:
if (scalar_mod_type(o, type))
goto nomod;
ref(cUNOPo->op_first, o->op_type);
/* FALLTHROUGH */
case OP_ASLICE:
case OP_HSLICE:
localize = 1;
/* FALLTHROUGH */
case OP_AASSIGN:
/* Do not apply the lvsub flag for rv2[ah]v in scalar context. */
if (type == OP_LEAVESUBLV && (
(o->op_type != OP_RV2AV && o->op_type != OP_RV2HV)
|| (o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
))
o->op_private |= OPpMAYBE_LVSUB;
/* FALLTHROUGH */
case OP_NEXTSTATE:
case OP_DBSTATE:
PL_modcount = RETURN_UNLIMITED_NUMBER;
break;
case OP_KVHSLICE:
case OP_KVASLICE:
case OP_AKEYS:
if (type == OP_LEAVESUBLV)
o->op_private |= OPpMAYBE_LVSUB;
goto nomod;
case OP_AVHVSWITCH:
if (type == OP_LEAVESUBLV
&& (o->op_private & OPpAVHVSWITCH_MASK) + OP_EACH == OP_KEYS)
o->op_private |= OPpMAYBE_LVSUB;
goto nomod;
case OP_AV2ARYLEN:
PL_hints |= HINT_BLOCK_SCOPE;
if (type == OP_LEAVESUBLV)
o->op_private |= OPpMAYBE_LVSUB;
PL_modcount++;
break;
case OP_RV2SV:
ref(cUNOPo->op_first, o->op_type);
localize = 1;
/* FALLTHROUGH */
case OP_GV:
PL_hints |= HINT_BLOCK_SCOPE;
/* FALLTHROUGH */
case OP_SASSIGN:
case OP_ANDASSIGN:
case OP_ORASSIGN:
case OP_DORASSIGN:
PL_modcount++;
break;
case OP_AELEMFAST:
case OP_AELEMFAST_LEX:
localize = -1;
PL_modcount++;
break;
case OP_PADAV:
case OP_PADHV:
PL_modcount = RETURN_UNLIMITED_NUMBER;
if (type == OP_REFGEN && o->op_flags & OPf_PARENS)
{
/* Treat \(@foo) like ordinary list, but still mark it as modi-
fiable since some contexts need to know. */
o->op_flags |= OPf_MOD;
goto do_next;
}
if (scalar_mod_type(o, type))
goto nomod;
if ((o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
&& type == OP_LEAVESUBLV)
o->op_private |= OPpMAYBE_LVSUB;
/* FALLTHROUGH */
case OP_PADSV:
PL_modcount++;
if (!type) /* local() */
Perl_croak(aTHX_ "Can't localize lexical variable %" PNf,
PNfARG(PAD_COMPNAME(o->op_targ)));
if (!(o->op_private & OPpLVAL_INTRO)
|| ( type != OP_SASSIGN && type != OP_AASSIGN
&& PadnameIsSTATE(PAD_COMPNAME_SV(o->op_targ)) ))
S_mark_padname_lvalue(aTHX_ PAD_COMPNAME_SV(o->op_targ));
break;
case OP_PUSHMARK:
localize = 0;
break;
case OP_KEYS:
if (type != OP_LEAVESUBLV && !scalar_mod_type(NULL, type))
goto nomod;
goto lvalue_func;
case OP_SUBSTR:
if (o->op_private == 4) /* don't allow 4 arg substr as lvalue */
goto nomod;
/* FALLTHROUGH */
case OP_POS:
case OP_VEC:
lvalue_func:
if (type == OP_LEAVESUBLV)
o->op_private |= OPpMAYBE_LVSUB;
if (o->op_flags & OPf_KIDS && OpHAS_SIBLING(cBINOPo->op_first)) {
/* we recurse rather than iterate here because the child
* needs to be processed with a different 'type' parameter */
/* substr and vec */
/* If this op is in merely potential (non-fatal) modifiable
context, then apply OP_ENTERSUB context to
the kid op (to avoid croaking). Other-
wise pass this op’s own type so the correct op is mentioned
in error messages. */
op_lvalue(OpSIBLING(cBINOPo->op_first),
S_potential_mod_type(type)
? (I32)OP_ENTERSUB
: o->op_type);
}
break;
case OP_AELEM:
case OP_HELEM:
ref(cBINOPo->op_first, o->op_type);
if (type == OP_ENTERSUB &&
!(o->op_private & (OPpLVAL_INTRO | OPpDEREF)))
o->op_private |= OPpLVAL_DEFER;
if (type == OP_LEAVESUBLV)
o->op_private |= OPpMAYBE_LVSUB;
localize = 1;
PL_modcount++;
break;
case OP_LEAVE:
case OP_LEAVELOOP:
o->op_private |= OPpLVALUE;
/* FALLTHROUGH */
case OP_SCOPE:
case OP_ENTER:
case OP_LINESEQ:
localize = 0;
if (o->op_flags & OPf_KIDS)
next_kid = cLISTOPo->op_last;
break;
case OP_NULL:
localize = 0;
if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
goto nomod;
else if (!(o->op_flags & OPf_KIDS))
break;
if (o->op_targ != OP_LIST) {
OP *sib = OpSIBLING(cLISTOPo->op_first);
/* OP_TRANS and OP_TRANSR with argument have a weird optree
* that looks like
*
* null
* arg
* trans
*
* compared with things like OP_MATCH which have the argument
* as a child:
*
* match
* arg
*
* so handle specially to correctly get "Can't modify" croaks etc
*/
if (sib && (sib->op_type == OP_TRANS || sib->op_type == OP_TRANSR))
{
/* this should trigger a "Can't modify transliteration" err */
op_lvalue(sib, type);
}
next_kid = cBINOPo->op_first;
/* we assume OP_NULLs which aren't ex-list have no more than 2
* children. If this assumption is wrong, increase the scan
* limit below */
assert( !OpHAS_SIBLING(next_kid)
|| !OpHAS_SIBLING(OpSIBLING(next_kid)));
break;
}
/* FALLTHROUGH */
case OP_LIST:
localize = 0;
next_kid = cLISTOPo->op_first;
break;
case OP_COREARGS:
goto do_next;
case OP_AND:
case OP_OR:
if (type == OP_LEAVESUBLV
|| !S_vivifies(cLOGOPo->op_first->op_type))
next_kid = cLOGOPo->op_first;
else if (type == OP_LEAVESUBLV
|| !S_vivifies(OpSIBLING(cLOGOPo->op_first)->op_type))
next_kid = OpSIBLING(cLOGOPo->op_first);
goto nomod;
case OP_SREFGEN:
if (type == OP_NULL) { /* local */
local_refgen:
if (!FEATURE_MYREF_IS_ENABLED)
Perl_croak(aTHX_ "The experimental declared_refs "
"feature is not enabled");
Perl_ck_warner_d(aTHX_
packWARN(WARN_EXPERIMENTAL__DECLARED_REFS),
"Declaring references is experimental");
next_kid = cUNOPo->op_first;
goto do_next;
}
if (type != OP_AASSIGN && type != OP_SASSIGN
&& type != OP_ENTERLOOP)
goto nomod;
/* Don’t bother applying lvalue context to the ex-list. */
kid = cUNOPx(cUNOPo->op_first)->op_first;
assert (!OpHAS_SIBLING(kid));
goto kid_2lvref;
case OP_REFGEN:
if (type == OP_NULL) /* local */
goto local_refgen;
if (type != OP_AASSIGN) goto nomod;
kid = cUNOPo->op_first;
kid_2lvref:
{
const U8 ec = PL_parser ? PL_parser->error_count : 0;
S_lvref(aTHX_ kid, type);
if (!PL_parser || PL_parser->error_count == ec) {
if (!FEATURE_REFALIASING_IS_ENABLED)
Perl_croak(aTHX_
"Experimental aliasing via reference not enabled");
Perl_ck_warner_d(aTHX_
packWARN(WARN_EXPERIMENTAL__REFALIASING),
"Aliasing via reference is experimental");
}
}
if (o->op_type == OP_REFGEN)
op_null(cUNOPx(cUNOPo->op_first)->op_first); /* pushmark */
op_null(o);
goto do_next;
case OP_SPLIT:
if ((o->op_private & OPpSPLIT_ASSIGN)) {
/* This is actually @array = split. */
PL_modcount = RETURN_UNLIMITED_NUMBER;
break;
}
goto nomod;
case OP_SCALAR:
op_lvalue(cUNOPo->op_first, OP_ENTERSUB);
goto nomod;
}
/* [20011101.069 (#7861)] File test operators interpret OPf_REF to mean that
their argument is a filehandle; thus \stat(".") should not set
it. AMS 20011102 */
if (type == OP_REFGEN && OP_IS_STAT(o->op_type))
goto do_next;
if (type != OP_LEAVESUBLV)
o->op_flags |= OPf_MOD;
if (type == OP_AASSIGN || type == OP_SASSIGN)
o->op_flags |= OPf_SPECIAL
|(o->op_type == OP_ENTERSUB ? 0 : OPf_REF);
else if (!type) { /* local() */
switch (localize) {
case 1:
o->op_private |= OPpLVAL_INTRO;
o->op_flags &= ~OPf_SPECIAL;
PL_hints |= HINT_BLOCK_SCOPE;
break;
case 0:
break;
case -1:
Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
"Useless localization of %s", OP_DESC(o));
}
}
else if (type != OP_GREPSTART && type != OP_ENTERSUB
&& type != OP_LEAVESUBLV && o->op_type != OP_ENTERSUB)
o->op_flags |= OPf_REF;
do_next:
while (!next_kid) {
if (o == top_op)
return top_op; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o)) {
next_kid = o->op_sibparent;
if (!OpHAS_SIBLING(next_kid)) {
/* a few node types don't recurse into their second child */
OP *parent = next_kid->op_sibparent;
I32 ptype = parent->op_type;
if ( (ptype == OP_NULL && parent->op_targ != OP_LIST)
|| ( (ptype == OP_AND || ptype == OP_OR)
&& (type != OP_LEAVESUBLV
&& S_vivifies(next_kid->op_type))
)
) {
/*try parent's next sibling */
o = parent;
next_kid = NULL;
}
}
}
else
o = o->op_sibparent; /*try parent's next sibling */
}
o = next_kid;
} /* while */
}
STATIC bool
S_scalar_mod_type(const OP *o, I32 type)
{
switch (type) {
case OP_POS:
case OP_SASSIGN:
if (o && o->op_type == OP_RV2GV)
return FALSE;
/* FALLTHROUGH */
case OP_PREINC:
case OP_PREDEC:
case OP_POSTINC:
case OP_POSTDEC:
case OP_I_PREINC:
case OP_I_PREDEC:
case OP_I_POSTINC:
case OP_I_POSTDEC:
case OP_POW:
case OP_MULTIPLY:
case OP_DIVIDE:
case OP_MODULO:
case OP_REPEAT:
case OP_ADD:
case OP_SUBTRACT:
case OP_I_MULTIPLY:
case OP_I_DIVIDE:
case OP_I_MODULO:
case OP_I_ADD:
case OP_I_SUBTRACT:
case OP_LEFT_SHIFT:
case OP_RIGHT_SHIFT:
case OP_BIT_AND:
case OP_BIT_XOR:
case OP_BIT_OR:
case OP_NBIT_AND:
case OP_NBIT_XOR:
case OP_NBIT_OR:
case OP_SBIT_AND:
case OP_SBIT_XOR:
case OP_SBIT_OR:
case OP_CONCAT:
case OP_SUBST:
case OP_TRANS:
case OP_TRANSR:
case OP_READ:
case OP_SYSREAD:
case OP_RECV:
case OP_ANDASSIGN:
case OP_ORASSIGN:
case OP_DORASSIGN:
case OP_VEC:
case OP_SUBSTR:
return TRUE;
default:
return FALSE;
}
}
STATIC bool
S_is_handle_constructor(const OP *o, I32 numargs)
{
PERL_ARGS_ASSERT_IS_HANDLE_CONSTRUCTOR;
switch (o->op_type) {
case OP_PIPE_OP:
case OP_SOCKPAIR:
if (numargs == 2)
return TRUE;
/* FALLTHROUGH */
case OP_SYSOPEN:
case OP_OPEN:
case OP_SELECT: /* XXX c.f. SelectSaver.pm */
case OP_SOCKET:
case OP_OPEN_DIR:
case OP_ACCEPT:
if (numargs == 1)
return TRUE;
/* FALLTHROUGH */
default:
return FALSE;
}
}
static OP *
S_refkids(pTHX_ OP *o, I32 type)
{
if (o && o->op_flags & OPf_KIDS) {
OP *kid;
for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
ref(kid, type);
}
return o;
}
/* Apply reference (autovivification) context to the subtree at o.
* For example in
* push @{expression}, ....;
* o will be the head of 'expression' and type will be OP_RV2AV.
* It marks the op o (or a suitable child) as autovivifying, e.g. by
* setting OPf_MOD.
* For OP_RV2AV/OP_PADAV and OP_RV2HV/OP_PADHV sets OPf_REF too if
* set_op_ref is true.
*
* Also calls scalar(o).
*/
OP *
Perl_doref(pTHX_ OP *o, I32 type, bool set_op_ref)
{
dVAR;
OP * top_op = o;
PERL_ARGS_ASSERT_DOREF;
if (PL_parser && PL_parser->error_count)
return o;
while (1) {
switch (o->op_type) {
case OP_ENTERSUB:
if ((type == OP_EXISTS || type == OP_DEFINED) &&
!(o->op_flags & OPf_STACKED)) {
OpTYPE_set(o, OP_RV2CV); /* entersub => rv2cv */
assert(cUNOPo->op_first->op_type == OP_NULL);
/* disable pushmark */
op_null(((LISTOP*)cUNOPo->op_first)->op_first);
o->op_flags |= OPf_SPECIAL;
}
else if (type == OP_RV2SV || type == OP_RV2AV || type == OP_RV2HV){
o->op_private |= (type == OP_RV2AV ? OPpDEREF_AV
: type == OP_RV2HV ? OPpDEREF_HV
: OPpDEREF_SV);
o->op_flags |= OPf_MOD;
}
break;
case OP_COND_EXPR:
o = OpSIBLING(cUNOPo->op_first);
continue;
case OP_RV2SV:
if (type == OP_DEFINED)
o->op_flags |= OPf_SPECIAL; /* don't create GV */
/* FALLTHROUGH */
case OP_PADSV:
if (type == OP_RV2SV || type == OP_RV2AV || type == OP_RV2HV) {
o->op_private |= (type == OP_RV2AV ? OPpDEREF_AV
: type == OP_RV2HV ? OPpDEREF_HV
: OPpDEREF_SV);
o->op_flags |= OPf_MOD;
}
if (o->op_flags & OPf_KIDS) {
type = o->op_type;
o = cUNOPo->op_first;
continue;
}
break;
case OP_RV2AV:
case OP_RV2HV:
if (set_op_ref)
o->op_flags |= OPf_REF;
/* FALLTHROUGH */
case OP_RV2GV:
if (type == OP_DEFINED)
o->op_flags |= OPf_SPECIAL; /* don't create GV */
type = o->op_type;
o = cUNOPo->op_first;
continue;
case OP_PADAV:
case OP_PADHV:
if (set_op_ref)
o->op_flags |= OPf_REF;
break;
case OP_SCALAR:
case OP_NULL:
if (!(o->op_flags & OPf_KIDS) || type == OP_DEFINED)
break;
o = cBINOPo->op_first;
continue;
case OP_AELEM:
case OP_HELEM:
if (type == OP_RV2SV || type == OP_RV2AV || type == OP_RV2HV) {
o->op_private |= (type == OP_RV2AV ? OPpDEREF_AV
: type == OP_RV2HV ? OPpDEREF_HV
: OPpDEREF_SV);
o->op_flags |= OPf_MOD;
}
type = o->op_type;
o = cBINOPo->op_first;
continue;;
case OP_SCOPE:
case OP_LEAVE:
set_op_ref = FALSE;
/* FALLTHROUGH */
case OP_ENTER:
case OP_LIST:
if (!(o->op_flags & OPf_KIDS))
break;
o = cLISTOPo->op_last;
continue;
default:
break;
} /* switch */
while (1) {
if (o == top_op)
return scalar(top_op); /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o)) {
o = o->op_sibparent;
/* Normally skip all siblings and go straight to the parent;
* the only op that requires two children to be processed
* is OP_COND_EXPR */
if (!OpHAS_SIBLING(o)
&& o->op_sibparent->op_type == OP_COND_EXPR)
break;
continue;
}
o = o->op_sibparent; /*try parent's next sibling */
}
} /* while */
}
STATIC OP *
S_dup_attrlist(pTHX_ OP *o)
{
OP *rop;
PERL_ARGS_ASSERT_DUP_ATTRLIST;
/* An attrlist is either a simple OP_CONST or an OP_LIST with kids,
* where the first kid is OP_PUSHMARK and the remaining ones
* are OP_CONST. We need to push the OP_CONST values.
*/
if (o->op_type == OP_CONST)
rop = newSVOP(OP_CONST, o->op_flags, SvREFCNT_inc_NN(cSVOPo->op_sv));
else {
assert((o->op_type == OP_LIST) && (o->op_flags & OPf_KIDS));
rop = NULL;
for (o = cLISTOPo->op_first; o; o = OpSIBLING(o)) {
if (o->op_type == OP_CONST)
rop = op_append_elem(OP_LIST, rop,
newSVOP(OP_CONST, o->op_flags,
SvREFCNT_inc_NN(cSVOPo->op_sv)));
}
}
return rop;
}
STATIC void
S_apply_attrs(pTHX_ HV *stash, SV *target, OP *attrs)
{
PERL_ARGS_ASSERT_APPLY_ATTRS;
{
SV * const stashsv = newSVhek(HvNAME_HEK(stash));
/* fake up C<use attributes $pkg,$rv,@attrs> */
#define ATTRSMODULE "attributes"
#define ATTRSMODULE_PM "attributes.pm"
Perl_load_module(
aTHX_ PERL_LOADMOD_IMPORT_OPS,
newSVpvs(ATTRSMODULE),
NULL,
op_prepend_elem(OP_LIST,
newSVOP(OP_CONST, 0, stashsv),
op_prepend_elem(OP_LIST,
newSVOP(OP_CONST, 0,
newRV(target)),
dup_attrlist(attrs))));
}
}
STATIC void
S_apply_attrs_my(pTHX_ HV *stash, OP *target, OP *attrs, OP **imopsp)
{
OP *pack, *imop, *arg;
SV *meth, *stashsv, **svp;
PERL_ARGS_ASSERT_APPLY_ATTRS_MY;
if (!attrs)
return;
assert(target->op_type == OP_PADSV ||
target->op_type == OP_PADHV ||
target->op_type == OP_PADAV);
/* Ensure that attributes.pm is loaded. */
/* Don't force the C<use> if we don't need it. */
svp = hv_fetchs(GvHVn(PL_incgv), ATTRSMODULE_PM, FALSE);
if (svp && *svp != &PL_sv_undef)
NOOP; /* already in %INC */
else
Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT,
newSVpvs(ATTRSMODULE), NULL);
/* Need package name for method call. */
pack = newSVOP(OP_CONST, 0, newSVpvs(ATTRSMODULE));
/* Build up the real arg-list. */
stashsv = newSVhek(HvNAME_HEK(stash));
arg = newOP(OP_PADSV, 0);
arg->op_targ = target->op_targ;
arg = op_prepend_elem(OP_LIST,
newSVOP(OP_CONST, 0, stashsv),
op_prepend_elem(OP_LIST,
newUNOP(OP_REFGEN, 0,
arg),
dup_attrlist(attrs)));
/* Fake up a method call to import */
meth = newSVpvs_share("import");
imop = op_convert_list(OP_ENTERSUB, OPf_STACKED|OPf_SPECIAL|OPf_WANT_VOID,
op_append_elem(OP_LIST,
op_prepend_elem(OP_LIST, pack, arg),
newMETHOP_named(OP_METHOD_NAMED, 0, meth)));
/* Combine the ops. */
*imopsp = op_append_elem(OP_LIST, *imopsp, imop);
}
/*
=notfor apidoc apply_attrs_string
Attempts to apply a list of attributes specified by the C<attrstr> and
C<len> arguments to the subroutine identified by the C<cv> argument which
is expected to be associated with the package identified by the C<stashpv>
argument (see L<attributes>). It gets this wrong, though, in that it
does not correctly identify the boundaries of the individual attribute
specifications within C<attrstr>. This is not really intended for the
public API, but has to be listed here for systems such as AIX which
need an explicit export list for symbols. (It's called from XS code
in support of the C<ATTRS:> keyword from F<xsubpp>.) Patches to fix it
to respect attribute syntax properly would be welcome.
=cut
*/
void
Perl_apply_attrs_string(pTHX_ const char *stashpv, CV *cv,
const char *attrstr, STRLEN len)
{
OP *attrs = NULL;
PERL_ARGS_ASSERT_APPLY_ATTRS_STRING;
if (!len) {
len = strlen(attrstr);
}
while (len) {
for (; isSPACE(*attrstr) && len; --len, ++attrstr) ;
if (len) {
const char * const sstr = attrstr;
for (; !isSPACE(*attrstr) && len; --len, ++attrstr) ;
attrs = op_append_elem(OP_LIST, attrs,
newSVOP(OP_CONST, 0,
newSVpvn(sstr, attrstr-sstr)));
}
}
Perl_load_module(aTHX_ PERL_LOADMOD_IMPORT_OPS,
newSVpvs(ATTRSMODULE),
NULL, op_prepend_elem(OP_LIST,
newSVOP(OP_CONST, 0, newSVpv(stashpv,0)),
op_prepend_elem(OP_LIST,
newSVOP(OP_CONST, 0,
newRV(MUTABLE_SV(cv))),
attrs)));
}
STATIC void
S_move_proto_attr(pTHX_ OP **proto, OP **attrs, const GV * name,
bool curstash)
{
OP *new_proto = NULL;
STRLEN pvlen;
char *pv;
OP *o;
PERL_ARGS_ASSERT_MOVE_PROTO_ATTR;
if (!*attrs)
return;
o = *attrs;
if (o->op_type == OP_CONST) {
pv = SvPV(cSVOPo_sv, pvlen);
if (memBEGINs(pv, pvlen, "prototype(")) {
SV * const tmpsv = newSVpvn_flags(pv + 10, pvlen - 11, SvUTF8(cSVOPo_sv));
SV ** const tmpo = cSVOPx_svp(o);
SvREFCNT_dec(cSVOPo_sv);
*tmpo = tmpsv;
new_proto = o;
*attrs = NULL;
}
} else if (o->op_type == OP_LIST) {
OP * lasto;
assert(o->op_flags & OPf_KIDS);
lasto = cLISTOPo->op_first;
assert(lasto->op_type == OP_PUSHMARK);
for (o = OpSIBLING(lasto); o; o = OpSIBLING(o)) {
if (o->op_type == OP_CONST) {
pv = SvPV(cSVOPo_sv, pvlen);
if (memBEGINs(pv, pvlen, "prototype(")) {
SV * const tmpsv = newSVpvn_flags(pv + 10, pvlen - 11, SvUTF8(cSVOPo_sv));
SV ** const tmpo = cSVOPx_svp(o);
SvREFCNT_dec(cSVOPo_sv);
*tmpo = tmpsv;
if (new_proto && ckWARN(WARN_MISC)) {
STRLEN new_len;
const char * newp = SvPV(cSVOPo_sv, new_len);
Perl_warner(aTHX_ packWARN(WARN_MISC),
"Attribute prototype(%" UTF8f ") discards earlier prototype attribute in same sub",
UTF8fARG(SvUTF8(cSVOPo_sv), new_len, newp));
op_free(new_proto);
}
else if (new_proto)
op_free(new_proto);
new_proto = o;
/* excise new_proto from the list */
op_sibling_splice(*attrs, lasto, 1, NULL);
o = lasto;
continue;
}
}
lasto = o;
}
/* If the list is now just the PUSHMARK, scrap the whole thing; otherwise attributes.xs
would get pulled in with no real need */
if (!OpHAS_SIBLING(cLISTOPx(*attrs)->op_first)) {
op_free(*attrs);
*attrs = NULL;
}
}
if (new_proto) {
SV *svname;
if (isGV(name)) {
svname = sv_newmortal();
gv_efullname3(svname, name, NULL);
}
else if (SvPOK(name) && *SvPVX((SV *)name) == '&')
svname = newSVpvn_flags(SvPVX((SV *)name)+1, SvCUR(name)-1, SvUTF8(name)|SVs_TEMP);
else
svname = (SV *)name;
if (ckWARN(WARN_ILLEGALPROTO))
(void)validate_proto(svname, cSVOPx_sv(new_proto), TRUE,
curstash);
if (*proto && ckWARN(WARN_PROTOTYPE)) {
STRLEN old_len, new_len;
const char * oldp = SvPV(cSVOPx_sv(*proto), old_len);
const char * newp = SvPV(cSVOPx_sv(new_proto), new_len);
if (curstash && svname == (SV *)name
&& !memchr(SvPVX(svname), ':', SvCUR(svname))) {
svname = sv_2mortal(newSVsv(PL_curstname));
sv_catpvs(svname, "::");
sv_catsv(svname, (SV *)name);
}
Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE),
"Prototype '%" UTF8f "' overridden by attribute 'prototype(%" UTF8f ")'"
" in %" SVf,
UTF8fARG(SvUTF8(cSVOPx_sv(*proto)), old_len, oldp),
UTF8fARG(SvUTF8(cSVOPx_sv(new_proto)), new_len, newp),
SVfARG(svname));
}
if (*proto)
op_free(*proto);
*proto = new_proto;
}
}
static void
S_cant_declare(pTHX_ OP *o)
{
if (o->op_type == OP_NULL
&& (o->op_flags & (OPf_SPECIAL|OPf_KIDS)) == OPf_KIDS)
o = cUNOPo->op_first;
yyerror(Perl_form(aTHX_ "Can't declare %s in \"%s\"",
o->op_type == OP_NULL
&& o->op_flags & OPf_SPECIAL
? "do block"
: OP_DESC(o),
PL_parser->in_my == KEY_our ? "our" :
PL_parser->in_my == KEY_state ? "state" :
"my"));
}
STATIC OP *
S_my_kid(pTHX_ OP *o, OP *attrs, OP **imopsp)
{
I32 type;
const bool stately = PL_parser && PL_parser->in_my == KEY_state;
PERL_ARGS_ASSERT_MY_KID;
if (!o || (PL_parser && PL_parser->error_count))
return o;
type = o->op_type;
if (OP_TYPE_IS_OR_WAS(o, OP_LIST)) {
OP *kid;
for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
my_kid(kid, attrs, imopsp);
return o;
} else if (type == OP_UNDEF || type == OP_STUB) {
return o;
} else if (type == OP_RV2SV || /* "our" declaration */
type == OP_RV2AV ||
type == OP_RV2HV) {
if (cUNOPo->op_first->op_type != OP_GV) { /* MJD 20011224 */
S_cant_declare(aTHX_ o);
} else if (attrs) {
GV * const gv = cGVOPx_gv(cUNOPo->op_first);
assert(PL_parser);
PL_parser->in_my = FALSE;
PL_parser->in_my_stash = NULL;
apply_attrs(GvSTASH(gv),
(type == OP_RV2SV ? GvSVn(gv) :
type == OP_RV2AV ? MUTABLE_SV(GvAVn(gv)) :
type == OP_RV2HV ? MUTABLE_SV(GvHVn(gv)) : MUTABLE_SV(gv)),
attrs);
}
o->op_private |= OPpOUR_INTRO;
return o;
}
else if (type == OP_REFGEN || type == OP_SREFGEN) {
if (!FEATURE_MYREF_IS_ENABLED)
Perl_croak(aTHX_ "The experimental declared_refs "
"feature is not enabled");
Perl_ck_warner_d(aTHX_
packWARN(WARN_EXPERIMENTAL__DECLARED_REFS),
"Declaring references is experimental");
/* Kid is a nulled OP_LIST, handled above. */
my_kid(cUNOPo->op_first, attrs, imopsp);
return o;
}
else if (type != OP_PADSV &&
type != OP_PADAV &&
type != OP_PADHV &&
type != OP_PUSHMARK)
{
S_cant_declare(aTHX_ o);
return o;
}
else if (attrs && type != OP_PUSHMARK) {
HV *stash;
assert(PL_parser);
PL_parser->in_my = FALSE;
PL_parser->in_my_stash = NULL;
/* check for C<my Dog $spot> when deciding package */
stash = PAD_COMPNAME_TYPE(o->op_targ);
if (!stash)
stash = PL_curstash;
apply_attrs_my(stash, o, attrs, imopsp);
}
o->op_flags |= OPf_MOD;
o->op_private |= OPpLVAL_INTRO;
if (stately)
o->op_private |= OPpPAD_STATE;
return o;
}
OP *
Perl_my_attrs(pTHX_ OP *o, OP *attrs)
{
OP *rops;
int maybe_scalar = 0;
PERL_ARGS_ASSERT_MY_ATTRS;
/* [perl #17376]: this appears to be premature, and results in code such as
C< our(%x); > executing in list mode rather than void mode */
#if 0
if (o->op_flags & OPf_PARENS)
list(o);
else
maybe_scalar = 1;
#else
maybe_scalar = 1;
#endif
if (attrs)
SAVEFREEOP(attrs);
rops = NULL;
o = my_kid(o, attrs, &rops);
if (rops) {
if (maybe_scalar && o->op_type == OP_PADSV) {
o = scalar(op_append_list(OP_LIST, rops, o));
o->op_private |= OPpLVAL_INTRO;
}
else {
/* The listop in rops might have a pushmark at the beginning,
which will mess up list assignment. */
LISTOP * const lrops = (LISTOP *)rops; /* for brevity */
if (rops->op_type == OP_LIST &&
lrops->op_first && lrops->op_first->op_type == OP_PUSHMARK)
{
OP * const pushmark = lrops->op_first;
/* excise pushmark */
op_sibling_splice(rops, NULL, 1, NULL);
op_free(pushmark);
}
o = op_append_list(OP_LIST, o, rops);
}
}
PL_parser->in_my = FALSE;
PL_parser->in_my_stash = NULL;
return o;
}
OP *
Perl_sawparens(pTHX_ OP *o)
{
PERL_UNUSED_CONTEXT;
if (o)
o->op_flags |= OPf_PARENS;
return o;
}
OP *
Perl_bind_match(pTHX_ I32 type, OP *left, OP *right)
{
OP *o;
bool ismatchop = 0;
const OPCODE ltype = left->op_type;
const OPCODE rtype = right->op_type;
PERL_ARGS_ASSERT_BIND_MATCH;
if ( (ltype == OP_RV2AV || ltype == OP_RV2HV || ltype == OP_PADAV
|| ltype == OP_PADHV) && ckWARN(WARN_MISC))
{
const char * const desc
= PL_op_desc[(
rtype == OP_SUBST || rtype == OP_TRANS
|| rtype == OP_TRANSR
)
? (int)rtype : OP_MATCH];
const bool isary = ltype == OP_RV2AV || ltype == OP_PADAV;
SV * const name =
S_op_varname(aTHX_ left);
if (name)
Perl_warner(aTHX_ packWARN(WARN_MISC),
"Applying %s to %" SVf " will act on scalar(%" SVf ")",
desc, SVfARG(name), SVfARG(name));
else {
const char * const sample = (isary
? "@array" : "%hash");
Perl_warner(aTHX_ packWARN(WARN_MISC),
"Applying %s to %s will act on scalar(%s)",
desc, sample, sample);
}
}
if (rtype == OP_CONST &&
cSVOPx(right)->op_private & OPpCONST_BARE &&
cSVOPx(right)->op_private & OPpCONST_STRICT)
{
no_bareword_allowed(right);
}
/* !~ doesn't make sense with /r, so error on it for now */
if (rtype == OP_SUBST && (cPMOPx(right)->op_pmflags & PMf_NONDESTRUCT) &&
type == OP_NOT)
/* diag_listed_as: Using !~ with %s doesn't make sense */
yyerror("Using !~ with s///r doesn't make sense");
if (rtype == OP_TRANSR && type == OP_NOT)
/* diag_listed_as: Using !~ with %s doesn't make sense */
yyerror("Using !~ with tr///r doesn't make sense");
ismatchop = (rtype == OP_MATCH ||
rtype == OP_SUBST ||
rtype == OP_TRANS || rtype == OP_TRANSR)
&& !(right->op_flags & OPf_SPECIAL);
if (ismatchop && right->op_private & OPpTARGET_MY) {
right->op_targ = 0;
right->op_private &= ~OPpTARGET_MY;
}
if (!(right->op_flags & OPf_STACKED) && !right->op_targ && ismatchop) {
if (left->op_type == OP_PADSV
&& !(left->op_private & OPpLVAL_INTRO))
{
right->op_targ = left->op_targ;
op_free(left);
o = right;
}
else {
right->op_flags |= OPf_STACKED;
if (rtype != OP_MATCH && rtype != OP_TRANSR &&
! (rtype == OP_TRANS &&
right->op_private & OPpTRANS_IDENTICAL) &&
! (rtype == OP_SUBST &&
(cPMOPx(right)->op_pmflags & PMf_NONDESTRUCT)))
left = op_lvalue(left, rtype);
if (right->op_type == OP_TRANS || right->op_type == OP_TRANSR)
o = newBINOP(OP_NULL, OPf_STACKED, scalar(left), right);
else
o = op_prepend_elem(rtype, scalar(left), right);
}
if (type == OP_NOT)
return newUNOP(OP_NOT, 0, scalar(o));
return o;
}
else
return bind_match(type, left,
pmruntime(newPMOP(OP_MATCH, 0), right, NULL, 0, 0));
}
OP *
Perl_invert(pTHX_ OP *o)
{
if (!o)
return NULL;
return newUNOP(OP_NOT, OPf_SPECIAL, scalar(o));
}
/*
=for apidoc op_scope
Wraps up an op tree with some additional ops so that at runtime a dynamic
scope will be created. The original ops run in the new dynamic scope,
and then, provided that they exit normally, the scope will be unwound.
The additional ops used to create and unwind the dynamic scope will
normally be an C<enter>/C<leave> pair, but a C<scope> op may be used
instead if the ops are simple enough to not need the full dynamic scope
structure.
=cut
*/
OP *
Perl_op_scope(pTHX_ OP *o)
{
dVAR;
if (o) {
if (o->op_flags & OPf_PARENS || PERLDB_NOOPT || TAINTING_get) {
o = op_prepend_elem(OP_LINESEQ,
newOP(OP_ENTER, (o->op_flags & OPf_WANT)), o);
OpTYPE_set(o, OP_LEAVE);
}
else if (o->op_type == OP_LINESEQ) {
OP *kid;
OpTYPE_set(o, OP_SCOPE);
kid = ((LISTOP*)o)->op_first;
if (kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE) {
op_null(kid);
/* The following deals with things like 'do {1 for 1}' */
kid = OpSIBLING(kid);
if (kid &&
(kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE))
op_null(kid);
}
}
else
o = newLISTOP(OP_SCOPE, 0, o, NULL);
}
return o;
}
OP *
Perl_op_unscope(pTHX_ OP *o)
{
if (o && o->op_type == OP_LINESEQ) {
OP *kid = cLISTOPo->op_first;
for(; kid; kid = OpSIBLING(kid))
if (kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE)
op_null(kid);
}
return o;
}
/*
=for apidoc block_start
Handles compile-time scope entry.
Arranges for hints to be restored on block
exit and also handles pad sequence numbers to make lexical variables scope
right. Returns a savestack index for use with C<block_end>.
=cut
*/
int
Perl_block_start(pTHX_ int full)
{
const int retval = PL_savestack_ix;
PL_compiling.cop_seq = PL_cop_seqmax;
COP_SEQMAX_INC;
pad_block_start(full);
SAVEHINTS();
PL_hints &= ~HINT_BLOCK_SCOPE;
SAVECOMPILEWARNINGS();
PL_compiling.cop_warnings = DUP_WARNINGS(PL_compiling.cop_warnings);
SAVEI32(PL_compiling.cop_seq);
PL_compiling.cop_seq = 0;
CALL_BLOCK_HOOKS(bhk_start, full);
return retval;
}
/*
=for apidoc block_end
Handles compile-time scope exit. C<floor>
is the savestack index returned by
C<block_start>, and C<seq> is the body of the block. Returns the block,
possibly modified.
=cut
*/
OP*
Perl_block_end(pTHX_ I32 floor, OP *seq)
{
const int needblockscope = PL_hints & HINT_BLOCK_SCOPE;
OP* retval = scalarseq(seq);
OP *o;
/* XXX Is the null PL_parser check necessary here? */
assert(PL_parser); /* Let’s find out under debugging builds. */
if (PL_parser && PL_parser->parsed_sub) {
o = newSTATEOP(0, NULL, NULL);
op_null(o);
retval = op_append_elem(OP_LINESEQ, retval, o);
}
CALL_BLOCK_HOOKS(bhk_pre_end, &retval);
LEAVE_SCOPE(floor);
if (needblockscope)
PL_hints |= HINT_BLOCK_SCOPE; /* propagate out */
o = pad_leavemy();
if (o) {
/* pad_leavemy has created a sequence of introcv ops for all my
subs declared in the block. We have to replicate that list with
clonecv ops, to deal with this situation:
sub {
my sub s1;
my sub s2;
sub s1 { state sub foo { \&s2 } }
}->()
Originally, I was going to have introcv clone the CV and turn
off the stale flag. Since &s1 is declared before &s2, the
introcv op for &s1 is executed (on sub entry) before the one for
&s2. But the &foo sub inside &s1 (which is cloned when &s1 is
cloned, since it is a state sub) closes over &s2 and expects
to see it in its outer CV’s pad. If the introcv op clones &s1,
then &s2 is still marked stale. Since &s1 is not active, and
&foo closes over &s1’s implicit entry for &s2, we get a ‘Varia-
ble will not stay shared’ warning. Because it is the same stub
that will be used when the introcv op for &s2 is executed, clos-
ing over it is safe. Hence, we have to turn off the stale flag
on all lexical subs in the block before we clone any of them.
Hence, having introcv clone the sub cannot work. So we create a
list of ops like this:
lineseq
|
+-- introcv
|
+-- introcv
|
+-- introcv
|
.
.
.
|
+-- clonecv
|
+-- clonecv
|
+-- clonecv
|
.
.
.
*/
OP *kid = o->op_flags & OPf_KIDS ? cLISTOPo->op_first : o;
OP * const last = o->op_flags & OPf_KIDS ? cLISTOPo->op_last : o;
for (;; kid = OpSIBLING(kid)) {
OP *newkid = newOP(OP_CLONECV, 0);
newkid->op_targ = kid->op_targ;
o = op_append_elem(OP_LINESEQ, o, newkid);
if (kid == last) break;
}
retval = op_prepend_elem(OP_LINESEQ, o, retval);
}
CALL_BLOCK_HOOKS(bhk_post_end, &retval);
return retval;
}
/*
=head1 Compile-time scope hooks
=for apidoc blockhook_register
Register a set of hooks to be called when the Perl lexical scope changes
at compile time. See L<perlguts/"Compile-time scope hooks">.
=cut
*/
void
Perl_blockhook_register(pTHX_ BHK *hk)
{
PERL_ARGS_ASSERT_BLOCKHOOK_REGISTER;
Perl_av_create_and_push(aTHX_ &PL_blockhooks, newSViv(PTR2IV(hk)));
}
void
Perl_newPROG(pTHX_ OP *o)
{
OP *start;
PERL_ARGS_ASSERT_NEWPROG;
if (PL_in_eval) {
PERL_CONTEXT *cx;
I32 i;
if (PL_eval_root)
return;
PL_eval_root = newUNOP(OP_LEAVEEVAL,
((PL_in_eval & EVAL_KEEPERR)
? OPf_SPECIAL : 0), o);
cx = CX_CUR();
assert(CxTYPE(cx) == CXt_EVAL);
if ((cx->blk_gimme & G_WANT) == G_VOID)
scalarvoid(PL_eval_root);
else if ((cx->blk_gimme & G_WANT) == G_ARRAY)
list(PL_eval_root);
else
scalar(PL_eval_root);
start = op_linklist(PL_eval_root);
PL_eval_root->op_next = 0;
i = PL_savestack_ix;
SAVEFREEOP(o);
ENTER;
S_process_optree(aTHX_ NULL, PL_eval_root, start);
LEAVE;
PL_savestack_ix = i;
}
else {
if (o->op_type == OP_STUB) {
/* This block is entered if nothing is compiled for the main
program. This will be the case for an genuinely empty main
program, or one which only has BEGIN blocks etc, so already
run and freed.
Historically (5.000) the guard above was !o. However, commit
f8a08f7b8bd67b28 (Jun 2001), integrated to blead as
c71fccf11fde0068, changed perly.y so that newPROG() is now
called with the output of block_end(), which returns a new
OP_STUB for the case of an empty optree. ByteLoader (and
maybe other things) also take this path, because they set up
PL_main_start and PL_main_root directly, without generating an
optree.
If the parsing the main program aborts (due to parse errors,
or due to BEGIN or similar calling exit), then newPROG()
isn't even called, and hence this code path and its cleanups
are skipped. This shouldn't make a make a difference:
* a non-zero return from perl_parse is a failure, and
perl_destruct() should be called immediately.
* however, if exit(0) is called during the parse, then
perl_parse() returns 0, and perl_run() is called. As
PL_main_start will be NULL, perl_run() will return
promptly, and the exit code will remain 0.
*/
PL_comppad_name = 0;
PL_compcv = 0;
S_op_destroy(aTHX_ o);
return;
}
PL_main_root = op_scope(sawparens(scalarvoid(o)));
PL_curcop = &PL_compiling;
start = LINKLIST(PL_main_root);
PL_main_root->op_next = 0;
S_process_optree(aTHX_ NULL, PL_main_root, start);
if (!PL_parser->error_count)
/* on error, leave CV slabbed so that ops left lying around
* will eb cleaned up. Else unslab */
cv_forget_slab(PL_compcv);
PL_compcv = 0;
/* Register with debugger */
if (PERLDB_INTER) {
CV * const cv = get_cvs("DB::postponed", 0);
if (cv) {
dSP;
PUSHMARK(SP);
XPUSHs(MUTABLE_SV(CopFILEGV(&PL_compiling)));
PUTBACK;
call_sv(MUTABLE_SV(cv), G_DISCARD);
}
}
}
}
OP *
Perl_localize(pTHX_ OP *o, I32 lex)
{
PERL_ARGS_ASSERT_LOCALIZE;
if (o->op_flags & OPf_PARENS)
/* [perl #17376]: this appears to be premature, and results in code such as
C< our(%x); > executing in list mode rather than void mode */
#if 0
list(o);
#else
NOOP;
#endif
else {
if ( PL_parser->bufptr > PL_parser->oldbufptr
&& PL_parser->bufptr[-1] == ','
&& ckWARN(WARN_PARENTHESIS))
{
char *s = PL_parser->bufptr;
bool sigil = FALSE;
/* some heuristics to detect a potential error */
while (*s && (memCHRs(", \t\n", *s)))
s++;
while (1) {
if (*s && (memCHRs("@$%", *s) || (!lex && *s == '*'))
&& *++s
&& (isWORDCHAR(*s) || UTF8_IS_CONTINUED(*s))) {
s++;
sigil = TRUE;
while (*s && (isWORDCHAR(*s) || UTF8_IS_CONTINUED(*s)))
s++;
while (*s && (memCHRs(", \t\n", *s)))
s++;
}
else
break;
}
if (sigil && (*s == ';' || *s == '=')) {
Perl_warner(aTHX_ packWARN(WARN_PARENTHESIS),
"Parentheses missing around \"%s\" list",
lex
? (PL_parser->in_my == KEY_our
? "our"
: PL_parser->in_my == KEY_state
? "state"
: "my")
: "local");
}
}
}
if (lex)
o = my(o);
else
o = op_lvalue(o, OP_NULL); /* a bit kludgey */
PL_parser->in_my = FALSE;
PL_parser->in_my_stash = NULL;
return o;
}
OP *
Perl_jmaybe(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_JMAYBE;
if (o->op_type == OP_LIST) {
OP * const o2
= newSVREF(newGVOP(OP_GV, 0, gv_fetchpvs(";", GV_ADD|GV_NOTQUAL, SVt_PV)));
o = op_convert_list(OP_JOIN, 0, op_prepend_elem(OP_LIST, o2, o));
}
return o;
}
PERL_STATIC_INLINE OP *
S_op_std_init(pTHX_ OP *o)
{
I32 type = o->op_type;
PERL_ARGS_ASSERT_OP_STD_INIT;
if (PL_opargs[type] & OA_RETSCALAR)
scalar(o);
if (PL_opargs[type] & OA_TARGET && !o->op_targ)
o->op_targ = pad_alloc(type, SVs_PADTMP);
return o;
}
PERL_STATIC_INLINE OP *
S_op_integerize(pTHX_ OP *o)
{
I32 type = o->op_type;
PERL_ARGS_ASSERT_OP_INTEGERIZE;
/* integerize op. */
if ((PL_opargs[type] & OA_OTHERINT) && (PL_hints & HINT_INTEGER))
{
dVAR;
o->op_ppaddr = PL_ppaddr[++(o->op_type)];
}
if (type == OP_NEGATE)
/* XXX might want a ck_negate() for this */
cUNOPo->op_first->op_private &= ~OPpCONST_STRICT;
return o;
}
/* This function exists solely to provide a scope to limit
setjmp/longjmp() messing with auto variables.
*/
PERL_STATIC_INLINE int
S_fold_constants_eval(pTHX) {
int ret = 0;
dJMPENV;
JMPENV_PUSH(ret);
if (ret == 0) {
CALLRUNOPS(aTHX);
}
JMPENV_POP;
return ret;
}
static OP *
S_fold_constants(pTHX_ OP *const o)
{
dVAR;
OP *curop;
OP *newop;
I32 type = o->op_type;
bool is_stringify;
SV *sv = NULL;
int ret = 0;
OP *old_next;
SV * const oldwarnhook = PL_warnhook;
SV * const olddiehook = PL_diehook;
COP not_compiling;
U8 oldwarn = PL_dowarn;
I32 old_cxix;
PERL_ARGS_ASSERT_FOLD_CONSTANTS;
if (!(PL_opargs[type] & OA_FOLDCONST))
goto nope;
switch (type) {
case OP_UCFIRST:
case OP_LCFIRST:
case OP_UC:
case OP_LC:
case OP_FC:
#ifdef USE_LOCALE_CTYPE
if (IN_LC_COMPILETIME(LC_CTYPE))
goto nope;
#endif
break;
case OP_SLT:
case OP_SGT:
case OP_SLE:
case OP_SGE:
case OP_SCMP:
#ifdef USE_LOCALE_COLLATE
if (IN_LC_COMPILETIME(LC_COLLATE))
goto nope;
#endif
break;
case OP_SPRINTF:
/* XXX what about the numeric ops? */
#ifdef USE_LOCALE_NUMERIC
if (IN_LC_COMPILETIME(LC_NUMERIC))
goto nope;
#endif
break;
case OP_PACK:
if (!OpHAS_SIBLING(cLISTOPo->op_first)
|| OpSIBLING(cLISTOPo->op_first)->op_type != OP_CONST)
goto nope;
{
SV * const sv = cSVOPx_sv(OpSIBLING(cLISTOPo->op_first));
if (!SvPOK(sv) || SvGMAGICAL(sv)) goto nope;
{
const char *s = SvPVX_const(sv);
while (s < SvEND(sv)) {
if (isALPHA_FOLD_EQ(*s, 'p')) goto nope;
s++;
}
}
}
break;
case OP_REPEAT:
if (o->op_private & OPpREPEAT_DOLIST) goto nope;
break;
case OP_SREFGEN:
if (cUNOPx(cUNOPo->op_first)->op_first->op_type != OP_CONST
|| SvPADTMP(cSVOPx_sv(cUNOPx(cUNOPo->op_first)->op_first)))
goto nope;
}
if (PL_parser && PL_parser->error_count)
goto nope; /* Don't try to run w/ errors */
for (curop = LINKLIST(o); curop != o; curop = LINKLIST(curop)) {
switch (curop->op_type) {
case OP_CONST:
if ( (curop->op_private & OPpCONST_BARE)
&& (curop->op_private & OPpCONST_STRICT)) {
no_bareword_allowed(curop);
goto nope;
}
/* FALLTHROUGH */
case OP_LIST:
case OP_SCALAR:
case OP_NULL:
case OP_PUSHMARK:
/* Foldable; move to next op in list */
break;
default:
/* No other op types are considered foldable */
goto nope;
}
}
curop = LINKLIST(o);
old_next = o->op_next;
o->op_next = 0;
PL_op = curop;
old_cxix = cxstack_ix;
create_eval_scope(NULL, G_FAKINGEVAL);
/* Verify that we don't need to save it: */
assert(PL_curcop == &PL_compiling);
StructCopy(&PL_compiling, ¬_compiling, COP);
PL_curcop = ¬_compiling;
/* The above ensures that we run with all the correct hints of the
currently compiling COP, but that IN_PERL_RUNTIME is true. */
assert(IN_PERL_RUNTIME);
PL_warnhook = PERL_WARNHOOK_FATAL;
PL_diehook = NULL;
/* Effective $^W=1. */
if ( ! (PL_dowarn & G_WARN_ALL_MASK))
PL_dowarn |= G_WARN_ON;
ret = S_fold_constants_eval(aTHX);
switch (ret) {
case 0:
sv = *(PL_stack_sp--);
if (o->op_targ && sv == PAD_SV(o->op_targ)) { /* grab pad temp? */
pad_swipe(o->op_targ, FALSE);
}
else if (SvTEMP(sv)) { /* grab mortal temp? */
SvREFCNT_inc_simple_void(sv);
SvTEMP_off(sv);
}
else { assert(SvIMMORTAL(sv)); }
break;
case 3:
/* Something tried to die. Abandon constant folding. */
/* Pretend the error never happened. */
CLEAR_ERRSV();
o->op_next = old_next;
break;
default:
/* Don't expect 1 (setjmp failed) or 2 (something called my_exit) */
PL_warnhook = oldwarnhook;
PL_diehook = olddiehook;
/* XXX note that this croak may fail as we've already blown away
* the stack - eg any nested evals */
Perl_croak(aTHX_ "panic: fold_constants JMPENV_PUSH returned %d", ret);
}
PL_dowarn = oldwarn;
PL_warnhook = oldwarnhook;
PL_diehook = olddiehook;
PL_curcop = &PL_compiling;
/* if we croaked, depending on how we croaked the eval scope
* may or may not have already been popped */
if (cxstack_ix > old_cxix) {
assert(cxstack_ix == old_cxix + 1);
assert(CxTYPE(CX_CUR()) == CXt_EVAL);
delete_eval_scope();
}
if (ret)
goto nope;
/* OP_STRINGIFY and constant folding are used to implement qq.
Here the constant folding is an implementation detail that we
want to hide. If the stringify op is itself already marked
folded, however, then it is actually a folded join. */
is_stringify = type == OP_STRINGIFY && !o->op_folded;
op_free(o);
assert(sv);
if (is_stringify)
SvPADTMP_off(sv);
else if (!SvIMMORTAL(sv)) {
SvPADTMP_on(sv);
SvREADONLY_on(sv);
}
newop = newSVOP(OP_CONST, 0, MUTABLE_SV(sv));
if (!is_stringify) newop->op_folded = 1;
return newop;
nope:
return o;
}
/* convert a constant range in list context into an OP_RV2AV, OP_CONST pair;
* the constant value being an AV holding the flattened range.
*/
static void
S_gen_constant_list(pTHX_ OP *o)
{
dVAR;
OP *curop, *old_next;
SV * const oldwarnhook = PL_warnhook;
SV * const olddiehook = PL_diehook;
COP *old_curcop;
U8 oldwarn = PL_dowarn;
SV **svp;
AV *av;
I32 old_cxix;
COP not_compiling;
int ret = 0;
dJMPENV;
bool op_was_null;
list(o);
if (PL_parser && PL_parser->error_count)
return; /* Don't attempt to run with errors */
curop = LINKLIST(o);
old_next = o->op_next;
o->op_next = 0;
op_was_null = o->op_type == OP_NULL;
if (op_was_null) /* b3698342565fb462291fba4b432cfcd05b6eb4e1 */
o->op_type = OP_CUSTOM;
CALL_PEEP(curop);
if (op_was_null)
o->op_type = OP_NULL;
S_prune_chain_head(&curop);
PL_op = curop;
old_cxix = cxstack_ix;
create_eval_scope(NULL, G_FAKINGEVAL);
old_curcop = PL_curcop;
StructCopy(old_curcop, ¬_compiling, COP);
PL_curcop = ¬_compiling;
/* The above ensures that we run with all the correct hints of the
current COP, but that IN_PERL_RUNTIME is true. */
assert(IN_PERL_RUNTIME);
PL_warnhook = PERL_WARNHOOK_FATAL;
PL_diehook = NULL;
JMPENV_PUSH(ret);
/* Effective $^W=1. */
if ( ! (PL_dowarn & G_WARN_ALL_MASK))
PL_dowarn |= G_WARN_ON;
switch (ret) {
case 0:
#if defined DEBUGGING && !defined DEBUGGING_RE_ONLY
PL_curstackinfo->si_stack_hwm = 0; /* stop valgrind complaining */
#endif
Perl_pp_pushmark(aTHX);
CALLRUNOPS(aTHX);
PL_op = curop;
assert (!(curop->op_flags & OPf_SPECIAL));
assert(curop->op_type == OP_RANGE);
Perl_pp_anonlist(aTHX);
break;
case 3:
CLEAR_ERRSV();
o->op_next = old_next;
break;
default:
JMPENV_POP;
PL_warnhook = oldwarnhook;
PL_diehook = olddiehook;
Perl_croak(aTHX_ "panic: gen_constant_list JMPENV_PUSH returned %d",
ret);
}
JMPENV_POP;
PL_dowarn = oldwarn;
PL_warnhook = oldwarnhook;
PL_diehook = olddiehook;
PL_curcop = old_curcop;
if (cxstack_ix > old_cxix) {
assert(cxstack_ix == old_cxix + 1);
assert(CxTYPE(CX_CUR()) == CXt_EVAL);
delete_eval_scope();
}
if (ret)
return;
OpTYPE_set(o, OP_RV2AV);
o->op_flags &= ~OPf_REF; /* treat \(1..2) like an ordinary list */
o->op_flags |= OPf_PARENS; /* and flatten \(1..2,3) */
o->op_opt = 0; /* needs to be revisited in rpeep() */
av = (AV *)SvREFCNT_inc_NN(*PL_stack_sp--);
/* replace subtree with an OP_CONST */
curop = ((UNOP*)o)->op_first;
op_sibling_splice(o, NULL, -1, newSVOP(OP_CONST, 0, (SV *)av));
op_free(curop);
if (AvFILLp(av) != -1)
for (svp = AvARRAY(av) + AvFILLp(av); svp >= AvARRAY(av); --svp)
{
SvPADTMP_on(*svp);
SvREADONLY_on(*svp);
}
LINKLIST(o);
list(o);
return;
}
/*
=head1 Optree Manipulation Functions
*/
/* List constructors */
/*
=for apidoc op_append_elem
Append an item to the list of ops contained directly within a list-type
op, returning the lengthened list. C<first> is the list-type op,
and C<last> is the op to append to the list. C<optype> specifies the
intended opcode for the list. If C<first> is not already a list of the
right type, it will be upgraded into one. If either C<first> or C<last>
is null, the other is returned unchanged.
=cut
*/
OP *
Perl_op_append_elem(pTHX_ I32 type, OP *first, OP *last)
{
if (!first)
return last;
if (!last)
return first;
if (first->op_type != (unsigned)type
|| (type == OP_LIST && (first->op_flags & OPf_PARENS)))
{
return newLISTOP(type, 0, first, last);
}
op_sibling_splice(first, ((LISTOP*)first)->op_last, 0, last);
first->op_flags |= OPf_KIDS;
return first;
}
/*
=for apidoc op_append_list
Concatenate the lists of ops contained directly within two list-type ops,
returning the combined list. C<first> and C<last> are the list-type ops
to concatenate. C<optype> specifies the intended opcode for the list.
If either C<first> or C<last> is not already a list of the right type,
it will be upgraded into one. If either C<first> or C<last> is null,
the other is returned unchanged.
=cut
*/
OP *
Perl_op_append_list(pTHX_ I32 type, OP *first, OP *last)
{
if (!first)
return last;
if (!last)
return first;
if (first->op_type != (unsigned)type)
return op_prepend_elem(type, first, last);
if (last->op_type != (unsigned)type)
return op_append_elem(type, first, last);
OpMORESIB_set(((LISTOP*)first)->op_last, ((LISTOP*)last)->op_first);
((LISTOP*)first)->op_last = ((LISTOP*)last)->op_last;
OpLASTSIB_set(((LISTOP*)first)->op_last, first);
first->op_flags |= (last->op_flags & OPf_KIDS);
S_op_destroy(aTHX_ last);
return first;
}
/*
=for apidoc op_prepend_elem
Prepend an item to the list of ops contained directly within a list-type
op, returning the lengthened list. C<first> is the op to prepend to the
list, and C<last> is the list-type op. C<optype> specifies the intended
opcode for the list. If C<last> is not already a list of the right type,
it will be upgraded into one. If either C<first> or C<last> is null,
the other is returned unchanged.
=cut
*/
OP *
Perl_op_prepend_elem(pTHX_ I32 type, OP *first, OP *last)
{
if (!first)
return last;
if (!last)
return first;
if (last->op_type == (unsigned)type) {
if (type == OP_LIST) { /* already a PUSHMARK there */
/* insert 'first' after pushmark */
op_sibling_splice(last, cLISTOPx(last)->op_first, 0, first);
if (!(first->op_flags & OPf_PARENS))
last->op_flags &= ~OPf_PARENS;
}
else
op_sibling_splice(last, NULL, 0, first);
last->op_flags |= OPf_KIDS;
return last;
}
return newLISTOP(type, 0, first, last);
}
/*
=for apidoc op_convert_list
Converts C<o> into a list op if it is not one already, and then converts it
into the specified C<type>, calling its check function, allocating a target if
it needs one, and folding constants.
A list-type op is usually constructed one kid at a time via C<newLISTOP>,
C<op_prepend_elem> and C<op_append_elem>. Then finally it is passed to
C<op_convert_list> to make it the right type.
=cut
*/
OP *
Perl_op_convert_list(pTHX_ I32 type, I32 flags, OP *o)
{
dVAR;
if (type < 0) type = -type, flags |= OPf_SPECIAL;
if (!o || o->op_type != OP_LIST)
o = force_list(o, 0);
else
{
o->op_flags &= ~OPf_WANT;
o->op_private &= ~OPpLVAL_INTRO;
}
if (!(PL_opargs[type] & OA_MARK))
op_null(cLISTOPo->op_first);
else {
OP * const kid2 = OpSIBLING(cLISTOPo->op_first);
if (kid2 && kid2->op_type == OP_COREARGS) {
op_null(cLISTOPo->op_first);
kid2->op_private |= OPpCOREARGS_PUSHMARK;
}
}
if (type != OP_SPLIT)
/* At this point o is a LISTOP, but OP_SPLIT is a PMOP; let
* ck_split() create a real PMOP and leave the op's type as listop
* for now. Otherwise op_free() etc will crash.
*/
OpTYPE_set(o, type);
o->op_flags |= flags;
if (flags & OPf_FOLDED)
o->op_folded = 1;
o = CHECKOP(type, o);
if (o->op_type != (unsigned)type)
return o;
return fold_constants(op_integerize(op_std_init(o)));
}
/* Constructors */
/*
=head1 Optree construction
=for apidoc newNULLLIST
Constructs, checks, and returns a new C<stub> op, which represents an
empty list expression.
=cut
*/
OP *
Perl_newNULLLIST(pTHX)
{
return newOP(OP_STUB, 0);
}
/* promote o and any siblings to be a list if its not already; i.e.
*
* o - A - B
*
* becomes
*
* list
* |
* pushmark - o - A - B
*
* If nullit it true, the list op is nulled.
*/
static OP *
S_force_list(pTHX_ OP *o, bool nullit)
{
if (!o || o->op_type != OP_LIST) {
OP *rest = NULL;
if (o) {
/* manually detach any siblings then add them back later */
rest = OpSIBLING(o);
OpLASTSIB_set(o, NULL);
}
o = newLISTOP(OP_LIST, 0, o, NULL);
if (rest)
op_sibling_splice(o, cLISTOPo->op_last, 0, rest);
}
if (nullit)
op_null(o);
return o;
}
/*
=for apidoc newLISTOP
Constructs, checks, and returns an op of any list type. C<type> is
the opcode. C<flags> gives the eight bits of C<op_flags>, except that
C<OPf_KIDS> will be set automatically if required. C<first> and C<last>
supply up to two ops to be direct children of the list op; they are
consumed by this function and become part of the constructed op tree.
For most list operators, the check function expects all the kid ops to be
present already, so calling C<newLISTOP(OP_JOIN, ...)> (e.g.) is not
appropriate. What you want to do in that case is create an op of type
C<OP_LIST>, append more children to it, and then call L</op_convert_list>.
See L</op_convert_list> for more information.
=cut
*/
OP *
Perl_newLISTOP(pTHX_ I32 type, I32 flags, OP *first, OP *last)
{
dVAR;
LISTOP *listop;
/* Note that allocating an OP_PUSHMARK can die under Safe.pm if
* pushmark is banned. So do it now while existing ops are in a
* consistent state, in case they suddenly get freed */
OP* const pushop = type == OP_LIST ? newOP(OP_PUSHMARK, 0) : NULL;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_LISTOP
|| type == OP_CUSTOM);
NewOp(1101, listop, 1, LISTOP);
OpTYPE_set(listop, type);
if (first || last)
flags |= OPf_KIDS;
listop->op_flags = (U8)flags;
if (!last && first)
last = first;
else if (!first && last)
first = last;
else if (first)
OpMORESIB_set(first, last);
listop->op_first = first;
listop->op_last = last;
if (pushop) {
OpMORESIB_set(pushop, first);
listop->op_first = pushop;
listop->op_flags |= OPf_KIDS;
if (!last)
listop->op_last = pushop;
}
if (listop->op_last)
OpLASTSIB_set(listop->op_last, (OP*)listop);
return CHECKOP(type, listop);
}
/*
=for apidoc newOP
Constructs, checks, and returns an op of any base type (any type that
has no extra fields). C<type> is the opcode. C<flags> gives the
eight bits of C<op_flags>, and, shifted up eight bits, the eight bits
of C<op_private>.
=cut
*/
OP *
Perl_newOP(pTHX_ I32 type, I32 flags)
{
dVAR;
OP *o;
if (type == -OP_ENTEREVAL) {
type = OP_ENTEREVAL;
flags |= OPpEVAL_BYTES<<8;
}
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_BASEOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_BASEOP_OR_UNOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_FILESTATOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_LOOPEXOP);
NewOp(1101, o, 1, OP);
OpTYPE_set(o, type);
o->op_flags = (U8)flags;
o->op_next = o;
o->op_private = (U8)(0 | (flags >> 8));
if (PL_opargs[type] & OA_RETSCALAR)
scalar(o);
if (PL_opargs[type] & OA_TARGET)
o->op_targ = pad_alloc(type, SVs_PADTMP);
return CHECKOP(type, o);
}
/*
=for apidoc newUNOP
Constructs, checks, and returns an op of any unary type. C<type> is
the opcode. C<flags> gives the eight bits of C<op_flags>, except that
C<OPf_KIDS> will be set automatically if required, and, shifted up eight
bits, the eight bits of C<op_private>, except that the bit with value 1
is automatically set. C<first> supplies an optional op to be the direct
child of the unary op; it is consumed by this function and become part
of the constructed op tree.
=for apidoc Amnh||OPf_KIDS
=cut
*/
OP *
Perl_newUNOP(pTHX_ I32 type, I32 flags, OP *first)
{
dVAR;
UNOP *unop;
if (type == -OP_ENTEREVAL) {
type = OP_ENTEREVAL;
flags |= OPpEVAL_BYTES<<8;
}
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_UNOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_BASEOP_OR_UNOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_FILESTATOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_LOOPEXOP
|| type == OP_SASSIGN
|| type == OP_ENTERTRY
|| type == OP_CUSTOM
|| type == OP_NULL );
if (!first)
first = newOP(OP_STUB, 0);
if (PL_opargs[type] & OA_MARK)
first = force_list(first, 1);
NewOp(1101, unop, 1, UNOP);
OpTYPE_set(unop, type);
unop->op_first = first;
unop->op_flags = (U8)(flags | OPf_KIDS);
unop->op_private = (U8)(1 | (flags >> 8));
if (!OpHAS_SIBLING(first)) /* true unless weird syntax error */
OpLASTSIB_set(first, (OP*)unop);
unop = (UNOP*) CHECKOP(type, unop);
if (unop->op_next)
return (OP*)unop;
return fold_constants(op_integerize(op_std_init((OP *) unop)));
}
/*
=for apidoc newUNOP_AUX
Similar to C<newUNOP>, but creates an C<UNOP_AUX> struct instead, with C<op_aux>
initialised to C<aux>
=cut
*/
OP *
Perl_newUNOP_AUX(pTHX_ I32 type, I32 flags, OP *first, UNOP_AUX_item *aux)
{
dVAR;
UNOP_AUX *unop;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_UNOP_AUX
|| type == OP_CUSTOM);
NewOp(1101, unop, 1, UNOP_AUX);
unop->op_type = (OPCODE)type;
unop->op_ppaddr = PL_ppaddr[type];
unop->op_first = first;
unop->op_flags = (U8)(flags | (first ? OPf_KIDS : 0));
unop->op_private = (U8)((first ? 1 : 0) | (flags >> 8));
unop->op_aux = aux;
if (first && !OpHAS_SIBLING(first)) /* true unless weird syntax error */
OpLASTSIB_set(first, (OP*)unop);
unop = (UNOP_AUX*) CHECKOP(type, unop);
return op_std_init((OP *) unop);
}
/*
=for apidoc newMETHOP
Constructs, checks, and returns an op of method type with a method name
evaluated at runtime. C<type> is the opcode. C<flags> gives the eight
bits of C<op_flags>, except that C<OPf_KIDS> will be set automatically,
and, shifted up eight bits, the eight bits of C<op_private>, except that
the bit with value 1 is automatically set. C<dynamic_meth> supplies an
op which evaluates method name; it is consumed by this function and
become part of the constructed op tree.
Supported optypes: C<OP_METHOD>.
=cut
*/
static OP*
S_newMETHOP_internal(pTHX_ I32 type, I32 flags, OP* dynamic_meth, SV* const_meth) {
dVAR;
METHOP *methop;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_METHOP
|| type == OP_CUSTOM);
NewOp(1101, methop, 1, METHOP);
if (dynamic_meth) {
if (PL_opargs[type] & OA_MARK) dynamic_meth = force_list(dynamic_meth, 1);
methop->op_flags = (U8)(flags | OPf_KIDS);
methop->op_u.op_first = dynamic_meth;
methop->op_private = (U8)(1 | (flags >> 8));
if (!OpHAS_SIBLING(dynamic_meth))
OpLASTSIB_set(dynamic_meth, (OP*)methop);
}
else {
assert(const_meth);
methop->op_flags = (U8)(flags & ~OPf_KIDS);
methop->op_u.op_meth_sv = const_meth;
methop->op_private = (U8)(0 | (flags >> 8));
methop->op_next = (OP*)methop;
}
#ifdef USE_ITHREADS
methop->op_rclass_targ = 0;
#else
methop->op_rclass_sv = NULL;
#endif
OpTYPE_set(methop, type);
return CHECKOP(type, methop);
}
OP *
Perl_newMETHOP (pTHX_ I32 type, I32 flags, OP* dynamic_meth) {
PERL_ARGS_ASSERT_NEWMETHOP;
return newMETHOP_internal(type, flags, dynamic_meth, NULL);
}
/*
=for apidoc newMETHOP_named
Constructs, checks, and returns an op of method type with a constant
method name. C<type> is the opcode. C<flags> gives the eight bits of
C<op_flags>, and, shifted up eight bits, the eight bits of
C<op_private>. C<const_meth> supplies a constant method name;
it must be a shared COW string.
Supported optypes: C<OP_METHOD_NAMED>.
=cut
*/
OP *
Perl_newMETHOP_named (pTHX_ I32 type, I32 flags, SV* const_meth) {
PERL_ARGS_ASSERT_NEWMETHOP_NAMED;
return newMETHOP_internal(type, flags, NULL, const_meth);
}
/*
=for apidoc newBINOP
Constructs, checks, and returns an op of any binary type. C<type>
is the opcode. C<flags> gives the eight bits of C<op_flags>, except
that C<OPf_KIDS> will be set automatically, and, shifted up eight bits,
the eight bits of C<op_private>, except that the bit with value 1 or
2 is automatically set as required. C<first> and C<last> supply up to
two ops to be the direct children of the binary op; they are consumed
by this function and become part of the constructed op tree.
=cut
*/
OP *
Perl_newBINOP(pTHX_ I32 type, I32 flags, OP *first, OP *last)
{
dVAR;
BINOP *binop;
ASSUME((PL_opargs[type] & OA_CLASS_MASK) == OA_BINOP
|| type == OP_NULL || type == OP_CUSTOM);
NewOp(1101, binop, 1, BINOP);
if (!first)
first = newOP(OP_NULL, 0);
OpTYPE_set(binop, type);
binop->op_first = first;
binop->op_flags = (U8)(flags | OPf_KIDS);
if (!last) {
last = first;
binop->op_private = (U8)(1 | (flags >> 8));
}
else {
binop->op_private = (U8)(2 | (flags >> 8));
OpMORESIB_set(first, last);
}
if (!OpHAS_SIBLING(last)) /* true unless weird syntax error */
OpLASTSIB_set(last, (OP*)binop);
binop->op_last = OpSIBLING(binop->op_first);
if (binop->op_last)
OpLASTSIB_set(binop->op_last, (OP*)binop);
binop = (BINOP*)CHECKOP(type, binop);
if (binop->op_next || binop->op_type != (OPCODE)type)
return (OP*)binop;
return fold_constants(op_integerize(op_std_init((OP *)binop)));
}
void
Perl_invmap_dump(pTHX_ SV* invlist, UV *map)
{
const char indent[] = " ";
UV len = _invlist_len(invlist);
UV * array = invlist_array(invlist);
UV i;
PERL_ARGS_ASSERT_INVMAP_DUMP;
for (i = 0; i < len; i++) {
UV start = array[i];
UV end = (i + 1 < len) ? array[i+1] - 1 : IV_MAX;
PerlIO_printf(Perl_debug_log, "%s[%" UVuf "] 0x%04" UVXf, indent, i, start);
if (end == IV_MAX) {
PerlIO_printf(Perl_debug_log, " .. INFTY");
}
else if (end != start) {
PerlIO_printf(Perl_debug_log, " .. 0x%04" UVXf, end);
}
else {
PerlIO_printf(Perl_debug_log, " ");
}
PerlIO_printf(Perl_debug_log, "\t");
if (map[i] == TR_UNLISTED) {
PerlIO_printf(Perl_debug_log, "TR_UNLISTED\n");
}
else if (map[i] == TR_SPECIAL_HANDLING) {
PerlIO_printf(Perl_debug_log, "TR_SPECIAL_HANDLING\n");
}
else {
PerlIO_printf(Perl_debug_log, "0x%04" UVXf "\n", map[i]);
}
}
}
/* Given an OP_TRANS / OP_TRANSR op o, plus OP_CONST ops expr and repl
* containing the search and replacement strings, assemble into
* a translation table attached as o->op_pv.
* Free expr and repl.
* It expects the toker to have already set the
* OPpTRANS_COMPLEMENT
* OPpTRANS_SQUASH
* OPpTRANS_DELETE
* flags as appropriate; this function may add
* OPpTRANS_USE_SVOP
* OPpTRANS_CAN_FORCE_UTF8
* OPpTRANS_IDENTICAL
* OPpTRANS_GROWS
* flags
*/
static OP *
S_pmtrans(pTHX_ OP *o, OP *expr, OP *repl)
{
/* This function compiles a tr///, from data gathered from toke.c, into a
* form suitable for use by do_trans() in doop.c at runtime.
*
* It first normalizes the data, while discarding extraneous inputs; then
* writes out the compiled data. The normalization allows for complete
* analysis, and avoids some false negatives and positives earlier versions
* of this code had.
*
* The normalization form is an inversion map (described below in detail).
* This is essentially the compiled form for tr///'s that require UTF-8,
* and its easy to use it to write the 257-byte table for tr///'s that
* don't need UTF-8. That table is identical to what's been in use for
* many perl versions, except that it doesn't handle some edge cases that
* it used to, involving code points above 255. The UTF-8 form now handles
* these. (This could be changed with extra coding should it shown to be
* desirable.)
*
* If the complement (/c) option is specified, the lhs string (tstr) is
* parsed into an inversion list. Complementing these is trivial. Then a
* complemented tstr is built from that, and used thenceforth. This hides
* the fact that it was complemented from almost all successive code.
*
* One of the important characteristics to know about the input is whether
* the transliteration may be done in place, or does a temporary need to be
* allocated, then copied. If the replacement for every character in every
* possible string takes up no more bytes than the the character it
* replaces, then it can be edited in place. Otherwise the replacement
* could "grow", depending on the strings being processed. Some inputs
* won't grow, and might even shrink under /d, but some inputs could grow,
* so we have to assume any given one might grow. On very long inputs, the
* temporary could eat up a lot of memory, so we want to avoid it if
* possible. For non-UTF-8 inputs, everything is single-byte, so can be
* edited in place, unless there is something in the pattern that could
* force it into UTF-8. The inversion map makes it feasible to determine
* this. Previous versions of this code pretty much punted on determining
* if UTF-8 could be edited in place. Now, this code is rigorous in making
* that determination.
*
* Another characteristic we need to know is whether the lhs and rhs are
* identical. If so, and no other flags are present, the only effect of
* the tr/// is to count the characters present in the input that are
* mentioned in the lhs string. The implementation of that is easier and
* runs faster than the more general case. Normalizing here allows for
* accurate determination of this. Previously there were false negatives
* possible.
*
* Instead of 'transliterated', the comments here use 'unmapped' for the
* characters that are left unchanged by the operation; otherwise they are
* 'mapped'
*
* The lhs of the tr/// is here referred to as the t side.
* The rhs of the tr/// is here referred to as the r side.
*/
SV * const tstr = ((SVOP*)expr)->op_sv;
SV * const rstr = ((SVOP*)repl)->op_sv;
STRLEN tlen;
STRLEN rlen;
const U8 * t0 = (U8*)SvPV_const(tstr, tlen);
const U8 * r0 = (U8*)SvPV_const(rstr, rlen);
const U8 * t = t0;
const U8 * r = r0;
UV t_count = 0, r_count = 0; /* Number of characters in search and
replacement lists */
/* khw thinks some of the private flags for this op are quaintly named.
* OPpTRANS_GROWS for example is TRUE if the replacement for some lhs
* character when represented in UTF-8 is longer than the original
* character's UTF-8 representation */
const bool complement = cBOOL(o->op_private & OPpTRANS_COMPLEMENT);
const bool squash = cBOOL(o->op_private & OPpTRANS_SQUASH);
const bool del = cBOOL(o->op_private & OPpTRANS_DELETE);
/* Set to true if there is some character < 256 in the lhs that maps to >
* 255. If so, a non-UTF-8 match string can be forced into requiring to be
* in UTF-8 by a tr/// operation. */
bool can_force_utf8 = FALSE;
/* What is the maximum expansion factor in UTF-8 transliterations. If a
* 2-byte UTF-8 encoded character is to be replaced by a 3-byte one, its
* expansion factor is 1.5. This number is used at runtime to calculate
* how much space to allocate for non-inplace transliterations. Without
* this number, the worst case is 14, which is extremely unlikely to happen
* in real life, and would require significant memory overhead. */
NV max_expansion = 1.;
UV t_range_count, r_range_count, min_range_count;
UV* t_array;
SV* t_invlist;
UV* r_map;
UV r_cp, t_cp;
UV t_cp_end = (UV) -1;
UV r_cp_end;
Size_t len;
AV* invmap;
UV final_map = TR_UNLISTED; /* The final character in the replacement
list, updated as we go along. Initialize
to something illegal */
bool rstr_utf8 = cBOOL(SvUTF8(rstr));
bool tstr_utf8 = cBOOL(SvUTF8(tstr));
const U8* tend = t + tlen;
const U8* rend = r + rlen;
SV * inverted_tstr = NULL;
Size_t i;
unsigned int pass2;
/* This routine implements detection of a transliteration having a longer
* UTF-8 representation than its source, by partitioning all the possible
* code points of the platform into equivalence classes of the same UTF-8
* byte length in the first pass. As it constructs the mappings, it carves
* these up into smaller chunks, but doesn't merge any together. This
* makes it easy to find the instances it's looking for. A second pass is
* done after this has been determined which merges things together to
* shrink the table for runtime. For ASCII platforms, the table is
* trivial, given below, and uses the fundamental characteristics of UTF-8
* to construct the values. For EBCDIC, it isn't so, and we rely on a
* table constructed by the perl script that generates these kinds of
* things */
#ifndef EBCDIC
UV PL_partition_by_byte_length[] = {
0,
0x80,
(32 * (1UL << ( UTF_ACCUMULATION_SHIFT))),
(16 * (1UL << (2 * UTF_ACCUMULATION_SHIFT))),
( 8 * (1UL << (3 * UTF_ACCUMULATION_SHIFT))),
( 4 * (1UL << (4 * UTF_ACCUMULATION_SHIFT))),
( 2 * (1UL << (5 * UTF_ACCUMULATION_SHIFT)))
# ifdef UV_IS_QUAD
,
( ((UV) 1U << (6 * UTF_ACCUMULATION_SHIFT)))
# endif
};
#endif
PERL_ARGS_ASSERT_PMTRANS;
PL_hints |= HINT_BLOCK_SCOPE;
/* If /c, the search list is sorted and complemented. This is now done by
* creating an inversion list from it, and then trivially inverting that.
* The previous implementation used qsort, but creating the list
* automatically keeps it sorted as we go along */
if (complement) {
UV start, end;
SV * inverted_tlist = _new_invlist(tlen);
Size_t temp_len;
DEBUG_y(PerlIO_printf(Perl_debug_log,
"%s: %d: tstr before inversion=\n%s\n",
__FILE__, __LINE__, _byte_dump_string(t, tend - t, 0)));
while (t < tend) {
/* Non-utf8 strings don't have ranges, so each character is listed
* out */
if (! tstr_utf8) {
inverted_tlist = add_cp_to_invlist(inverted_tlist, *t);
t++;
}
else { /* But UTF-8 strings have been parsed in toke.c to have
* ranges if appropriate. */
UV t_cp;
Size_t t_char_len;
/* Get the first character */
t_cp = valid_utf8_to_uvchr(t, &t_char_len);
t += t_char_len;
/* If the next byte indicates that this wasn't the first
* element of a range, the range is just this one */
if (t >= tend || *t != RANGE_INDICATOR) {
inverted_tlist = add_cp_to_invlist(inverted_tlist, t_cp);
}
else { /* Otherwise, ignore the indicator byte, and get the
final element, and add the whole range */
t++;
t_cp_end = valid_utf8_to_uvchr(t, &t_char_len);
t += t_char_len;
inverted_tlist = _add_range_to_invlist(inverted_tlist,
t_cp, t_cp_end);
}
}
} /* End of parse through tstr */
/* The inversion list is done; now invert it */
_invlist_invert(inverted_tlist);
/* Now go through the inverted list and create a new tstr for the rest
* of the routine to use. Since the UTF-8 version can have ranges, and
* can be much more compact than the non-UTF-8 version, we create the
* string in UTF-8 even if not necessary. (This is just an intermediate
* value that gets thrown away anyway.) */
invlist_iterinit(inverted_tlist);
inverted_tstr = newSVpvs("");
while (invlist_iternext(inverted_tlist, &start, &end)) {
U8 temp[UTF8_MAXBYTES];
U8 * temp_end_pos;
/* IV_MAX keeps things from going out of bounds */
start = MIN(IV_MAX, start);
end = MIN(IV_MAX, end);
temp_end_pos = uvchr_to_utf8(temp, start);
sv_catpvn(inverted_tstr, (char *) temp, temp_end_pos - temp);
if (start != end) {
Perl_sv_catpvf(aTHX_ inverted_tstr, "%c", RANGE_INDICATOR);
temp_end_pos = uvchr_to_utf8(temp, end);
sv_catpvn(inverted_tstr, (char *) temp, temp_end_pos - temp);
}
}
/* Set up so the remainder of the routine uses this complement, instead
* of the actual input */
t0 = t = (U8*)SvPV_const(inverted_tstr, temp_len);
tend = t0 + temp_len;
tstr_utf8 = TRUE;
SvREFCNT_dec_NN(inverted_tlist);
}
/* For non-/d, an empty rhs means to use the lhs */
if (rlen == 0 && ! del) {
r0 = t0;
rend = tend;
rstr_utf8 = tstr_utf8;
}
t_invlist = _new_invlist(1);
/* Parse the (potentially adjusted) input, creating the inversion map.
* This is done in two passes. The first pass is to determine if the
* transliteration can be done in place. The inversion map it creates
* could be used, but generally would be larger and slower to run than the
* output of the second pass, which starts with a more compact table and
* allows more ranges to be merged */
for (pass2 = 0; pass2 < 2; pass2++) {
/* Initialize to a single range */
t_invlist = _add_range_to_invlist(t_invlist, 0, UV_MAX);
/* In the second pass, we just have the single range */
if (pass2) {
len = 1;
t_array = invlist_array(t_invlist);
}
else {
/* But in the first pass, the lhs is partitioned such that the
* number of UTF-8 bytes required to represent a code point in each
* partition is the same as the number for any other code point in
* that partion. We copy the pre-compiled partion. */
len = C_ARRAY_LENGTH(PL_partition_by_byte_length);
invlist_extend(t_invlist, len);
t_array = invlist_array(t_invlist);
Copy(PL_partition_by_byte_length, t_array, len, UV);
invlist_set_len(t_invlist,
len,
*(get_invlist_offset_addr(t_invlist)));
Newx(r_map, len + 1, UV);
}
/* And the mapping of each of the ranges is initialized. Initially,
* everything is TR_UNLISTED. */
for (i = 0; i < len; i++) {
r_map[i] = TR_UNLISTED;
}
t = t0;
t_count = 0;
r = r0;
r_count = 0;
t_range_count = r_range_count = 0;
DEBUG_y(PerlIO_printf(Perl_debug_log, "%s: %d:\ntstr=%s\n",
__FILE__, __LINE__, _byte_dump_string(t, tend - t, 0)));
DEBUG_y(PerlIO_printf(Perl_debug_log, "rstr=%s\n",
_byte_dump_string(r, rend - r, 0)));
DEBUG_y(PerlIO_printf(Perl_debug_log, "/c=%d; /s=%d; /d=%d\n",
complement, squash, del));
DEBUG_y(invmap_dump(t_invlist, r_map));
/* Now go through the search list constructing an inversion map. The
* input is not necessarily in any particular order. Making it an
* inversion map orders it, potentially simplifying, and makes it easy
* to deal with at run time. This is the only place in core that
* generates an inversion map; if others were introduced, it might be
* better to create general purpose routines to handle them.
* (Inversion maps are created in perl in other places.)
*
* An inversion map consists of two parallel arrays. One is
* essentially an inversion list: an ordered list of code points such
* that each element gives the first code point of a range of
* consecutive code points that map to the element in the other array
* that has the same index as this one (in other words, the
* corresponding element). Thus the range extends up to (but not
* including) the code point given by the next higher element. In a
* true inversion map, the corresponding element in the other array
* gives the mapping of the first code point in the range, with the
* understanding that the next higher code point in the inversion
* list's range will map to the next higher code point in the map.
*
* So if at element [i], let's say we have:
*
* t_invlist r_map
* [i] A a
*
* This means that A => a, B => b, C => c.... Let's say that the
* situation is such that:
*
* [i+1] L -1
*
* This means the sequence that started at [i] stops at K => k. This
* illustrates that you need to look at the next element to find where
* a sequence stops. Except, the highest element in the inversion list
* begins a range that is understood to extend to the platform's
* infinity.
*
* This routine modifies traditional inversion maps to reserve two
* mappings:
*
* TR_UNLISTED (or -1) indicates that no code point in the range
* is listed in the tr/// searchlist. At runtime, these are
* always passed through unchanged. In the inversion map, all
* points in the range are mapped to -1, instead of increasing,
* like the 'L' in the example above.
*
* We start the parse with every code point mapped to this, and as
* we parse and find ones that are listed in the search list, we
* carve out ranges as we go along that override that.
*
* TR_SPECIAL_HANDLING (or -2) indicates that every code point in the
* range needs special handling. Again, all code points in the
* range are mapped to -2, instead of increasing.
*
* Under /d this value means the code point should be deleted from
* the transliteration when encountered.
*
* Otherwise, it marks that every code point in the range is to
* map to the final character in the replacement list. This
* happens only when the replacement list is shorter than the
* search one, so there are things in the search list that have no
* correspondence in the replacement list. For example, in
* tr/a-z/A/, 'A' is the final value, and the inversion map
* generated for this would be like this:
* \0 => -1
* a => A
* b-z => -2
* z+1 => -1
* 'A' appears once, then the remainder of the range maps to -2.
* The use of -2 isn't strictly necessary, as an inversion map is
* capable of representing this situation, but not nearly so
* compactly, and this is actually quite commonly encountered.
* Indeed, the original design of this code used a full inversion
* map for this. But things like
* tr/\0-\x{FFFF}/A/
* generated huge data structures, slowly, and the execution was
* also slow. So the current scheme was implemented.
*
* So, if the next element in our example is:
*
* [i+2] Q q
*
* Then all of L, M, N, O, and P map to TR_UNLISTED. If the next
* elements are
*
* [i+3] R z
* [i+4] S TR_UNLISTED
*
* Then Q => q; R => z; and S => TR_UNLISTED. If [i+4] (the 'S') is
* the final element in the arrays, every code point from S to infinity
* maps to TR_UNLISTED.
*
*/
/* Finish up range started in what otherwise would
* have been the final iteration */
while (t < tend || t_range_count > 0) {
bool adjacent_to_range_above = FALSE;
bool adjacent_to_range_below = FALSE;
bool merge_with_range_above = FALSE;
bool merge_with_range_below = FALSE;
UV span, invmap_range_length_remaining;
SSize_t j;
Size_t i;
/* If we are in the middle of processing a range in the 'target'
* side, the previous iteration has set us up. Otherwise, look at
* the next character in the search list */
if (t_range_count <= 0) {
if (! tstr_utf8) {
/* Here, not in the middle of a range, and not UTF-8. The
* next code point is the single byte where we're at */
t_cp = *t;
t_range_count = 1;
t++;
}
else {
Size_t t_char_len;
/* Here, not in the middle of a range, and is UTF-8. The
* next code point is the next UTF-8 char in the input. We
* know the input is valid, because the toker constructed
* it */
t_cp = valid_utf8_to_uvchr(t, &t_char_len);
t += t_char_len;
/* UTF-8 strings (only) have been parsed in toke.c to have
* ranges. See if the next byte indicates that this was
* the first element of a range. If so, get the final
* element and calculate the range size. If not, the range
* size is 1 */
if (t < tend && *t == RANGE_INDICATOR) {
t++;
t_range_count = valid_utf8_to_uvchr(t, &t_char_len)
- t_cp + 1;
t += t_char_len;
}
else {
t_range_count = 1;
}
}
/* Count the total number of listed code points * */
t_count += t_range_count;
}
/* Similarly, get the next character in the replacement list */
if (r_range_count <= 0) {
if (r >= rend) {
/* But if we've exhausted the rhs, there is nothing to map
* to, except the special handling one, and we make the
* range the same size as the lhs one. */
r_cp = TR_SPECIAL_HANDLING;
r_range_count = t_range_count;
if (! del) {
DEBUG_yv(PerlIO_printf(Perl_debug_log,
"final_map =%" UVXf "\n", final_map));
}
}
else {
if (! rstr_utf8) {
r_cp = *r;
r_range_count = 1;
r++;
}
else {
Size_t r_char_len;
r_cp = valid_utf8_to_uvchr(r, &r_char_len);
r += r_char_len;
if (r < rend && *r == RANGE_INDICATOR) {
r++;
r_range_count = valid_utf8_to_uvchr(r,
&r_char_len) - r_cp + 1;
r += r_char_len;
}
else {
r_range_count = 1;
}
}
if (r_cp == TR_SPECIAL_HANDLING) {
r_range_count = t_range_count;
}
/* This is the final character so far */
final_map = r_cp + r_range_count - 1;
r_count += r_range_count;
}
}
/* Here, we have the next things ready in both sides. They are
* potentially ranges. We try to process as big a chunk as
* possible at once, but the lhs and rhs must be synchronized, so
* things like tr/A-Z/a-ij-z/ will need to be processed in 2 chunks
* */
min_range_count = MIN(t_range_count, r_range_count);
/* Search the inversion list for the entry that contains the input
* code point <cp>. The inversion map was initialized to cover the
* entire range of possible inputs, so this should not fail. So
* the return value is the index into the list's array of the range
* that contains <cp>, that is, 'i' such that array[i] <= cp <
* array[i+1] */
j = _invlist_search(t_invlist, t_cp);
assert(j >= 0);
i = j;
/* Here, the data structure might look like:
*
* index t r Meaning
* [i-1] J j # J-L => j-l
* [i] M -1 # M => default; as do N, O, P, Q
* [i+1] R x # R => x, S => x+1, T => x+2
* [i+2] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ... infinity
*
* where 'x' and 'y' above are not to be taken literally.
*
* The maximum chunk we can handle in this loop iteration, is the
* smallest of the three components: the lhs 't_', the rhs 'r_',
* and the remainder of the range in element [i]. (In pass 1, that
* range will have everything in it be of the same class; we can't
* cross into another class.) 'min_range_count' already contains
* the smallest of the first two values. The final one is
* irrelevant if the map is to the special indicator */
invmap_range_length_remaining = (i + 1 < len)
? t_array[i+1] - t_cp
: IV_MAX - t_cp;
span = MAX(1, MIN(min_range_count, invmap_range_length_remaining));
/* The end point of this chunk is where we are, plus the span, but
* never larger than the platform's infinity */
t_cp_end = MIN(IV_MAX, t_cp + span - 1);
if (r_cp == TR_SPECIAL_HANDLING) {
r_cp_end = TR_SPECIAL_HANDLING;
}
else {
r_cp_end = MIN(IV_MAX, r_cp + span - 1);
/* If something on the lhs is below 256, and something on the
* rhs is above, there is a potential mapping here across that
* boundary. Indeed the only way there isn't is if both sides
* start at the same point. That means they both cross at the
* same time. But otherwise one crosses before the other */
if (t_cp < 256 && r_cp_end > 255 && r_cp != t_cp) {
can_force_utf8 = TRUE;
}
}
/* If a character appears in the search list more than once, the
* 2nd and succeeding occurrences are ignored, so only do this
* range if haven't already processed this character. (The range
* has been set up so that all members in it will be of the same
* ilk) */
if (r_map[i] == TR_UNLISTED) {
DEBUG_yv(PerlIO_printf(Perl_debug_log,
"Processing %" UVxf "-%" UVxf " => %" UVxf "-%" UVxf "\n",
t_cp, t_cp_end, r_cp, r_cp_end));
/* This is the first definition for this chunk, hence is valid
* and needs to be processed. Here and in the comments below,
* we use the above sample data. The t_cp chunk must be any
* contiguous subset of M, N, O, P, and/or Q.
*
* In the first pass, the t_invlist has been partitioned so
* that all elements in any single range have the same number
* of bytes in their UTF-8 representations. And the r space is
* either a single byte, or a range of strictly monotonically
* increasing code points. So the final element in the range
* will be represented by no fewer bytes than the initial one.
* That means that if the final code point in the t range has
* at least as many bytes as the final code point in the r,
* then all code points in the t range have at least as many
* bytes as their corresponding r range element. But if that's
* not true, the transliteration of at least the final code
* point grows in length. As an example, suppose we had
* tr/\x{fff0}-\x{fff1}/\x{ffff}-\x{10000}/
* The UTF-8 for all but 10000 occupies 3 bytes on ASCII
* platforms. We have deliberately set up the data structure
* so that any range in the lhs gets split into chunks for
* processing, such that every code point in a chunk has the
* same number of UTF-8 bytes. We only have to check the final
* code point in the rhs against any code point in the lhs. */
if ( ! pass2
&& r_cp_end != TR_SPECIAL_HANDLING
&& UVCHR_SKIP(t_cp_end) < UVCHR_SKIP(r_cp_end))
{
/* Consider tr/\xCB/\X{E000}/. The maximum expansion
* factor is 1 byte going to 3 if the lhs is not UTF-8, but
* 2 bytes going to 3 if it is in UTF-8. We could pass two
* different values so doop could choose based on the
* UTF-8ness of the target. But khw thinks (perhaps
* wrongly) that is overkill. It is used only to make sure
* we malloc enough space. If no target string can force
* the result to be UTF-8, then we don't have to worry
* about this */
NV t_size = (can_force_utf8 && t_cp < 256)
? 1
: UVCHR_SKIP(t_cp_end);
NV ratio = UVCHR_SKIP(r_cp_end) / t_size;
o->op_private |= OPpTRANS_GROWS;
/* Now that we know it grows, we can keep track of the
* largest ratio */
if (ratio > max_expansion) {
max_expansion = ratio;
DEBUG_y(PerlIO_printf(Perl_debug_log,
"New expansion factor: %" NVgf "\n",
max_expansion));
}
}
/* The very first range is marked as adjacent to the
* non-existent range below it, as it causes things to "just
* work" (TradeMark)
*
* If the lowest code point in this chunk is M, it adjoins the
* J-L range */
if (t_cp == t_array[i]) {
adjacent_to_range_below = TRUE;
/* And if the map has the same offset from the beginning of
* the range as does this new code point (or both are for
* TR_SPECIAL_HANDLING), this chunk can be completely
* merged with the range below. EXCEPT, in the first pass,
* we don't merge ranges whose UTF-8 byte representations
* have different lengths, so that we can more easily
* detect if a replacement is longer than the source, that
* is if it 'grows'. But in the 2nd pass, there's no
* reason to not merge */
if ( (i > 0 && ( pass2
|| UVCHR_SKIP(t_array[i-1])
== UVCHR_SKIP(t_cp)))
&& ( ( r_cp == TR_SPECIAL_HANDLING
&& r_map[i-1] == TR_SPECIAL_HANDLING)
|| ( r_cp != TR_SPECIAL_HANDLING
&& r_cp - r_map[i-1] == t_cp - t_array[i-1])))
{
merge_with_range_below = TRUE;
}
}
/* Similarly, if the highest code point in this chunk is 'Q',
* it adjoins the range above, and if the map is suitable, can
* be merged with it */
if ( t_cp_end >= IV_MAX - 1
|| ( i + 1 < len
&& t_cp_end + 1 == t_array[i+1]))
{
adjacent_to_range_above = TRUE;
if (i + 1 < len)
if ( ( pass2
|| UVCHR_SKIP(t_cp) == UVCHR_SKIP(t_array[i+1]))
&& ( ( r_cp == TR_SPECIAL_HANDLING
&& r_map[i+1] == (UV) TR_SPECIAL_HANDLING)
|| ( r_cp != TR_SPECIAL_HANDLING
&& r_cp_end == r_map[i+1] - 1)))
{
merge_with_range_above = TRUE;
}
}
if (merge_with_range_below && merge_with_range_above) {
/* Here the new chunk looks like M => m, ... Q => q; and
* the range above is like R => r, .... Thus, the [i-1]
* and [i+1] ranges should be seamlessly melded so the
* result looks like
*
* [i-1] J j # J-T => j-t
* [i] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ... infinity
*/
Move(t_array + i + 2, t_array + i, len - i - 2, UV);
Move(r_map + i + 2, r_map + i, len - i - 2, UV);
len -= 2;
invlist_set_len(t_invlist,
len,
*(get_invlist_offset_addr(t_invlist)));
}
else if (merge_with_range_below) {
/* Here the new chunk looks like M => m, .... But either
* (or both) it doesn't extend all the way up through Q; or
* the range above doesn't start with R => r. */
if (! adjacent_to_range_above) {
/* In the first case, let's say the new chunk extends
* through O. We then want:
*
* [i-1] J j # J-O => j-o
* [i] P -1 # P => -1, Q => -1
* [i+1] R x # R => x, S => x+1, T => x+2
* [i+2] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ...
* infinity
*/
t_array[i] = t_cp_end + 1;
r_map[i] = TR_UNLISTED;
}
else { /* Adjoins the range above, but can't merge with it
(because 'x' is not the next map after q) */
/*
* [i-1] J j # J-Q => j-q
* [i] R x # R => x, S => x+1, T => x+2
* [i+1] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ...
* infinity
*/
Move(t_array + i + 1, t_array + i, len - i - 1, UV);
Move(r_map + i + 1, r_map + i, len - i - 1, UV);
len--;
invlist_set_len(t_invlist, len,
*(get_invlist_offset_addr(t_invlist)));
}
}
else if (merge_with_range_above) {
/* Here the new chunk ends with Q => q, and the range above
* must start with R => r, so the two can be merged. But
* either (or both) the new chunk doesn't extend all the
* way down to M; or the mapping of the final code point
* range below isn't m */
if (! adjacent_to_range_below) {
/* In the first case, let's assume the new chunk starts
* with P => p. Then, because it's merge-able with the
* range above, that range must be R => r. We want:
*
* [i-1] J j # J-L => j-l
* [i] M -1 # M => -1, N => -1
* [i+1] P p # P-T => p-t
* [i+2] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ...
* infinity
*/
t_array[i+1] = t_cp;
r_map[i+1] = r_cp;
}
else { /* Adjoins the range below, but can't merge with it
*/
/*
* [i-1] J j # J-L => j-l
* [i] M x # M-T => x-5 .. x+2
* [i+1] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ...
* infinity
*/
Move(t_array + i + 1, t_array + i, len - i - 1, UV);
Move(r_map + i + 1, r_map + i, len - i - 1, UV);
len--;
t_array[i] = t_cp;
r_map[i] = r_cp;
invlist_set_len(t_invlist, len,
*(get_invlist_offset_addr(t_invlist)));
}
}
else if (adjacent_to_range_below && adjacent_to_range_above) {
/* The new chunk completely fills the gap between the
* ranges on either side, but can't merge with either of
* them.
*
* [i-1] J j # J-L => j-l
* [i] M z # M => z, N => z+1 ... Q => z+4
* [i+1] R x # R => x, S => x+1, T => x+2
* [i+2] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ... infinity
*/
r_map[i] = r_cp;
}
else if (adjacent_to_range_below) {
/* The new chunk adjoins the range below, but not the range
* above, and can't merge. Let's assume the chunk ends at
* O.
*
* [i-1] J j # J-L => j-l
* [i] M z # M => z, N => z+1, O => z+2
* [i+1] P -1 # P => -1, Q => -1
* [i+2] R x # R => x, S => x+1, T => x+2
* [i+3] U y # U => y, V => y+1, ...
* ...
* [-w] Z -1 # Z => default; as do Z+1, ... infinity
*/
invlist_extend(t_invlist, len + 1);
t_array = invlist_array(t_invlist);
Renew(r_map, len + 1, UV);
Move(t_array + i + 1, t_array + i + 2, len - i - 1, UV);
Move(r_map + i + 1, r_map + i + 2, len - i - 1, UV);
r_map[i] = r_cp;
t_array[i+1] = t_cp_end + 1;
r_map[i+1] = TR_UNLISTED;
len++;
invlist_set_len(t_invlist, len,
*(get_invlist_offset_addr(t_invlist)));
}
else if (adjacent_to_range_above) {
/* The new chunk adjoins the range above, but not the range
* below, and can't merge. Let's assume the new chunk
* starts at O
*
* [i-1] J j # J-L => j-l
* [i] M -1 # M => default, N => default
* [i+1] O z # O => z, P => z+1, Q => z+2
* [i+2] R x # R => x, S => x+1, T => x+2
* [i+3] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ... infinity
*/
invlist_extend(t_invlist, len + 1);
t_array = invlist_array(t_invlist);
Renew(r_map, len + 1, UV);
Move(t_array + i + 1, t_array + i + 2, len - i - 1, UV);
Move(r_map + i + 1, r_map + i + 2, len - i - 1, UV);
t_array[i+1] = t_cp;
r_map[i+1] = r_cp;
len++;
invlist_set_len(t_invlist, len,
*(get_invlist_offset_addr(t_invlist)));
}
else {
/* The new chunk adjoins neither the range above, nor the
* range below. Lets assume it is N..P => n..p
*
* [i-1] J j # J-L => j-l
* [i] M -1 # M => default
* [i+1] N n # N..P => n..p
* [i+2] Q -1 # Q => default
* [i+3] R x # R => x, S => x+1, T => x+2
* [i+4] U y # U => y, V => y+1, ...
* ...
* [-1] Z -1 # Z => default; as do Z+1, ... infinity
*/
DEBUG_yv(PerlIO_printf(Perl_debug_log,
"Before fixing up: len=%d, i=%d\n",
(int) len, (int) i));
DEBUG_yv(invmap_dump(t_invlist, r_map));
invlist_extend(t_invlist, len + 2);
t_array = invlist_array(t_invlist);
Renew(r_map, len + 2, UV);
Move(t_array + i + 1,
t_array + i + 2 + 1, len - i - (2 - 1), UV);
Move(r_map + i + 1,
r_map + i + 2 + 1, len - i - (2 - 1), UV);
len += 2;
invlist_set_len(t_invlist, len,
*(get_invlist_offset_addr(t_invlist)));
t_array[i+1] = t_cp;
r_map[i+1] = r_cp;
t_array[i+2] = t_cp_end + 1;
r_map[i+2] = TR_UNLISTED;
}
DEBUG_yv(PerlIO_printf(Perl_debug_log,
"After iteration: span=%" UVuf ", t_range_count=%"
UVuf " r_range_count=%" UVuf "\n",
span, t_range_count, r_range_count));
DEBUG_yv(invmap_dump(t_invlist, r_map));
} /* End of this chunk needs to be processed */
/* Done with this chunk. */
t_cp += span;
if (t_cp >= IV_MAX) {
break;
}
t_range_count -= span;
if (r_cp != TR_SPECIAL_HANDLING) {
r_cp += span;
r_range_count -= span;
}
else {
r_range_count = 0;
}
} /* End of loop through the search list */
/* We don't need an exact count, but we do need to know if there is
* anything left over in the replacement list. So, just assume it's
* one byte per character */
if (rend > r) {
r_count++;
}
} /* End of passes */
SvREFCNT_dec(inverted_tstr);
DEBUG_y(PerlIO_printf(Perl_debug_log, "After everything: \n"));
DEBUG_y(invmap_dump(t_invlist, r_map));
/* We now have normalized the input into an inversion map.
*
* See if the lhs and rhs are equivalent. If so, this tr/// is a no-op
* except for the count, and streamlined runtime code can be used */
if (!del && !squash) {
/* They are identical if they point to same address, or if everything
* maps to UNLISTED or to itself. This catches things that not looking
* at the normalized inversion map doesn't catch, like tr/aa/ab/ or
* tr/\x{100}-\x{104}/\x{100}-\x{102}\x{103}-\x{104} */
if (r0 != t0) {
for (i = 0; i < len; i++) {
if (r_map[i] != TR_UNLISTED && r_map[i] != t_array[i]) {
goto done_identical_check;
}
}
}
/* Here have gone through entire list, and didn't find any
* non-identical mappings */
o->op_private |= OPpTRANS_IDENTICAL;
done_identical_check: ;
}
t_array = invlist_array(t_invlist);
/* If has components above 255, we generally need to use the inversion map
* implementation */
if ( can_force_utf8
|| ( len > 0
&& t_array[len-1] > 255
/* If the final range is 0x100-INFINITY and is a special
* mapping, the table implementation can handle it */
&& ! ( t_array[len-1] == 256
&& ( r_map[len-1] == TR_UNLISTED
|| r_map[len-1] == TR_SPECIAL_HANDLING))))
{
SV* r_map_sv;
/* A UTF-8 op is generated, indicated by this flag. This op is an
* sv_op */
o->op_private |= OPpTRANS_USE_SVOP;
if (can_force_utf8) {
o->op_private |= OPpTRANS_CAN_FORCE_UTF8;
}
/* The inversion map is pushed; first the list. */
invmap = MUTABLE_AV(newAV());
av_push(invmap, t_invlist);
/* 2nd is the mapping */
r_map_sv = newSVpvn((char *) r_map, len * sizeof(UV));
av_push(invmap, r_map_sv);
/* 3rd is the max possible expansion factor */
av_push(invmap, newSVnv(max_expansion));
/* Characters that are in the search list, but not in the replacement
* list are mapped to the final character in the replacement list */
if (! del && r_count < t_count) {
av_push(invmap, newSVuv(final_map));
}
#ifdef USE_ITHREADS
cPADOPo->op_padix = pad_alloc(OP_TRANS, SVf_READONLY);
SvREFCNT_dec(PAD_SVl(cPADOPo->op_padix));
PAD_SETSV(cPADOPo->op_padix, (SV *) invmap);
SvPADTMP_on(invmap);
SvREADONLY_on(invmap);
#else
cSVOPo->op_sv = (SV *) invmap;
#endif
}
else {
OPtrans_map *tbl;
unsigned short i;
/* The OPtrans_map struct already contains one slot; hence the -1. */
SSize_t struct_size = sizeof(OPtrans_map)
+ (256 - 1 + 1)*sizeof(short);
/* Non-utf8 case: set o->op_pv to point to a simple 256+ entry lookup
* table. Entries with the value TR_UNMAPPED indicate chars not to be
* translated, while TR_DELETE indicates a search char without a
* corresponding replacement char under /d.
*
* In addition, an extra slot at the end is used to store the final
* repeating char, or TR_R_EMPTY under an empty replacement list, or
* TR_DELETE under /d; which makes the runtime code easier.
*/
/* Indicate this is an op_pv */
o->op_private &= ~OPpTRANS_USE_SVOP;
tbl = (OPtrans_map*)PerlMemShared_calloc(struct_size, 1);
tbl->size = 256;
cPVOPo->op_pv = (char*)tbl;
for (i = 0; i < len; i++) {
STATIC_ASSERT_DECL(TR_SPECIAL_HANDLING == TR_DELETE);
short upper = i >= len - 1 ? 256 : (short) t_array[i+1];
short to = (short) r_map[i];
short j;
bool do_increment = TRUE;
/* Any code points above our limit should be irrelevant */
if (t_array[i] >= tbl->size) break;
/* Set up the map */
if (to == (short) TR_SPECIAL_HANDLING && ! del) {
to = (short) final_map;
do_increment = FALSE;
}
else if (to < 0) {
do_increment = FALSE;
}
/* Create a map for everything in this range. The value increases
* except for the special cases */
for (j = (short) t_array[i]; j < upper; j++) {
tbl->map[j] = to;
if (do_increment) to++;
}
}
tbl->map[tbl->size] = del
? (short) TR_DELETE
: (short) rlen
? (short) final_map
: (short) TR_R_EMPTY;
DEBUG_y(PerlIO_printf(Perl_debug_log,"%s: %d\n", __FILE__, __LINE__));
for (i = 0; i < tbl->size; i++) {
if (tbl->map[i] < 0) {
DEBUG_y(PerlIO_printf(Perl_debug_log," %02x=>%d",
(unsigned) i, tbl->map[i]));
}
else {
DEBUG_y(PerlIO_printf(Perl_debug_log," %02x=>%02x",
(unsigned) i, tbl->map[i]));
}
if ((i+1) % 8 == 0 || i + 1 == (short) tbl->size) {
DEBUG_y(PerlIO_printf(Perl_debug_log,"\n"));
}
}
DEBUG_y(PerlIO_printf(Perl_debug_log,"Final map 0x%x=>%02x\n",
(unsigned) tbl->size, tbl->map[tbl->size]));
SvREFCNT_dec(t_invlist);
#if 0 /* code that added excess above-255 chars at the end of the table, in
case we ever want to not use the inversion map implementation for
this */
ASSUME(j <= rlen);
excess = rlen - j;
if (excess) {
/* More replacement chars than search chars:
* store excess replacement chars at end of main table.
*/
struct_size += excess;
tbl = (OPtrans_map*)PerlMemShared_realloc(tbl,
struct_size + excess * sizeof(short));
tbl->size += excess;
cPVOPo->op_pv = (char*)tbl;
for (i = 0; i < excess; i++)
tbl->map[i + 256] = r[j+i];
}
else {
/* no more replacement chars than search chars */
#endif
}
DEBUG_y(PerlIO_printf(Perl_debug_log,
"/d=%d, /s=%d, /c=%d, identical=%d, grows=%d,"
" use_svop=%d, can_force_utf8=%d,\nexpansion=%" NVgf "\n",
del, squash, complement,
cBOOL(o->op_private & OPpTRANS_IDENTICAL),
cBOOL(o->op_private & OPpTRANS_USE_SVOP),
cBOOL(o->op_private & OPpTRANS_GROWS),
cBOOL(o->op_private & OPpTRANS_CAN_FORCE_UTF8),
max_expansion));
Safefree(r_map);
if(del && rlen != 0 && r_count == t_count) {
Perl_ck_warner(aTHX_ packWARN(WARN_MISC), "Useless use of /d modifier in transliteration operator");
} else if(r_count > t_count) {
Perl_ck_warner(aTHX_ packWARN(WARN_MISC), "Replacement list is longer than search list");
}
op_free(expr);
op_free(repl);
return o;
}
/*
=for apidoc newPMOP
Constructs, checks, and returns an op of any pattern matching type.
C<type> is the opcode. C<flags> gives the eight bits of C<op_flags>
and, shifted up eight bits, the eight bits of C<op_private>.
=cut
*/
OP *
Perl_newPMOP(pTHX_ I32 type, I32 flags)
{
dVAR;
PMOP *pmop;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_PMOP
|| type == OP_CUSTOM);
NewOp(1101, pmop, 1, PMOP);
OpTYPE_set(pmop, type);
pmop->op_flags = (U8)flags;
pmop->op_private = (U8)(0 | (flags >> 8));
if (PL_opargs[type] & OA_RETSCALAR)
scalar((OP *)pmop);
if (PL_hints & HINT_RE_TAINT)
pmop->op_pmflags |= PMf_RETAINT;
#ifdef USE_LOCALE_CTYPE
if (IN_LC_COMPILETIME(LC_CTYPE)) {
set_regex_charset(&(pmop->op_pmflags), REGEX_LOCALE_CHARSET);
}
else
#endif
if (IN_UNI_8_BIT) {
set_regex_charset(&(pmop->op_pmflags), REGEX_UNICODE_CHARSET);
}
if (PL_hints & HINT_RE_FLAGS) {
SV *reflags = Perl_refcounted_he_fetch_pvn(aTHX_
PL_compiling.cop_hints_hash, STR_WITH_LEN("reflags"), 0, 0
);
if (reflags && SvOK(reflags)) pmop->op_pmflags |= SvIV(reflags);
reflags = Perl_refcounted_he_fetch_pvn(aTHX_
PL_compiling.cop_hints_hash, STR_WITH_LEN("reflags_charset"), 0, 0
);
if (reflags && SvOK(reflags)) {
set_regex_charset(&(pmop->op_pmflags), (regex_charset)SvIV(reflags));
}
}
#ifdef USE_ITHREADS
assert(SvPOK(PL_regex_pad[0]));
if (SvCUR(PL_regex_pad[0])) {
/* Pop off the "packed" IV from the end. */
SV *const repointer_list = PL_regex_pad[0];
const char *p = SvEND(repointer_list) - sizeof(IV);
const IV offset = *((IV*)p);
assert(SvCUR(repointer_list) % sizeof(IV) == 0);
SvEND_set(repointer_list, p);
pmop->op_pmoffset = offset;
/* This slot should be free, so assert this: */
assert(PL_regex_pad[offset] == &PL_sv_undef);
} else {
SV * const repointer = &PL_sv_undef;
av_push(PL_regex_padav, repointer);
pmop->op_pmoffset = av_tindex(PL_regex_padav);
PL_regex_pad = AvARRAY(PL_regex_padav);
}
#endif
return CHECKOP(type, pmop);
}
static void
S_set_haseval(pTHX)
{
PADOFFSET i = 1;
PL_cv_has_eval = 1;
/* Any pad names in scope are potentially lvalues. */
for (; i < PadnamelistMAXNAMED(PL_comppad_name); i++) {
PADNAME *pn = PAD_COMPNAME_SV(i);
if (!pn || !PadnameLEN(pn))
continue;
if (PadnameOUTER(pn) || PadnameIN_SCOPE(pn, PL_cop_seqmax))
S_mark_padname_lvalue(aTHX_ pn);
}
}
/* Given some sort of match op o, and an expression expr containing a
* pattern, either compile expr into a regex and attach it to o (if it's
* constant), or convert expr into a runtime regcomp op sequence (if it's
* not)
*
* Flags currently has 2 bits of meaning:
* 1: isreg indicates that the pattern is part of a regex construct, eg
* $x =~ /pattern/ or split /pattern/, as opposed to $x =~ $pattern or
* split "pattern", which aren't. In the former case, expr will be a list
* if the pattern contains more than one term (eg /a$b/).
* 2: The pattern is for a split.
*
* When the pattern has been compiled within a new anon CV (for
* qr/(?{...})/ ), then floor indicates the savestack level just before
* the new sub was created
*
* tr/// is also handled.
*/
OP *
Perl_pmruntime(pTHX_ OP *o, OP *expr, OP *repl, UV flags, I32 floor)
{
PMOP *pm;
LOGOP *rcop;
I32 repl_has_vars = 0;
bool is_trans = (o->op_type == OP_TRANS || o->op_type == OP_TRANSR);
bool is_compiletime;
bool has_code;
bool isreg = cBOOL(flags & 1);
bool is_split = cBOOL(flags & 2);
PERL_ARGS_ASSERT_PMRUNTIME;
if (is_trans) {
return pmtrans(o, expr, repl);
}
/* find whether we have any runtime or code elements;
* at the same time, temporarily set the op_next of each DO block;
* then when we LINKLIST, this will cause the DO blocks to be excluded
* from the op_next chain (and from having LINKLIST recursively
* applied to them). We fix up the DOs specially later */
is_compiletime = 1;
has_code = 0;
if (expr->op_type == OP_LIST) {
OP *this_o;
for (this_o = cLISTOPx(expr)->op_first; this_o; this_o = OpSIBLING(this_o)) {
if (this_o->op_type == OP_NULL && (this_o->op_flags & OPf_SPECIAL)) {
has_code = 1;
assert(!this_o->op_next);
if (UNLIKELY(!OpHAS_SIBLING(this_o))) {
assert(PL_parser && PL_parser->error_count);
/* This can happen with qr/ (?{(^{})/. Just fake up
the op we were expecting to see, to avoid crashing
elsewhere. */
op_sibling_splice(expr, this_o, 0,
newSVOP(OP_CONST, 0, &PL_sv_no));
}
this_o->op_next = OpSIBLING(this_o);
}
else if (this_o->op_type != OP_CONST && this_o->op_type != OP_PUSHMARK)
is_compiletime = 0;
}
}
else if (expr->op_type != OP_CONST)
is_compiletime = 0;
LINKLIST(expr);
/* fix up DO blocks; treat each one as a separate little sub;
* also, mark any arrays as LIST/REF */
if (expr->op_type == OP_LIST) {
OP *o;
for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
if (o->op_type == OP_PADAV || o->op_type == OP_RV2AV) {
assert( !(o->op_flags & OPf_WANT));
/* push the array rather than its contents. The regex
* engine will retrieve and join the elements later */
o->op_flags |= (OPf_WANT_LIST | OPf_REF);
continue;
}
if (!(o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)))
continue;
o->op_next = NULL; /* undo temporary hack from above */
scalar(o);
LINKLIST(o);
if (cLISTOPo->op_first->op_type == OP_LEAVE) {
LISTOP *leaveop = cLISTOPx(cLISTOPo->op_first);
/* skip ENTER */
assert(leaveop->op_first->op_type == OP_ENTER);
assert(OpHAS_SIBLING(leaveop->op_first));
o->op_next = OpSIBLING(leaveop->op_first);
/* skip leave */
assert(leaveop->op_flags & OPf_KIDS);
assert(leaveop->op_last->op_next == (OP*)leaveop);
leaveop->op_next = NULL; /* stop on last op */
op_null((OP*)leaveop);
}
else {
/* skip SCOPE */
OP *scope = cLISTOPo->op_first;
assert(scope->op_type == OP_SCOPE);
assert(scope->op_flags & OPf_KIDS);
scope->op_next = NULL; /* stop on last op */
op_null(scope);
}
/* XXX optimize_optree() must be called on o before
* CALL_PEEP(), as currently S_maybe_multiconcat() can't
* currently cope with a peephole-optimised optree.
* Calling optimize_optree() here ensures that condition
* is met, but may mean optimize_optree() is applied
* to the same optree later (where hopefully it won't do any
* harm as it can't convert an op to multiconcat if it's
* already been converted */
optimize_optree(o);
/* have to peep the DOs individually as we've removed it from
* the op_next chain */
CALL_PEEP(o);
S_prune_chain_head(&(o->op_next));
if (is_compiletime)
/* runtime finalizes as part of finalizing whole tree */
finalize_optree(o);
}
}
else if (expr->op_type == OP_PADAV || expr->op_type == OP_RV2AV) {
assert( !(expr->op_flags & OPf_WANT));
/* push the array rather than its contents. The regex
* engine will retrieve and join the elements later */
expr->op_flags |= (OPf_WANT_LIST | OPf_REF);
}
PL_hints |= HINT_BLOCK_SCOPE;
pm = (PMOP*)o;
assert(floor==0 || (pm->op_pmflags & PMf_HAS_CV));
if (is_compiletime) {
U32 rx_flags = pm->op_pmflags & RXf_PMf_COMPILETIME;
regexp_engine const *eng = current_re_engine();
if (is_split) {
/* make engine handle split ' ' specially */
pm->op_pmflags |= PMf_SPLIT;
rx_flags |= RXf_SPLIT;
}
if (!has_code || !eng->op_comp) {
/* compile-time simple constant pattern */
if ((pm->op_pmflags & PMf_HAS_CV) && !has_code) {
/* whoops! we guessed that a qr// had a code block, but we
* were wrong (e.g. /[(?{}]/ ). Throw away the PL_compcv
* that isn't required now. Note that we have to be pretty
* confident that nothing used that CV's pad while the
* regex was parsed, except maybe op targets for \Q etc.
* If there were any op targets, though, they should have
* been stolen by constant folding.
*/
#ifdef DEBUGGING
SSize_t i = 0;
assert(PadnamelistMAXNAMED(PL_comppad_name) == 0);
while (++i <= AvFILLp(PL_comppad)) {
# ifdef USE_PAD_RESET
/* under USE_PAD_RESET, pad swipe replaces a swiped
* folded constant with a fresh padtmp */
assert(!PL_curpad[i] || SvPADTMP(PL_curpad[i]));
# else
assert(!PL_curpad[i]);
# endif
}
#endif
/* This LEAVE_SCOPE will restore PL_compcv to point to the
* outer CV (the one whose slab holds the pm op). The
* inner CV (which holds expr) will be freed later, once
* all the entries on the parse stack have been popped on
* return from this function. Which is why its safe to
* call op_free(expr) below.
*/
LEAVE_SCOPE(floor);
pm->op_pmflags &= ~PMf_HAS_CV;
}
/* Skip compiling if parser found an error for this pattern */
if (pm->op_pmflags & PMf_HAS_ERROR) {
return o;
}
PM_SETRE(pm,
eng->op_comp
? eng->op_comp(aTHX_ NULL, 0, expr, eng, NULL, NULL,
rx_flags, pm->op_pmflags)
: Perl_re_op_compile(aTHX_ NULL, 0, expr, eng, NULL, NULL,
rx_flags, pm->op_pmflags)
);
op_free(expr);
}
else {
/* compile-time pattern that includes literal code blocks */
REGEXP* re;
/* Skip compiling if parser found an error for this pattern */
if (pm->op_pmflags & PMf_HAS_ERROR) {
return o;
}
re = eng->op_comp(aTHX_ NULL, 0, expr, eng, NULL, NULL,
rx_flags,
(pm->op_pmflags |
((PL_hints & HINT_RE_EVAL) ? PMf_USE_RE_EVAL : 0))
);
PM_SETRE(pm, re);
if (pm->op_pmflags & PMf_HAS_CV) {
CV *cv;
/* this QR op (and the anon sub we embed it in) is never
* actually executed. It's just a placeholder where we can
* squirrel away expr in op_code_list without the peephole
* optimiser etc processing it for a second time */
OP *qr = newPMOP(OP_QR, 0);
((PMOP*)qr)->op_code_list = expr;
/* handle the implicit sub{} wrapped round the qr/(?{..})/ */
SvREFCNT_inc_simple_void(PL_compcv);
cv = newATTRSUB(floor, 0, NULL, NULL, qr);
ReANY(re)->qr_anoncv = cv;
/* attach the anon CV to the pad so that
* pad_fixup_inner_anons() can find it */
(void)pad_add_anon(cv, o->op_type);
SvREFCNT_inc_simple_void(cv);
}
else {
pm->op_code_list = expr;
}
}
}
else {
/* runtime pattern: build chain of regcomp etc ops */
bool reglist;
PADOFFSET cv_targ = 0;
reglist = isreg && expr->op_type == OP_LIST;
if (reglist)
op_null(expr);
if (has_code) {
pm->op_code_list = expr;
/* don't free op_code_list; its ops are embedded elsewhere too */
pm->op_pmflags |= PMf_CODELIST_PRIVATE;
}
if (is_split)
/* make engine handle split ' ' specially */
pm->op_pmflags |= PMf_SPLIT;
/* the OP_REGCMAYBE is a placeholder in the non-threaded case
* to allow its op_next to be pointed past the regcomp and
* preceding stacking ops;
* OP_REGCRESET is there to reset taint before executing the
* stacking ops */
if (pm->op_pmflags & PMf_KEEP || TAINTING_get)
expr = newUNOP((TAINTING_get ? OP_REGCRESET : OP_REGCMAYBE),0,expr);
if (pm->op_pmflags & PMf_HAS_CV) {
/* we have a runtime qr with literal code. This means
* that the qr// has been wrapped in a new CV, which
* means that runtime consts, vars etc will have been compiled
* against a new pad. So... we need to execute those ops
* within the environment of the new CV. So wrap them in a call
* to a new anon sub. i.e. for
*
* qr/a$b(?{...})/,
*
* we build an anon sub that looks like
*
* sub { "a", $b, '(?{...})' }
*
* and call it, passing the returned list to regcomp.
* Or to put it another way, the list of ops that get executed
* are:
*
* normal PMf_HAS_CV
* ------ -------------------
* pushmark (for regcomp)
* pushmark (for entersub)
* anoncode
* srefgen
* entersub
* regcreset regcreset
* pushmark pushmark
* const("a") const("a")
* gvsv(b) gvsv(b)
* const("(?{...})") const("(?{...})")
* leavesub
* regcomp regcomp
*/
SvREFCNT_inc_simple_void(PL_compcv);
CvLVALUE_on(PL_compcv);
/* these lines are just an unrolled newANONATTRSUB */
expr = newSVOP(OP_ANONCODE, 0,
MUTABLE_SV(newATTRSUB(floor, 0, NULL, NULL, expr)));
cv_targ = expr->op_targ;
expr = newUNOP(OP_REFGEN, 0, expr);
expr = list(force_list(newUNOP(OP_ENTERSUB, 0, scalar(expr)), 1));
}
rcop = alloc_LOGOP(OP_REGCOMP, scalar(expr), o);
rcop->op_flags |= ((PL_hints & HINT_RE_EVAL) ? OPf_SPECIAL : 0)
| (reglist ? OPf_STACKED : 0);
rcop->op_targ = cv_targ;
/* /$x/ may cause an eval, since $x might be qr/(?{..})/ */
if (PL_hints & HINT_RE_EVAL)
S_set_haseval(aTHX);
/* establish postfix order */
if (expr->op_type == OP_REGCRESET || expr->op_type == OP_REGCMAYBE) {
LINKLIST(expr);
rcop->op_next = expr;
((UNOP*)expr)->op_first->op_next = (OP*)rcop;
}
else {
rcop->op_next = LINKLIST(expr);
expr->op_next = (OP*)rcop;
}
op_prepend_elem(o->op_type, scalar((OP*)rcop), o);
}
if (repl) {
OP *curop = repl;
bool konst;
/* If we are looking at s//.../e with a single statement, get past
the implicit do{}. */
if (curop->op_type == OP_NULL && curop->op_flags & OPf_KIDS
&& cUNOPx(curop)->op_first->op_type == OP_SCOPE
&& cUNOPx(curop)->op_first->op_flags & OPf_KIDS)
{
OP *sib;
OP *kid = cUNOPx(cUNOPx(curop)->op_first)->op_first;
if (kid->op_type == OP_NULL && (sib = OpSIBLING(kid))
&& !OpHAS_SIBLING(sib))
curop = sib;
}
if (curop->op_type == OP_CONST)
konst = TRUE;
else if (( (curop->op_type == OP_RV2SV ||
curop->op_type == OP_RV2AV ||
curop->op_type == OP_RV2HV ||
curop->op_type == OP_RV2GV)
&& cUNOPx(curop)->op_first
&& cUNOPx(curop)->op_first->op_type == OP_GV )
|| curop->op_type == OP_PADSV
|| curop->op_type == OP_PADAV
|| curop->op_type == OP_PADHV
|| curop->op_type == OP_PADANY) {
repl_has_vars = 1;
konst = TRUE;
}
else konst = FALSE;
if (konst
&& !(repl_has_vars
&& (!PM_GETRE(pm)
|| !RX_PRELEN(PM_GETRE(pm))
|| RX_EXTFLAGS(PM_GETRE(pm)) & RXf_EVAL_SEEN)))
{
pm->op_pmflags |= PMf_CONST; /* const for long enough */
op_prepend_elem(o->op_type, scalar(repl), o);
}
else {
rcop = alloc_LOGOP(OP_SUBSTCONT, scalar(repl), o);
rcop->op_private = 1;
/* establish postfix order */
rcop->op_next = LINKLIST(repl);
repl->op_next = (OP*)rcop;
pm->op_pmreplrootu.op_pmreplroot = scalar((OP*)rcop);
assert(!(pm->op_pmflags & PMf_ONCE));
pm->op_pmstashstartu.op_pmreplstart = LINKLIST(rcop);
rcop->op_next = 0;
}
}
return (OP*)pm;
}
/*
=for apidoc newSVOP
Constructs, checks, and returns an op of any type that involves an
embedded SV. C<type> is the opcode. C<flags> gives the eight bits
of C<op_flags>. C<sv> gives the SV to embed in the op; this function
takes ownership of one reference to it.
=cut
*/
OP *
Perl_newSVOP(pTHX_ I32 type, I32 flags, SV *sv)
{
dVAR;
SVOP *svop;
PERL_ARGS_ASSERT_NEWSVOP;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_SVOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_PVOP_OR_SVOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_FILESTATOP
|| type == OP_CUSTOM);
NewOp(1101, svop, 1, SVOP);
OpTYPE_set(svop, type);
svop->op_sv = sv;
svop->op_next = (OP*)svop;
svop->op_flags = (U8)flags;
svop->op_private = (U8)(0 | (flags >> 8));
if (PL_opargs[type] & OA_RETSCALAR)
scalar((OP*)svop);
if (PL_opargs[type] & OA_TARGET)
svop->op_targ = pad_alloc(type, SVs_PADTMP);
return CHECKOP(type, svop);
}
/*
=for apidoc newDEFSVOP
Constructs and returns an op to access C<$_>.
=cut
*/
OP *
Perl_newDEFSVOP(pTHX)
{
return newSVREF(newGVOP(OP_GV, 0, PL_defgv));
}
#ifdef USE_ITHREADS
/*
=for apidoc newPADOP
Constructs, checks, and returns an op of any type that involves a
reference to a pad element. C<type> is the opcode. C<flags> gives the
eight bits of C<op_flags>. A pad slot is automatically allocated, and
is populated with C<sv>; this function takes ownership of one reference
to it.
This function only exists if Perl has been compiled to use ithreads.
=cut
*/
OP *
Perl_newPADOP(pTHX_ I32 type, I32 flags, SV *sv)
{
dVAR;
PADOP *padop;
PERL_ARGS_ASSERT_NEWPADOP;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_SVOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_PVOP_OR_SVOP
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_FILESTATOP
|| type == OP_CUSTOM);
NewOp(1101, padop, 1, PADOP);
OpTYPE_set(padop, type);
padop->op_padix =
pad_alloc(type, isGV(sv) ? SVf_READONLY : SVs_PADTMP);
SvREFCNT_dec(PAD_SVl(padop->op_padix));
PAD_SETSV(padop->op_padix, sv);
assert(sv);
padop->op_next = (OP*)padop;
padop->op_flags = (U8)flags;
if (PL_opargs[type] & OA_RETSCALAR)
scalar((OP*)padop);
if (PL_opargs[type] & OA_TARGET)
padop->op_targ = pad_alloc(type, SVs_PADTMP);
return CHECKOP(type, padop);
}
#endif /* USE_ITHREADS */
/*
=for apidoc newGVOP
Constructs, checks, and returns an op of any type that involves an
embedded reference to a GV. C<type> is the opcode. C<flags> gives the
eight bits of C<op_flags>. C<gv> identifies the GV that the op should
reference; calling this function does not transfer ownership of any
reference to it.
=cut
*/
OP *
Perl_newGVOP(pTHX_ I32 type, I32 flags, GV *gv)
{
PERL_ARGS_ASSERT_NEWGVOP;
#ifdef USE_ITHREADS
return newPADOP(type, flags, SvREFCNT_inc_simple_NN(gv));
#else
return newSVOP(type, flags, SvREFCNT_inc_simple_NN(gv));
#endif
}
/*
=for apidoc newPVOP
Constructs, checks, and returns an op of any type that involves an
embedded C-level pointer (PV). C<type> is the opcode. C<flags> gives
the eight bits of C<op_flags>. C<pv> supplies the C-level pointer.
Depending on the op type, the memory referenced by C<pv> may be freed
when the op is destroyed. If the op is of a freeing type, C<pv> must
have been allocated using C<PerlMemShared_malloc>.
=cut
*/
OP *
Perl_newPVOP(pTHX_ I32 type, I32 flags, char *pv)
{
dVAR;
const bool utf8 = cBOOL(flags & SVf_UTF8);
PVOP *pvop;
flags &= ~SVf_UTF8;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_PVOP_OR_SVOP
|| type == OP_RUNCV || type == OP_CUSTOM
|| (PL_opargs[type] & OA_CLASS_MASK) == OA_LOOPEXOP);
NewOp(1101, pvop, 1, PVOP);
OpTYPE_set(pvop, type);
pvop->op_pv = pv;
pvop->op_next = (OP*)pvop;
pvop->op_flags = (U8)flags;
pvop->op_private = utf8 ? OPpPV_IS_UTF8 : 0;
if (PL_opargs[type] & OA_RETSCALAR)
scalar((OP*)pvop);
if (PL_opargs[type] & OA_TARGET)
pvop->op_targ = pad_alloc(type, SVs_PADTMP);
return CHECKOP(type, pvop);
}
void
Perl_package(pTHX_ OP *o)
{
SV *const sv = cSVOPo->op_sv;
PERL_ARGS_ASSERT_PACKAGE;
SAVEGENERICSV(PL_curstash);
save_item(PL_curstname);
PL_curstash = (HV *)SvREFCNT_inc(gv_stashsv(sv, GV_ADD));
sv_setsv(PL_curstname, sv);
PL_hints |= HINT_BLOCK_SCOPE;
PL_parser->copline = NOLINE;
op_free(o);
}
void
Perl_package_version( pTHX_ OP *v )
{
U32 savehints = PL_hints;
PERL_ARGS_ASSERT_PACKAGE_VERSION;
PL_hints &= ~HINT_STRICT_VARS;
sv_setsv( GvSV(gv_fetchpvs("VERSION", GV_ADDMULTI, SVt_PV)), cSVOPx(v)->op_sv );
PL_hints = savehints;
op_free(v);
}
void
Perl_utilize(pTHX_ int aver, I32 floor, OP *version, OP *idop, OP *arg)
{
OP *pack;
OP *imop;
OP *veop;
SV *use_version = NULL;
PERL_ARGS_ASSERT_UTILIZE;
if (idop->op_type != OP_CONST)
Perl_croak(aTHX_ "Module name must be constant");
veop = NULL;
if (version) {
SV * const vesv = ((SVOP*)version)->op_sv;
if (!arg && !SvNIOKp(vesv)) {
arg = version;
}
else {
OP *pack;
SV *meth;
if (version->op_type != OP_CONST || !SvNIOKp(vesv))
Perl_croak(aTHX_ "Version number must be a constant number");
/* Make copy of idop so we don't free it twice */
pack = newSVOP(OP_CONST, 0, newSVsv(((SVOP*)idop)->op_sv));
/* Fake up a method call to VERSION */
meth = newSVpvs_share("VERSION");
veop = op_convert_list(OP_ENTERSUB, OPf_STACKED|OPf_SPECIAL,
op_append_elem(OP_LIST,
op_prepend_elem(OP_LIST, pack, version),
newMETHOP_named(OP_METHOD_NAMED, 0, meth)));
}
}
/* Fake up an import/unimport */
if (arg && arg->op_type == OP_STUB) {
imop = arg; /* no import on explicit () */
}
else if (SvNIOKp(((SVOP*)idop)->op_sv)) {
imop = NULL; /* use 5.0; */
if (aver)
use_version = ((SVOP*)idop)->op_sv;
else
idop->op_private |= OPpCONST_NOVER;
}
else {
SV *meth;
/* Make copy of idop so we don't free it twice */
pack = newSVOP(OP_CONST, 0, newSVsv(((SVOP*)idop)->op_sv));
/* Fake up a method call to import/unimport */
meth = aver
? newSVpvs_share("import") : newSVpvs_share("unimport");
imop = op_convert_list(OP_ENTERSUB, OPf_STACKED|OPf_SPECIAL,
op_append_elem(OP_LIST,
op_prepend_elem(OP_LIST, pack, arg),
newMETHOP_named(OP_METHOD_NAMED, 0, meth)
));
}
/* Fake up the BEGIN {}, which does its thing immediately. */
newATTRSUB(floor,
newSVOP(OP_CONST, 0, newSVpvs_share("BEGIN")),
NULL,
NULL,
op_append_elem(OP_LINESEQ,
op_append_elem(OP_LINESEQ,
newSTATEOP(0, NULL, newUNOP(OP_REQUIRE, 0, idop)),
newSTATEOP(0, NULL, veop)),
newSTATEOP(0, NULL, imop) ));
if (use_version) {
/* Enable the
* feature bundle that corresponds to the required version. */
use_version = sv_2mortal(new_version(use_version));
S_enable_feature_bundle(aTHX_ use_version);
/* If a version >= 5.11.0 is requested, strictures are on by default! */
if (vcmp(use_version,
sv_2mortal(upg_version(newSVnv(5.011000), FALSE))) >= 0) {
if (!(PL_hints & HINT_EXPLICIT_STRICT_REFS))
PL_hints |= HINT_STRICT_REFS;
if (!(PL_hints & HINT_EXPLICIT_STRICT_SUBS))
PL_hints |= HINT_STRICT_SUBS;
if (!(PL_hints & HINT_EXPLICIT_STRICT_VARS))
PL_hints |= HINT_STRICT_VARS;
}
/* otherwise they are off */
else {
if (!(PL_hints & HINT_EXPLICIT_STRICT_REFS))
PL_hints &= ~HINT_STRICT_REFS;
if (!(PL_hints & HINT_EXPLICIT_STRICT_SUBS))
PL_hints &= ~HINT_STRICT_SUBS;
if (!(PL_hints & HINT_EXPLICIT_STRICT_VARS))
PL_hints &= ~HINT_STRICT_VARS;
}
}
/* The "did you use incorrect case?" warning used to be here.
* The problem is that on case-insensitive filesystems one
* might get false positives for "use" (and "require"):
* "use Strict" or "require CARP" will work. This causes
* portability problems for the script: in case-strict
* filesystems the script will stop working.
*
* The "incorrect case" warning checked whether "use Foo"
* imported "Foo" to your namespace, but that is wrong, too:
* there is no requirement nor promise in the language that
* a Foo.pm should or would contain anything in package "Foo".
*
* There is very little Configure-wise that can be done, either:
* the case-sensitivity of the build filesystem of Perl does not
* help in guessing the case-sensitivity of the runtime environment.
*/
PL_hints |= HINT_BLOCK_SCOPE;
PL_parser->copline = NOLINE;
COP_SEQMAX_INC; /* Purely for B::*'s benefit */
}
/*
=head1 Embedding Functions
=for apidoc load_module
Loads the module whose name is pointed to by the string part of C<name>.
Note that the actual module name, not its filename, should be given.
Eg, "Foo::Bar" instead of "Foo/Bar.pm". ver, if specified and not NULL,
provides version semantics similar to C<use Foo::Bar VERSION>. The optional
trailing arguments can be used to specify arguments to the module's C<import()>
method, similar to C<use Foo::Bar VERSION LIST>; their precise handling depends
on the flags. The flags argument is a bitwise-ORed collection of any of
C<PERL_LOADMOD_DENY>, C<PERL_LOADMOD_NOIMPORT>, or C<PERL_LOADMOD_IMPORT_OPS>
(or 0 for no flags).
If C<PERL_LOADMOD_NOIMPORT> is set, the module is loaded as if with an empty
import list, as in C<use Foo::Bar ()>; this is the only circumstance in which
the trailing optional arguments may be omitted entirely. Otherwise, if
C<PERL_LOADMOD_IMPORT_OPS> is set, the trailing arguments must consist of
exactly one C<OP*>, containing the op tree that produces the relevant import
arguments. Otherwise, the trailing arguments must all be C<SV*> values that
will be used as import arguments; and the list must be terminated with C<(SV*)
NULL>. If neither C<PERL_LOADMOD_NOIMPORT> nor C<PERL_LOADMOD_IMPORT_OPS> is
set, the trailing C<NULL> pointer is needed even if no import arguments are
desired. The reference count for each specified C<SV*> argument is
decremented. In addition, the C<name> argument is modified.
If C<PERL_LOADMOD_DENY> is set, the module is loaded as if with C<no> rather
than C<use>.
=for apidoc Amnh||PERL_LOADMOD_DENY
=for apidoc Amnh||PERL_LOADMOD_NOIMPORT
=for apidoc Amnh||PERL_LOADMOD_IMPORT_OPS
=cut */
void
Perl_load_module(pTHX_ U32 flags, SV *name, SV *ver, ...)
{
va_list args;
PERL_ARGS_ASSERT_LOAD_MODULE;
va_start(args, ver);
vload_module(flags, name, ver, &args);
va_end(args);
}
#ifdef PERL_IMPLICIT_CONTEXT
void
Perl_load_module_nocontext(U32 flags, SV *name, SV *ver, ...)
{
dTHX;
va_list args;
PERL_ARGS_ASSERT_LOAD_MODULE_NOCONTEXT;
va_start(args, ver);
vload_module(flags, name, ver, &args);
va_end(args);
}
#endif
void
Perl_vload_module(pTHX_ U32 flags, SV *name, SV *ver, va_list *args)
{
OP *veop, *imop;
OP * modname;
I32 floor;
PERL_ARGS_ASSERT_VLOAD_MODULE;
/* utilize() fakes up a BEGIN { require ..; import ... }, so make sure
* that it has a PL_parser to play with while doing that, and also
* that it doesn't mess with any existing parser, by creating a tmp
* new parser with lex_start(). This won't actually be used for much,
* since pp_require() will create another parser for the real work.
* The ENTER/LEAVE pair protect callers from any side effects of use.
*
* start_subparse() creates a new PL_compcv. This means that any ops
* allocated below will be allocated from that CV's op slab, and so
* will be automatically freed if the utilise() fails
*/
ENTER;
SAVEVPTR(PL_curcop);
lex_start(NULL, NULL, LEX_START_SAME_FILTER);
floor = start_subparse(FALSE, 0);
modname = newSVOP(OP_CONST, 0, name);
modname->op_private |= OPpCONST_BARE;
if (ver) {
veop = newSVOP(OP_CONST, 0, ver);
}
else
veop = NULL;
if (flags & PERL_LOADMOD_NOIMPORT) {
imop = sawparens(newNULLLIST());
}
else if (flags & PERL_LOADMOD_IMPORT_OPS) {
imop = va_arg(*args, OP*);
}
else {
SV *sv;
imop = NULL;
sv = va_arg(*args, SV*);
while (sv) {
imop = op_append_elem(OP_LIST, imop, newSVOP(OP_CONST, 0, sv));
sv = va_arg(*args, SV*);
}
}
utilize(!(flags & PERL_LOADMOD_DENY), floor, veop, modname, imop);
LEAVE;
}
PERL_STATIC_INLINE OP *
S_new_entersubop(pTHX_ GV *gv, OP *arg)
{
return newUNOP(OP_ENTERSUB, OPf_STACKED,
newLISTOP(OP_LIST, 0, arg,
newUNOP(OP_RV2CV, 0,
newGVOP(OP_GV, 0, gv))));
}
OP *
Perl_dofile(pTHX_ OP *term, I32 force_builtin)
{
OP *doop;
GV *gv;
PERL_ARGS_ASSERT_DOFILE;
if (!force_builtin && (gv = gv_override("do", 2))) {
doop = S_new_entersubop(aTHX_ gv, term);
}
else {
doop = newUNOP(OP_DOFILE, 0, scalar(term));
}
return doop;
}
/*
=head1 Optree construction
=for apidoc newSLICEOP
Constructs, checks, and returns an C<lslice> (list slice) op. C<flags>
gives the eight bits of C<op_flags>, except that C<OPf_KIDS> will
be set automatically, and, shifted up eight bits, the eight bits of
C<op_private>, except that the bit with value 1 or 2 is automatically
set as required. C<listval> and C<subscript> supply the parameters of
the slice; they are consumed by this function and become part of the
constructed op tree.
=cut
*/
OP *
Perl_newSLICEOP(pTHX_ I32 flags, OP *subscript, OP *listval)
{
return newBINOP(OP_LSLICE, flags,
list(force_list(subscript, 1)),
list(force_list(listval, 1)) );
}
#define ASSIGN_SCALAR 0
#define ASSIGN_LIST 1
#define ASSIGN_REF 2
/* given the optree o on the LHS of an assignment, determine whether its:
* ASSIGN_SCALAR $x = ...
* ASSIGN_LIST ($x) = ...
* ASSIGN_REF \$x = ...
*/
STATIC I32
S_assignment_type(pTHX_ const OP *o)
{
unsigned type;
U8 flags;
U8 ret;
if (!o)
return ASSIGN_LIST;
if (o->op_type == OP_SREFGEN)
{
OP * const kid = cUNOPx(cUNOPo->op_first)->op_first;
type = kid->op_type;
flags = o->op_flags | kid->op_flags;
if (!(flags & OPf_PARENS)
&& (kid->op_type == OP_RV2AV || kid->op_type == OP_PADAV ||
kid->op_type == OP_RV2HV || kid->op_type == OP_PADHV ))
return ASSIGN_REF;
ret = ASSIGN_REF;
} else {
if ((o->op_type == OP_NULL) && (o->op_flags & OPf_KIDS))
o = cUNOPo->op_first;
flags = o->op_flags;
type = o->op_type;
ret = ASSIGN_SCALAR;
}
if (type == OP_COND_EXPR) {
OP * const sib = OpSIBLING(cLOGOPo->op_first);
const I32 t = assignment_type(sib);
const I32 f = assignment_type(OpSIBLING(sib));
if (t == ASSIGN_LIST && f == ASSIGN_LIST)
return ASSIGN_LIST;
if ((t == ASSIGN_LIST) ^ (f == ASSIGN_LIST))
yyerror("Assignment to both a list and a scalar");
return ASSIGN_SCALAR;
}
if (type == OP_LIST &&
(flags & OPf_WANT) == OPf_WANT_SCALAR &&
o->op_private & OPpLVAL_INTRO)
return ret;
if (type == OP_LIST || flags & OPf_PARENS ||
type == OP_RV2AV || type == OP_RV2HV ||
type == OP_ASLICE || type == OP_HSLICE ||
type == OP_KVASLICE || type == OP_KVHSLICE || type == OP_REFGEN)
return ASSIGN_LIST;
if (type == OP_PADAV || type == OP_PADHV)
return ASSIGN_LIST;
if (type == OP_RV2SV)
return ret;
return ret;
}
static OP *
S_newONCEOP(pTHX_ OP *initop, OP *padop)
{
dVAR;
const PADOFFSET target = padop->op_targ;
OP *const other = newOP(OP_PADSV,
padop->op_flags
| ((padop->op_private & ~OPpLVAL_INTRO) << 8));
OP *const first = newOP(OP_NULL, 0);
OP *const nullop = newCONDOP(0, first, initop, other);
/* XXX targlex disabled for now; see ticket #124160
newCONDOP(0, first, S_maybe_targlex(aTHX_ initop), other);
*/
OP *const condop = first->op_next;
OpTYPE_set(condop, OP_ONCE);
other->op_targ = target;
nullop->op_flags |= OPf_WANT_SCALAR;
/* Store the initializedness of state vars in a separate
pad entry. */
condop->op_targ =
pad_add_name_pvn("$",1,padadd_NO_DUP_CHECK|padadd_STATE,0,0);
/* hijacking PADSTALE for uninitialized state variables */
SvPADSTALE_on(PAD_SVl(condop->op_targ));
return nullop;
}
/*
=for apidoc newASSIGNOP
Constructs, checks, and returns an assignment op. C<left> and C<right>
supply the parameters of the assignment; they are consumed by this
function and become part of the constructed op tree.
If C<optype> is C<OP_ANDASSIGN>, C<OP_ORASSIGN>, or C<OP_DORASSIGN>, then
a suitable conditional optree is constructed. If C<optype> is the opcode
of a binary operator, such as C<OP_BIT_OR>, then an op is constructed that
performs the binary operation and assigns the result to the left argument.
Either way, if C<optype> is non-zero then C<flags> has no effect.
If C<optype> is zero, then a plain scalar or list assignment is
constructed. Which type of assignment it is is automatically determined.
C<flags> gives the eight bits of C<op_flags>, except that C<OPf_KIDS>
will be set automatically, and, shifted up eight bits, the eight bits
of C<op_private>, except that the bit with value 1 or 2 is automatically
set as required.
=cut
*/
OP *
Perl_newASSIGNOP(pTHX_ I32 flags, OP *left, I32 optype, OP *right)
{
OP *o;
I32 assign_type;
if (optype) {
if (optype == OP_ANDASSIGN || optype == OP_ORASSIGN || optype == OP_DORASSIGN) {
right = scalar(right);
return newLOGOP(optype, 0,
op_lvalue(scalar(left), optype),
newBINOP(OP_SASSIGN, OPpASSIGN_BACKWARDS<<8, right, right));
}
else {
return newBINOP(optype, OPf_STACKED,
op_lvalue(scalar(left), optype), scalar(right));
}
}
if ((assign_type = assignment_type(left)) == ASSIGN_LIST) {
OP *state_var_op = NULL;
static const char no_list_state[] = "Initialization of state variables"
" in list currently forbidden";
OP *curop;
if (left->op_type == OP_ASLICE || left->op_type == OP_HSLICE)
left->op_private &= ~ OPpSLICEWARNING;
PL_modcount = 0;
left = op_lvalue(left, OP_AASSIGN);
curop = list(force_list(left, 1));
o = newBINOP(OP_AASSIGN, flags, list(force_list(right, 1)), curop);
o->op_private = (U8)(0 | (flags >> 8));
if (OP_TYPE_IS_OR_WAS(left, OP_LIST))
{
OP *lop = ((LISTOP*)left)->op_first, *vop, *eop;
if (!(left->op_flags & OPf_PARENS) &&
lop->op_type == OP_PUSHMARK &&
(vop = OpSIBLING(lop)) &&
(vop->op_type == OP_PADAV || vop->op_type == OP_PADHV) &&
!(vop->op_flags & OPf_PARENS) &&
(vop->op_private & (OPpLVAL_INTRO|OPpPAD_STATE)) ==
(OPpLVAL_INTRO|OPpPAD_STATE) &&
(eop = OpSIBLING(vop)) &&
eop->op_type == OP_ENTERSUB &&
!OpHAS_SIBLING(eop)) {
state_var_op = vop;
} else {
while (lop) {
if ((lop->op_type == OP_PADSV ||
lop->op_type == OP_PADAV ||
lop->op_type == OP_PADHV ||
lop->op_type == OP_PADANY)
&& (lop->op_private & OPpPAD_STATE)
)
yyerror(no_list_state);
lop = OpSIBLING(lop);
}
}
}
else if ( (left->op_private & OPpLVAL_INTRO)
&& (left->op_private & OPpPAD_STATE)
&& ( left->op_type == OP_PADSV
|| left->op_type == OP_PADAV
|| left->op_type == OP_PADHV
|| left->op_type == OP_PADANY)
) {
/* All single variable list context state assignments, hence
state ($a) = ...
(state $a) = ...
state @a = ...
state (@a) = ...
(state @a) = ...
state %a = ...
state (%a) = ...
(state %a) = ...
*/
if (left->op_flags & OPf_PARENS)
yyerror(no_list_state);
else
state_var_op = left;
}
/* optimise @a = split(...) into:
* @{expr}: split(..., @{expr}) (where @a is not flattened)
* @a, my @a, local @a: split(...) (where @a is attached to
* the split op itself)
*/
if ( right
&& right->op_type == OP_SPLIT
/* don't do twice, e.g. @b = (@a = split) */
&& !(right->op_private & OPpSPLIT_ASSIGN))
{
OP *gvop = NULL;
if ( ( left->op_type == OP_RV2AV
&& (gvop=((UNOP*)left)->op_first)->op_type==OP_GV)
|| left->op_type == OP_PADAV)
{
/* @pkg or @lex or local @pkg' or 'my @lex' */
OP *tmpop;
if (gvop) {
#ifdef USE_ITHREADS
((PMOP*)right)->op_pmreplrootu.op_pmtargetoff
= cPADOPx(gvop)->op_padix;
cPADOPx(gvop)->op_padix = 0; /* steal it */
#else
((PMOP*)right)->op_pmreplrootu.op_pmtargetgv
= MUTABLE_GV(cSVOPx(gvop)->op_sv);
cSVOPx(gvop)->op_sv = NULL; /* steal it */
#endif
right->op_private |=
left->op_private & OPpOUR_INTRO;
}
else {
((PMOP*)right)->op_pmreplrootu.op_pmtargetoff = left->op_targ;
left->op_targ = 0; /* steal it */
right->op_private |= OPpSPLIT_LEX;
}
right->op_private |= left->op_private & OPpLVAL_INTRO;
detach_split:
tmpop = cUNOPo->op_first; /* to list (nulled) */
tmpop = ((UNOP*)tmpop)->op_first; /* to pushmark */
assert(OpSIBLING(tmpop) == right);
assert(!OpHAS_SIBLING(right));
/* detach the split subtreee from the o tree,
* then free the residual o tree */
op_sibling_splice(cUNOPo->op_first, tmpop, 1, NULL);
op_free(o); /* blow off assign */
right->op_private |= OPpSPLIT_ASSIGN;
right->op_flags &= ~OPf_WANT;
/* "I don't know and I don't care." */
return right;
}
else if (left->op_type == OP_RV2AV) {
/* @{expr} */
OP *pushop = cUNOPx(cBINOPo->op_last)->op_first;
assert(OpSIBLING(pushop) == left);
/* Detach the array ... */
op_sibling_splice(cBINOPo->op_last, pushop, 1, NULL);
/* ... and attach it to the split. */
op_sibling_splice(right, cLISTOPx(right)->op_last,
0, left);
right->op_flags |= OPf_STACKED;
/* Detach split and expunge aassign as above. */
goto detach_split;
}
else if (PL_modcount < RETURN_UNLIMITED_NUMBER &&
((LISTOP*)right)->op_last->op_type == OP_CONST)
{
/* convert split(...,0) to split(..., PL_modcount+1) */
SV ** const svp =
&((SVOP*)((LISTOP*)right)->op_last)->op_sv;
SV * const sv = *svp;
if (SvIOK(sv) && SvIVX(sv) == 0)
{
if (right->op_private & OPpSPLIT_IMPLIM) {
/* our own SV, created in ck_split */
SvREADONLY_off(sv);
sv_setiv(sv, PL_modcount+1);
}
else {
/* SV may belong to someone else */
SvREFCNT_dec(sv);
*svp = newSViv(PL_modcount+1);
}
}
}
}
if (state_var_op)
o = S_newONCEOP(aTHX_ o, state_var_op);
return o;
}
if (assign_type == ASSIGN_REF)
return newBINOP(OP_REFASSIGN, flags, scalar(right), left);
if (!right)
right = newOP(OP_UNDEF, 0);
if (right->op_type == OP_READLINE) {
right->op_flags |= OPf_STACKED;
return newBINOP(OP_NULL, flags, op_lvalue(scalar(left), OP_SASSIGN),
scalar(right));
}
else {
o = newBINOP(OP_SASSIGN, flags,
scalar(right), op_lvalue(scalar(left), OP_SASSIGN) );
}
return o;
}
/*
=for apidoc newSTATEOP
Constructs a state op (COP). The state op is normally a C<nextstate> op,
but will be a C<dbstate> op if debugging is enabled for currently-compiled
code. The state op is populated from C<PL_curcop> (or C<PL_compiling>).
If C<label> is non-null, it supplies the name of a label to attach to
the state op; this function takes ownership of the memory pointed at by
C<label>, and will free it. C<flags> gives the eight bits of C<op_flags>
for the state op.
If C<o> is null, the state op is returned. Otherwise the state op is
combined with C<o> into a C<lineseq> list op, which is returned. C<o>
is consumed by this function and becomes part of the returned op tree.
=cut
*/
OP *
Perl_newSTATEOP(pTHX_ I32 flags, char *label, OP *o)
{
dVAR;
const U32 seq = intro_my();
const U32 utf8 = flags & SVf_UTF8;
COP *cop;
PL_parser->parsed_sub = 0;
flags &= ~SVf_UTF8;
NewOp(1101, cop, 1, COP);
if (PERLDB_LINE && CopLINE(PL_curcop) && PL_curstash != PL_debstash) {
OpTYPE_set(cop, OP_DBSTATE);
}
else {
OpTYPE_set(cop, OP_NEXTSTATE);
}
cop->op_flags = (U8)flags;
CopHINTS_set(cop, PL_hints);
#ifdef VMS
if (VMSISH_HUSHED) cop->op_private |= OPpHUSH_VMSISH;
#endif
cop->op_next = (OP*)cop;
cop->cop_seq = seq;
cop->cop_warnings = DUP_WARNINGS(PL_curcop->cop_warnings);
CopHINTHASH_set(cop, cophh_copy(CopHINTHASH_get(PL_curcop)));
if (label) {
Perl_cop_store_label(aTHX_ cop, label, strlen(label), utf8);
PL_hints |= HINT_BLOCK_SCOPE;
/* It seems that we need to defer freeing this pointer, as other parts
of the grammar end up wanting to copy it after this op has been
created. */
SAVEFREEPV(label);
}
if (PL_parser->preambling != NOLINE) {
CopLINE_set(cop, PL_parser->preambling);
PL_parser->copline = NOLINE;
}
else if (PL_parser->copline == NOLINE)
CopLINE_set(cop, CopLINE(PL_curcop));
else {
CopLINE_set(cop, PL_parser->copline);
PL_parser->copline = NOLINE;
}
#ifdef USE_ITHREADS
CopFILE_set(cop, CopFILE(PL_curcop)); /* XXX share in a pvtable? */
#else
CopFILEGV_set(cop, CopFILEGV(PL_curcop));
#endif
CopSTASH_set(cop, PL_curstash);
if (cop->op_type == OP_DBSTATE) {
/* this line can have a breakpoint - store the cop in IV */
AV *av = CopFILEAVx(PL_curcop);
if (av) {
SV * const * const svp = av_fetch(av, CopLINE(cop), FALSE);
if (svp && *svp != &PL_sv_undef ) {
(void)SvIOK_on(*svp);
SvIV_set(*svp, PTR2IV(cop));
}
}
}
if (flags & OPf_SPECIAL)
op_null((OP*)cop);
return op_prepend_elem(OP_LINESEQ, (OP*)cop, o);
}
/*
=for apidoc newLOGOP
Constructs, checks, and returns a logical (flow control) op. C<type>
is the opcode. C<flags> gives the eight bits of C<op_flags>, except
that C<OPf_KIDS> will be set automatically, and, shifted up eight bits,
the eight bits of C<op_private>, except that the bit with value 1 is
automatically set. C<first> supplies the expression controlling the
flow, and C<other> supplies the side (alternate) chain of ops; they are
consumed by this function and become part of the constructed op tree.
=cut
*/
OP *
Perl_newLOGOP(pTHX_ I32 type, I32 flags, OP *first, OP *other)
{
PERL_ARGS_ASSERT_NEWLOGOP;
return new_logop(type, flags, &first, &other);
}
/* See if the optree o contains a single OP_CONST (plus possibly
* surrounding enter/nextstate/null etc). If so, return it, else return
* NULL.
*/
STATIC OP *
S_search_const(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_SEARCH_CONST;
redo:
switch (o->op_type) {
case OP_CONST:
return o;
case OP_NULL:
if (o->op_flags & OPf_KIDS) {
o = cUNOPo->op_first;
goto redo;
}
break;
case OP_LEAVE:
case OP_SCOPE:
case OP_LINESEQ:
{
OP *kid;
if (!(o->op_flags & OPf_KIDS))
return NULL;
kid = cLISTOPo->op_first;
do {
switch (kid->op_type) {
case OP_ENTER:
case OP_NULL:
case OP_NEXTSTATE:
kid = OpSIBLING(kid);
break;
default:
if (kid != cLISTOPo->op_last)
return NULL;
goto last;
}
} while (kid);
if (!kid)
kid = cLISTOPo->op_last;
last:
o = kid;
goto redo;
}
}
return NULL;
}
STATIC OP *
S_new_logop(pTHX_ I32 type, I32 flags, OP** firstp, OP** otherp)
{
dVAR;
LOGOP *logop;
OP *o;
OP *first;
OP *other;
OP *cstop = NULL;
int prepend_not = 0;
PERL_ARGS_ASSERT_NEW_LOGOP;
first = *firstp;
other = *otherp;
/* [perl #59802]: Warn about things like "return $a or $b", which
is parsed as "(return $a) or $b" rather than "return ($a or
$b)". NB: This also applies to xor, which is why we do it
here.
*/
switch (first->op_type) {
case OP_NEXT:
case OP_LAST:
case OP_REDO:
/* XXX: Perhaps we should emit a stronger warning for these.
Even with the high-precedence operator they don't seem to do
anything sensible.
But until we do, fall through here.
*/
case OP_RETURN:
case OP_EXIT:
case OP_DIE:
case OP_GOTO:
/* XXX: Currently we allow people to "shoot themselves in the
foot" by explicitly writing "(return $a) or $b".
Warn unless we are looking at the result from folding or if
the programmer explicitly grouped the operators like this.
The former can occur with e.g.
use constant FEATURE => ( $] >= ... );
sub { not FEATURE and return or do_stuff(); }
*/
if (!first->op_folded && !(first->op_flags & OPf_PARENS))
Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
"Possible precedence issue with control flow operator");
/* XXX: Should we optimze this to "return $a;" (i.e. remove
the "or $b" part)?
*/
break;
}
if (type == OP_XOR) /* Not short circuit, but here by precedence. */
return newBINOP(type, flags, scalar(first), scalar(other));
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_LOGOP
|| type == OP_CUSTOM);
scalarboolean(first);
/* search for a constant op that could let us fold the test */
if ((cstop = search_const(first))) {
if (cstop->op_private & OPpCONST_STRICT)
no_bareword_allowed(cstop);
else if ((cstop->op_private & OPpCONST_BARE))
Perl_ck_warner(aTHX_ packWARN(WARN_BAREWORD), "Bareword found in conditional");
if ((type == OP_AND && SvTRUE(((SVOP*)cstop)->op_sv)) ||
(type == OP_OR && !SvTRUE(((SVOP*)cstop)->op_sv)) ||
(type == OP_DOR && !SvOK(((SVOP*)cstop)->op_sv))) {
/* Elide the (constant) lhs, since it can't affect the outcome */
*firstp = NULL;
if (other->op_type == OP_CONST)
other->op_private |= OPpCONST_SHORTCIRCUIT;
op_free(first);
if (other->op_type == OP_LEAVE)
other = newUNOP(OP_NULL, OPf_SPECIAL, other);
else if (other->op_type == OP_MATCH
|| other->op_type == OP_SUBST
|| other->op_type == OP_TRANSR
|| other->op_type == OP_TRANS)
/* Mark the op as being unbindable with =~ */
other->op_flags |= OPf_SPECIAL;
other->op_folded = 1;
return other;
}
else {
/* Elide the rhs, since the outcome is entirely determined by
* the (constant) lhs */
/* check for C<my $x if 0>, or C<my($x,$y) if 0> */
const OP *o2 = other;
if ( ! (o2->op_type == OP_LIST
&& (( o2 = cUNOPx(o2)->op_first))
&& o2->op_type == OP_PUSHMARK
&& (( o2 = OpSIBLING(o2))) )
)
o2 = other;
if ((o2->op_type == OP_PADSV || o2->op_type == OP_PADAV
|| o2->op_type == OP_PADHV)
&& o2->op_private & OPpLVAL_INTRO
&& !(o2->op_private & OPpPAD_STATE))
{
Perl_croak(aTHX_ "This use of my() in false conditional is "
"no longer allowed");
}
*otherp = NULL;
if (cstop->op_type == OP_CONST)
cstop->op_private |= OPpCONST_SHORTCIRCUIT;
op_free(other);
return first;
}
}
else if ((first->op_flags & OPf_KIDS) && type != OP_DOR
&& ckWARN(WARN_MISC)) /* [#24076] Don't warn for <FH> err FOO. */
{
const OP * const k1 = ((UNOP*)first)->op_first;
const OP * const k2 = OpSIBLING(k1);
OPCODE warnop = 0;
switch (first->op_type)
{
case OP_NULL:
if (k2 && k2->op_type == OP_READLINE
&& (k2->op_flags & OPf_STACKED)
&& ((k1->op_flags & OPf_WANT) == OPf_WANT_SCALAR))
{
warnop = k2->op_type;
}
break;
case OP_SASSIGN:
if (k1->op_type == OP_READDIR
|| k1->op_type == OP_GLOB
|| (k1->op_type == OP_NULL && k1->op_targ == OP_GLOB)
|| k1->op_type == OP_EACH
|| k1->op_type == OP_AEACH)
{
warnop = ((k1->op_type == OP_NULL)
? (OPCODE)k1->op_targ : k1->op_type);
}
break;
}
if (warnop) {
const line_t oldline = CopLINE(PL_curcop);
/* This ensures that warnings are reported at the first line
of the construction, not the last. */
CopLINE_set(PL_curcop, PL_parser->copline);
Perl_warner(aTHX_ packWARN(WARN_MISC),
"Value of %s%s can be \"0\"; test with defined()",
PL_op_desc[warnop],
((warnop == OP_READLINE || warnop == OP_GLOB)
? " construct" : "() operator"));
CopLINE_set(PL_curcop, oldline);
}
}
/* optimize AND and OR ops that have NOTs as children */
if (first->op_type == OP_NOT
&& (first->op_flags & OPf_KIDS)
&& ((first->op_flags & OPf_SPECIAL) /* unless ($x) { } */
|| (other->op_type == OP_NOT)) /* if (!$x && !$y) { } */
) {
if (type == OP_AND || type == OP_OR) {
if (type == OP_AND)
type = OP_OR;
else
type = OP_AND;
op_null(first);
if (other->op_type == OP_NOT) { /* !a AND|OR !b => !(a OR|AND b) */
op_null(other);
prepend_not = 1; /* prepend a NOT op later */
}
}
}
logop = alloc_LOGOP(type, first, LINKLIST(other));
logop->op_flags |= (U8)flags;
logop->op_private = (U8)(1 | (flags >> 8));
/* establish postfix order */
logop->op_next = LINKLIST(first);
first->op_next = (OP*)logop;
assert(!OpHAS_SIBLING(first));
op_sibling_splice((OP*)logop, first, 0, other);
CHECKOP(type,logop);
o = newUNOP(prepend_not ? OP_NOT : OP_NULL,
PL_opargs[type] & OA_RETSCALAR ? OPf_WANT_SCALAR : 0,
(OP*)logop);
other->op_next = o;
return o;
}
/*
=for apidoc newCONDOP
Constructs, checks, and returns a conditional-expression (C<cond_expr>)
op. C<flags> gives the eight bits of C<op_flags>, except that C<OPf_KIDS>
will be set automatically, and, shifted up eight bits, the eight bits of
C<op_private>, except that the bit with value 1 is automatically set.
C<first> supplies the expression selecting between the two branches,
and C<trueop> and C<falseop> supply the branches; they are consumed by
this function and become part of the constructed op tree.
=cut
*/
OP *
Perl_newCONDOP(pTHX_ I32 flags, OP *first, OP *trueop, OP *falseop)
{
dVAR;
LOGOP *logop;
OP *start;
OP *o;
OP *cstop;
PERL_ARGS_ASSERT_NEWCONDOP;
if (!falseop)
return newLOGOP(OP_AND, 0, first, trueop);
if (!trueop)
return newLOGOP(OP_OR, 0, first, falseop);
scalarboolean(first);
if ((cstop = search_const(first))) {
/* Left or right arm of the conditional? */
const bool left = SvTRUE(((SVOP*)cstop)->op_sv);
OP *live = left ? trueop : falseop;
OP *const dead = left ? falseop : trueop;
if (cstop->op_private & OPpCONST_BARE &&
cstop->op_private & OPpCONST_STRICT) {
no_bareword_allowed(cstop);
}
op_free(first);
op_free(dead);
if (live->op_type == OP_LEAVE)
live = newUNOP(OP_NULL, OPf_SPECIAL, live);
else if (live->op_type == OP_MATCH || live->op_type == OP_SUBST
|| live->op_type == OP_TRANS || live->op_type == OP_TRANSR)
/* Mark the op as being unbindable with =~ */
live->op_flags |= OPf_SPECIAL;
live->op_folded = 1;
return live;
}
logop = alloc_LOGOP(OP_COND_EXPR, first, LINKLIST(trueop));
logop->op_flags |= (U8)flags;
logop->op_private = (U8)(1 | (flags >> 8));
logop->op_next = LINKLIST(falseop);
CHECKOP(OP_COND_EXPR, /* that's logop->op_type */
logop);
/* establish postfix order */
start = LINKLIST(first);
first->op_next = (OP*)logop;
/* make first, trueop, falseop siblings */
op_sibling_splice((OP*)logop, first, 0, trueop);
op_sibling_splice((OP*)logop, trueop, 0, falseop);
o = newUNOP(OP_NULL, 0, (OP*)logop);
trueop->op_next = falseop->op_next = o;
o->op_next = start;
return o;
}
/*
=for apidoc newRANGE
Constructs and returns a C<range> op, with subordinate C<flip> and
C<flop> ops. C<flags> gives the eight bits of C<op_flags> for the
C<flip> op and, shifted up eight bits, the eight bits of C<op_private>
for both the C<flip> and C<range> ops, except that the bit with value
1 is automatically set. C<left> and C<right> supply the expressions
controlling the endpoints of the range; they are consumed by this function
and become part of the constructed op tree.
=cut
*/
OP *
Perl_newRANGE(pTHX_ I32 flags, OP *left, OP *right)
{
LOGOP *range;
OP *flip;
OP *flop;
OP *leftstart;
OP *o;
PERL_ARGS_ASSERT_NEWRANGE;
range = alloc_LOGOP(OP_RANGE, left, LINKLIST(right));
range->op_flags = OPf_KIDS;
leftstart = LINKLIST(left);
range->op_private = (U8)(1 | (flags >> 8));
/* make left and right siblings */
op_sibling_splice((OP*)range, left, 0, right);
range->op_next = (OP*)range;
flip = newUNOP(OP_FLIP, flags, (OP*)range);
flop = newUNOP(OP_FLOP, 0, flip);
o = newUNOP(OP_NULL, 0, flop);
LINKLIST(flop);
range->op_next = leftstart;
left->op_next = flip;
right->op_next = flop;
range->op_targ =
pad_add_name_pvn("$", 1, padadd_NO_DUP_CHECK|padadd_STATE, 0, 0);
sv_upgrade(PAD_SV(range->op_targ), SVt_PVNV);
flip->op_targ =
pad_add_name_pvn("$", 1, padadd_NO_DUP_CHECK|padadd_STATE, 0, 0);;
sv_upgrade(PAD_SV(flip->op_targ), SVt_PVNV);
SvPADTMP_on(PAD_SV(flip->op_targ));
flip->op_private = left->op_type == OP_CONST ? OPpFLIP_LINENUM : 0;
flop->op_private = right->op_type == OP_CONST ? OPpFLIP_LINENUM : 0;
/* check barewords before they might be optimized aways */
if (flip->op_private && cSVOPx(left)->op_private & OPpCONST_STRICT)
no_bareword_allowed(left);
if (flop->op_private && cSVOPx(right)->op_private & OPpCONST_STRICT)
no_bareword_allowed(right);
flip->op_next = o;
if (!flip->op_private || !flop->op_private)
LINKLIST(o); /* blow off optimizer unless constant */
return o;
}
/*
=for apidoc newLOOPOP
Constructs, checks, and returns an op tree expressing a loop. This is
only a loop in the control flow through the op tree; it does not have
the heavyweight loop structure that allows exiting the loop by C<last>
and suchlike. C<flags> gives the eight bits of C<op_flags> for the
top-level op, except that some bits will be set automatically as required.
C<expr> supplies the expression controlling loop iteration, and C<block>
supplies the body of the loop; they are consumed by this function and
become part of the constructed op tree. C<debuggable> is currently
unused and should always be 1.
=cut
*/
OP *
Perl_newLOOPOP(pTHX_ I32 flags, I32 debuggable, OP *expr, OP *block)
{
OP* listop;
OP* o;
const bool once = block && block->op_flags & OPf_SPECIAL &&
block->op_type == OP_NULL;
PERL_UNUSED_ARG(debuggable);
if (expr) {
if (once && (
(expr->op_type == OP_CONST && !SvTRUE(((SVOP*)expr)->op_sv))
|| ( expr->op_type == OP_NOT
&& cUNOPx(expr)->op_first->op_type == OP_CONST
&& SvTRUE(cSVOPx_sv(cUNOPx(expr)->op_first))
)
))
/* Return the block now, so that S_new_logop does not try to
fold it away. */
{
op_free(expr);
return block; /* do {} while 0 does once */
}
if (expr->op_type == OP_READLINE
|| expr->op_type == OP_READDIR
|| expr->op_type == OP_GLOB
|| expr->op_type == OP_EACH || expr->op_type == OP_AEACH
|| (expr->op_type == OP_NULL && expr->op_targ == OP_GLOB)) {
expr = newUNOP(OP_DEFINED, 0,
newASSIGNOP(0, newDEFSVOP(), 0, expr) );
} else if (expr->op_flags & OPf_KIDS) {
const OP * const k1 = ((UNOP*)expr)->op_first;
const OP * const k2 = k1 ? OpSIBLING(k1) : NULL;
switch (expr->op_type) {
case OP_NULL:
if (k2 && (k2->op_type == OP_READLINE || k2->op_type == OP_READDIR)
&& (k2->op_flags & OPf_STACKED)
&& ((k1->op_flags & OPf_WANT) == OPf_WANT_SCALAR))
expr = newUNOP(OP_DEFINED, 0, expr);
break;
case OP_SASSIGN:
if (k1 && (k1->op_type == OP_READDIR
|| k1->op_type == OP_GLOB
|| (k1->op_type == OP_NULL && k1->op_targ == OP_GLOB)
|| k1->op_type == OP_EACH
|| k1->op_type == OP_AEACH))
expr = newUNOP(OP_DEFINED, 0, expr);
break;
}
}
}
/* if block is null, the next op_append_elem() would put UNSTACK, a scalar
* op, in listop. This is wrong. [perl #27024] */
if (!block)
block = newOP(OP_NULL, 0);
listop = op_append_elem(OP_LINESEQ, block, newOP(OP_UNSTACK, 0));
o = new_logop(OP_AND, 0, &expr, &listop);
if (once) {
ASSUME(listop);
}
if (listop)
((LISTOP*)listop)->op_last->op_next = LINKLIST(o);
if (once && o != listop)
{
assert(cUNOPo->op_first->op_type == OP_AND
|| cUNOPo->op_first->op_type == OP_OR);
o->op_next = ((LOGOP*)cUNOPo->op_first)->op_other;
}
if (o == listop)
o = newUNOP(OP_NULL, 0, o); /* or do {} while 1 loses outer block */
o->op_flags |= flags;
o = op_scope(o);
o->op_flags |= OPf_SPECIAL; /* suppress cx_popblock() curpm restoration*/
return o;
}
/*
=for apidoc newWHILEOP
Constructs, checks, and returns an op tree expressing a C<while> loop.
This is a heavyweight loop, with structure that allows exiting the loop
by C<last> and suchlike.
C<loop> is an optional preconstructed C<enterloop> op to use in the
loop; if it is null then a suitable op will be constructed automatically.
C<expr> supplies the loop's controlling expression. C<block> supplies the
main body of the loop, and C<cont> optionally supplies a C<continue> block
that operates as a second half of the body. All of these optree inputs
are consumed by this function and become part of the constructed op tree.
C<flags> gives the eight bits of C<op_flags> for the C<leaveloop>
op and, shifted up eight bits, the eight bits of C<op_private> for
the C<leaveloop> op, except that (in both cases) some bits will be set
automatically. C<debuggable> is currently unused and should always be 1.
C<has_my> can be supplied as true to force the
loop body to be enclosed in its own scope.
=cut
*/
OP *
Perl_newWHILEOP(pTHX_ I32 flags, I32 debuggable, LOOP *loop,
OP *expr, OP *block, OP *cont, I32 has_my)
{
dVAR;
OP *redo;
OP *next = NULL;
OP *listop;
OP *o;
U8 loopflags = 0;
PERL_UNUSED_ARG(debuggable);
if (expr) {
if (expr->op_type == OP_READLINE
|| expr->op_type == OP_READDIR
|| expr->op_type == OP_GLOB
|| expr->op_type == OP_EACH || expr->op_type == OP_AEACH
|| (expr->op_type == OP_NULL && expr->op_targ == OP_GLOB)) {
expr = newUNOP(OP_DEFINED, 0,
newASSIGNOP(0, newDEFSVOP(), 0, expr) );
} else if (expr->op_flags & OPf_KIDS) {
const OP * const k1 = ((UNOP*)expr)->op_first;
const OP * const k2 = (k1) ? OpSIBLING(k1) : NULL;
switch (expr->op_type) {
case OP_NULL:
if (k2 && (k2->op_type == OP_READLINE || k2->op_type == OP_READDIR)
&& (k2->op_flags & OPf_STACKED)
&& ((k1->op_flags & OPf_WANT) == OPf_WANT_SCALAR))
expr = newUNOP(OP_DEFINED, 0, expr);
break;
case OP_SASSIGN:
if (k1 && (k1->op_type == OP_READDIR
|| k1->op_type == OP_GLOB
|| (k1->op_type == OP_NULL && k1->op_targ == OP_GLOB)
|| k1->op_type == OP_EACH
|| k1->op_type == OP_AEACH))
expr = newUNOP(OP_DEFINED, 0, expr);
break;
}
}
}
if (!block)
block = newOP(OP_NULL, 0);
else if (cont || has_my) {
block = op_scope(block);
}
if (cont) {
next = LINKLIST(cont);
}
if (expr) {
OP * const unstack = newOP(OP_UNSTACK, 0);
if (!next)
next = unstack;
cont = op_append_elem(OP_LINESEQ, cont, unstack);
}
assert(block);
listop = op_append_list(OP_LINESEQ, block, cont);
assert(listop);
redo = LINKLIST(listop);
if (expr) {
scalar(listop);
o = new_logop(OP_AND, 0, &expr, &listop);
if (o == expr && o->op_type == OP_CONST && !SvTRUE(cSVOPo->op_sv)) {
op_free((OP*)loop);
return expr; /* listop already freed by new_logop */
}
if (listop)
((LISTOP*)listop)->op_last->op_next =
(o == listop ? redo : LINKLIST(o));
}
else
o = listop;
if (!loop) {
NewOp(1101,loop,1,LOOP);
OpTYPE_set(loop, OP_ENTERLOOP);
loop->op_private = 0;
loop->op_next = (OP*)loop;
}
o = newBINOP(OP_LEAVELOOP, 0, (OP*)loop, o);
loop->op_redoop = redo;
loop->op_lastop = o;
o->op_private |= loopflags;
if (next)
loop->op_nextop = next;
else
loop->op_nextop = o;
o->op_flags |= flags;
o->op_private |= (flags >> 8);
return o;
}
/*
=for apidoc newFOROP
Constructs, checks, and returns an op tree expressing a C<foreach>
loop (iteration through a list of values). This is a heavyweight loop,
with structure that allows exiting the loop by C<last> and suchlike.
C<sv> optionally supplies the variable that will be aliased to each
item in turn; if null, it defaults to C<$_>.
C<expr> supplies the list of values to iterate over. C<block> supplies
the main body of the loop, and C<cont> optionally supplies a C<continue>
block that operates as a second half of the body. All of these optree
inputs are consumed by this function and become part of the constructed
op tree.
C<flags> gives the eight bits of C<op_flags> for the C<leaveloop>
op and, shifted up eight bits, the eight bits of C<op_private> for
the C<leaveloop> op, except that (in both cases) some bits will be set
automatically.
=cut
*/
OP *
Perl_newFOROP(pTHX_ I32 flags, OP *sv, OP *expr, OP *block, OP *cont)
{
dVAR;
LOOP *loop;
OP *wop;
PADOFFSET padoff = 0;
I32 iterflags = 0;
I32 iterpflags = 0;
PERL_ARGS_ASSERT_NEWFOROP;
if (sv) {
if (sv->op_type == OP_RV2SV) { /* symbol table variable */
iterpflags = sv->op_private & OPpOUR_INTRO; /* for our $x () */
OpTYPE_set(sv, OP_RV2GV);
/* The op_type check is needed to prevent a possible segfault
* if the loop variable is undeclared and 'strict vars' is in
* effect. This is illegal but is nonetheless parsed, so we
* may reach this point with an OP_CONST where we're expecting
* an OP_GV.
*/
if (cUNOPx(sv)->op_first->op_type == OP_GV
&& cGVOPx_gv(cUNOPx(sv)->op_first) == PL_defgv)
iterpflags |= OPpITER_DEF;
}
else if (sv->op_type == OP_PADSV) { /* private variable */
iterpflags = sv->op_private & OPpLVAL_INTRO; /* for my $x () */
padoff = sv->op_targ;
sv->op_targ = 0;
op_free(sv);
sv = NULL;
PAD_COMPNAME_GEN_set(padoff, PERL_INT_MAX);
}
else if (sv->op_type == OP_NULL && sv->op_targ == OP_SREFGEN)
NOOP;
else
Perl_croak(aTHX_ "Can't use %s for loop variable", PL_op_desc[sv->op_type]);
if (padoff) {
PADNAME * const pn = PAD_COMPNAME(padoff);
const char * const name = PadnamePV(pn);
if (PadnameLEN(pn) == 2 && name[0] == '$' && name[1] == '_')
iterpflags |= OPpITER_DEF;
}
}
else {
sv = newGVOP(OP_GV, 0, PL_defgv);
iterpflags |= OPpITER_DEF;
}
if (expr->op_type == OP_RV2AV || expr->op_type == OP_PADAV) {
expr = op_lvalue(force_list(scalar(ref(expr, OP_ITER)), 1), OP_GREPSTART);
iterflags |= OPf_STACKED;
}
else if (expr->op_type == OP_NULL &&
(expr->op_flags & OPf_KIDS) &&
((BINOP*)expr)->op_first->op_type == OP_FLOP)
{
/* Basically turn for($x..$y) into the same as for($x,$y), but we
* set the STACKED flag to indicate that these values are to be
* treated as min/max values by 'pp_enteriter'.
*/
const UNOP* const flip = (UNOP*)((UNOP*)((BINOP*)expr)->op_first)->op_first;
LOGOP* const range = (LOGOP*) flip->op_first;
OP* const left = range->op_first;
OP* const right = OpSIBLING(left);
LISTOP* listop;
range->op_flags &= ~OPf_KIDS;
/* detach range's children */
op_sibling_splice((OP*)range, NULL, -1, NULL);
listop = (LISTOP*)newLISTOP(OP_LIST, 0, left, right);
listop->op_first->op_next = range->op_next;
left->op_next = range->op_other;
right->op_next = (OP*)listop;
listop->op_next = listop->op_first;
op_free(expr);
expr = (OP*)(listop);
op_null(expr);
iterflags |= OPf_STACKED;
}
else {
expr = op_lvalue(force_list(expr, 1), OP_GREPSTART);
}
loop = (LOOP*)op_convert_list(OP_ENTERITER, iterflags,
op_append_elem(OP_LIST, list(expr),
scalar(sv)));
assert(!loop->op_next);
/* for my $x () sets OPpLVAL_INTRO;
* for our $x () sets OPpOUR_INTRO */
loop->op_private = (U8)iterpflags;
/* upgrade loop from a LISTOP to a LOOPOP;
* keep it in-place if there's space */
if (loop->op_slabbed
&& OpSLOT(loop)->opslot_size
< SIZE_TO_PSIZE(sizeof(LOOP)) + OPSLOT_HEADER_P)
{
/* no space; allocate new op */
LOOP *tmp;
NewOp(1234,tmp,1,LOOP);
Copy(loop,tmp,1,LISTOP);
assert(loop->op_last->op_sibparent == (OP*)loop);
OpLASTSIB_set(loop->op_last, (OP*)tmp); /*point back to new parent */
S_op_destroy(aTHX_ (OP*)loop);
loop = tmp;
}
else if (!loop->op_slabbed)
{
/* loop was malloc()ed */
loop = (LOOP*)PerlMemShared_realloc(loop, sizeof(LOOP));
OpLASTSIB_set(loop->op_last, (OP*)loop);
}
loop->op_targ = padoff;
wop = newWHILEOP(flags, 1, loop, newOP(OP_ITER, 0), block, cont, 0);
return wop;
}
/*
=for apidoc newLOOPEX
Constructs, checks, and returns a loop-exiting op (such as C<goto>
or C<last>). C<type> is the opcode. C<label> supplies the parameter
determining the target of the op; it is consumed by this function and
becomes part of the constructed op tree.
=cut
*/
OP*
Perl_newLOOPEX(pTHX_ I32 type, OP *label)
{
OP *o = NULL;
PERL_ARGS_ASSERT_NEWLOOPEX;
assert((PL_opargs[type] & OA_CLASS_MASK) == OA_LOOPEXOP
|| type == OP_CUSTOM);
if (type != OP_GOTO) {
/* "last()" means "last" */
if (label->op_type == OP_STUB && (label->op_flags & OPf_PARENS)) {
o = newOP(type, OPf_SPECIAL);
}
}
else {
/* Check whether it's going to be a goto &function */
if (label->op_type == OP_ENTERSUB
&& !(label->op_flags & OPf_STACKED))
label = newUNOP(OP_REFGEN, 0, op_lvalue(label, OP_REFGEN));
}
/* Check for a constant argument */
if (label->op_type == OP_CONST) {
SV * const sv = ((SVOP *)label)->op_sv;
STRLEN l;
const char *s = SvPV_const(sv,l);
if (l == strlen(s)) {
o = newPVOP(type,
SvUTF8(((SVOP*)label)->op_sv),
savesharedpv(
SvPV_nolen_const(((SVOP*)label)->op_sv)));
}
}
/* If we have already created an op, we do not need the label. */
if (o)
op_free(label);
else o = newUNOP(type, OPf_STACKED, label);
PL_hints |= HINT_BLOCK_SCOPE;
return o;
}
/* if the condition is a literal array or hash
(or @{ ... } etc), make a reference to it.
*/
STATIC OP *
S_ref_array_or_hash(pTHX_ OP *cond)
{
if (cond
&& (cond->op_type == OP_RV2AV
|| cond->op_type == OP_PADAV
|| cond->op_type == OP_RV2HV
|| cond->op_type == OP_PADHV))
return newUNOP(OP_REFGEN, 0, op_lvalue(cond, OP_REFGEN));
else if(cond
&& (cond->op_type == OP_ASLICE
|| cond->op_type == OP_KVASLICE
|| cond->op_type == OP_HSLICE
|| cond->op_type == OP_KVHSLICE)) {
/* anonlist now needs a list from this op, was previously used in
* scalar context */
cond->op_flags &= ~(OPf_WANT_SCALAR | OPf_REF);
cond->op_flags |= OPf_WANT_LIST;
return newANONLIST(op_lvalue(cond, OP_ANONLIST));
}
else
return cond;
}
/* These construct the optree fragments representing given()
and when() blocks.
entergiven and enterwhen are LOGOPs; the op_other pointer
points up to the associated leave op. We need this so we
can put it in the context and make break/continue work.
(Also, of course, pp_enterwhen will jump straight to
op_other if the match fails.)
*/
STATIC OP *
S_newGIVWHENOP(pTHX_ OP *cond, OP *block,
I32 enter_opcode, I32 leave_opcode,
PADOFFSET entertarg)
{
dVAR;
LOGOP *enterop;
OP *o;
PERL_ARGS_ASSERT_NEWGIVWHENOP;
PERL_UNUSED_ARG(entertarg); /* used to indicate targ of lexical $_ */
enterop = alloc_LOGOP(enter_opcode, block, NULL);
enterop->op_targ = 0;
enterop->op_private = 0;
o = newUNOP(leave_opcode, 0, (OP *) enterop);
if (cond) {
/* prepend cond if we have one */
op_sibling_splice((OP*)enterop, NULL, 0, scalar(cond));
o->op_next = LINKLIST(cond);
cond->op_next = (OP *) enterop;
}
else {
/* This is a default {} block */
enterop->op_flags |= OPf_SPECIAL;
o ->op_flags |= OPf_SPECIAL;
o->op_next = (OP *) enterop;
}
CHECKOP(enter_opcode, enterop); /* Currently does nothing, since
entergiven and enterwhen both
use ck_null() */
enterop->op_next = LINKLIST(block);
block->op_next = enterop->op_other = o;
return o;
}
/* For the purposes of 'when(implied_smartmatch)'
* versus 'when(boolean_expression)',
* does this look like a boolean operation? For these purposes
a boolean operation is:
- a subroutine call [*]
- a logical connective
- a comparison operator
- a filetest operator, with the exception of -s -M -A -C
- defined(), exists() or eof()
- /$re/ or $foo =~ /$re/
[*] possibly surprising
*/
STATIC bool
S_looks_like_bool(pTHX_ const OP *o)
{
PERL_ARGS_ASSERT_LOOKS_LIKE_BOOL;
switch(o->op_type) {
case OP_OR:
case OP_DOR:
return looks_like_bool(cLOGOPo->op_first);
case OP_AND:
{
OP* sibl = OpSIBLING(cLOGOPo->op_first);
ASSUME(sibl);
return (
looks_like_bool(cLOGOPo->op_first)
&& looks_like_bool(sibl));
}
case OP_NULL:
case OP_SCALAR:
return (
o->op_flags & OPf_KIDS
&& looks_like_bool(cUNOPo->op_first));
case OP_ENTERSUB:
case OP_NOT: case OP_XOR:
case OP_EQ: case OP_NE: case OP_LT:
case OP_GT: case OP_LE: case OP_GE:
case OP_I_EQ: case OP_I_NE: case OP_I_LT:
case OP_I_GT: case OP_I_LE: case OP_I_GE:
case OP_SEQ: case OP_SNE: case OP_SLT:
case OP_SGT: case OP_SLE: case OP_SGE:
case OP_SMARTMATCH:
case OP_FTRREAD: case OP_FTRWRITE: case OP_FTREXEC:
case OP_FTEREAD: case OP_FTEWRITE: case OP_FTEEXEC:
case OP_FTIS: case OP_FTEOWNED: case OP_FTROWNED:
case OP_FTZERO: case OP_FTSOCK: case OP_FTCHR:
case OP_FTBLK: case OP_FTFILE: case OP_FTDIR:
case OP_FTPIPE: case OP_FTLINK: case OP_FTSUID:
case OP_FTSGID: case OP_FTSVTX: case OP_FTTTY:
case OP_FTTEXT: case OP_FTBINARY:
case OP_DEFINED: case OP_EXISTS:
case OP_MATCH: case OP_EOF:
case OP_FLOP:
return TRUE;
case OP_INDEX:
case OP_RINDEX:
/* optimised-away (index() != -1) or similar comparison */
if (o->op_private & OPpTRUEBOOL)
return TRUE;
return FALSE;
case OP_CONST:
/* Detect comparisons that have been optimized away */
if (cSVOPo->op_sv == &PL_sv_yes
|| cSVOPo->op_sv == &PL_sv_no)
return TRUE;
else
return FALSE;
/* FALLTHROUGH */
default:
return FALSE;
}
}
/*
=for apidoc newGIVENOP
Constructs, checks, and returns an op tree expressing a C<given> block.
C<cond> supplies the expression to whose value C<$_> will be locally
aliased, and C<block> supplies the body of the C<given> construct; they
are consumed by this function and become part of the constructed op tree.
C<defsv_off> must be zero (it used to identity the pad slot of lexical $_).
=cut
*/
OP *
Perl_newGIVENOP(pTHX_ OP *cond, OP *block, PADOFFSET defsv_off)
{
PERL_ARGS_ASSERT_NEWGIVENOP;
PERL_UNUSED_ARG(defsv_off);
assert(!defsv_off);
return newGIVWHENOP(
ref_array_or_hash(cond),
block,
OP_ENTERGIVEN, OP_LEAVEGIVEN,
0);
}
/*
=for apidoc newWHENOP
Constructs, checks, and returns an op tree expressing a C<when> block.
C<cond> supplies the test expression, and C<block> supplies the block
that will be executed if the test evaluates to true; they are consumed
by this function and become part of the constructed op tree. C<cond>
will be interpreted DWIMically, often as a comparison against C<$_>,
and may be null to generate a C<default> block.
=cut
*/
OP *
Perl_newWHENOP(pTHX_ OP *cond, OP *block)
{
const bool cond_llb = (!cond || looks_like_bool(cond));
OP *cond_op;
PERL_ARGS_ASSERT_NEWWHENOP;
if (cond_llb)
cond_op = cond;
else {
cond_op = newBINOP(OP_SMARTMATCH, OPf_SPECIAL,
newDEFSVOP(),
scalar(ref_array_or_hash(cond)));
}
return newGIVWHENOP(cond_op, block, OP_ENTERWHEN, OP_LEAVEWHEN, 0);
}
/* must not conflict with SVf_UTF8 */
#define CV_CKPROTO_CURSTASH 0x1
void
Perl_cv_ckproto_len_flags(pTHX_ const CV *cv, const GV *gv, const char *p,
const STRLEN len, const U32 flags)
{
SV *name = NULL, *msg;
const char * cvp = SvROK(cv)
? SvTYPE(SvRV_const(cv)) == SVt_PVCV
? (cv = (const CV *)SvRV_const(cv), CvPROTO(cv))
: ""
: CvPROTO(cv);
STRLEN clen = CvPROTOLEN(cv), plen = len;
PERL_ARGS_ASSERT_CV_CKPROTO_LEN_FLAGS;
if (p == NULL && cvp == NULL)
return;
if (!ckWARN_d(WARN_PROTOTYPE))
return;
if (p && cvp) {
p = S_strip_spaces(aTHX_ p, &plen);
cvp = S_strip_spaces(aTHX_ cvp, &clen);
if ((flags & SVf_UTF8) == SvUTF8(cv)) {
if (plen == clen && memEQ(cvp, p, plen))
return;
} else {
if (flags & SVf_UTF8) {
if (bytes_cmp_utf8((const U8 *)cvp, clen, (const U8 *)p, plen) == 0)
return;
}
else {
if (bytes_cmp_utf8((const U8 *)p, plen, (const U8 *)cvp, clen) == 0)
return;
}
}
}
msg = sv_newmortal();
if (gv)
{
if (isGV(gv))
gv_efullname3(name = sv_newmortal(), gv, NULL);
else if (SvPOK(gv) && *SvPVX((SV *)gv) == '&')
name = newSVpvn_flags(SvPVX((SV *)gv)+1, SvCUR(gv)-1, SvUTF8(gv)|SVs_TEMP);
else if (flags & CV_CKPROTO_CURSTASH || SvROK(gv)) {
name = sv_2mortal(newSVhek(HvNAME_HEK(PL_curstash)));
sv_catpvs(name, "::");
if (SvROK(gv)) {
assert (SvTYPE(SvRV_const(gv)) == SVt_PVCV);
assert (CvNAMED(SvRV_const(gv)));
sv_cathek(name, CvNAME_HEK(MUTABLE_CV(SvRV_const(gv))));
}
else sv_catsv(name, (SV *)gv);
}
else name = (SV *)gv;
}
sv_setpvs(msg, "Prototype mismatch:");
if (name)
Perl_sv_catpvf(aTHX_ msg, " sub %" SVf, SVfARG(name));
if (cvp)
Perl_sv_catpvf(aTHX_ msg, " (%" UTF8f ")",
UTF8fARG(SvUTF8(cv),clen,cvp)
);
else
sv_catpvs(msg, ": none");
sv_catpvs(msg, " vs ");
if (p)
Perl_sv_catpvf(aTHX_ msg, "(%" UTF8f ")", UTF8fARG(flags & SVf_UTF8,len,p));
else
sv_catpvs(msg, "none");
Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE), "%" SVf, SVfARG(msg));
}
static void const_sv_xsub(pTHX_ CV* cv);
static void const_av_xsub(pTHX_ CV* cv);
/*
=head1 Optree Manipulation Functions
=for apidoc cv_const_sv
If C<cv> is a constant sub eligible for inlining, returns the constant
value returned by the sub. Otherwise, returns C<NULL>.
Constant subs can be created with C<newCONSTSUB> or as described in
L<perlsub/"Constant Functions">.
=cut
*/
SV *
Perl_cv_const_sv(const CV *const cv)
{
SV *sv;
if (!cv)
return NULL;
if (!(SvTYPE(cv) == SVt_PVCV || SvTYPE(cv) == SVt_PVFM))
return NULL;
sv = CvCONST(cv) ? MUTABLE_SV(CvXSUBANY(cv).any_ptr) : NULL;
if (sv && SvTYPE(sv) == SVt_PVAV) return NULL;
return sv;
}
SV *
Perl_cv_const_sv_or_av(const CV * const cv)
{
if (!cv)
return NULL;
if (SvROK(cv)) return SvRV((SV *)cv);
assert (SvTYPE(cv) == SVt_PVCV || SvTYPE(cv) == SVt_PVFM);
return CvCONST(cv) ? MUTABLE_SV(CvXSUBANY(cv).any_ptr) : NULL;
}
/* op_const_sv: examine an optree to determine whether it's in-lineable.
* Can be called in 2 ways:
*
* !allow_lex
* look for a single OP_CONST with attached value: return the value
*
* allow_lex && !CvCONST(cv);
*
* examine the clone prototype, and if contains only a single
* OP_CONST, return the value; or if it contains a single PADSV ref-
* erencing an outer lexical, turn on CvCONST to indicate the CV is
* a candidate for "constizing" at clone time, and return NULL.
*/
static SV *
S_op_const_sv(pTHX_ const OP *o, CV *cv, bool allow_lex)
{
SV *sv = NULL;
bool padsv = FALSE;
assert(o);
assert(cv);
for (; o; o = o->op_next) {
const OPCODE type = o->op_type;
if (type == OP_NEXTSTATE || type == OP_LINESEQ
|| type == OP_NULL
|| type == OP_PUSHMARK)
continue;
if (type == OP_DBSTATE)
continue;
if (type == OP_LEAVESUB)
break;
if (sv)
return NULL;
if (type == OP_CONST && cSVOPo->op_sv)
sv = cSVOPo->op_sv;
else if (type == OP_UNDEF && !o->op_private) {
sv = newSV(0);
SAVEFREESV(sv);
}
else if (allow_lex && type == OP_PADSV) {
if (PAD_COMPNAME_FLAGS(o->op_targ) & PADNAMEt_OUTER)
{
sv = &PL_sv_undef; /* an arbitrary non-null value */
padsv = TRUE;
}
else
return NULL;
}
else {
return NULL;
}
}
if (padsv) {
CvCONST_on(cv);
return NULL;
}
return sv;
}
static void
S_already_defined(pTHX_ CV *const cv, OP * const block, OP * const o,
PADNAME * const name, SV ** const const_svp)
{
assert (cv);
assert (o || name);
assert (const_svp);
if (!block) {
if (CvFLAGS(PL_compcv)) {
/* might have had built-in attrs applied */
const bool pureperl = !CvISXSUB(cv) && CvROOT(cv);
if (CvLVALUE(PL_compcv) && ! CvLVALUE(cv) && pureperl
&& ckWARN(WARN_MISC))
{
/* protect against fatal warnings leaking compcv */
SAVEFREESV(PL_compcv);
Perl_warner(aTHX_ packWARN(WARN_MISC), "lvalue attribute ignored after the subroutine has been defined");
SvREFCNT_inc_simple_void_NN(PL_compcv);
}
CvFLAGS(cv) |=
(CvFLAGS(PL_compcv) & CVf_BUILTIN_ATTRS
& ~(CVf_LVALUE * pureperl));
}
return;
}
/* redundant check for speed: */
if (CvCONST(cv) || ckWARN(WARN_REDEFINE)) {
const line_t oldline = CopLINE(PL_curcop);
SV *namesv = o
? cSVOPo->op_sv
: sv_2mortal(newSVpvn_utf8(
PadnamePV(name)+1,PadnameLEN(name)-1, PadnameUTF8(name)
));
if (PL_parser && PL_parser->copline != NOLINE)
/* This ensures that warnings are reported at the first
line of a redefinition, not the last. */
CopLINE_set(PL_curcop, PL_parser->copline);
/* protect against fatal warnings leaking compcv */
SAVEFREESV(PL_compcv);
report_redefined_cv(namesv, cv, const_svp);
SvREFCNT_inc_simple_void_NN(PL_compcv);
CopLINE_set(PL_curcop, oldline);
}
SAVEFREESV(cv);
return;
}
CV *
Perl_newMYSUB(pTHX_ I32 floor, OP *o, OP *proto, OP *attrs, OP *block)
{
CV **spot;
SV **svspot;
const char *ps;
STRLEN ps_len = 0; /* init it to avoid false uninit warning from icc */
U32 ps_utf8 = 0;
CV *cv = NULL;
CV *compcv = PL_compcv;
SV *const_sv;
PADNAME *name;
PADOFFSET pax = o->op_targ;
CV *outcv = CvOUTSIDE(PL_compcv);
CV *clonee = NULL;
HEK *hek = NULL;
bool reusable = FALSE;
OP *start = NULL;
#ifdef PERL_DEBUG_READONLY_OPS
OPSLAB *slab = NULL;
#endif
PERL_ARGS_ASSERT_NEWMYSUB;
PL_hints |= HINT_BLOCK_SCOPE;
/* Find the pad slot for storing the new sub.
We cannot use PL_comppad, as it is the pad owned by the new sub. We
need to look in CvOUTSIDE and find the pad belonging to the enclos-
ing sub. And then we need to dig deeper if this is a lexical from
outside, as in:
my sub foo; sub { sub foo { } }
*/
redo:
name = PadlistNAMESARRAY(CvPADLIST(outcv))[pax];
if (PadnameOUTER(name) && PARENT_PAD_INDEX(name)) {
pax = PARENT_PAD_INDEX(name);
outcv = CvOUTSIDE(outcv);
assert(outcv);
goto redo;
}
svspot =
&PadARRAY(PadlistARRAY(CvPADLIST(outcv))
[CvDEPTH(outcv) ? CvDEPTH(outcv) : 1])[pax];
spot = (CV **)svspot;
if (!(PL_parser && PL_parser->error_count))
move_proto_attr(&proto, &attrs, (GV *)PadnameSV(name), 0);
if (proto) {
assert(proto->op_type == OP_CONST);
ps = SvPV_const(((SVOP*)proto)->op_sv, ps_len);
ps_utf8 = SvUTF8(((SVOP*)proto)->op_sv);
}
else
ps = NULL;
if (proto)
SAVEFREEOP(proto);
if (attrs)
SAVEFREEOP(attrs);
if (PL_parser && PL_parser->error_count) {
op_free(block);
SvREFCNT_dec(PL_compcv);
PL_compcv = 0;
goto done;
}
if (CvDEPTH(outcv) && CvCLONE(compcv)) {
cv = *spot;
svspot = (SV **)(spot = &clonee);
}
else if (PadnameIsSTATE(name) || CvDEPTH(outcv))
cv = *spot;
else {
assert (SvTYPE(*spot) == SVt_PVCV);
if (CvNAMED(*spot))
hek = CvNAME_HEK(*spot);
else {
dVAR;
U32 hash;
PERL_HASH(hash, PadnamePV(name)+1, PadnameLEN(name)-1);
CvNAME_HEK_set(*spot, hek =
share_hek(
PadnamePV(name)+1,
(PadnameLEN(name)-1) * (PadnameUTF8(name) ? -1 : 1),
hash
)
);
CvLEXICAL_on(*spot);
}
cv = PadnamePROTOCV(name);
svspot = (SV **)(spot = &PadnamePROTOCV(name));
}
if (block) {
/* This makes sub {}; work as expected. */
if (block->op_type == OP_STUB) {
const line_t l = PL_parser->copline;
op_free(block);
block = newSTATEOP(0, NULL, 0);
PL_parser->copline = l;
}
block = CvLVALUE(compcv)
|| (cv && CvLVALUE(cv) && !CvROOT(cv) && !CvXSUB(cv))
? newUNOP(OP_LEAVESUBLV, 0,
op_lvalue(scalarseq(block), OP_LEAVESUBLV))
: newUNOP(OP_LEAVESUB, 0, scalarseq(block));
start = LINKLIST(block);
block->op_next = 0;
if (ps && !*ps && !attrs && !CvLVALUE(compcv))
const_sv = S_op_const_sv(aTHX_ start, compcv, FALSE);
else
const_sv = NULL;
}
else
const_sv = NULL;
if (cv) {
const bool exists = CvROOT(cv) || CvXSUB(cv);
/* if the subroutine doesn't exist and wasn't pre-declared
* with a prototype, assume it will be AUTOLOADed,
* skipping the prototype check
*/
if (exists || SvPOK(cv))
cv_ckproto_len_flags(cv, (GV *)PadnameSV(name), ps, ps_len,
ps_utf8);
/* already defined? */
if (exists) {
S_already_defined(aTHX_ cv, block, NULL, name, &const_sv);
if (block)
cv = NULL;
else {
if (attrs)
goto attrs;
/* just a "sub foo;" when &foo is already defined */
SAVEFREESV(compcv);
goto done;
}
}
else if (CvDEPTH(outcv) && CvCLONE(compcv)) {
cv = NULL;
reusable = TRUE;
}
}
if (const_sv) {
SvREFCNT_inc_simple_void_NN(const_sv);
SvFLAGS(const_sv) |= SVs_PADTMP;
if (cv) {
assert(!CvROOT(cv) && !CvCONST(cv));
cv_forget_slab(cv);
}
else {
cv = MUTABLE_CV(newSV_type(SVt_PVCV));
CvFILE_set_from_cop(cv, PL_curcop);
CvSTASH_set(cv, PL_curstash);
*spot = cv;
}
SvPVCLEAR(MUTABLE_SV(cv)); /* prototype is "" */
CvXSUBANY(cv).any_ptr = const_sv;
CvXSUB(cv) = const_sv_xsub;
CvCONST_on(cv);
CvISXSUB_on(cv);
PoisonPADLIST(cv);
CvFLAGS(cv) |= CvMETHOD(compcv);
op_free(block);
SvREFCNT_dec(compcv);
PL_compcv = NULL;
goto setname;
}
/* Checking whether outcv is CvOUTSIDE(compcv) is not sufficient to
determine whether this sub definition is in the same scope as its
declaration. If this sub definition is inside an inner named pack-
age sub (my sub foo; sub bar { sub foo { ... } }), outcv points to
the package sub. So check PadnameOUTER(name) too.
*/
if (outcv == CvOUTSIDE(compcv) && !PadnameOUTER(name)) {
assert(!CvWEAKOUTSIDE(compcv));
SvREFCNT_dec(CvOUTSIDE(compcv));
CvWEAKOUTSIDE_on(compcv);
}
/* XXX else do we have a circular reference? */
if (cv) { /* must reuse cv in case stub is referenced elsewhere */
/* transfer PL_compcv to cv */
if (block) {
bool free_file = CvFILE(cv) && CvDYNFILE(cv);
cv_flags_t preserved_flags =
CvFLAGS(cv) & (CVf_BUILTIN_ATTRS|CVf_NAMED);
PADLIST *const temp_padl = CvPADLIST(cv);
CV *const temp_cv = CvOUTSIDE(cv);
const cv_flags_t other_flags =
CvFLAGS(cv) & (CVf_SLABBED|CVf_WEAKOUTSIDE);
OP * const cvstart = CvSTART(cv);
SvPOK_off(cv);
CvFLAGS(cv) =
CvFLAGS(compcv) | preserved_flags;
CvOUTSIDE(cv) = CvOUTSIDE(compcv);
CvOUTSIDE_SEQ(cv) = CvOUTSIDE_SEQ(compcv);
CvPADLIST_set(cv, CvPADLIST(compcv));
CvOUTSIDE(compcv) = temp_cv;
CvPADLIST_set(compcv, temp_padl);
CvSTART(cv) = CvSTART(compcv);
CvSTART(compcv) = cvstart;
CvFLAGS(compcv) &= ~(CVf_SLABBED|CVf_WEAKOUTSIDE);
CvFLAGS(compcv) |= other_flags;
if (free_file) {
Safefree(CvFILE(cv));
CvFILE(cv) = NULL;
}
/* inner references to compcv must be fixed up ... */
pad_fixup_inner_anons(CvPADLIST(cv), compcv, cv);
if (PERLDB_INTER)/* Advice debugger on the new sub. */
++PL_sub_generation;
}
else {
/* Might have had built-in attributes applied -- propagate them. */
CvFLAGS(cv) |= (CvFLAGS(compcv) & CVf_BUILTIN_ATTRS);
}
/* ... before we throw it away */
SvREFCNT_dec(compcv);
PL_compcv = compcv = cv;
}
else {
cv = compcv;
*spot = cv;
}
setname:
CvLEXICAL_on(cv);
if (!CvNAME_HEK(cv)) {
if (hek) (void)share_hek_hek(hek);
else {
dVAR;
U32 hash;
PERL_HASH(hash, PadnamePV(name)+1, PadnameLEN(name)-1);
hek = share_hek(PadnamePV(name)+1,
(PadnameLEN(name)-1) * (PadnameUTF8(name) ? -1 : 1),
hash);
}
CvNAME_HEK_set(cv, hek);
}
if (const_sv)
goto clone;
if (CvFILE(cv) && CvDYNFILE(cv))
Safefree(CvFILE(cv));
CvFILE_set_from_cop(cv, PL_curcop);
CvSTASH_set(cv, PL_curstash);
if (ps) {
sv_setpvn(MUTABLE_SV(cv), ps, ps_len);
if (ps_utf8)
SvUTF8_on(MUTABLE_SV(cv));
}
if (block) {
/* If we assign an optree to a PVCV, then we've defined a
* subroutine that the debugger could be able to set a breakpoint
* in, so signal to pp_entereval that it should not throw away any
* saved lines at scope exit. */
PL_breakable_sub_gen++;
CvROOT(cv) = block;
/* The cv no longer needs to hold a refcount on the slab, as CvROOT
itself has a refcount. */
CvSLABBED_off(cv);
OpslabREFCNT_dec_padok((OPSLAB *)CvSTART(cv));
#ifdef PERL_DEBUG_READONLY_OPS
slab = (OPSLAB *)CvSTART(cv);
#endif
S_process_optree(aTHX_ cv, block, start);
}
attrs:
if (attrs) {
/* Need to do a C<use attributes $stash_of_cv,\&cv,@attrs>. */
apply_attrs(PL_curstash, MUTABLE_SV(cv), attrs);
}
if (block) {
if (PERLDB_SUBLINE && PL_curstash != PL_debstash) {
SV * const tmpstr = sv_newmortal();
GV * const db_postponed = gv_fetchpvs("DB::postponed",
GV_ADDMULTI, SVt_PVHV);
HV *hv;
SV * const sv = Perl_newSVpvf(aTHX_ "%s:%ld-%ld",
CopFILE(PL_curcop),
(long)PL_subline,
(long)CopLINE(PL_curcop));
if (HvNAME_HEK(PL_curstash)) {
sv_sethek(tmpstr, HvNAME_HEK(PL_curstash));
sv_catpvs(tmpstr, "::");
}
else
sv_setpvs(tmpstr, "__ANON__::");
sv_catpvn_flags(tmpstr, PadnamePV(name)+1, PadnameLEN(name)-1,
PadnameUTF8(name) ? SV_CATUTF8 : SV_CATBYTES);
(void)hv_store(GvHV(PL_DBsub), SvPVX_const(tmpstr),
SvUTF8(tmpstr) ? -(I32)SvCUR(tmpstr) : (I32)SvCUR(tmpstr), sv, 0);
hv = GvHVn(db_postponed);
if (HvTOTALKEYS(hv) > 0 && hv_exists(hv, SvPVX_const(tmpstr), SvUTF8(tmpstr) ? -(I32)SvCUR(tmpstr) : (I32)SvCUR(tmpstr))) {
CV * const pcv = GvCV(db_postponed);
if (pcv) {
dSP;
PUSHMARK(SP);
XPUSHs(tmpstr);
PUTBACK;
call_sv(MUTABLE_SV(pcv), G_DISCARD);
}
}
}
}
clone:
if (clonee) {
assert(CvDEPTH(outcv));
spot = (CV **)
&PadARRAY(PadlistARRAY(CvPADLIST(outcv))[CvDEPTH(outcv)])[pax];
if (reusable)
cv_clone_into(clonee, *spot);
else *spot = cv_clone(clonee);
SvREFCNT_dec_NN(clonee);
cv = *spot;
}
if (CvDEPTH(outcv) && !reusable && PadnameIsSTATE(name)) {
PADOFFSET depth = CvDEPTH(outcv);
while (--depth) {
SV *oldcv;
svspot = &PadARRAY(PadlistARRAY(CvPADLIST(outcv))[depth])[pax];
oldcv = *svspot;
*svspot = SvREFCNT_inc_simple_NN(cv);
SvREFCNT_dec(oldcv);
}
}
done:
if (PL_parser)
PL_parser->copline = NOLINE;
LEAVE_SCOPE(floor);
#ifdef PERL_DEBUG_READONLY_OPS
if (slab)
Slab_to_ro(slab);
#endif
op_free(o);
return cv;
}
/*
=for apidoc newATTRSUB_x
Construct a Perl subroutine, also performing some surrounding jobs.
This function is expected to be called in a Perl compilation context,
and some aspects of the subroutine are taken from global variables
associated with compilation. In particular, C<PL_compcv> represents
the subroutine that is currently being compiled. It must be non-null
when this function is called, and some aspects of the subroutine being
constructed are taken from it. The constructed subroutine may actually
be a reuse of the C<PL_compcv> object, but will not necessarily be so.
If C<block> is null then the subroutine will have no body, and for the
time being it will be an error to call it. This represents a forward
subroutine declaration such as S<C<sub foo ($$);>>. If C<block> is
non-null then it provides the Perl code of the subroutine body, which
will be executed when the subroutine is called. This body includes
any argument unwrapping code resulting from a subroutine signature or
similar. The pad use of the code must correspond to the pad attached
to C<PL_compcv>. The code is not expected to include a C<leavesub> or
C<leavesublv> op; this function will add such an op. C<block> is consumed
by this function and will become part of the constructed subroutine.
C<proto> specifies the subroutine's prototype, unless one is supplied
as an attribute (see below). If C<proto> is null, then the subroutine
will not have a prototype. If C<proto> is non-null, it must point to a
C<const> op whose value is a string, and the subroutine will have that
string as its prototype. If a prototype is supplied as an attribute, the
attribute takes precedence over C<proto>, but in that case C<proto> should
preferably be null. In any case, C<proto> is consumed by this function.
C<attrs> supplies attributes to be applied the subroutine. A handful of
attributes take effect by built-in means, being applied to C<PL_compcv>
immediately when seen. Other attributes are collected up and attached
to the subroutine by this route. C<attrs> may be null to supply no
attributes, or point to a C<const> op for a single attribute, or point
to a C<list> op whose children apart from the C<pushmark> are C<const>
ops for one or more attributes. Each C<const> op must be a string,
giving the attribute name optionally followed by parenthesised arguments,
in the manner in which attributes appear in Perl source. The attributes
will be applied to the sub by this function. C<attrs> is consumed by
this function.
If C<o_is_gv> is false and C<o> is null, then the subroutine will
be anonymous. If C<o_is_gv> is false and C<o> is non-null, then C<o>
must point to a C<const> op, which will be consumed by this function,
and its string value supplies a name for the subroutine. The name may
be qualified or unqualified, and if it is unqualified then a default
stash will be selected in some manner. If C<o_is_gv> is true, then C<o>
doesn't point to an C<OP> at all, but is instead a cast pointer to a C<GV>
by which the subroutine will be named.
If there is already a subroutine of the specified name, then the new
sub will either replace the existing one in the glob or be merged with
the existing one. A warning may be generated about redefinition.
If the subroutine has one of a few special names, such as C<BEGIN> or
C<END>, then it will be claimed by the appropriate queue for automatic
running of phase-related subroutines. In this case the relevant glob will
be left not containing any subroutine, even if it did contain one before.
In the case of C<BEGIN>, the subroutine will be executed and the reference
to it disposed of before this function returns.
The function returns a pointer to the constructed subroutine. If the sub
is anonymous then ownership of one counted reference to the subroutine
is transferred to the caller. If the sub is named then the caller does
not get ownership of a reference. In most such cases, where the sub
has a non-phase name, the sub will be alive at the point it is returned
by virtue of being contained in the glob that names it. A phase-named
subroutine will usually be alive by virtue of the reference owned by the
phase's automatic run queue. But a C<BEGIN> subroutine, having already
been executed, will quite likely have been destroyed already by the
time this function returns, making it erroneous for the caller to make
any use of the returned pointer. It is the caller's responsibility to
ensure that it knows which of these situations applies.
=cut
*/
/* _x = extended */
CV *
Perl_newATTRSUB_x(pTHX_ I32 floor, OP *o, OP *proto, OP *attrs,
OP *block, bool o_is_gv)
{
GV *gv;
const char *ps;
STRLEN ps_len = 0; /* init it to avoid false uninit warning from icc */
U32 ps_utf8 = 0;
CV *cv = NULL; /* the previous CV with this name, if any */
SV *const_sv;
const bool ec = PL_parser && PL_parser->error_count;
/* If the subroutine has no body, no attributes, and no builtin attributes
then it's just a sub declaration, and we may be able to get away with
storing with a placeholder scalar in the symbol table, rather than a
full CV. If anything is present then it will take a full CV to
store it. */
const I32 gv_fetch_flags
= ec ? GV_NOADD_NOINIT :
(block || attrs || (CvFLAGS(PL_compcv) & CVf_BUILTIN_ATTRS))
? GV_ADDMULTI : GV_ADDMULTI | GV_NOINIT;
STRLEN namlen = 0;
const char * const name =
o ? SvPV_const(o_is_gv ? (SV *)o : cSVOPo->op_sv, namlen) : NULL;
bool has_name;
bool name_is_utf8 = o && !o_is_gv && SvUTF8(cSVOPo->op_sv);
bool evanescent = FALSE;
OP *start = NULL;
#ifdef PERL_DEBUG_READONLY_OPS
OPSLAB *slab = NULL;
#endif
if (o_is_gv) {
gv = (GV*)o;
o = NULL;
has_name = TRUE;
} else if (name) {
/* Try to optimise and avoid creating a GV. Instead, the CV’s name
hek and CvSTASH pointer together can imply the GV. If the name
contains a package name, then GvSTASH(CvGV(cv)) may differ from
CvSTASH, so forego the optimisation if we find any.
Also, we may be called from load_module at run time, so
PL_curstash (which sets CvSTASH) may not point to the stash the
sub is stored in. */
/* XXX This optimization is currently disabled for packages other
than main, since there was too much CPAN breakage. */
const I32 flags =
ec ? GV_NOADD_NOINIT
: (IN_PERL_RUNTIME && PL_curstash != CopSTASH(PL_curcop))
|| PL_curstash != PL_defstash
|| memchr(name, ':', namlen) || memchr(name, '\'', namlen)
? gv_fetch_flags
: GV_ADDMULTI | GV_NOINIT | GV_NOTQUAL;
gv = gv_fetchsv(cSVOPo->op_sv, flags, SVt_PVCV);
has_name = TRUE;
} else if (PERLDB_NAMEANON && CopLINE(PL_curcop)) {
SV * const sv = sv_newmortal();
Perl_sv_setpvf(aTHX_ sv, "%s[%s:%" IVdf "]",
PL_curstash ? "__ANON__" : "__ANON__::__ANON__",
CopFILE(PL_curcop), (IV)CopLINE(PL_curcop));
gv = gv_fetchsv(sv, gv_fetch_flags, SVt_PVCV);
has_name = TRUE;
} else if (PL_curstash) {
gv = gv_fetchpvs("__ANON__", gv_fetch_flags, SVt_PVCV);
has_name = FALSE;
} else {
gv = gv_fetchpvs("__ANON__::__ANON__", gv_fetch_flags, SVt_PVCV);
has_name = FALSE;
}
if (!ec) {
if (isGV(gv)) {
move_proto_attr(&proto, &attrs, gv, 0);
} else {
assert(cSVOPo);
move_proto_attr(&proto, &attrs, (GV *)cSVOPo->op_sv, 1);
}
}
if (proto) {
assert(proto->op_type == OP_CONST);
ps = SvPV_const(((SVOP*)proto)->op_sv, ps_len);
ps_utf8 = SvUTF8(((SVOP*)proto)->op_sv);
}
else
ps = NULL;
if (o)
SAVEFREEOP(o);
if (proto)
SAVEFREEOP(proto);
if (attrs)
SAVEFREEOP(attrs);
if (ec) {
op_free(block);
if (name)
SvREFCNT_dec(PL_compcv);
else
cv = PL_compcv;
PL_compcv = 0;
if (name && block) {
const char *s = (char *) my_memrchr(name, ':', namlen);
s = s ? s+1 : name;
if (strEQ(s, "BEGIN")) {
if (PL_in_eval & EVAL_KEEPERR)
Perl_croak_nocontext("BEGIN not safe after errors--compilation aborted");
else {
SV * const errsv = ERRSV;
/* force display of errors found but not reported */
sv_catpvs(errsv, "BEGIN not safe after errors--compilation aborted");
Perl_croak_nocontext("%" SVf, SVfARG(errsv));
}
}
}
goto done;
}
if (!block && SvTYPE(gv) != SVt_PVGV) {
/* If we are not defining a new sub and the existing one is not a
full GV + CV... */
if (attrs || (CvFLAGS(PL_compcv) & CVf_BUILTIN_ATTRS)) {
/* We are applying attributes to an existing sub, so we need it
upgraded if it is a constant. */
if (SvROK(gv) && SvTYPE(SvRV(gv)) != SVt_PVCV)
gv_init_pvn(gv, PL_curstash, name, namlen,
SVf_UTF8 * name_is_utf8);
}
else { /* Maybe prototype now, and had at maximum
a prototype or const/sub ref before. */
if (SvTYPE(gv) > SVt_NULL) {
cv_ckproto_len_flags((const CV *)gv,
o ? (const GV *)cSVOPo->op_sv : NULL, ps,
ps_len, ps_utf8);
}
if (!SvROK(gv)) {
if (ps) {
sv_setpvn(MUTABLE_SV(gv), ps, ps_len);
if (ps_utf8)
SvUTF8_on(MUTABLE_SV(gv));
}
else
sv_setiv(MUTABLE_SV(gv), -1);
}
SvREFCNT_dec(PL_compcv);
cv = PL_compcv = NULL;
goto done;
}
}
cv = (!name || (isGV(gv) && GvCVGEN(gv)))
? NULL
: isGV(gv)
? GvCV(gv)
: SvROK(gv) && SvTYPE(SvRV(gv)) == SVt_PVCV
? (CV *)SvRV(gv)
: NULL;
if (block) {
assert(PL_parser);
/* This makes sub {}; work as expected. */
if (block->op_type == OP_STUB) {
const line_t l = PL_parser->copline;
op_free(block);
block = newSTATEOP(0, NULL, 0);
PL_parser->copline = l;
}
block = CvLVALUE(PL_compcv)
|| (cv && CvLVALUE(cv) && !CvROOT(cv) && !CvXSUB(cv)
&& (!isGV(gv) || !GvASSUMECV(gv)))
? newUNOP(OP_LEAVESUBLV, 0,
op_lvalue(scalarseq(block), OP_LEAVESUBLV))
: newUNOP(OP_LEAVESUB, 0, scalarseq(block));
start = LINKLIST(block);
block->op_next = 0;
if (ps && !*ps && !attrs && !CvLVALUE(PL_compcv))
const_sv =
S_op_const_sv(aTHX_ start, PL_compcv,
cBOOL(CvCLONE(PL_compcv)));
else
const_sv = NULL;
}
else
const_sv = NULL;
if (SvPOK(gv) || (SvROK(gv) && SvTYPE(SvRV(gv)) != SVt_PVCV)) {
cv_ckproto_len_flags((const CV *)gv,
o ? (const GV *)cSVOPo->op_sv : NULL, ps,
ps_len, ps_utf8|CV_CKPROTO_CURSTASH);
if (SvROK(gv)) {
/* All the other code for sub redefinition warnings expects the
clobbered sub to be a CV. Instead of making all those code
paths more complex, just inline the RV version here. */
const line_t oldline = CopLINE(PL_curcop);
assert(IN_PERL_COMPILETIME);
if (PL_parser && PL_parser->copline != NOLINE)
/* This ensures that warnings are reported at the first
line of a redefinition, not the last. */
CopLINE_set(PL_curcop, PL_parser->copline);
/* protect against fatal warnings leaking compcv */
SAVEFREESV(PL_compcv);
if (ckWARN(WARN_REDEFINE)
|| ( ckWARN_d(WARN_REDEFINE)
&& ( !const_sv || SvRV(gv) == const_sv
|| sv_cmp(SvRV(gv), const_sv) ))) {
assert(cSVOPo);
Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
"Constant subroutine %" SVf " redefined",
SVfARG(cSVOPo->op_sv));
}
SvREFCNT_inc_simple_void_NN(PL_compcv);
CopLINE_set(PL_curcop, oldline);
SvREFCNT_dec(SvRV(gv));
}
}
if (cv) {
const bool exists = CvROOT(cv) || CvXSUB(cv);
/* if the subroutine doesn't exist and wasn't pre-declared
* with a prototype, assume it will be AUTOLOADed,
* skipping the prototype check
*/
if (exists || SvPOK(cv))
cv_ckproto_len_flags(cv, gv, ps, ps_len, ps_utf8);
/* already defined (or promised)? */
if (exists || (isGV(gv) && GvASSUMECV(gv))) {
S_already_defined(aTHX_ cv, block, o, NULL, &const_sv);
if (block)
cv = NULL;
else {
if (attrs)
goto attrs;
/* just a "sub foo;" when &foo is already defined */
SAVEFREESV(PL_compcv);
goto done;
}
}
}
if (const_sv) {
SvREFCNT_inc_simple_void_NN(const_sv);
SvFLAGS(const_sv) |= SVs_PADTMP;
if (cv) {
assert(!CvROOT(cv) && !CvCONST(cv));
cv_forget_slab(cv);
SvPVCLEAR(MUTABLE_SV(cv)); /* prototype is "" */
CvXSUBANY(cv).any_ptr = const_sv;
CvXSUB(cv) = const_sv_xsub;
CvCONST_on(cv);
CvISXSUB_on(cv);
PoisonPADLIST(cv);
CvFLAGS(cv) |= CvMETHOD(PL_compcv);
}
else {
if (isGV(gv) || CvMETHOD(PL_compcv)) {
if (name && isGV(gv))
GvCV_set(gv, NULL);
cv = newCONSTSUB_flags(
NULL, name, namlen, name_is_utf8 ? SVf_UTF8 : 0,
const_sv
);
assert(cv);
assert(SvREFCNT((SV*)cv) != 0);
CvFLAGS(cv) |= CvMETHOD(PL_compcv);
}
else {
if (!SvROK(gv)) {
SV_CHECK_THINKFIRST_COW_DROP((SV *)gv);
prepare_SV_for_RV((SV *)gv);
SvOK_off((SV *)gv);
SvROK_on(gv);
}
SvRV_set(gv, const_sv);
}
}
op_free(block);
SvREFCNT_dec(PL_compcv);
PL_compcv = NULL;
goto done;
}
/* don't copy new BEGIN CV to old BEGIN CV - RT #129099 */
if (name && cv && *name == 'B' && strEQ(name, "BEGIN"))
cv = NULL;
if (cv) { /* must reuse cv if autoloaded */
/* transfer PL_compcv to cv */
if (block) {
bool free_file = CvFILE(cv) && CvDYNFILE(cv);
cv_flags_t existing_builtin_attrs = CvFLAGS(cv) & CVf_BUILTIN_ATTRS;
PADLIST *const temp_av = CvPADLIST(cv);
CV *const temp_cv = CvOUTSIDE(cv);
const cv_flags_t other_flags =
CvFLAGS(cv) & (CVf_SLABBED|CVf_WEAKOUTSIDE);
OP * const cvstart = CvSTART(cv);
if (isGV(gv)) {
CvGV_set(cv,gv);
assert(!CvCVGV_RC(cv));
assert(CvGV(cv) == gv);
}
else {
dVAR;
U32 hash;
PERL_HASH(hash, name, namlen);
CvNAME_HEK_set(cv,
share_hek(name,
name_is_utf8
? -(SSize_t)namlen
: (SSize_t)namlen,
hash));
}
SvPOK_off(cv);
CvFLAGS(cv) = CvFLAGS(PL_compcv) | existing_builtin_attrs
| CvNAMED(cv);
CvOUTSIDE(cv) = CvOUTSIDE(PL_compcv);
CvOUTSIDE_SEQ(cv) = CvOUTSIDE_SEQ(PL_compcv);
CvPADLIST_set(cv,CvPADLIST(PL_compcv));
CvOUTSIDE(PL_compcv) = temp_cv;
CvPADLIST_set(PL_compcv, temp_av);
CvSTART(cv) = CvSTART(PL_compcv);
CvSTART(PL_compcv) = cvstart;
CvFLAGS(PL_compcv) &= ~(CVf_SLABBED|CVf_WEAKOUTSIDE);
CvFLAGS(PL_compcv) |= other_flags;
if (free_file) {
Safefree(CvFILE(cv));
}
CvFILE_set_from_cop(cv, PL_curcop);
CvSTASH_set(cv, PL_curstash);
/* inner references to PL_compcv must be fixed up ... */
pad_fixup_inner_anons(CvPADLIST(cv), PL_compcv, cv);
if (PERLDB_INTER)/* Advice debugger on the new sub. */
++PL_sub_generation;
}
else {
/* Might have had built-in attributes applied -- propagate them. */
CvFLAGS(cv) |= (CvFLAGS(PL_compcv) & CVf_BUILTIN_ATTRS);
}
/* ... before we throw it away */
SvREFCNT_dec(PL_compcv);
PL_compcv = cv;
}
else {
cv = PL_compcv;
if (name && isGV(gv)) {
GvCV_set(gv, cv);
GvCVGEN(gv) = 0;
if (HvENAME_HEK(GvSTASH(gv)))
/* sub Foo::bar { (shift)+1 } */
gv_method_changed(gv);
}
else if (name) {
if (!SvROK(gv)) {
SV_CHECK_THINKFIRST_COW_DROP((SV *)gv);
prepare_SV_for_RV((SV *)gv);
SvOK_off((SV *)gv);
SvROK_on(gv);
}
SvRV_set(gv, (SV *)cv);
if (HvENAME_HEK(PL_curstash))
mro_method_changed_in(PL_curstash);
}
}
assert(cv);
assert(SvREFCNT((SV*)cv) != 0);
if (!CvHASGV(cv)) {
if (isGV(gv))
CvGV_set(cv, gv);
else {
dVAR;
U32 hash;
PERL_HASH(hash, name, namlen);
CvNAME_HEK_set(cv, share_hek(name,
name_is_utf8
? -(SSize_t)namlen
: (SSize_t)namlen,
hash));
}
CvFILE_set_from_cop(cv, PL_curcop);
CvSTASH_set(cv, PL_curstash);
}
if (ps) {
sv_setpvn(MUTABLE_SV(cv), ps, ps_len);
if ( ps_utf8 )
SvUTF8_on(MUTABLE_SV(cv));
}
if (block) {
/* If we assign an optree to a PVCV, then we've defined a
* subroutine that the debugger could be able to set a breakpoint
* in, so signal to pp_entereval that it should not throw away any
* saved lines at scope exit. */
PL_breakable_sub_gen++;
CvROOT(cv) = block;
/* The cv no longer needs to hold a refcount on the slab, as CvROOT
itself has a refcount. */
CvSLABBED_off(cv);
OpslabREFCNT_dec_padok((OPSLAB *)CvSTART(cv));
#ifdef PERL_DEBUG_READONLY_OPS
slab = (OPSLAB *)CvSTART(cv);
#endif
S_process_optree(aTHX_ cv, block, start);
}
attrs:
if (attrs) {
/* Need to do a C<use attributes $stash_of_cv,\&cv,@attrs>. */
HV *stash = name && !CvNAMED(cv) && GvSTASH(CvGV(cv))
? GvSTASH(CvGV(cv))
: PL_curstash;
if (!name)
SAVEFREESV(cv);
apply_attrs(stash, MUTABLE_SV(cv), attrs);
if (!name)
SvREFCNT_inc_simple_void_NN(cv);
}
if (block && has_name) {
if (PERLDB_SUBLINE && PL_curstash != PL_debstash) {
SV * const tmpstr = cv_name(cv,NULL,0);
GV * const db_postponed = gv_fetchpvs("DB::postponed",
GV_ADDMULTI, SVt_PVHV);
HV *hv;
SV * const sv = Perl_newSVpvf(aTHX_ "%s:%ld-%ld",
CopFILE(PL_curcop),
(long)PL_subline,
(long)CopLINE(PL_curcop));
(void)hv_store(GvHV(PL_DBsub), SvPVX_const(tmpstr),
SvUTF8(tmpstr) ? -(I32)SvCUR(tmpstr) : (I32)SvCUR(tmpstr), sv, 0);
hv = GvHVn(db_postponed);
if (HvTOTALKEYS(hv) > 0 && hv_exists(hv, SvPVX_const(tmpstr), SvUTF8(tmpstr) ? -(I32)SvCUR(tmpstr) : (I32)SvCUR(tmpstr))) {
CV * const pcv = GvCV(db_postponed);
if (pcv) {
dSP;
PUSHMARK(SP);
XPUSHs(tmpstr);
PUTBACK;
call_sv(MUTABLE_SV(pcv), G_DISCARD);
}
}
}
if (name) {
if (PL_parser && PL_parser->error_count)
clear_special_blocks(name, gv, cv);
else
evanescent =
process_special_blocks(floor, name, gv, cv);
}
}
assert(cv);
done:
assert(!cv || evanescent || SvREFCNT((SV*)cv) != 0);
if (PL_parser)
PL_parser->copline = NOLINE;
LEAVE_SCOPE(floor);
assert(!cv || evanescent || SvREFCNT((SV*)cv) != 0);
if (!evanescent) {
#ifdef PERL_DEBUG_READONLY_OPS
if (slab)
Slab_to_ro(slab);
#endif
if (cv && name && block && CvOUTSIDE(cv) && !CvEVAL(CvOUTSIDE(cv)))
pad_add_weakref(cv);
}
return cv;
}
STATIC void
S_clear_special_blocks(pTHX_ const char *const fullname,
GV *const gv, CV *const cv) {
const char *colon;
const char *name;
PERL_ARGS_ASSERT_CLEAR_SPECIAL_BLOCKS;
colon = strrchr(fullname,':');
name = colon ? colon + 1 : fullname;
if ((*name == 'B' && strEQ(name, "BEGIN"))
|| (*name == 'E' && strEQ(name, "END"))
|| (*name == 'U' && strEQ(name, "UNITCHECK"))
|| (*name == 'C' && strEQ(name, "CHECK"))
|| (*name == 'I' && strEQ(name, "INIT"))) {
if (!isGV(gv)) {
(void)CvGV(cv);
assert(isGV(gv));
}
GvCV_set(gv, NULL);
SvREFCNT_dec_NN(MUTABLE_SV(cv));
}
}
/* Returns true if the sub has been freed. */
STATIC bool
S_process_special_blocks(pTHX_ I32 floor, const char *const fullname,
GV *const gv,
CV *const cv)
{
const char *const colon = strrchr(fullname,':');
const char *const name = colon ? colon + 1 : fullname;
PERL_ARGS_ASSERT_PROCESS_SPECIAL_BLOCKS;
if (*name == 'B') {
if (strEQ(name, "BEGIN")) {
const I32 oldscope = PL_scopestack_ix;
dSP;
(void)CvGV(cv);
if (floor) LEAVE_SCOPE(floor);
ENTER;
SAVEVPTR(PL_curcop);
if (PL_curcop == &PL_compiling) {
/* Avoid pushing the "global" &PL_compiling onto the
* context stack. For example, a stack trace inside
* nested use's would show all calls coming from whoever
* most recently updated PL_compiling.cop_file and
* cop_line. So instead, temporarily set PL_curcop to a
* private copy of &PL_compiling. PL_curcop will soon be
* set to point back to &PL_compiling anyway but only
* after the temp value has been pushed onto the context
* stack as blk_oldcop.
* This is slightly hacky, but necessary. Note also
* that in the brief window before PL_curcop is set back
* to PL_compiling, IN_PERL_COMPILETIME/IN_PERL_RUNTIME
* will give the wrong answer.
*/
Newx(PL_curcop, 1, COP);
StructCopy(&PL_compiling, PL_curcop, COP);
PL_curcop->op_slabbed = 0;
SAVEFREEPV(PL_curcop);
}
PUSHSTACKi(PERLSI_REQUIRE);
SAVECOPFILE(&PL_compiling);
SAVECOPLINE(&PL_compiling);
DEBUG_x( dump_sub(gv) );
Perl_av_create_and_push(aTHX_ &PL_beginav, MUTABLE_SV(cv));
GvCV_set(gv,0); /* cv has been hijacked */
call_list(oldscope, PL_beginav);
POPSTACK;
LEAVE;
return !PL_savebegin;
}
else
return FALSE;
} else {
if (*name == 'E') {
if (strEQ(name, "END")) {
DEBUG_x( dump_sub(gv) );
Perl_av_create_and_unshift_one(aTHX_ &PL_endav, MUTABLE_SV(cv));
} else
return FALSE;
} else if (*name == 'U') {
if (strEQ(name, "UNITCHECK")) {
/* It's never too late to run a unitcheck block */
Perl_av_create_and_unshift_one(aTHX_ &PL_unitcheckav, MUTABLE_SV(cv));
}
else
return FALSE;
} else if (*name == 'C') {
if (strEQ(name, "CHECK")) {
if (PL_main_start)
/* diag_listed_as: Too late to run %s block */
Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
"Too late to run CHECK block");
Perl_av_create_and_unshift_one(aTHX_ &PL_checkav, MUTABLE_SV(cv));
}
else
return FALSE;
} else if (*name == 'I') {
if (strEQ(name, "INIT")) {
if (PL_main_start)
/* diag_listed_as: Too late to run %s block */
Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
"Too late to run INIT block");
Perl_av_create_and_push(aTHX_ &PL_initav, MUTABLE_SV(cv));
}
else
return FALSE;
} else
return FALSE;
DEBUG_x( dump_sub(gv) );
(void)CvGV(cv);
GvCV_set(gv,0); /* cv has been hijacked */
return FALSE;
}
}
/*
=for apidoc newCONSTSUB
Behaves like L</newCONSTSUB_flags>, except that C<name> is nul-terminated
rather than of counted length, and no flags are set. (This means that
C<name> is always interpreted as Latin-1.)
=cut
*/
CV *
Perl_newCONSTSUB(pTHX_ HV *stash, const char *name, SV *sv)
{
return newCONSTSUB_flags(stash, name, name ? strlen(name) : 0, 0, sv);
}
/*
=for apidoc newCONSTSUB_flags
Construct a constant subroutine, also performing some surrounding
jobs. A scalar constant-valued subroutine is eligible for inlining
at compile-time, and in Perl code can be created by S<C<sub FOO () {
123 }>>. Other kinds of constant subroutine have other treatment.
The subroutine will have an empty prototype and will ignore any arguments
when called. Its constant behaviour is determined by C<sv>. If C<sv>
is null, the subroutine will yield an empty list. If C<sv> points to a
scalar, the subroutine will always yield that scalar. If C<sv> points
to an array, the subroutine will always yield a list of the elements of
that array in list context, or the number of elements in the array in
scalar context. This function takes ownership of one counted reference
to the scalar or array, and will arrange for the object to live as long
as the subroutine does. If C<sv> points to a scalar then the inlining
assumes that the value of the scalar will never change, so the caller
must ensure that the scalar is not subsequently written to. If C<sv>
points to an array then no such assumption is made, so it is ostensibly
safe to mutate the array or its elements, but whether this is really
supported has not been determined.
The subroutine will have C<CvFILE> set according to C<PL_curcop>.
Other aspects of the subroutine will be left in their default state.
The caller is free to mutate the subroutine beyond its initial state
after this function has returned.
If C<name> is null then the subroutine will be anonymous, with its
C<CvGV> referring to an C<__ANON__> glob. If C<name> is non-null then the
subroutine will be named accordingly, referenced by the appropriate glob.
C<name> is a string of length C<len> bytes giving a sigilless symbol
name, in UTF-8 if C<flags> has the C<SVf_UTF8> bit set and in Latin-1
otherwise. The name may be either qualified or unqualified. If the
name is unqualified then it defaults to being in the stash specified by
C<stash> if that is non-null, or to C<PL_curstash> if C<stash> is null.
The symbol is always added to the stash if necessary, with C<GV_ADDMULTI>
semantics.
C<flags> should not have bits set other than C<SVf_UTF8>.
If there is already a subroutine of the specified name, then the new sub
will replace the existing one in the glob. A warning may be generated
about the redefinition.
If the subroutine has one of a few special names, such as C<BEGIN> or
C<END>, then it will be claimed by the appropriate queue for automatic
running of phase-related subroutines. In this case the relevant glob will
be left not containing any subroutine, even if it did contain one before.
Execution of the subroutine will likely be a no-op, unless C<sv> was
a tied array or the caller modified the subroutine in some interesting
way before it was executed. In the case of C<BEGIN>, the treatment is
buggy: the sub will be executed when only half built, and may be deleted
prematurely, possibly causing a crash.
The function returns a pointer to the constructed subroutine. If the sub
is anonymous then ownership of one counted reference to the subroutine
is transferred to the caller. If the sub is named then the caller does
not get ownership of a reference. In most such cases, where the sub
has a non-phase name, the sub will be alive at the point it is returned
by virtue of being contained in the glob that names it. A phase-named
subroutine will usually be alive by virtue of the reference owned by
the phase's automatic run queue. A C<BEGIN> subroutine may have been
destroyed already by the time this function returns, but currently bugs
occur in that case before the caller gets control. It is the caller's
responsibility to ensure that it knows which of these situations applies.
=cut
*/
CV *
Perl_newCONSTSUB_flags(pTHX_ HV *stash, const char *name, STRLEN len,
U32 flags, SV *sv)
{
CV* cv;
const char *const file = CopFILE(PL_curcop);
ENTER;
if (IN_PERL_RUNTIME) {
/* at runtime, it's not safe to manipulate PL_curcop: it may be
* an op shared between threads. Use a non-shared COP for our
* dirty work */
SAVEVPTR(PL_curcop);
SAVECOMPILEWARNINGS();
PL_compiling.cop_warnings = DUP_WARNINGS(PL_curcop->cop_warnings);
PL_curcop = &PL_compiling;
}
SAVECOPLINE(PL_curcop);
CopLINE_set(PL_curcop, PL_parser ? PL_parser->copline : NOLINE);
SAVEHINTS();
PL_hints &= ~HINT_BLOCK_SCOPE;
if (stash) {
SAVEGENERICSV(PL_curstash);
PL_curstash = (HV *)SvREFCNT_inc_simple_NN(stash);
}
/* Protect sv against leakage caused by fatal warnings. */
if (sv) SAVEFREESV(sv);
/* file becomes the CvFILE. For an XS, it's usually static storage,
and so doesn't get free()d. (It's expected to be from the C pre-
processor __FILE__ directive). But we need a dynamically allocated one,
and we need it to get freed. */
cv = newXS_len_flags(name, len,
sv && SvTYPE(sv) == SVt_PVAV
? const_av_xsub
: const_sv_xsub,
file ? file : "", "",
&sv, XS_DYNAMIC_FILENAME | flags);
assert(cv);
assert(SvREFCNT((SV*)cv) != 0);
CvXSUBANY(cv).any_ptr = SvREFCNT_inc_simple(sv);
CvCONST_on(cv);
LEAVE;
return cv;
}
/*
=for apidoc newXS
Used by C<xsubpp> to hook up XSUBs as Perl subs. C<filename> needs to be
static storage, as it is used directly as CvFILE(), without a copy being made.
=cut
*/
CV *
Perl_newXS(pTHX_ const char *name, XSUBADDR_t subaddr, const char *filename)
{
PERL_ARGS_ASSERT_NEWXS;
return newXS_len_flags(
name, name ? strlen(name) : 0, subaddr, filename, NULL, NULL, 0
);
}
CV *
Perl_newXS_flags(pTHX_ const char *name, XSUBADDR_t subaddr,
const char *const filename, const char *const proto,
U32 flags)
{
PERL_ARGS_ASSERT_NEWXS_FLAGS;
return newXS_len_flags(
name, name ? strlen(name) : 0, subaddr, filename, proto, NULL, flags
);
}
CV *
Perl_newXS_deffile(pTHX_ const char *name, XSUBADDR_t subaddr)
{
PERL_ARGS_ASSERT_NEWXS_DEFFILE;
return newXS_len_flags(
name, strlen(name), subaddr, NULL, NULL, NULL, 0
);
}
/*
=for apidoc newXS_len_flags
Construct an XS subroutine, also performing some surrounding jobs.
The subroutine will have the entry point C<subaddr>. It will have
the prototype specified by the nul-terminated string C<proto>, or
no prototype if C<proto> is null. The prototype string is copied;
the caller can mutate the supplied string afterwards. If C<filename>
is non-null, it must be a nul-terminated filename, and the subroutine
will have its C<CvFILE> set accordingly. By default C<CvFILE> is set to
point directly to the supplied string, which must be static. If C<flags>
has the C<XS_DYNAMIC_FILENAME> bit set, then a copy of the string will
be taken instead.
Other aspects of the subroutine will be left in their default state.
If anything else needs to be done to the subroutine for it to function
correctly, it is the caller's responsibility to do that after this
function has constructed it. However, beware of the subroutine
potentially being destroyed before this function returns, as described
below.
If C<name> is null then the subroutine will be anonymous, with its
C<CvGV> referring to an C<__ANON__> glob. If C<name> is non-null then the
subroutine will be named accordingly, referenced by the appropriate glob.
C<name> is a string of length C<len> bytes giving a sigilless symbol name,
in UTF-8 if C<flags> has the C<SVf_UTF8> bit set and in Latin-1 otherwise.
The name may be either qualified or unqualified, with the stash defaulting
in the same manner as for C<gv_fetchpvn_flags>. C<flags> may contain
flag bits understood by C<gv_fetchpvn_flags> with the same meaning as
they have there, such as C<GV_ADDWARN>. The symbol is always added to
the stash if necessary, with C<GV_ADDMULTI> semantics.
If there is already a subroutine of the specified name, then the new sub
will replace the existing one in the glob. A warning may be generated
about the redefinition. If the old subroutine was C<CvCONST> then the
decision about whether to warn is influenced by an expectation about
whether the new subroutine will become a constant of similar value.
That expectation is determined by C<const_svp>. (Note that the call to
this function doesn't make the new subroutine C<CvCONST> in any case;
that is left to the caller.) If C<const_svp> is null then it indicates
that the new subroutine will not become a constant. If C<const_svp>
is non-null then it indicates that the new subroutine will become a
constant, and it points to an C<SV*> that provides the constant value
that the subroutine will have.
If the subroutine has one of a few special names, such as C<BEGIN> or
C<END>, then it will be claimed by the appropriate queue for automatic
running of phase-related subroutines. In this case the relevant glob will
be left not containing any subroutine, even if it did contain one before.
In the case of C<BEGIN>, the subroutine will be executed and the reference
to it disposed of before this function returns, and also before its
prototype is set. If a C<BEGIN> subroutine would not be sufficiently
constructed by this function to be ready for execution then the caller
must prevent this happening by giving the subroutine a different name.
The function returns a pointer to the constructed subroutine. If the sub
is anonymous then ownership of one counted reference to the subroutine
is transferred to the caller. If the sub is named then the caller does
not get ownership of a reference. In most such cases, where the sub
has a non-phase name, the sub will be alive at the point it is returned
by virtue of being contained in the glob that names it. A phase-named
subroutine will usually be alive by virtue of the reference owned by the
phase's automatic run queue. But a C<BEGIN> subroutine, having already
been executed, will quite likely have been destroyed already by the
time this function returns, making it erroneous for the caller to make
any use of the returned pointer. It is the caller's responsibility to
ensure that it knows which of these situations applies.
=cut
*/
CV *
Perl_newXS_len_flags(pTHX_ const char *name, STRLEN len,
XSUBADDR_t subaddr, const char *const filename,
const char *const proto, SV **const_svp,
U32 flags)
{
CV *cv;
bool interleave = FALSE;
bool evanescent = FALSE;
PERL_ARGS_ASSERT_NEWXS_LEN_FLAGS;
{
GV * const gv = gv_fetchpvn(
name ? name : PL_curstash ? "__ANON__" : "__ANON__::__ANON__",
name ? len : PL_curstash ? sizeof("__ANON__") - 1:
sizeof("__ANON__::__ANON__") - 1,
GV_ADDMULTI | flags, SVt_PVCV);
if ((cv = (name ? GvCV(gv) : NULL))) {
if (GvCVGEN(gv)) {
/* just a cached method */
SvREFCNT_dec(cv);
cv = NULL;
}
else if (CvROOT(cv) || CvXSUB(cv) || GvASSUMECV(gv)) {
/* already defined (or promised) */
/* Redundant check that allows us to avoid creating an SV
most of the time: */
if (CvCONST(cv) || ckWARN(WARN_REDEFINE)) {
report_redefined_cv(newSVpvn_flags(
name,len,(flags&SVf_UTF8)|SVs_TEMP
),
cv, const_svp);
}
interleave = TRUE;
ENTER;
SAVEFREESV(cv);
cv = NULL;
}
}
if (cv) /* must reuse cv if autoloaded */
cv_undef(cv);
else {
cv = MUTABLE_CV(newSV_type(SVt_PVCV));
if (name) {
GvCV_set(gv,cv);
GvCVGEN(gv) = 0;
if (HvENAME_HEK(GvSTASH(gv)))
gv_method_changed(gv); /* newXS */
}
}
assert(cv);
assert(SvREFCNT((SV*)cv) != 0);
CvGV_set(cv, gv);
if(filename) {
/* XSUBs can't be perl lang/perl5db.pl debugged
if (PERLDB_LINE_OR_SAVESRC)
(void)gv_fetchfile(filename); */
assert(!CvDYNFILE(cv)); /* cv_undef should have turned it off */
if (flags & XS_DYNAMIC_FILENAME) {
CvDYNFILE_on(cv);
CvFILE(cv) = savepv(filename);
} else {
/* NOTE: not copied, as it is expected to be an external constant string */
CvFILE(cv) = (char *)filename;
}
} else {
assert((flags & XS_DYNAMIC_FILENAME) == 0 && PL_xsubfilename);
CvFILE(cv) = (char*)PL_xsubfilename;
}
CvISXSUB_on(cv);
CvXSUB(cv) = subaddr;
#ifndef PERL_IMPLICIT_CONTEXT
CvHSCXT(cv) = &PL_stack_sp;
#else
PoisonPADLIST(cv);
#endif
if (name)
evanescent = process_special_blocks(0, name, gv, cv);
else
CvANON_on(cv);
} /* <- not a conditional branch */
assert(cv);
assert(evanescent || SvREFCNT((SV*)cv) != 0);
if (!evanescent) sv_setpv(MUTABLE_SV(cv), proto);
if (interleave) LEAVE;
assert(evanescent || SvREFCNT((SV*)cv) != 0);
return cv;
}
/* Add a stub CV to a typeglob.
* This is the implementation of a forward declaration, 'sub foo';'
*/
CV *
Perl_newSTUB(pTHX_ GV *gv, bool fake)
{
CV *cv = MUTABLE_CV(newSV_type(SVt_PVCV));
GV *cvgv;
PERL_ARGS_ASSERT_NEWSTUB;
assert(!GvCVu(gv));
GvCV_set(gv, cv);
GvCVGEN(gv) = 0;
if (!fake && GvSTASH(gv) && HvENAME_HEK(GvSTASH(gv)))
gv_method_changed(gv);
if (SvFAKE(gv)) {
cvgv = gv_fetchsv((SV *)gv, GV_ADDMULTI, SVt_PVCV);
SvFAKE_off(cvgv);
}
else cvgv = gv;
CvGV_set(cv, cvgv);
CvFILE_set_from_cop(cv, PL_curcop);
CvSTASH_set(cv, PL_curstash);
GvMULTI_on(gv);
return cv;
}
void
Perl_newFORM(pTHX_ I32 floor, OP *o, OP *block)
{
CV *cv;
GV *gv;
OP *root;
OP *start;
if (PL_parser && PL_parser->error_count) {
op_free(block);
goto finish;
}
gv = o
? gv_fetchsv(cSVOPo->op_sv, GV_ADD, SVt_PVFM)
: gv_fetchpvs("STDOUT", GV_ADD|GV_NOTQUAL, SVt_PVFM);
GvMULTI_on(gv);
if ((cv = GvFORM(gv))) {
if (ckWARN(WARN_REDEFINE)) {
const line_t oldline = CopLINE(PL_curcop);
if (PL_parser && PL_parser->copline != NOLINE)
CopLINE_set(PL_curcop, PL_parser->copline);
if (o) {
Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
"Format %" SVf " redefined", SVfARG(cSVOPo->op_sv));
} else {
/* diag_listed_as: Format %s redefined */
Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
"Format STDOUT redefined");
}
CopLINE_set(PL_curcop, oldline);
}
SvREFCNT_dec(cv);
}
cv = PL_compcv;
GvFORM(gv) = (CV *)SvREFCNT_inc_simple_NN(cv);
CvGV_set(cv, gv);
CvFILE_set_from_cop(cv, PL_curcop);
root = newUNOP(OP_LEAVEWRITE, 0, scalarseq(block));
CvROOT(cv) = root;
start = LINKLIST(root);
root->op_next = 0;
S_process_optree(aTHX_ cv, root, start);
cv_forget_slab(cv);
finish:
op_free(o);
if (PL_parser)
PL_parser->copline = NOLINE;
LEAVE_SCOPE(floor);
PL_compiling.cop_seq = 0;
}
OP *
Perl_newANONLIST(pTHX_ OP *o)
{
return op_convert_list(OP_ANONLIST, OPf_SPECIAL, o);
}
OP *
Perl_newANONHASH(pTHX_ OP *o)
{
return op_convert_list(OP_ANONHASH, OPf_SPECIAL, o);
}
OP *
Perl_newANONSUB(pTHX_ I32 floor, OP *proto, OP *block)
{
return newANONATTRSUB(floor, proto, NULL, block);
}
OP *
Perl_newANONATTRSUB(pTHX_ I32 floor, OP *proto, OP *attrs, OP *block)
{
SV * const cv = MUTABLE_SV(newATTRSUB(floor, 0, proto, attrs, block));
OP * anoncode =
newSVOP(OP_ANONCODE, 0,
cv);
if (CvANONCONST(cv))
anoncode = newUNOP(OP_ANONCONST, 0,
op_convert_list(OP_ENTERSUB,
OPf_STACKED|OPf_WANT_SCALAR,
anoncode));
return newUNOP(OP_REFGEN, 0, anoncode);
}
OP *
Perl_oopsAV(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_OOPSAV;
switch (o->op_type) {
case OP_PADSV:
case OP_PADHV:
OpTYPE_set(o, OP_PADAV);
return ref(o, OP_RV2AV);
case OP_RV2SV:
case OP_RV2HV:
OpTYPE_set(o, OP_RV2AV);
ref(o, OP_RV2AV);
break;
default:
Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), "oops: oopsAV");
break;
}
return o;
}
OP *
Perl_oopsHV(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_OOPSHV;
switch (o->op_type) {
case OP_PADSV:
case OP_PADAV:
OpTYPE_set(o, OP_PADHV);
return ref(o, OP_RV2HV);
case OP_RV2SV:
case OP_RV2AV:
OpTYPE_set(o, OP_RV2HV);
/* rv2hv steals the bottom bit for its own uses */
o->op_private &= ~OPpARG1_MASK;
ref(o, OP_RV2HV);
break;
default:
Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), "oops: oopsHV");
break;
}
return o;
}
OP *
Perl_newAVREF(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_NEWAVREF;
if (o->op_type == OP_PADANY) {
OpTYPE_set(o, OP_PADAV);
return o;
}
else if ((o->op_type == OP_RV2AV || o->op_type == OP_PADAV)) {
Perl_croak(aTHX_ "Can't use an array as a reference");
}
return newUNOP(OP_RV2AV, 0, scalar(o));
}
OP *
Perl_newGVREF(pTHX_ I32 type, OP *o)
{
if (type == OP_MAPSTART || type == OP_GREPSTART || type == OP_SORT)
return newUNOP(OP_NULL, 0, o);
return ref(newUNOP(OP_RV2GV, OPf_REF, o), type);
}
OP *
Perl_newHVREF(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_NEWHVREF;
if (o->op_type == OP_PADANY) {
OpTYPE_set(o, OP_PADHV);
return o;
}
else if ((o->op_type == OP_RV2HV || o->op_type == OP_PADHV)) {
Perl_croak(aTHX_ "Can't use a hash as a reference");
}
return newUNOP(OP_RV2HV, 0, scalar(o));
}
OP *
Perl_newCVREF(pTHX_ I32 flags, OP *o)
{
if (o->op_type == OP_PADANY) {
dVAR;
OpTYPE_set(o, OP_PADCV);
}
return newUNOP(OP_RV2CV, flags, scalar(o));
}
OP *
Perl_newSVREF(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_NEWSVREF;
if (o->op_type == OP_PADANY) {
OpTYPE_set(o, OP_PADSV);
scalar(o);
return o;
}
return newUNOP(OP_RV2SV, 0, scalar(o));
}
/* Check routines. See the comments at the top of this file for details
* on when these are called */
OP *
Perl_ck_anoncode(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_ANONCODE;
cSVOPo->op_targ = pad_add_anon((CV*)cSVOPo->op_sv, o->op_type);
cSVOPo->op_sv = NULL;
return o;
}
static void
S_io_hints(pTHX_ OP *o)
{
#if O_BINARY != 0 || O_TEXT != 0
HV * const table =
PL_hints & HINT_LOCALIZE_HH ? GvHV(PL_hintgv) : NULL;;
if (table) {
SV **svp = hv_fetchs(table, "open_IN", FALSE);
if (svp && *svp) {
STRLEN len = 0;
const char *d = SvPV_const(*svp, len);
const I32 mode = mode_from_discipline(d, len);
/* bit-and:ing with zero O_BINARY or O_TEXT would be useless. */
# if O_BINARY != 0
if (mode & O_BINARY)
o->op_private |= OPpOPEN_IN_RAW;
# endif
# if O_TEXT != 0
if (mode & O_TEXT)
o->op_private |= OPpOPEN_IN_CRLF;
# endif
}
svp = hv_fetchs(table, "open_OUT", FALSE);
if (svp && *svp) {
STRLEN len = 0;
const char *d = SvPV_const(*svp, len);
const I32 mode = mode_from_discipline(d, len);
/* bit-and:ing with zero O_BINARY or O_TEXT would be useless. */
# if O_BINARY != 0
if (mode & O_BINARY)
o->op_private |= OPpOPEN_OUT_RAW;
# endif
# if O_TEXT != 0
if (mode & O_TEXT)
o->op_private |= OPpOPEN_OUT_CRLF;
# endif
}
}
#else
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(o);
#endif
}
OP *
Perl_ck_backtick(pTHX_ OP *o)
{
GV *gv;
OP *newop = NULL;
OP *sibl;
PERL_ARGS_ASSERT_CK_BACKTICK;
o = ck_fun(o);
/* qx and `` have a null pushmark; CORE::readpipe has only one kid. */
if (o->op_flags & OPf_KIDS && (sibl = OpSIBLING(cUNOPo->op_first))
&& (gv = gv_override("readpipe",8)))
{
/* detach rest of siblings from o and its first child */
op_sibling_splice(o, cUNOPo->op_first, -1, NULL);
newop = S_new_entersubop(aTHX_ gv, sibl);
}
else if (!(o->op_flags & OPf_KIDS))
newop = newUNOP(OP_BACKTICK, 0, newDEFSVOP());
if (newop) {
op_free(o);
return newop;
}
S_io_hints(aTHX_ o);
return o;
}
OP *
Perl_ck_bitop(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_BITOP;
o->op_private = (U8)(PL_hints & HINT_INTEGER);
if (!(o->op_flags & OPf_STACKED) /* Not an assignment */
&& OP_IS_INFIX_BIT(o->op_type))
{
const OP * const left = cBINOPo->op_first;
const OP * const right = OpSIBLING(left);
if ((OP_IS_NUMCOMPARE(left->op_type) &&
(left->op_flags & OPf_PARENS) == 0) ||
(OP_IS_NUMCOMPARE(right->op_type) &&
(right->op_flags & OPf_PARENS) == 0))
Perl_ck_warner(aTHX_ packWARN(WARN_PRECEDENCE),
"Possible precedence problem on bitwise %s operator",
o->op_type == OP_BIT_OR
||o->op_type == OP_NBIT_OR ? "|"
: o->op_type == OP_BIT_AND
||o->op_type == OP_NBIT_AND ? "&"
: o->op_type == OP_BIT_XOR
||o->op_type == OP_NBIT_XOR ? "^"
: o->op_type == OP_SBIT_OR ? "|."
: o->op_type == OP_SBIT_AND ? "&." : "^."
);
}
return o;
}
PERL_STATIC_INLINE bool
is_dollar_bracket(pTHX_ const OP * const o)
{
const OP *kid;
PERL_UNUSED_CONTEXT;
return o->op_type == OP_RV2SV && o->op_flags & OPf_KIDS
&& (kid = cUNOPx(o)->op_first)
&& kid->op_type == OP_GV
&& strEQ(GvNAME(cGVOPx_gv(kid)), "[");
}
/* for lt, gt, le, ge, eq, ne and their i_ variants */
OP *
Perl_ck_cmp(pTHX_ OP *o)
{
bool is_eq;
bool neg;
bool reverse;
bool iv0;
OP *indexop, *constop, *start;
SV *sv;
IV iv;
PERL_ARGS_ASSERT_CK_CMP;
is_eq = ( o->op_type == OP_EQ
|| o->op_type == OP_NE
|| o->op_type == OP_I_EQ
|| o->op_type == OP_I_NE);
if (!is_eq && ckWARN(WARN_SYNTAX)) {
const OP *kid = cUNOPo->op_first;
if (kid &&
(
( is_dollar_bracket(aTHX_ kid)
&& OpSIBLING(kid) && OpSIBLING(kid)->op_type == OP_CONST
)
|| ( kid->op_type == OP_CONST
&& (kid = OpSIBLING(kid)) && is_dollar_bracket(aTHX_ kid)
)
)
)
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"$[ used in %s (did you mean $] ?)", OP_DESC(o));
}
/* convert (index(...) == -1) and variations into
* (r)index/BOOL(,NEG)
*/
reverse = FALSE;
indexop = cUNOPo->op_first;
constop = OpSIBLING(indexop);
start = NULL;
if (indexop->op_type == OP_CONST) {
constop = indexop;
indexop = OpSIBLING(constop);
start = constop;
reverse = TRUE;
}
if (indexop->op_type != OP_INDEX && indexop->op_type != OP_RINDEX)
return o;
/* ($lex = index(....)) == -1 */
if (indexop->op_private & OPpTARGET_MY)
return o;
if (constop->op_type != OP_CONST)
return o;
sv = cSVOPx_sv(constop);
if (!(sv && SvIOK_notUV(sv)))
return o;
iv = SvIVX(sv);
if (iv != -1 && iv != 0)
return o;
iv0 = (iv == 0);
if (o->op_type == OP_LT || o->op_type == OP_I_LT) {
if (!(iv0 ^ reverse))
return o;
neg = iv0;
}
else if (o->op_type == OP_LE || o->op_type == OP_I_LE) {
if (iv0 ^ reverse)
return o;
neg = !iv0;
}
else if (o->op_type == OP_GE || o->op_type == OP_I_GE) {
if (!(iv0 ^ reverse))
return o;
neg = !iv0;
}
else if (o->op_type == OP_GT || o->op_type == OP_I_GT) {
if (iv0 ^ reverse)
return o;
neg = iv0;
}
else if (o->op_type == OP_EQ || o->op_type == OP_I_EQ) {
if (iv0)
return o;
neg = TRUE;
}
else {
assert(o->op_type == OP_NE || o->op_type == OP_I_NE);
if (iv0)
return o;
neg = FALSE;
}
indexop->op_flags &= ~OPf_PARENS;
indexop->op_flags |= (o->op_flags & OPf_PARENS);
indexop->op_private |= OPpTRUEBOOL;
if (neg)
indexop->op_private |= OPpINDEX_BOOLNEG;
/* cut out the index op and free the eq,const ops */
(void)op_sibling_splice(o, start, 1, NULL);
op_free(o);
return indexop;
}
OP *
Perl_ck_concat(pTHX_ OP *o)
{
const OP * const kid = cUNOPo->op_first;
PERL_ARGS_ASSERT_CK_CONCAT;
PERL_UNUSED_CONTEXT;
/* reuse the padtmp returned by the concat child */
if (kid->op_type == OP_CONCAT && !(kid->op_private & OPpTARGET_MY) &&
!(kUNOP->op_first->op_flags & OPf_MOD))
{
o->op_flags |= OPf_STACKED;
o->op_private |= OPpCONCAT_NESTED;
}
return o;
}
OP *
Perl_ck_spair(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_CK_SPAIR;
if (o->op_flags & OPf_KIDS) {
OP* newop;
OP* kid;
OP* kidkid;
const OPCODE type = o->op_type;
o = modkids(ck_fun(o), type);
kid = cUNOPo->op_first;
kidkid = kUNOP->op_first;
newop = OpSIBLING(kidkid);
if (newop) {
const OPCODE type = newop->op_type;
if (OpHAS_SIBLING(newop))
return o;
if (o->op_type == OP_REFGEN
&& ( type == OP_RV2CV
|| ( !(newop->op_flags & OPf_PARENS)
&& ( type == OP_RV2AV || type == OP_PADAV
|| type == OP_RV2HV || type == OP_PADHV))))
NOOP; /* OK (allow srefgen for \@a and \%h) */
else if (OP_GIMME(newop,0) != G_SCALAR)
return o;
}
/* excise first sibling */
op_sibling_splice(kid, NULL, 1, NULL);
op_free(kidkid);
}
/* transforms OP_REFGEN into OP_SREFGEN, OP_CHOP into OP_SCHOP,
* and OP_CHOMP into OP_SCHOMP */
o->op_ppaddr = PL_ppaddr[++o->op_type];
return ck_fun(o);
}
OP *
Perl_ck_delete(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_DELETE;
o = ck_fun(o);
o->op_private = 0;
if (o->op_flags & OPf_KIDS) {
OP * const kid = cUNOPo->op_first;
switch (kid->op_type) {
case OP_ASLICE:
o->op_flags |= OPf_SPECIAL;
/* FALLTHROUGH */
case OP_HSLICE:
o->op_private |= OPpSLICE;
break;
case OP_AELEM:
o->op_flags |= OPf_SPECIAL;
/* FALLTHROUGH */
case OP_HELEM:
break;
case OP_KVASLICE:
o->op_flags |= OPf_SPECIAL;
/* FALLTHROUGH */
case OP_KVHSLICE:
o->op_private |= OPpKVSLICE;
break;
default:
Perl_croak(aTHX_ "delete argument is not a HASH or ARRAY "
"element or slice");
}
if (kid->op_private & OPpLVAL_INTRO)
o->op_private |= OPpLVAL_INTRO;
op_null(kid);
}
return o;
}
OP *
Perl_ck_eof(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_EOF;
if (o->op_flags & OPf_KIDS) {
OP *kid;
if (cLISTOPo->op_first->op_type == OP_STUB) {
OP * const newop
= newUNOP(o->op_type, OPf_SPECIAL, newGVOP(OP_GV, 0, PL_argvgv));
op_free(o);
o = newop;
}
o = ck_fun(o);
kid = cLISTOPo->op_first;
if (kid->op_type == OP_RV2GV)
kid->op_private |= OPpALLOW_FAKE;
}
return o;
}
OP *
Perl_ck_eval(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_CK_EVAL;
PL_hints |= HINT_BLOCK_SCOPE;
if (o->op_flags & OPf_KIDS) {
SVOP * const kid = (SVOP*)cUNOPo->op_first;
assert(kid);
if (o->op_type == OP_ENTERTRY) {
LOGOP *enter;
/* cut whole sibling chain free from o */
op_sibling_splice(o, NULL, -1, NULL);
op_free(o);
enter = alloc_LOGOP(OP_ENTERTRY, NULL, NULL);
/* establish postfix order */
enter->op_next = (OP*)enter;
o = op_prepend_elem(OP_LINESEQ, (OP*)enter, (OP*)kid);
OpTYPE_set(o, OP_LEAVETRY);
enter->op_other = o;
return o;
}
else {
scalar((OP*)kid);
S_set_haseval(aTHX);
}
}
else {
const U8 priv = o->op_private;
op_free(o);
/* the newUNOP will recursively call ck_eval(), which will handle
* all the stuff at the end of this function, like adding
* OP_HINTSEVAL
*/
return newUNOP(OP_ENTEREVAL, priv <<8, newDEFSVOP());
}
o->op_targ = (PADOFFSET)PL_hints;
if (o->op_private & OPpEVAL_BYTES) o->op_targ &= ~HINT_UTF8;
if ((PL_hints & HINT_LOCALIZE_HH) != 0
&& !(o->op_private & OPpEVAL_COPHH) && GvHV(PL_hintgv)) {
/* Store a copy of %^H that pp_entereval can pick up. */
HV *hh = hv_copy_hints_hv(GvHV(PL_hintgv));
OP *hhop;
STOREFEATUREBITSHH(hh);
hhop = newSVOP(OP_HINTSEVAL, 0, MUTABLE_SV(hh));
/* append hhop to only child */
op_sibling_splice(o, cUNOPo->op_first, 0, hhop);
o->op_private |= OPpEVAL_HAS_HH;
}
if (!(o->op_private & OPpEVAL_BYTES)
&& FEATURE_UNIEVAL_IS_ENABLED)
o->op_private |= OPpEVAL_UNICODE;
return o;
}
OP *
Perl_ck_exec(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_EXEC;
if (o->op_flags & OPf_STACKED) {
OP *kid;
o = ck_fun(o);
kid = OpSIBLING(cUNOPo->op_first);
if (kid->op_type == OP_RV2GV)
op_null(kid);
}
else
o = listkids(o);
return o;
}
OP *
Perl_ck_exists(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_EXISTS;
o = ck_fun(o);
if (o->op_flags & OPf_KIDS) {
OP * const kid = cUNOPo->op_first;
if (kid->op_type == OP_ENTERSUB) {
(void) ref(kid, o->op_type);
if (kid->op_type != OP_RV2CV
&& !(PL_parser && PL_parser->error_count))
Perl_croak(aTHX_
"exists argument is not a subroutine name");
o->op_private |= OPpEXISTS_SUB;
}
else if (kid->op_type == OP_AELEM)
o->op_flags |= OPf_SPECIAL;
else if (kid->op_type != OP_HELEM)
Perl_croak(aTHX_ "exists argument is not a HASH or ARRAY "
"element or a subroutine");
op_null(kid);
}
return o;
}
OP *
Perl_ck_rvconst(pTHX_ OP *o)
{
dVAR;
SVOP * const kid = (SVOP*)cUNOPo->op_first;
PERL_ARGS_ASSERT_CK_RVCONST;
if (o->op_type == OP_RV2HV)
/* rv2hv steals the bottom bit for its own uses */
o->op_private &= ~OPpARG1_MASK;
o->op_private |= (PL_hints & HINT_STRICT_REFS);
if (kid->op_type == OP_CONST) {
int iscv;
GV *gv;
SV * const kidsv = kid->op_sv;
/* Is it a constant from cv_const_sv()? */
if ((SvROK(kidsv) || isGV_with_GP(kidsv)) && SvREADONLY(kidsv)) {
return o;
}
if (SvTYPE(kidsv) == SVt_PVAV) return o;
if ((o->op_private & HINT_STRICT_REFS) && (kid->op_private & OPpCONST_BARE)) {
const char *badthing;
switch (o->op_type) {
case OP_RV2SV:
badthing = "a SCALAR";
break;
case OP_RV2AV:
badthing = "an ARRAY";
break;
case OP_RV2HV:
badthing = "a HASH";
break;
default:
badthing = NULL;
break;
}
if (badthing)
Perl_croak(aTHX_
"Can't use bareword (\"%" SVf "\") as %s ref while \"strict refs\" in use",
SVfARG(kidsv), badthing);
}
/*
* This is a little tricky. We only want to add the symbol if we
* didn't add it in the lexer. Otherwise we get duplicate strict
* warnings. But if we didn't add it in the lexer, we must at
* least pretend like we wanted to add it even if it existed before,
* or we get possible typo warnings. OPpCONST_ENTERED says
* whether the lexer already added THIS instance of this symbol.
*/
iscv = o->op_type == OP_RV2CV ? GV_NOEXPAND|GV_ADDMULTI : 0;
gv = gv_fetchsv(kidsv,
o->op_type == OP_RV2CV
&& o->op_private & OPpMAY_RETURN_CONSTANT
? GV_NOEXPAND
: iscv | !(kid->op_private & OPpCONST_ENTERED),
iscv
? SVt_PVCV
: o->op_type == OP_RV2SV
? SVt_PV
: o->op_type == OP_RV2AV
? SVt_PVAV
: o->op_type == OP_RV2HV
? SVt_PVHV
: SVt_PVGV);
if (gv) {
if (!isGV(gv)) {
assert(iscv);
assert(SvROK(gv));
if (!(o->op_private & OPpMAY_RETURN_CONSTANT)
&& SvTYPE(SvRV(gv)) != SVt_PVCV)
gv_fetchsv(kidsv, GV_ADDMULTI, SVt_PVCV);
}
OpTYPE_set(kid, OP_GV);
SvREFCNT_dec(kid->op_sv);
#ifdef USE_ITHREADS
/* XXX hack: dependence on sizeof(PADOP) <= sizeof(SVOP) */
STATIC_ASSERT_STMT(sizeof(PADOP) <= sizeof(SVOP));
kPADOP->op_padix = pad_alloc(OP_GV, SVf_READONLY);
SvREFCNT_dec(PAD_SVl(kPADOP->op_padix));
PAD_SETSV(kPADOP->op_padix, MUTABLE_SV(SvREFCNT_inc_simple_NN(gv)));
#else
kid->op_sv = SvREFCNT_inc_simple_NN(gv);
#endif
kid->op_private = 0;
/* FAKE globs in the symbol table cause weird bugs (#77810) */
SvFAKE_off(gv);
}
}
return o;
}
OP *
Perl_ck_ftst(pTHX_ OP *o)
{
dVAR;
const I32 type = o->op_type;
PERL_ARGS_ASSERT_CK_FTST;
if (o->op_flags & OPf_REF) {
NOOP;
}
else if (o->op_flags & OPf_KIDS && cUNOPo->op_first->op_type != OP_STUB) {
SVOP * const kid = (SVOP*)cUNOPo->op_first;
const OPCODE kidtype = kid->op_type;
if (kidtype == OP_CONST && (kid->op_private & OPpCONST_BARE)
&& !kid->op_folded) {
OP * const newop = newGVOP(type, OPf_REF,
gv_fetchsv(kid->op_sv, GV_ADD, SVt_PVIO));
op_free(o);
return newop;
}
if ((kidtype == OP_RV2AV || kidtype == OP_PADAV) && ckWARN(WARN_SYNTAX)) {
SV *name = S_op_varname_subscript(aTHX_ (OP*)kid, 2);
if (name) {
/* diag_listed_as: Array passed to stat will be coerced to a scalar%s */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "%s (did you want stat %" SVf "?)",
array_passed_to_stat, name);
}
else {
/* diag_listed_as: Array passed to stat will be coerced to a scalar%s */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "%s", array_passed_to_stat);
}
}
scalar((OP *) kid);
if ((PL_hints & HINT_FILETEST_ACCESS) && OP_IS_FILETEST_ACCESS(o->op_type))
o->op_private |= OPpFT_ACCESS;
if (OP_IS_FILETEST(type)
&& OP_IS_FILETEST(kidtype)
) {
o->op_private |= OPpFT_STACKED;
kid->op_private |= OPpFT_STACKING;
if (kidtype == OP_FTTTY && (
!(kid->op_private & OPpFT_STACKED)
|| kid->op_private & OPpFT_AFTER_t
))
o->op_private |= OPpFT_AFTER_t;
}
}
else {
op_free(o);
if (type == OP_FTTTY)
o = newGVOP(type, OPf_REF, PL_stdingv);
else
o = newUNOP(type, 0, newDEFSVOP());
}
return o;
}
OP *
Perl_ck_fun(pTHX_ OP *o)
{
const int type = o->op_type;
I32 oa = PL_opargs[type] >> OASHIFT;
PERL_ARGS_ASSERT_CK_FUN;
if (o->op_flags & OPf_STACKED) {
if ((oa & OA_OPTIONAL) && (oa >> 4) && !((oa >> 4) & OA_OPTIONAL))
oa &= ~OA_OPTIONAL;
else
return no_fh_allowed(o);
}
if (o->op_flags & OPf_KIDS) {
OP *prev_kid = NULL;
OP *kid = cLISTOPo->op_first;
I32 numargs = 0;
bool seen_optional = FALSE;
if (kid->op_type == OP_PUSHMARK ||
(kid->op_type == OP_NULL && kid->op_targ == OP_PUSHMARK))
{
prev_kid = kid;
kid = OpSIBLING(kid);
}
if (kid && kid->op_type == OP_COREARGS) {
bool optional = FALSE;
while (oa) {
numargs++;
if (oa & OA_OPTIONAL) optional = TRUE;
oa = oa >> 4;
}
if (optional) o->op_private |= numargs;
return o;
}
while (oa) {
if (oa & OA_OPTIONAL || (oa & 7) == OA_LIST) {
if (!kid && !seen_optional && PL_opargs[type] & OA_DEFGV) {
kid = newDEFSVOP();
/* append kid to chain */
op_sibling_splice(o, prev_kid, 0, kid);
}
seen_optional = TRUE;
}
if (!kid) break;
numargs++;
switch (oa & 7) {
case OA_SCALAR:
/* list seen where single (scalar) arg expected? */
if (numargs == 1 && !(oa >> 4)
&& kid->op_type == OP_LIST && type != OP_SCALAR)
{
return too_many_arguments_pv(o,PL_op_desc[type], 0);
}
if (type != OP_DELETE) scalar(kid);
break;
case OA_LIST:
if (oa < 16) {
kid = 0;
continue;
}
else
list(kid);
break;
case OA_AVREF:
if ((type == OP_PUSH || type == OP_UNSHIFT)
&& !OpHAS_SIBLING(kid))
Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
"Useless use of %s with no values",
PL_op_desc[type]);
if (kid->op_type == OP_CONST
&& ( !SvROK(cSVOPx_sv(kid))
|| SvTYPE(SvRV(cSVOPx_sv(kid))) != SVt_PVAV )
)
bad_type_pv(numargs, "array", o, kid);
else if (kid->op_type == OP_RV2HV || kid->op_type == OP_PADHV
|| kid->op_type == OP_RV2GV) {
bad_type_pv(1, "array", o, kid);
}
else if (kid->op_type != OP_RV2AV && kid->op_type != OP_PADAV) {
yyerror_pv(Perl_form(aTHX_ "Experimental %s on scalar is now forbidden",
PL_op_desc[type]), 0);
}
else {
op_lvalue(kid, type);
}
break;
case OA_HVREF:
if (kid->op_type != OP_RV2HV && kid->op_type != OP_PADHV)
bad_type_pv(numargs, "hash", o, kid);
op_lvalue(kid, type);
break;
case OA_CVREF:
{
/* replace kid with newop in chain */
OP * const newop =
S_op_sibling_newUNOP(aTHX_ o, prev_kid, OP_NULL, 0);
newop->op_next = newop;
kid = newop;
}
break;
case OA_FILEREF:
if (kid->op_type != OP_GV && kid->op_type != OP_RV2GV) {
if (kid->op_type == OP_CONST &&
(kid->op_private & OPpCONST_BARE))
{
OP * const newop = newGVOP(OP_GV, 0,
gv_fetchsv(((SVOP*)kid)->op_sv, GV_ADD, SVt_PVIO));
/* replace kid with newop in chain */
op_sibling_splice(o, prev_kid, 1, newop);
op_free(kid);
kid = newop;
}
else if (kid->op_type == OP_READLINE) {
/* neophyte patrol: open(<FH>), close(<FH>) etc. */
bad_type_pv(numargs, "HANDLE", o, kid);
}
else {
I32 flags = OPf_SPECIAL;
I32 priv = 0;
PADOFFSET targ = 0;
/* is this op a FH constructor? */
if (is_handle_constructor(o,numargs)) {
const char *name = NULL;
STRLEN len = 0;
U32 name_utf8 = 0;
bool want_dollar = TRUE;
flags = 0;
/* Set a flag to tell rv2gv to vivify
* need to "prove" flag does not mean something
* else already - NI-S 1999/05/07
*/
priv = OPpDEREF;
if (kid->op_type == OP_PADSV) {
PADNAME * const pn
= PAD_COMPNAME_SV(kid->op_targ);
name = PadnamePV (pn);
len = PadnameLEN(pn);
name_utf8 = PadnameUTF8(pn);
}
else if (kid->op_type == OP_RV2SV
&& kUNOP->op_first->op_type == OP_GV)
{
GV * const gv = cGVOPx_gv(kUNOP->op_first);
name = GvNAME(gv);
len = GvNAMELEN(gv);
name_utf8 = GvNAMEUTF8(gv) ? SVf_UTF8 : 0;
}
else if (kid->op_type == OP_AELEM
|| kid->op_type == OP_HELEM)
{
OP *firstop;
OP *op = ((BINOP*)kid)->op_first;
name = NULL;
if (op) {
SV *tmpstr = NULL;
const char * const a =
kid->op_type == OP_AELEM ?
"[]" : "{}";
if (((op->op_type == OP_RV2AV) ||
(op->op_type == OP_RV2HV)) &&
(firstop = ((UNOP*)op)->op_first) &&
(firstop->op_type == OP_GV)) {
/* packagevar $a[] or $h{} */
GV * const gv = cGVOPx_gv(firstop);
if (gv)
tmpstr =
Perl_newSVpvf(aTHX_
"%s%c...%c",
GvNAME(gv),
a[0], a[1]);
}
else if (op->op_type == OP_PADAV
|| op->op_type == OP_PADHV) {
/* lexicalvar $a[] or $h{} */
const char * const padname =
PAD_COMPNAME_PV(op->op_targ);
if (padname)
tmpstr =
Perl_newSVpvf(aTHX_
"%s%c...%c",
padname + 1,
a[0], a[1]);
}
if (tmpstr) {
name = SvPV_const(tmpstr, len);
name_utf8 = SvUTF8(tmpstr);
sv_2mortal(tmpstr);
}
}
if (!name) {
name = "__ANONIO__";
len = 10;
want_dollar = FALSE;
}
op_lvalue(kid, type);
}
if (name) {
SV *namesv;
targ = pad_alloc(OP_RV2GV, SVf_READONLY);
namesv = PAD_SVl(targ);
if (want_dollar && *name != '$')
sv_setpvs(namesv, "$");
else
SvPVCLEAR(namesv);
sv_catpvn(namesv, name, len);
if ( name_utf8 ) SvUTF8_on(namesv);
}
}
scalar(kid);
kid = S_op_sibling_newUNOP(aTHX_ o, prev_kid,
OP_RV2GV, flags);
kid->op_targ = targ;
kid->op_private |= priv;
}
}
scalar(kid);
break;
case OA_SCALARREF:
if ((type == OP_UNDEF || type == OP_POS)
&& numargs == 1 && !(oa >> 4)
&& kid->op_type == OP_LIST)
return too_many_arguments_pv(o,PL_op_desc[type], 0);
op_lvalue(scalar(kid), type);
break;
}
oa >>= 4;
prev_kid = kid;
kid = OpSIBLING(kid);
}
/* FIXME - should the numargs or-ing move after the too many
* arguments check? */
o->op_private |= numargs;
if (kid)
return too_many_arguments_pv(o,OP_DESC(o), 0);
listkids(o);
}
else if (PL_opargs[type] & OA_DEFGV) {
/* Ordering of these two is important to keep f_map.t passing. */
op_free(o);
return newUNOP(type, 0, newDEFSVOP());
}
if (oa) {
while (oa & OA_OPTIONAL)
oa >>= 4;
if (oa && oa != OA_LIST)
return too_few_arguments_pv(o,OP_DESC(o), 0);
}
return o;
}
OP *
Perl_ck_glob(pTHX_ OP *o)
{
GV *gv;
PERL_ARGS_ASSERT_CK_GLOB;
o = ck_fun(o);
if ((o->op_flags & OPf_KIDS) && !OpHAS_SIBLING(cLISTOPo->op_first))
op_append_elem(OP_GLOB, o, newDEFSVOP()); /* glob() => glob($_) */
if (!(o->op_flags & OPf_SPECIAL) && (gv = gv_override("glob", 4)))
{
/* convert
* glob
* \ null - const(wildcard)
* into
* null
* \ enter
* \ list
* \ mark - glob - rv2cv
* | \ gv(CORE::GLOBAL::glob)
* |
* \ null - const(wildcard)
*/
o->op_flags |= OPf_SPECIAL;
o->op_targ = pad_alloc(OP_GLOB, SVs_PADTMP);
o = S_new_entersubop(aTHX_ gv, o);
o = newUNOP(OP_NULL, 0, o);
o->op_targ = OP_GLOB; /* hint at what it used to be: eg in newWHILEOP */
return o;
}
else o->op_flags &= ~OPf_SPECIAL;
#if !defined(PERL_EXTERNAL_GLOB)
if (!PL_globhook) {
ENTER;
Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT,
newSVpvs("File::Glob"), NULL, NULL, NULL);
LEAVE;
}
#endif /* !PERL_EXTERNAL_GLOB */
gv = (GV *)newSV(0);
gv_init(gv, 0, "", 0, 0);
gv_IOadd(gv);
op_append_elem(OP_GLOB, o, newGVOP(OP_GV, 0, gv));
SvREFCNT_dec_NN(gv); /* newGVOP increased it */
scalarkids(o);
return o;
}
OP *
Perl_ck_grep(pTHX_ OP *o)
{
LOGOP *gwop;
OP *kid;
const OPCODE type = o->op_type == OP_GREPSTART ? OP_GREPWHILE : OP_MAPWHILE;
PERL_ARGS_ASSERT_CK_GREP;
/* don't allocate gwop here, as we may leak it if PL_parser->error_count > 0 */
if (o->op_flags & OPf_STACKED) {
kid = cUNOPx(OpSIBLING(cLISTOPo->op_first))->op_first;
if (kid->op_type != OP_SCOPE && kid->op_type != OP_LEAVE)
return no_fh_allowed(o);
o->op_flags &= ~OPf_STACKED;
}
kid = OpSIBLING(cLISTOPo->op_first);
if (type == OP_MAPWHILE)
list(kid);
else
scalar(kid);
o = ck_fun(o);
if (PL_parser && PL_parser->error_count)
return o;
kid = OpSIBLING(cLISTOPo->op_first);
if (kid->op_type != OP_NULL)
Perl_croak(aTHX_ "panic: ck_grep, type=%u", (unsigned) kid->op_type);
kid = kUNOP->op_first;
gwop = alloc_LOGOP(type, o, LINKLIST(kid));
kid->op_next = (OP*)gwop;
o->op_private = gwop->op_private = 0;
gwop->op_targ = pad_alloc(type, SVs_PADTMP);
kid = OpSIBLING(cLISTOPo->op_first);
for (kid = OpSIBLING(kid); kid; kid = OpSIBLING(kid))
op_lvalue(kid, OP_GREPSTART);
return (OP*)gwop;
}
OP *
Perl_ck_index(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_INDEX;
if (o->op_flags & OPf_KIDS) {
OP *kid = OpSIBLING(cLISTOPo->op_first); /* get past pushmark */
if (kid)
kid = OpSIBLING(kid); /* get past "big" */
if (kid && kid->op_type == OP_CONST) {
const bool save_taint = TAINT_get;
SV *sv = kSVOP->op_sv;
if ( (!SvPOK(sv) || SvNIOKp(sv) || isREGEXP(sv))
&& SvOK(sv) && !SvROK(sv))
{
sv = newSV(0);
sv_copypv(sv, kSVOP->op_sv);
SvREFCNT_dec_NN(kSVOP->op_sv);
kSVOP->op_sv = sv;
}
if (SvOK(sv)) fbm_compile(sv, 0);
TAINT_set(save_taint);
#ifdef NO_TAINT_SUPPORT
PERL_UNUSED_VAR(save_taint);
#endif
}
}
return ck_fun(o);
}
OP *
Perl_ck_lfun(pTHX_ OP *o)
{
const OPCODE type = o->op_type;
PERL_ARGS_ASSERT_CK_LFUN;
return modkids(ck_fun(o), type);
}
OP *
Perl_ck_defined(pTHX_ OP *o) /* 19990527 MJD */
{
PERL_ARGS_ASSERT_CK_DEFINED;
if ((o->op_flags & OPf_KIDS)) {
switch (cUNOPo->op_first->op_type) {
case OP_RV2AV:
case OP_PADAV:
Perl_croak(aTHX_ "Can't use 'defined(@array)'"
" (Maybe you should just omit the defined()?)");
NOT_REACHED; /* NOTREACHED */
break;
case OP_RV2HV:
case OP_PADHV:
Perl_croak(aTHX_ "Can't use 'defined(%%hash)'"
" (Maybe you should just omit the defined()?)");
NOT_REACHED; /* NOTREACHED */
break;
default:
/* no warning */
break;
}
}
return ck_rfun(o);
}
OP *
Perl_ck_readline(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_READLINE;
if (o->op_flags & OPf_KIDS) {
OP *kid = cLISTOPo->op_first;
if (kid->op_type == OP_RV2GV) kid->op_private |= OPpALLOW_FAKE;
scalar(kid);
}
else {
OP * const newop
= newUNOP(OP_READLINE, 0, newGVOP(OP_GV, 0, PL_argvgv));
op_free(o);
return newop;
}
return o;
}
OP *
Perl_ck_rfun(pTHX_ OP *o)
{
const OPCODE type = o->op_type;
PERL_ARGS_ASSERT_CK_RFUN;
return refkids(ck_fun(o), type);
}
OP *
Perl_ck_listiob(pTHX_ OP *o)
{
OP *kid;
PERL_ARGS_ASSERT_CK_LISTIOB;
kid = cLISTOPo->op_first;
if (!kid) {
o = force_list(o, 1);
kid = cLISTOPo->op_first;
}
if (kid->op_type == OP_PUSHMARK)
kid = OpSIBLING(kid);
if (kid && o->op_flags & OPf_STACKED)
kid = OpSIBLING(kid);
else if (kid && !OpHAS_SIBLING(kid)) { /* print HANDLE; */
if (kid->op_type == OP_CONST && kid->op_private & OPpCONST_BARE
&& !kid->op_folded) {
o->op_flags |= OPf_STACKED; /* make it a filehandle */
scalar(kid);
/* replace old const op with new OP_RV2GV parent */
kid = S_op_sibling_newUNOP(aTHX_ o, cLISTOPo->op_first,
OP_RV2GV, OPf_REF);
kid = OpSIBLING(kid);
}
}
if (!kid)
op_append_elem(o->op_type, o, newDEFSVOP());
if (o->op_type == OP_PRTF) return modkids(listkids(o), OP_PRTF);
return listkids(o);
}
OP *
Perl_ck_smartmatch(pTHX_ OP *o)
{
dVAR;
PERL_ARGS_ASSERT_CK_SMARTMATCH;
if (0 == (o->op_flags & OPf_SPECIAL)) {
OP *first = cBINOPo->op_first;
OP *second = OpSIBLING(first);
/* Implicitly take a reference to an array or hash */
/* remove the original two siblings, then add back the
* (possibly different) first and second sibs.
*/
op_sibling_splice(o, NULL, 1, NULL);
op_sibling_splice(o, NULL, 1, NULL);
first = ref_array_or_hash(first);
second = ref_array_or_hash(second);
op_sibling_splice(o, NULL, 0, second);
op_sibling_splice(o, NULL, 0, first);
/* Implicitly take a reference to a regular expression */
if (first->op_type == OP_MATCH && !(first->op_flags & OPf_STACKED)) {
OpTYPE_set(first, OP_QR);
}
if (second->op_type == OP_MATCH && !(second->op_flags & OPf_STACKED)) {
OpTYPE_set(second, OP_QR);
}
}
return o;
}
static OP *
S_maybe_targlex(pTHX_ OP *o)
{
OP * const kid = cLISTOPo->op_first;
/* has a disposable target? */
if ((PL_opargs[kid->op_type] & OA_TARGLEX)
&& !(kid->op_flags & OPf_STACKED)
/* Cannot steal the second time! */
&& !(kid->op_private & OPpTARGET_MY)
)
{
OP * const kkid = OpSIBLING(kid);
/* Can just relocate the target. */
if (kkid && kkid->op_type == OP_PADSV
&& (!(kkid->op_private & OPpLVAL_INTRO)
|| kkid->op_private & OPpPAD_STATE))
{
kid->op_targ = kkid->op_targ;
kkid->op_targ = 0;
/* Now we do not need PADSV and SASSIGN.
* Detach kid and free the rest. */
op_sibling_splice(o, NULL, 1, NULL);
op_free(o);
kid->op_private |= OPpTARGET_MY; /* Used for context settings */
return kid;
}
}
return o;
}
OP *
Perl_ck_sassign(pTHX_ OP *o)
{
dVAR;
OP * const kid = cBINOPo->op_first;
PERL_ARGS_ASSERT_CK_SASSIGN;
if (OpHAS_SIBLING(kid)) {
OP *kkid = OpSIBLING(kid);
/* For state variable assignment with attributes, kkid is a list op
whose op_last is a padsv. */
if ((kkid->op_type == OP_PADSV ||
(OP_TYPE_IS_OR_WAS(kkid, OP_LIST) &&
(kkid = cLISTOPx(kkid)->op_last)->op_type == OP_PADSV
)
)
&& (kkid->op_private & (OPpLVAL_INTRO|OPpPAD_STATE))
== (OPpLVAL_INTRO|OPpPAD_STATE)) {
return S_newONCEOP(aTHX_ o, kkid);
}
}
return S_maybe_targlex(aTHX_ o);
}
OP *
Perl_ck_match(pTHX_ OP *o)
{
PERL_UNUSED_CONTEXT;
PERL_ARGS_ASSERT_CK_MATCH;
return o;
}
OP *
Perl_ck_method(pTHX_ OP *o)
{
SV *sv, *methsv, *rclass;
const char* method;
char* compatptr;
int utf8;
STRLEN len, nsplit = 0, i;
OP* new_op;
OP * const kid = cUNOPo->op_first;
PERL_ARGS_ASSERT_CK_METHOD;
if (kid->op_type != OP_CONST) return o;
sv = kSVOP->op_sv;
/* replace ' with :: */
while ((compatptr = (char *) memchr(SvPVX(sv), '\'',
SvEND(sv) - SvPVX(sv) )))
{
*compatptr = ':';
sv_insert(sv, compatptr - SvPVX_const(sv), 0, ":", 1);
}
method = SvPVX_const(sv);
len = SvCUR(sv);
utf8 = SvUTF8(sv) ? -1 : 1;
for (i = len - 1; i > 0; --i) if (method[i] == ':') {
nsplit = i+1;
break;
}
methsv = newSVpvn_share(method+nsplit, utf8*(len - nsplit), 0);
if (!nsplit) { /* $proto->method() */
op_free(o);
return newMETHOP_named(OP_METHOD_NAMED, 0, methsv);
}
if (memEQs(method, nsplit, "SUPER::")) { /* $proto->SUPER::method() */
op_free(o);
return newMETHOP_named(OP_METHOD_SUPER, 0, methsv);
}
/* $proto->MyClass::method() and $proto->MyClass::SUPER::method() */
if (nsplit >= 9 && strBEGINs(method+nsplit-9, "::SUPER::")) {
rclass = newSVpvn_share(method, utf8*(nsplit-9), 0);
new_op = newMETHOP_named(OP_METHOD_REDIR_SUPER, 0, methsv);
} else {
rclass = newSVpvn_share(method, utf8*(nsplit-2), 0);
new_op = newMETHOP_named(OP_METHOD_REDIR, 0, methsv);
}
#ifdef USE_ITHREADS
op_relocate_sv(&rclass, &cMETHOPx(new_op)->op_rclass_targ);
#else
cMETHOPx(new_op)->op_rclass_sv = rclass;
#endif
op_free(o);
return new_op;
}
OP *
Perl_ck_null(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_NULL;
PERL_UNUSED_CONTEXT;
return o;
}
OP *
Perl_ck_open(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_OPEN;
S_io_hints(aTHX_ o);
{
/* In case of three-arg dup open remove strictness
* from the last arg if it is a bareword. */
OP * const first = cLISTOPx(o)->op_first; /* The pushmark. */
OP * const last = cLISTOPx(o)->op_last; /* The bareword. */
OP *oa;
const char *mode;
if ((last->op_type == OP_CONST) && /* The bareword. */
(last->op_private & OPpCONST_BARE) &&
(last->op_private & OPpCONST_STRICT) &&
(oa = OpSIBLING(first)) && /* The fh. */
(oa = OpSIBLING(oa)) && /* The mode. */
(oa->op_type == OP_CONST) &&
SvPOK(((SVOP*)oa)->op_sv) &&
(mode = SvPVX_const(((SVOP*)oa)->op_sv)) &&
mode[0] == '>' && mode[1] == '&' && /* A dup open. */
(last == OpSIBLING(oa))) /* The bareword. */
last->op_private &= ~OPpCONST_STRICT;
}
return ck_fun(o);
}
OP *
Perl_ck_prototype(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_PROTOTYPE;
if (!(o->op_flags & OPf_KIDS)) {
op_free(o);
return newUNOP(OP_PROTOTYPE, 0, newDEFSVOP());
}
return o;
}
OP *
Perl_ck_refassign(pTHX_ OP *o)
{
OP * const right = cLISTOPo->op_first;
OP * const left = OpSIBLING(right);
OP *varop = cUNOPx(cUNOPx(left)->op_first)->op_first;
bool stacked = 0;
PERL_ARGS_ASSERT_CK_REFASSIGN;
assert (left);
assert (left->op_type == OP_SREFGEN);
o->op_private = 0;
/* we use OPpPAD_STATE in refassign to mean either of those things,
* and the code assumes the two flags occupy the same bit position
* in the various ops below */
assert(OPpPAD_STATE == OPpOUR_INTRO);
switch (varop->op_type) {
case OP_PADAV:
o->op_private |= OPpLVREF_AV;
goto settarg;
case OP_PADHV:
o->op_private |= OPpLVREF_HV;
/* FALLTHROUGH */
case OP_PADSV:
settarg:
o->op_private |= (varop->op_private & (OPpLVAL_INTRO|OPpPAD_STATE));
o->op_targ = varop->op_targ;
varop->op_targ = 0;
PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
break;
case OP_RV2AV:
o->op_private |= OPpLVREF_AV;
goto checkgv;
NOT_REACHED; /* NOTREACHED */
case OP_RV2HV:
o->op_private |= OPpLVREF_HV;
/* FALLTHROUGH */
case OP_RV2SV:
checkgv:
o->op_private |= (varop->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO));
if (cUNOPx(varop)->op_first->op_type != OP_GV) goto bad;
detach_and_stack:
/* Point varop to its GV kid, detached. */
varop = op_sibling_splice(varop, NULL, -1, NULL);
stacked = TRUE;
break;
case OP_RV2CV: {
OP * const kidparent =
OpSIBLING(cUNOPx(cUNOPx(varop)->op_first)->op_first);
OP * const kid = cUNOPx(kidparent)->op_first;
o->op_private |= OPpLVREF_CV;
if (kid->op_type == OP_GV) {
SV *sv = (SV*)cGVOPx_gv(kid);
varop = kidparent;
if (SvROK(sv) && SvTYPE(SvRV(sv)) == SVt_PVCV) {
/* a CVREF here confuses pp_refassign, so make sure
it gets a GV */
CV *const cv = (CV*)SvRV(sv);
SV *name_sv = sv_2mortal(newSVhek(CvNAME_HEK(cv)));
(void)gv_init_sv((GV*)sv, CvSTASH(cv), name_sv, 0);
assert(SvTYPE(sv) == SVt_PVGV);
}
goto detach_and_stack;
}
if (kid->op_type != OP_PADCV) goto bad;
o->op_targ = kid->op_targ;
kid->op_targ = 0;
break;
}
case OP_AELEM:
case OP_HELEM:
o->op_private |= (varop->op_private & OPpLVAL_INTRO);
o->op_private |= OPpLVREF_ELEM;
op_null(varop);
stacked = TRUE;
/* Detach varop. */
op_sibling_splice(cUNOPx(left)->op_first, NULL, -1, NULL);
break;
default:
bad:
/* diag_listed_as: Can't modify reference to %s in %s assignment */
yyerror(Perl_form(aTHX_ "Can't modify reference to %s in scalar "
"assignment",
OP_DESC(varop)));
return o;
}
if (!FEATURE_REFALIASING_IS_ENABLED)
Perl_croak(aTHX_
"Experimental aliasing via reference not enabled");
Perl_ck_warner_d(aTHX_
packWARN(WARN_EXPERIMENTAL__REFALIASING),
"Aliasing via reference is experimental");
if (stacked) {
o->op_flags |= OPf_STACKED;
op_sibling_splice(o, right, 1, varop);
}
else {
o->op_flags &=~ OPf_STACKED;
op_sibling_splice(o, right, 1, NULL);
}
op_free(left);
return o;
}
OP *
Perl_ck_repeat(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_REPEAT;
if (cBINOPo->op_first->op_flags & OPf_PARENS) {
OP* kids;
o->op_private |= OPpREPEAT_DOLIST;
kids = op_sibling_splice(o, NULL, 1, NULL); /* detach first kid */
kids = force_list(kids, 1); /* promote it to a list */
op_sibling_splice(o, NULL, 0, kids); /* and add back */
}
else
scalar(o);
return o;
}
OP *
Perl_ck_require(pTHX_ OP *o)
{
GV* gv;
PERL_ARGS_ASSERT_CK_REQUIRE;
if (o->op_flags & OPf_KIDS) { /* Shall we supply missing .pm? */
SVOP * const kid = (SVOP*)cUNOPo->op_first;
U32 hash;
char *s;
STRLEN len;
if (kid->op_type == OP_CONST) {
SV * const sv = kid->op_sv;
U32 const was_readonly = SvREADONLY(sv);
if (kid->op_private & OPpCONST_BARE) {
dVAR;
const char *end;
HEK *hek;
if (was_readonly) {
SvREADONLY_off(sv);
}
if (SvIsCOW(sv)) sv_force_normal_flags(sv, 0);
s = SvPVX(sv);
len = SvCUR(sv);
end = s + len;
/* treat ::foo::bar as foo::bar */
if (len >= 2 && s[0] == ':' && s[1] == ':')
DIE(aTHX_ "Bareword in require must not start with a double-colon: \"%s\"\n", s);
if (s == end)
DIE(aTHX_ "Bareword in require maps to empty filename");
for (; s < end; s++) {
if (*s == ':' && s[1] == ':') {
*s = '/';
Move(s+2, s+1, end - s - 1, char);
--end;
}
}
SvEND_set(sv, end);
sv_catpvs(sv, ".pm");
PERL_HASH(hash, SvPVX(sv), SvCUR(sv));
hek = share_hek(SvPVX(sv),
(SSize_t)SvCUR(sv) * (SvUTF8(sv) ? -1 : 1),
hash);
sv_sethek(sv, hek);
unshare_hek(hek);
SvFLAGS(sv) |= was_readonly;
}
else if (SvPOK(sv) && !SvNIOK(sv) && !SvGMAGICAL(sv)
&& !SvVOK(sv)) {
s = SvPV(sv, len);
if (SvREFCNT(sv) > 1) {
kid->op_sv = newSVpvn_share(
s, SvUTF8(sv) ? -(SSize_t)len : (SSize_t)len, 0);
SvREFCNT_dec_NN(sv);
}
else {
dVAR;
HEK *hek;
if (was_readonly) SvREADONLY_off(sv);
PERL_HASH(hash, s, len);
hek = share_hek(s,
SvUTF8(sv) ? -(SSize_t)len : (SSize_t)len,
hash);
sv_sethek(sv, hek);
unshare_hek(hek);
SvFLAGS(sv) |= was_readonly;
}
}
}
}
if (!(o->op_flags & OPf_SPECIAL) /* Wasn't written as CORE::require */
/* handle override, if any */
&& (gv = gv_override("require", 7))) {
OP *kid, *newop;
if (o->op_flags & OPf_KIDS) {
kid = cUNOPo->op_first;
op_sibling_splice(o, NULL, -1, NULL);
}
else {
kid = newDEFSVOP();
}
op_free(o);
newop = S_new_entersubop(aTHX_ gv, kid);
return newop;
}
return ck_fun(o);
}
OP *
Perl_ck_return(pTHX_ OP *o)
{
OP *kid;
PERL_ARGS_ASSERT_CK_RETURN;
kid = OpSIBLING(cLISTOPo->op_first);
if (PL_compcv && CvLVALUE(PL_compcv)) {
for (; kid; kid = OpSIBLING(kid))
op_lvalue(kid, OP_LEAVESUBLV);
}
return o;
}
OP *
Perl_ck_select(pTHX_ OP *o)
{
dVAR;
OP* kid;
PERL_ARGS_ASSERT_CK_SELECT;
if (o->op_flags & OPf_KIDS) {
kid = OpSIBLING(cLISTOPo->op_first); /* get past pushmark */
if (kid && OpHAS_SIBLING(kid)) {
OpTYPE_set(o, OP_SSELECT);
o = ck_fun(o);
return fold_constants(op_integerize(op_std_init(o)));
}
}
o = ck_fun(o);
kid = OpSIBLING(cLISTOPo->op_first); /* get past pushmark */
if (kid && kid->op_type == OP_RV2GV)
kid->op_private &= ~HINT_STRICT_REFS;
return o;
}
OP *
Perl_ck_shift(pTHX_ OP *o)
{
const I32 type = o->op_type;
PERL_ARGS_ASSERT_CK_SHIFT;
if (!(o->op_flags & OPf_KIDS)) {
OP *argop;
if (!CvUNIQUE(PL_compcv)) {
o->op_flags |= OPf_SPECIAL;
return o;
}
argop = newUNOP(OP_RV2AV, 0, scalar(newGVOP(OP_GV, 0, PL_argvgv)));
op_free(o);
return newUNOP(type, 0, scalar(argop));
}
return scalar(ck_fun(o));
}
OP *
Perl_ck_sort(pTHX_ OP *o)
{
OP *firstkid;
OP *kid;
HV * const hinthv =
PL_hints & HINT_LOCALIZE_HH ? GvHV(PL_hintgv) : NULL;
U8 stacked;
PERL_ARGS_ASSERT_CK_SORT;
if (hinthv) {
SV ** const svp = hv_fetchs(hinthv, "sort", FALSE);
if (svp) {
const I32 sorthints = (I32)SvIV(*svp);
if ((sorthints & HINT_SORT_STABLE) != 0)
o->op_private |= OPpSORT_STABLE;
if ((sorthints & HINT_SORT_UNSTABLE) != 0)
o->op_private |= OPpSORT_UNSTABLE;
}
}
if (o->op_flags & OPf_STACKED)
simplify_sort(o);
firstkid = OpSIBLING(cLISTOPo->op_first); /* get past pushmark */
if ((stacked = o->op_flags & OPf_STACKED)) { /* may have been cleared */
OP *kid = cUNOPx(firstkid)->op_first; /* get past null */
/* if the first arg is a code block, process it and mark sort as
* OPf_SPECIAL */
if (kid->op_type == OP_SCOPE || kid->op_type == OP_LEAVE) {
LINKLIST(kid);
if (kid->op_type == OP_LEAVE)
op_null(kid); /* wipe out leave */
/* Prevent execution from escaping out of the sort block. */
kid->op_next = 0;
/* provide scalar context for comparison function/block */
kid = scalar(firstkid);
kid->op_next = kid;
o->op_flags |= OPf_SPECIAL;
}
else if (kid->op_type == OP_CONST
&& kid->op_private & OPpCONST_BARE) {
char tmpbuf[256];
STRLEN len;
PADOFFSET off;
const char * const name = SvPV(kSVOP_sv, len);
*tmpbuf = '&';
assert (len < 256);
Copy(name, tmpbuf+1, len, char);
off = pad_findmy_pvn(tmpbuf, len+1, 0);
if (off != NOT_IN_PAD) {
if (PAD_COMPNAME_FLAGS_isOUR(off)) {
SV * const fq =
newSVhek(HvNAME_HEK(PAD_COMPNAME_OURSTASH(off)));
sv_catpvs(fq, "::");
sv_catsv(fq, kSVOP_sv);
SvREFCNT_dec_NN(kSVOP_sv);
kSVOP->op_sv = fq;
}
else {
OP * const padop = newOP(OP_PADCV, 0);
padop->op_targ = off;
/* replace the const op with the pad op */
op_sibling_splice(firstkid, NULL, 1, padop);
op_free(kid);
}
}
}
firstkid = OpSIBLING(firstkid);
}
for (kid = firstkid; kid; kid = OpSIBLING(kid)) {
/* provide list context for arguments */
list(kid);
if (stacked)
op_lvalue(kid, OP_GREPSTART);
}
return o;
}
/* for sort { X } ..., where X is one of
* $a <=> $b, $b <=> $a, $a cmp $b, $b cmp $a
* elide the second child of the sort (the one containing X),
* and set these flags as appropriate
OPpSORT_NUMERIC;
OPpSORT_INTEGER;
OPpSORT_DESCEND;
* Also, check and warn on lexical $a, $b.
*/
STATIC void
S_simplify_sort(pTHX_ OP *o)
{
OP *kid = OpSIBLING(cLISTOPo->op_first); /* get past pushmark */
OP *k;
int descending;
GV *gv;
const char *gvname;
bool have_scopeop;
PERL_ARGS_ASSERT_SIMPLIFY_SORT;
kid = kUNOP->op_first; /* get past null */
if (!(have_scopeop = kid->op_type == OP_SCOPE)
&& kid->op_type != OP_LEAVE)
return;
kid = kLISTOP->op_last; /* get past scope */
switch(kid->op_type) {
case OP_NCMP:
case OP_I_NCMP:
case OP_SCMP:
if (!have_scopeop) goto padkids;
break;
default:
return;
}
k = kid; /* remember this node*/
if (kBINOP->op_first->op_type != OP_RV2SV
|| kBINOP->op_last ->op_type != OP_RV2SV)
{
/*
Warn about my($a) or my($b) in a sort block, *if* $a or $b is
then used in a comparison. This catches most, but not
all cases. For instance, it catches
sort { my($a); $a <=> $b }
but not
sort { my($a); $a < $b ? -1 : $a == $b ? 0 : 1; }
(although why you'd do that is anyone's guess).
*/
padkids:
if (!ckWARN(WARN_SYNTAX)) return;
kid = kBINOP->op_first;
do {
if (kid->op_type == OP_PADSV) {
PADNAME * const name = PAD_COMPNAME(kid->op_targ);
if (PadnameLEN(name) == 2 && *PadnamePV(name) == '$'
&& ( PadnamePV(name)[1] == 'a'
|| PadnamePV(name)[1] == 'b' ))
/* diag_listed_as: "my %s" used in sort comparison */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"\"%s %s\" used in sort comparison",
PadnameIsSTATE(name)
? "state"
: "my",
PadnamePV(name));
}
} while ((kid = OpSIBLING(kid)));
return;
}
kid = kBINOP->op_first; /* get past cmp */
if (kUNOP->op_first->op_type != OP_GV)
return;
kid = kUNOP->op_first; /* get past rv2sv */
gv = kGVOP_gv;
if (GvSTASH(gv) != PL_curstash)
return;
gvname = GvNAME(gv);
if (*gvname == 'a' && gvname[1] == '\0')
descending = 0;
else if (*gvname == 'b' && gvname[1] == '\0')
descending = 1;
else
return;
kid = k; /* back to cmp */
/* already checked above that it is rv2sv */
kid = kBINOP->op_last; /* down to 2nd arg */
if (kUNOP->op_first->op_type != OP_GV)
return;
kid = kUNOP->op_first; /* get past rv2sv */
gv = kGVOP_gv;
if (GvSTASH(gv) != PL_curstash)
return;
gvname = GvNAME(gv);
if ( descending
? !(*gvname == 'a' && gvname[1] == '\0')
: !(*gvname == 'b' && gvname[1] == '\0'))
return;
o->op_flags &= ~(OPf_STACKED | OPf_SPECIAL);
if (descending)
o->op_private |= OPpSORT_DESCEND;
if (k->op_type == OP_NCMP)
o->op_private |= OPpSORT_NUMERIC;
if (k->op_type == OP_I_NCMP)
o->op_private |= OPpSORT_NUMERIC | OPpSORT_INTEGER;
kid = OpSIBLING(cLISTOPo->op_first);
/* cut out and delete old block (second sibling) */
op_sibling_splice(o, cLISTOPo->op_first, 1, NULL);
op_free(kid);
}
OP *
Perl_ck_split(pTHX_ OP *o)
{
dVAR;
OP *kid;
OP *sibs;
PERL_ARGS_ASSERT_CK_SPLIT;
assert(o->op_type == OP_LIST);
if (o->op_flags & OPf_STACKED)
return no_fh_allowed(o);
kid = cLISTOPo->op_first;
/* delete leading NULL node, then add a CONST if no other nodes */
assert(kid->op_type == OP_NULL);
op_sibling_splice(o, NULL, 1,
OpHAS_SIBLING(kid) ? NULL : newSVOP(OP_CONST, 0, newSVpvs(" ")));
op_free(kid);
kid = cLISTOPo->op_first;
if (kid->op_type != OP_MATCH || kid->op_flags & OPf_STACKED) {
/* remove match expression, and replace with new optree with
* a match op at its head */
op_sibling_splice(o, NULL, 1, NULL);
/* pmruntime will handle split " " behavior with flag==2 */
kid = pmruntime(newPMOP(OP_MATCH, 0), kid, NULL, 2, 0);
op_sibling_splice(o, NULL, 0, kid);
}
assert(kid->op_type == OP_MATCH || kid->op_type == OP_SPLIT);
if (((PMOP *)kid)->op_pmflags & PMf_GLOBAL) {
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
"Use of /g modifier is meaningless in split");
}
/* eliminate the split op, and move the match op (plus any children)
* into its place, then convert the match op into a split op. i.e.
*
* SPLIT MATCH SPLIT(ex-MATCH)
* | | |
* MATCH - A - B - C => R - A - B - C => R - A - B - C
* | | |
* R X - Y X - Y
* |
* X - Y
*
* (R, if it exists, will be a regcomp op)
*/
op_sibling_splice(o, NULL, 1, NULL); /* detach match op from o */
sibs = op_sibling_splice(o, NULL, -1, NULL); /* detach any other sibs */
op_sibling_splice(kid, cLISTOPx(kid)->op_last, 0, sibs); /* and reattach */
OpTYPE_set(kid, OP_SPLIT);
kid->op_flags = (o->op_flags | (kid->op_flags & OPf_KIDS));
kid->op_private = o->op_private;
op_free(o);
o = kid;
kid = sibs; /* kid is now the string arg of the split */
if (!kid) {
kid = newDEFSVOP();
op_append_elem(OP_SPLIT, o, kid);
}
scalar(kid);
kid = OpSIBLING(kid);
if (!kid) {
kid = newSVOP(OP_CONST, 0, newSViv(0));
op_append_elem(OP_SPLIT, o, kid);
o->op_private |= OPpSPLIT_IMPLIM;
}
scalar(kid);
if (OpHAS_SIBLING(kid))
return too_many_arguments_pv(o,OP_DESC(o), 0);
return o;
}
OP *
Perl_ck_stringify(pTHX_ OP *o)
{
OP * const kid = OpSIBLING(cUNOPo->op_first);
PERL_ARGS_ASSERT_CK_STRINGIFY;
if (( kid->op_type == OP_JOIN || kid->op_type == OP_QUOTEMETA
|| kid->op_type == OP_LC || kid->op_type == OP_LCFIRST
|| kid->op_type == OP_UC || kid->op_type == OP_UCFIRST)
&& !OpHAS_SIBLING(kid)) /* syntax errs can leave extra children */
{
op_sibling_splice(o, cUNOPo->op_first, -1, NULL);
op_free(o);
return kid;
}
return ck_fun(o);
}
OP *
Perl_ck_join(pTHX_ OP *o)
{
OP * const kid = OpSIBLING(cLISTOPo->op_first);
PERL_ARGS_ASSERT_CK_JOIN;
if (kid && kid->op_type == OP_MATCH) {
if (ckWARN(WARN_SYNTAX)) {
const REGEXP *re = PM_GETRE(kPMOP);
const SV *msg = re
? newSVpvn_flags( RX_PRECOMP_const(re), RX_PRELEN(re),
SVs_TEMP | ( RX_UTF8(re) ? SVf_UTF8 : 0 ) )
: newSVpvs_flags( "STRING", SVs_TEMP );
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"/%" SVf "/ should probably be written as \"%" SVf "\"",
SVfARG(msg), SVfARG(msg));
}
}
if (kid
&& (kid->op_type == OP_CONST /* an innocent, unsuspicious separator */
|| (kid->op_type == OP_PADSV && !(kid->op_private & OPpLVAL_INTRO))
|| ( kid->op_type==OP_RV2SV && kUNOP->op_first->op_type == OP_GV
&& !(kid->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)))))
{
const OP * const bairn = OpSIBLING(kid); /* the list */
if (bairn && !OpHAS_SIBLING(bairn) /* single-item list */
&& OP_GIMME(bairn,0) == G_SCALAR)
{
OP * const ret = op_convert_list(OP_STRINGIFY, OPf_FOLDED,
op_sibling_splice(o, kid, 1, NULL));
op_free(o);
return ret;
}
}
return ck_fun(o);
}
/*
=for apidoc rv2cv_op_cv
Examines an op, which is expected to identify a subroutine at runtime,
and attempts to determine at compile time which subroutine it identifies.
This is normally used during Perl compilation to determine whether
a prototype can be applied to a function call. C<cvop> is the op
being considered, normally an C<rv2cv> op. A pointer to the identified
subroutine is returned, if it could be determined statically, and a null
pointer is returned if it was not possible to determine statically.
Currently, the subroutine can be identified statically if the RV that the
C<rv2cv> is to operate on is provided by a suitable C<gv> or C<const> op.
A C<gv> op is suitable if the GV's CV slot is populated. A C<const> op is
suitable if the constant value must be an RV pointing to a CV. Details of
this process may change in future versions of Perl. If the C<rv2cv> op
has the C<OPpENTERSUB_AMPER> flag set then no attempt is made to identify
the subroutine statically: this flag is used to suppress compile-time
magic on a subroutine call, forcing it to use default runtime behaviour.
If C<flags> has the bit C<RV2CVOPCV_MARK_EARLY> set, then the handling
of a GV reference is modified. If a GV was examined and its CV slot was
found to be empty, then the C<gv> op has the C<OPpEARLY_CV> flag set.
If the op is not optimised away, and the CV slot is later populated with
a subroutine having a prototype, that flag eventually triggers the warning
"called too early to check prototype".
If C<flags> has the bit C<RV2CVOPCV_RETURN_NAME_GV> set, then instead
of returning a pointer to the subroutine it returns a pointer to the
GV giving the most appropriate name for the subroutine in this context.
Normally this is just the C<CvGV> of the subroutine, but for an anonymous
(C<CvANON>) subroutine that is referenced through a GV it will be the
referencing GV. The resulting C<GV*> is cast to C<CV*> to be returned.
A null pointer is returned as usual if there is no statically-determinable
subroutine.
=for apidoc Amnh||OPpEARLY_CV
=for apidoc Amnh||OPpENTERSUB_AMPER
=for apidoc Amnh||RV2CVOPCV_MARK_EARLY
=for apidoc Amnh||RV2CVOPCV_RETURN_NAME_GV
=cut
*/
/* shared by toke.c:yylex */
CV *
Perl_find_lexical_cv(pTHX_ PADOFFSET off)
{
PADNAME *name = PAD_COMPNAME(off);
CV *compcv = PL_compcv;
while (PadnameOUTER(name)) {
assert(PARENT_PAD_INDEX(name));
compcv = CvOUTSIDE(compcv);
name = PadlistNAMESARRAY(CvPADLIST(compcv))
[off = PARENT_PAD_INDEX(name)];
}
assert(!PadnameIsOUR(name));
if (!PadnameIsSTATE(name) && PadnamePROTOCV(name)) {
return PadnamePROTOCV(name);
}
return (CV *)AvARRAY(PadlistARRAY(CvPADLIST(compcv))[1])[off];
}
CV *
Perl_rv2cv_op_cv(pTHX_ OP *cvop, U32 flags)
{
OP *rvop;
CV *cv;
GV *gv;
PERL_ARGS_ASSERT_RV2CV_OP_CV;
if (flags & ~RV2CVOPCV_FLAG_MASK)
Perl_croak(aTHX_ "panic: rv2cv_op_cv bad flags %x", (unsigned)flags);
if (cvop->op_type != OP_RV2CV)
return NULL;
if (cvop->op_private & OPpENTERSUB_AMPER)
return NULL;
if (!(cvop->op_flags & OPf_KIDS))
return NULL;
rvop = cUNOPx(cvop)->op_first;
switch (rvop->op_type) {
case OP_GV: {
gv = cGVOPx_gv(rvop);
if (!isGV(gv)) {
if (SvROK(gv) && SvTYPE(SvRV(gv)) == SVt_PVCV) {
cv = MUTABLE_CV(SvRV(gv));
gv = NULL;
break;
}
if (flags & RV2CVOPCV_RETURN_STUB)
return (CV *)gv;
else return NULL;
}
cv = GvCVu(gv);
if (!cv) {
if (flags & RV2CVOPCV_MARK_EARLY)
rvop->op_private |= OPpEARLY_CV;
return NULL;
}
} break;
case OP_CONST: {
SV *rv = cSVOPx_sv(rvop);
if (!SvROK(rv))
return NULL;
cv = (CV*)SvRV(rv);
gv = NULL;
} break;
case OP_PADCV: {
cv = find_lexical_cv(rvop->op_targ);
gv = NULL;
} break;
default: {
return NULL;
} NOT_REACHED; /* NOTREACHED */
}
if (SvTYPE((SV*)cv) != SVt_PVCV)
return NULL;
if (flags & RV2CVOPCV_RETURN_NAME_GV) {
if ((!CvANON(cv) && !CvLEXICAL(cv)) || !gv)
gv = CvGV(cv);
return (CV*)gv;
}
else if (flags & RV2CVOPCV_MAYBE_NAME_GV) {
if (CvLEXICAL(cv) || CvNAMED(cv))
return NULL;
if (!CvANON(cv) || !gv)
gv = CvGV(cv);
return (CV*)gv;
} else {
return cv;
}
}
/*
=for apidoc ck_entersub_args_list
Performs the default fixup of the arguments part of an C<entersub>
op tree. This consists of applying list context to each of the
argument ops. This is the standard treatment used on a call marked
with C<&>, or a method call, or a call through a subroutine reference,
or any other call where the callee can't be identified at compile time,
or a call where the callee has no prototype.
=cut
*/
OP *
Perl_ck_entersub_args_list(pTHX_ OP *entersubop)
{
OP *aop;
PERL_ARGS_ASSERT_CK_ENTERSUB_ARGS_LIST;
aop = cUNOPx(entersubop)->op_first;
if (!OpHAS_SIBLING(aop))
aop = cUNOPx(aop)->op_first;
for (aop = OpSIBLING(aop); OpHAS_SIBLING(aop); aop = OpSIBLING(aop)) {
/* skip the extra attributes->import() call implicitly added in
* something like foo(my $x : bar)
*/
if ( aop->op_type == OP_ENTERSUB
&& (aop->op_flags & OPf_WANT) == OPf_WANT_VOID
)
continue;
list(aop);
op_lvalue(aop, OP_ENTERSUB);
}
return entersubop;
}
/*
=for apidoc ck_entersub_args_proto
Performs the fixup of the arguments part of an C<entersub> op tree
based on a subroutine prototype. This makes various modifications to
the argument ops, from applying context up to inserting C<refgen> ops,
and checking the number and syntactic types of arguments, as directed by
the prototype. This is the standard treatment used on a subroutine call,
not marked with C<&>, where the callee can be identified at compile time
and has a prototype.
C<protosv> supplies the subroutine prototype to be applied to the call.
It may be a normal defined scalar, of which the string value will be used.
Alternatively, for convenience, it may be a subroutine object (a C<CV*>
that has been cast to C<SV*>) which has a prototype. The prototype
supplied, in whichever form, does not need to match the actual callee
referenced by the op tree.
If the argument ops disagree with the prototype, for example by having
an unacceptable number of arguments, a valid op tree is returned anyway.
The error is reflected in the parser state, normally resulting in a single
exception at the top level of parsing which covers all the compilation
errors that occurred. In the error message, the callee is referred to
by the name defined by the C<namegv> parameter.
=cut
*/
OP *
Perl_ck_entersub_args_proto(pTHX_ OP *entersubop, GV *namegv, SV *protosv)
{
STRLEN proto_len;
const char *proto, *proto_end;
OP *aop, *prev, *cvop, *parent;
int optional = 0;
I32 arg = 0;
I32 contextclass = 0;
const char *e = NULL;
PERL_ARGS_ASSERT_CK_ENTERSUB_ARGS_PROTO;
if (SvTYPE(protosv) == SVt_PVCV ? !SvPOK(protosv) : !SvOK(protosv))
Perl_croak(aTHX_ "panic: ck_entersub_args_proto CV with no proto, "
"flags=%lx", (unsigned long) SvFLAGS(protosv));
if (SvTYPE(protosv) == SVt_PVCV)
proto = CvPROTO(protosv), proto_len = CvPROTOLEN(protosv);
else proto = SvPV(protosv, proto_len);
proto = S_strip_spaces(aTHX_ proto, &proto_len);
proto_end = proto + proto_len;
parent = entersubop;
aop = cUNOPx(entersubop)->op_first;
if (!OpHAS_SIBLING(aop)) {
parent = aop;
aop = cUNOPx(aop)->op_first;
}
prev = aop;
aop = OpSIBLING(aop);
for (cvop = aop; OpHAS_SIBLING(cvop); cvop = OpSIBLING(cvop)) ;
while (aop != cvop) {
OP* o3 = aop;
if (proto >= proto_end)
{
SV * const namesv = cv_name((CV *)namegv, NULL, 0);
yyerror_pv(Perl_form(aTHX_ "Too many arguments for %" SVf,
SVfARG(namesv)), SvUTF8(namesv));
return entersubop;
}
switch (*proto) {
case ';':
optional = 1;
proto++;
continue;
case '_':
/* _ must be at the end */
if (proto[1] && !memCHRs(";@%", proto[1]))
goto oops;
/* FALLTHROUGH */
case '$':
proto++;
arg++;
scalar(aop);
break;
case '%':
case '@':
list(aop);
arg++;
break;
case '&':
proto++;
arg++;
if ( o3->op_type != OP_UNDEF
&& (o3->op_type != OP_SREFGEN
|| ( cUNOPx(cUNOPx(o3)->op_first)->op_first->op_type
!= OP_ANONCODE
&& cUNOPx(cUNOPx(o3)->op_first)->op_first->op_type
!= OP_RV2CV)))
bad_type_gv(arg, namegv, o3,
arg == 1 ? "block or sub {}" : "sub {}");
break;
case '*':
/* '*' allows any scalar type, including bareword */
proto++;
arg++;
if (o3->op_type == OP_RV2GV)
goto wrapref; /* autoconvert GLOB -> GLOBref */
else if (o3->op_type == OP_CONST)
o3->op_private &= ~OPpCONST_STRICT;
scalar(aop);
break;
case '+':
proto++;
arg++;
if (o3->op_type == OP_RV2AV ||
o3->op_type == OP_PADAV ||
o3->op_type == OP_RV2HV ||
o3->op_type == OP_PADHV
) {
goto wrapref;
}
scalar(aop);
break;
case '[': case ']':
goto oops;
case '\\':
proto++;
arg++;
again:
switch (*proto++) {
case '[':
if (contextclass++ == 0) {
e = (char *) memchr(proto, ']', proto_end - proto);
if (!e || e == proto)
goto oops;
}
else
goto oops;
goto again;
case ']':
if (contextclass) {
const char *p = proto;
const char *const end = proto;
contextclass = 0;
while (*--p != '[')
/* \[$] accepts any scalar lvalue */
if (*p == '$'
&& Perl_op_lvalue_flags(aTHX_
scalar(o3),
OP_READ, /* not entersub */
OP_LVALUE_NO_CROAK
)) goto wrapref;
bad_type_gv(arg, namegv, o3,
Perl_form(aTHX_ "one of %.*s",(int)(end - p), p));
} else
goto oops;
break;
case '*':
if (o3->op_type == OP_RV2GV)
goto wrapref;
if (!contextclass)
bad_type_gv(arg, namegv, o3, "symbol");
break;
case '&':
if (o3->op_type == OP_ENTERSUB
&& !(o3->op_flags & OPf_STACKED))
goto wrapref;
if (!contextclass)
bad_type_gv(arg, namegv, o3, "subroutine");
break;
case '$':
if (o3->op_type == OP_RV2SV ||
o3->op_type == OP_PADSV ||
o3->op_type == OP_HELEM ||
o3->op_type == OP_AELEM)
goto wrapref;
if (!contextclass) {
/* \$ accepts any scalar lvalue */
if (Perl_op_lvalue_flags(aTHX_
scalar(o3),
OP_READ, /* not entersub */
OP_LVALUE_NO_CROAK
)) goto wrapref;
bad_type_gv(arg, namegv, o3, "scalar");
}
break;
case '@':
if (o3->op_type == OP_RV2AV ||
o3->op_type == OP_PADAV)
{
o3->op_flags &=~ OPf_PARENS;
goto wrapref;
}
if (!contextclass)
bad_type_gv(arg, namegv, o3, "array");
break;
case '%':
if (o3->op_type == OP_RV2HV ||
o3->op_type == OP_PADHV)
{
o3->op_flags &=~ OPf_PARENS;
goto wrapref;
}
if (!contextclass)
bad_type_gv(arg, namegv, o3, "hash");
break;
wrapref:
aop = S_op_sibling_newUNOP(aTHX_ parent, prev,
OP_REFGEN, 0);
if (contextclass && e) {
proto = e + 1;
contextclass = 0;
}
break;
default: goto oops;
}
if (contextclass)
goto again;
break;
case ' ':
proto++;
continue;
default:
oops: {
Perl_croak(aTHX_ "Malformed prototype for %" SVf ": %" SVf,
SVfARG(cv_name((CV *)namegv, NULL, 0)),
SVfARG(protosv));
}
}
op_lvalue(aop, OP_ENTERSUB);
prev = aop;
aop = OpSIBLING(aop);
}
if (aop == cvop && *proto == '_') {
/* generate an access to $_ */
op_sibling_splice(parent, prev, 0, newDEFSVOP());
}
if (!optional && proto_end > proto &&
(*proto != '@' && *proto != '%' && *proto != ';' && *proto != '_'))
{
SV * const namesv = cv_name((CV *)namegv, NULL, 0);
yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %" SVf,
SVfARG(namesv)), SvUTF8(namesv));
}
return entersubop;
}
/*
=for apidoc ck_entersub_args_proto_or_list
Performs the fixup of the arguments part of an C<entersub> op tree either
based on a subroutine prototype or using default list-context processing.
This is the standard treatment used on a subroutine call, not marked
with C<&>, where the callee can be identified at compile time.
C<protosv> supplies the subroutine prototype to be applied to the call,
or indicates that there is no prototype. It may be a normal scalar,
in which case if it is defined then the string value will be used
as a prototype, and if it is undefined then there is no prototype.
Alternatively, for convenience, it may be a subroutine object (a C<CV*>
that has been cast to C<SV*>), of which the prototype will be used if it
has one. The prototype (or lack thereof) supplied, in whichever form,
does not need to match the actual callee referenced by the op tree.
If the argument ops disagree with the prototype, for example by having
an unacceptable number of arguments, a valid op tree is returned anyway.
The error is reflected in the parser state, normally resulting in a single
exception at the top level of parsing which covers all the compilation
errors that occurred. In the error message, the callee is referred to
by the name defined by the C<namegv> parameter.
=cut
*/
OP *
Perl_ck_entersub_args_proto_or_list(pTHX_ OP *entersubop,
GV *namegv, SV *protosv)
{
PERL_ARGS_ASSERT_CK_ENTERSUB_ARGS_PROTO_OR_LIST;
if (SvTYPE(protosv) == SVt_PVCV ? SvPOK(protosv) : SvOK(protosv))
return ck_entersub_args_proto(entersubop, namegv, protosv);
else
return ck_entersub_args_list(entersubop);
}
OP *
Perl_ck_entersub_args_core(pTHX_ OP *entersubop, GV *namegv, SV *protosv)
{
IV cvflags = SvIVX(protosv);
int opnum = cvflags & 0xffff;
OP *aop = cUNOPx(entersubop)->op_first;
PERL_ARGS_ASSERT_CK_ENTERSUB_ARGS_CORE;
if (!opnum) {
OP *cvop;
if (!OpHAS_SIBLING(aop))
aop = cUNOPx(aop)->op_first;
aop = OpSIBLING(aop);
for (cvop = aop; OpSIBLING(cvop); cvop = OpSIBLING(cvop)) ;
if (aop != cvop) {
SV *namesv = cv_name((CV *)namegv, NULL, CV_NAME_NOTQUAL);
yyerror_pv(Perl_form(aTHX_ "Too many arguments for %" SVf,
SVfARG(namesv)), SvUTF8(namesv));
}
op_free(entersubop);
switch(cvflags >> 16) {
case 'F': return newSVOP(OP_CONST, 0,
newSVpv(CopFILE(PL_curcop),0));
case 'L': return newSVOP(
OP_CONST, 0,
Perl_newSVpvf(aTHX_
"%" IVdf, (IV)CopLINE(PL_curcop)
)
);
case 'P': return newSVOP(OP_CONST, 0,
(PL_curstash
? newSVhek(HvNAME_HEK(PL_curstash))
: &PL_sv_undef
)
);
}
NOT_REACHED; /* NOTREACHED */
}
else {
OP *prev, *cvop, *first, *parent;
U32 flags = 0;
parent = entersubop;
if (!OpHAS_SIBLING(aop)) {
parent = aop;
aop = cUNOPx(aop)->op_first;
}
first = prev = aop;
aop = OpSIBLING(aop);
/* find last sibling */
for (cvop = aop;
OpHAS_SIBLING(cvop);
prev = cvop, cvop = OpSIBLING(cvop))
;
if (!(cvop->op_private & OPpENTERSUB_NOPAREN)
/* Usually, OPf_SPECIAL on an op with no args means that it had
* parens, but these have their own meaning for that flag: */
&& opnum != OP_VALUES && opnum != OP_KEYS && opnum != OP_EACH
&& opnum != OP_DELETE && opnum != OP_EXISTS)
flags |= OPf_SPECIAL;
/* excise cvop from end of sibling chain */
op_sibling_splice(parent, prev, 1, NULL);
op_free(cvop);
if (aop == cvop) aop = NULL;
/* detach remaining siblings from the first sibling, then
* dispose of original optree */
if (aop)
op_sibling_splice(parent, first, -1, NULL);
op_free(entersubop);
if (cvflags == (OP_ENTEREVAL | (1<<16)))
flags |= OPpEVAL_BYTES <<8;
switch (PL_opargs[opnum] & OA_CLASS_MASK) {
case OA_UNOP:
case OA_BASEOP_OR_UNOP:
case OA_FILESTATOP:
if (!aop)
return newOP(opnum,flags); /* zero args */
if (aop == prev)
return newUNOP(opnum,flags,aop); /* one arg */
/* too many args */
/* FALLTHROUGH */
case OA_BASEOP:
if (aop) {
SV *namesv;
OP *nextop;
namesv = cv_name((CV *)namegv, NULL, CV_NAME_NOTQUAL);
yyerror_pv(Perl_form(aTHX_ "Too many arguments for %" SVf,
SVfARG(namesv)), SvUTF8(namesv));
while (aop) {
nextop = OpSIBLING(aop);
op_free(aop);
aop = nextop;
}
}
return opnum == OP_RUNCV
? newPVOP(OP_RUNCV,0,NULL)
: newOP(opnum,0);
default:
return op_convert_list(opnum,0,aop);
}
}
NOT_REACHED; /* NOTREACHED */
return entersubop;
}
/*
=for apidoc cv_get_call_checker_flags
Retrieves the function that will be used to fix up a call to C<cv>.
Specifically, the function is applied to an C<entersub> op tree for a
subroutine call, not marked with C<&>, where the callee can be identified
at compile time as C<cv>.
The C-level function pointer is returned in C<*ckfun_p>, an SV argument
for it is returned in C<*ckobj_p>, and control flags are returned in
C<*ckflags_p>. The function is intended to be called in this manner:
entersubop = (*ckfun_p)(aTHX_ entersubop, namegv, (*ckobj_p));
In this call, C<entersubop> is a pointer to the C<entersub> op,
which may be replaced by the check function, and C<namegv> supplies
the name that should be used by the check function to refer
to the callee of the C<entersub> op if it needs to emit any diagnostics.
It is permitted to apply the check function in non-standard situations,
such as to a call to a different subroutine or to a method call.
C<namegv> may not actually be a GV. If the C<CALL_CHECKER_REQUIRE_GV>
bit is clear in C<*ckflags_p>, it is permitted to pass a CV or other SV
instead, anything that can be used as the first argument to L</cv_name>.
If the C<CALL_CHECKER_REQUIRE_GV> bit is set in C<*ckflags_p> then the
check function requires C<namegv> to be a genuine GV.
By default, the check function is
L<Perl_ck_entersub_args_proto_or_list|/ck_entersub_args_proto_or_list>,
the SV parameter is C<cv> itself, and the C<CALL_CHECKER_REQUIRE_GV>
flag is clear. This implements standard prototype processing. It can
be changed, for a particular subroutine, by L</cv_set_call_checker_flags>.
If the C<CALL_CHECKER_REQUIRE_GV> bit is set in C<gflags> then it
indicates that the caller only knows about the genuine GV version of
C<namegv>, and accordingly the corresponding bit will always be set in
C<*ckflags_p>, regardless of the check function's recorded requirements.
If the C<CALL_CHECKER_REQUIRE_GV> bit is clear in C<gflags> then it
indicates the caller knows about the possibility of passing something
other than a GV as C<namegv>, and accordingly the corresponding bit may
be either set or clear in C<*ckflags_p>, indicating the check function's
recorded requirements.
C<gflags> is a bitset passed into C<cv_get_call_checker_flags>, in which
only the C<CALL_CHECKER_REQUIRE_GV> bit currently has a defined meaning
(for which see above). All other bits should be clear.
=for apidoc Amnh||CALL_CHECKER_REQUIRE_GV
=for apidoc cv_get_call_checker
The original form of L</cv_get_call_checker_flags>, which does not return
checker flags. When using a checker function returned by this function,
it is only safe to call it with a genuine GV as its C<namegv> argument.
=cut
*/
void
Perl_cv_get_call_checker_flags(pTHX_ CV *cv, U32 gflags,
Perl_call_checker *ckfun_p, SV **ckobj_p, U32 *ckflags_p)
{
MAGIC *callmg;
PERL_ARGS_ASSERT_CV_GET_CALL_CHECKER_FLAGS;
PERL_UNUSED_CONTEXT;
callmg = SvMAGICAL((SV*)cv) ? mg_find((SV*)cv, PERL_MAGIC_checkcall) : NULL;
if (callmg) {
*ckfun_p = DPTR2FPTR(Perl_call_checker, callmg->mg_ptr);
*ckobj_p = callmg->mg_obj;
*ckflags_p = (callmg->mg_flags | gflags) & MGf_REQUIRE_GV;
} else {
*ckfun_p = Perl_ck_entersub_args_proto_or_list;
*ckobj_p = (SV*)cv;
*ckflags_p = gflags & MGf_REQUIRE_GV;
}
}
void
Perl_cv_get_call_checker(pTHX_ CV *cv, Perl_call_checker *ckfun_p, SV **ckobj_p)
{
U32 ckflags;
PERL_ARGS_ASSERT_CV_GET_CALL_CHECKER;
PERL_UNUSED_CONTEXT;
cv_get_call_checker_flags(cv, CALL_CHECKER_REQUIRE_GV, ckfun_p, ckobj_p,
&ckflags);
}
/*
=for apidoc cv_set_call_checker_flags
Sets the function that will be used to fix up a call to C<cv>.
Specifically, the function is applied to an C<entersub> op tree for a
subroutine call, not marked with C<&>, where the callee can be identified
at compile time as C<cv>.
The C-level function pointer is supplied in C<ckfun>, an SV argument for
it is supplied in C<ckobj>, and control flags are supplied in C<ckflags>.
The function should be defined like this:
STATIC OP * ckfun(pTHX_ OP *op, GV *namegv, SV *ckobj)
It is intended to be called in this manner:
entersubop = ckfun(aTHX_ entersubop, namegv, ckobj);
In this call, C<entersubop> is a pointer to the C<entersub> op,
which may be replaced by the check function, and C<namegv> supplies
the name that should be used by the check function to refer
to the callee of the C<entersub> op if it needs to emit any diagnostics.
It is permitted to apply the check function in non-standard situations,
such as to a call to a different subroutine or to a method call.
C<namegv> may not actually be a GV. For efficiency, perl may pass a
CV or other SV instead. Whatever is passed can be used as the first
argument to L</cv_name>. You can force perl to pass a GV by including
C<CALL_CHECKER_REQUIRE_GV> in the C<ckflags>.
C<ckflags> is a bitset, in which only the C<CALL_CHECKER_REQUIRE_GV>
bit currently has a defined meaning (for which see above). All other
bits should be clear.
The current setting for a particular CV can be retrieved by
L</cv_get_call_checker_flags>.
=for apidoc cv_set_call_checker
The original form of L</cv_set_call_checker_flags>, which passes it the
C<CALL_CHECKER_REQUIRE_GV> flag for backward-compatibility. The effect
of that flag setting is that the check function is guaranteed to get a
genuine GV as its C<namegv> argument.
=cut
*/
void
Perl_cv_set_call_checker(pTHX_ CV *cv, Perl_call_checker ckfun, SV *ckobj)
{
PERL_ARGS_ASSERT_CV_SET_CALL_CHECKER;
cv_set_call_checker_flags(cv, ckfun, ckobj, CALL_CHECKER_REQUIRE_GV);
}
void
Perl_cv_set_call_checker_flags(pTHX_ CV *cv, Perl_call_checker ckfun,
SV *ckobj, U32 ckflags)
{
PERL_ARGS_ASSERT_CV_SET_CALL_CHECKER_FLAGS;
if (ckfun == Perl_ck_entersub_args_proto_or_list && ckobj == (SV*)cv) {
if (SvMAGICAL((SV*)cv))
mg_free_type((SV*)cv, PERL_MAGIC_checkcall);
} else {
MAGIC *callmg;
sv_magic((SV*)cv, &PL_sv_undef, PERL_MAGIC_checkcall, NULL, 0);
callmg = mg_find((SV*)cv, PERL_MAGIC_checkcall);
assert(callmg);
if (callmg->mg_flags & MGf_REFCOUNTED) {
SvREFCNT_dec(callmg->mg_obj);
callmg->mg_flags &= ~MGf_REFCOUNTED;
}
callmg->mg_ptr = FPTR2DPTR(char *, ckfun);
callmg->mg_obj = ckobj;
if (ckobj != (SV*)cv) {
SvREFCNT_inc_simple_void_NN(ckobj);
callmg->mg_flags |= MGf_REFCOUNTED;
}
callmg->mg_flags = (callmg->mg_flags &~ MGf_REQUIRE_GV)
| (U8)(ckflags & MGf_REQUIRE_GV) | MGf_COPY;
}
}
static void
S_entersub_alloc_targ(pTHX_ OP * const o)
{
o->op_targ = pad_alloc(OP_ENTERSUB, SVs_PADTMP);
o->op_private |= OPpENTERSUB_HASTARG;
}
OP *
Perl_ck_subr(pTHX_ OP *o)
{
OP *aop, *cvop;
CV *cv;
GV *namegv;
SV **const_class = NULL;
PERL_ARGS_ASSERT_CK_SUBR;
aop = cUNOPx(o)->op_first;
if (!OpHAS_SIBLING(aop))
aop = cUNOPx(aop)->op_first;
aop = OpSIBLING(aop);
for (cvop = aop; OpHAS_SIBLING(cvop); cvop = OpSIBLING(cvop)) ;
cv = rv2cv_op_cv(cvop, RV2CVOPCV_MARK_EARLY);
namegv = cv ? (GV*)rv2cv_op_cv(cvop, RV2CVOPCV_MAYBE_NAME_GV) : NULL;
o->op_private &= ~1;
o->op_private |= (PL_hints & HINT_STRICT_REFS);
if (PERLDB_SUB && PL_curstash != PL_debstash)
o->op_private |= OPpENTERSUB_DB;
switch (cvop->op_type) {
case OP_RV2CV:
o->op_private |= (cvop->op_private & OPpENTERSUB_AMPER);
op_null(cvop);
break;
case OP_METHOD:
case OP_METHOD_NAMED:
case OP_METHOD_SUPER:
case OP_METHOD_REDIR:
case OP_METHOD_REDIR_SUPER:
o->op_flags |= OPf_REF;
if (aop->op_type == OP_CONST) {
aop->op_private &= ~OPpCONST_STRICT;
const_class = &cSVOPx(aop)->op_sv;
}
else if (aop->op_type == OP_LIST) {
OP * const sib = OpSIBLING(((UNOP*)aop)->op_first);
if (sib && sib->op_type == OP_CONST) {
sib->op_private &= ~OPpCONST_STRICT;
const_class = &cSVOPx(sib)->op_sv;
}
}
/* make class name a shared cow string to speedup method calls */
/* constant string might be replaced with object, f.e. bigint */
if (const_class && SvPOK(*const_class)) {
STRLEN len;
const char* str = SvPV(*const_class, len);
if (len) {
SV* const shared = newSVpvn_share(
str, SvUTF8(*const_class)
? -(SSize_t)len : (SSize_t)len,
0
);
if (SvREADONLY(*const_class))
SvREADONLY_on(shared);
SvREFCNT_dec(*const_class);
*const_class = shared;
}
}
break;
}
if (!cv) {
S_entersub_alloc_targ(aTHX_ o);
return ck_entersub_args_list(o);
} else {
Perl_call_checker ckfun;
SV *ckobj;
U32 ckflags;
cv_get_call_checker_flags(cv, 0, &ckfun, &ckobj, &ckflags);
if (CvISXSUB(cv) || !CvROOT(cv))
S_entersub_alloc_targ(aTHX_ o);
if (!namegv) {
/* The original call checker API guarantees that a GV will be
be provided with the right name. So, if the old API was
used (or the REQUIRE_GV flag was passed), we have to reify
the CV’s GV, unless this is an anonymous sub. This is not
ideal for lexical subs, as its stringification will include
the package. But it is the best we can do. */
if (ckflags & CALL_CHECKER_REQUIRE_GV) {
if (!CvANON(cv) && (!CvNAMED(cv) || CvNAME_HEK(cv)))
namegv = CvGV(cv);
}
else namegv = MUTABLE_GV(cv);
/* After a syntax error in a lexical sub, the cv that
rv2cv_op_cv returns may be a nameless stub. */
if (!namegv) return ck_entersub_args_list(o);
}
return ckfun(aTHX_ o, namegv, ckobj);
}
}
OP *
Perl_ck_svconst(pTHX_ OP *o)
{
SV * const sv = cSVOPo->op_sv;
PERL_ARGS_ASSERT_CK_SVCONST;
PERL_UNUSED_CONTEXT;
#ifdef PERL_COPY_ON_WRITE
/* Since the read-only flag may be used to protect a string buffer, we
cannot do copy-on-write with existing read-only scalars that are not
already copy-on-write scalars. To allow $_ = "hello" to do COW with
that constant, mark the constant as COWable here, if it is not
already read-only. */
if (!SvREADONLY(sv) && !SvIsCOW(sv) && SvCANCOW(sv)) {
SvIsCOW_on(sv);
CowREFCNT(sv) = 0;
# ifdef PERL_DEBUG_READONLY_COW
sv_buf_to_ro(sv);
# endif
}
#endif
SvREADONLY_on(sv);
return o;
}
OP *
Perl_ck_trunc(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_TRUNC;
if (o->op_flags & OPf_KIDS) {
SVOP *kid = (SVOP*)cUNOPo->op_first;
if (kid->op_type == OP_NULL)
kid = (SVOP*)OpSIBLING(kid);
if (kid && kid->op_type == OP_CONST &&
(kid->op_private & OPpCONST_BARE) &&
!kid->op_folded)
{
o->op_flags |= OPf_SPECIAL;
kid->op_private &= ~OPpCONST_STRICT;
}
}
return ck_fun(o);
}
OP *
Perl_ck_substr(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_SUBSTR;
o = ck_fun(o);
if ((o->op_flags & OPf_KIDS) && (o->op_private == 4)) {
OP *kid = cLISTOPo->op_first;
if (kid->op_type == OP_NULL)
kid = OpSIBLING(kid);
if (kid)
/* Historically, substr(delete $foo{bar},...) has been allowed
with 4-arg substr. Keep it working by applying entersub
lvalue context. */
op_lvalue(kid, OP_ENTERSUB);
}
return o;
}
OP *
Perl_ck_tell(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_TELL;
o = ck_fun(o);
if (o->op_flags & OPf_KIDS) {
OP *kid = cLISTOPo->op_first;
if (kid->op_type == OP_NULL && OpHAS_SIBLING(kid)) kid = OpSIBLING(kid);
if (kid->op_type == OP_RV2GV) kid->op_private |= OPpALLOW_FAKE;
}
return o;
}
OP *
Perl_ck_each(pTHX_ OP *o)
{
dVAR;
OP *kid = o->op_flags & OPf_KIDS ? cUNOPo->op_first : NULL;
const unsigned orig_type = o->op_type;
PERL_ARGS_ASSERT_CK_EACH;
if (kid) {
switch (kid->op_type) {
case OP_PADHV:
case OP_RV2HV:
break;
case OP_PADAV:
case OP_RV2AV:
OpTYPE_set(o, orig_type == OP_EACH ? OP_AEACH
: orig_type == OP_KEYS ? OP_AKEYS
: OP_AVALUES);
break;
case OP_CONST:
if (kid->op_private == OPpCONST_BARE
|| !SvROK(cSVOPx_sv(kid))
|| ( SvTYPE(SvRV(cSVOPx_sv(kid))) != SVt_PVAV
&& SvTYPE(SvRV(cSVOPx_sv(kid))) != SVt_PVHV )
)
goto bad;
/* FALLTHROUGH */
default:
qerror(Perl_mess(aTHX_
"Experimental %s on scalar is now forbidden",
PL_op_desc[orig_type]));
bad:
bad_type_pv(1, "hash or array", o, kid);
return o;
}
}
return ck_fun(o);
}
OP *
Perl_ck_length(pTHX_ OP *o)
{
PERL_ARGS_ASSERT_CK_LENGTH;
o = ck_fun(o);
if (ckWARN(WARN_SYNTAX)) {
const OP *kid = o->op_flags & OPf_KIDS ? cLISTOPo->op_first : NULL;
if (kid) {
SV *name = NULL;
const bool hash = kid->op_type == OP_PADHV
|| kid->op_type == OP_RV2HV;
switch (kid->op_type) {
case OP_PADHV:
case OP_PADAV:
case OP_RV2HV:
case OP_RV2AV:
name = S_op_varname(aTHX_ kid);
break;
default:
return o;
}
if (name)
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"length() used on %" SVf " (did you mean \"scalar(%s%" SVf
")\"?)",
SVfARG(name), hash ? "keys " : "", SVfARG(name)
);
else if (hash)
/* diag_listed_as: length() used on %s (did you mean "scalar(%s)"?) */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"length() used on %%hash (did you mean \"scalar(keys %%hash)\"?)");
else
/* diag_listed_as: length() used on %s (did you mean "scalar(%s)"?) */
Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
"length() used on @array (did you mean \"scalar(@array)\"?)");
}
}
return o;
}
OP *
Perl_ck_isa(pTHX_ OP *o)
{
OP *classop = cBINOPo->op_last;
PERL_ARGS_ASSERT_CK_ISA;
/* Convert barename into PV */
if(classop->op_type == OP_CONST && classop->op_private & OPpCONST_BARE) {
/* TODO: Optionally convert package to raw HV here */
classop->op_private &= ~(OPpCONST_BARE|OPpCONST_STRICT);
}
return o;
}
/*
---------------------------------------------------------
Common vars in list assignment
There now follows some enums and static functions for detecting
common variables in list assignments. Here is a little essay I wrote
for myself when trying to get my head around this. DAPM.
----
First some random observations:
* If a lexical var is an alias of something else, e.g.
for my $x ($lex, $pkg, $a[0]) {...}
then the act of aliasing will increase the reference count of the SV
* If a package var is an alias of something else, it may still have a
reference count of 1, depending on how the alias was created, e.g.
in *a = *b, $a may have a refcount of 1 since the GP is shared
with a single GvSV pointer to the SV. So If it's an alias of another
package var, then RC may be 1; if it's an alias of another scalar, e.g.
a lexical var or an array element, then it will have RC > 1.
* There are many ways to create a package alias; ultimately, XS code
may quite legally do GvSV(gv) = SvREFCNT_inc(sv) for example, so
run-time tracing mechanisms are unlikely to be able to catch all cases.
* When the LHS is all my declarations, the same vars can't appear directly
on the RHS, but they can indirectly via closures, aliasing and lvalue
subs. But those techniques all involve an increase in the lexical
scalar's ref count.
* When the LHS is all lexical vars (but not necessarily my declarations),
it is possible for the same lexicals to appear directly on the RHS, and
without an increased ref count, since the stack isn't refcounted.
This case can be detected at compile time by scanning for common lex
vars with PL_generation.
* lvalue subs defeat common var detection, but they do at least
return vars with a temporary ref count increment. Also, you can't
tell at compile time whether a sub call is lvalue.
So...
A: There are a few circumstances where there definitely can't be any
commonality:
LHS empty: () = (...);
RHS empty: (....) = ();
RHS contains only constants or other 'can't possibly be shared'
elements (e.g. ops that return PADTMPs): (...) = (1,2, length)
i.e. they only contain ops not marked as dangerous, whose children
are also not dangerous;
LHS ditto;
LHS contains a single scalar element: e.g. ($x) = (....); because
after $x has been modified, it won't be used again on the RHS;
RHS contains a single element with no aggregate on LHS: e.g.
($a,$b,$c) = ($x); again, once $a has been modified, its value
won't be used again.
B: If LHS are all 'my' lexical var declarations (or safe ops, which
we can ignore):
my ($a, $b, @c) = ...;
Due to closure and goto tricks, these vars may already have content.
For the same reason, an element on the RHS may be a lexical or package
alias of one of the vars on the left, or share common elements, for
example:
my ($x,$y) = f(); # $x and $y on both sides
sub f : lvalue { ($x,$y) = (1,2); $y, $x }
and
my $ra = f();
my @a = @$ra; # elements of @a on both sides
sub f { @a = 1..4; \@a }
First, just consider scalar vars on LHS:
RHS is safe only if (A), or in addition,
* contains only lexical *scalar* vars, where neither side's
lexicals have been flagged as aliases
If RHS is not safe, then it's always legal to check LHS vars for
RC==1, since the only RHS aliases will always be associated
with an RC bump.
Note that in particular, RHS is not safe if:
* it contains package scalar vars; e.g.:
f();
my ($x, $y) = (2, $x_alias);
sub f { $x = 1; *x_alias = \$x; }
* It contains other general elements, such as flattened or
* spliced or single array or hash elements, e.g.
f();
my ($x,$y) = @a; # or $a[0] or @a{@b} etc
sub f {
($x, $y) = (1,2);
use feature 'refaliasing';
\($a[0], $a[1]) = \($y,$x);
}
It doesn't matter if the array/hash is lexical or package.
* it contains a function call that happens to be an lvalue
sub which returns one or more of the above, e.g.
f();
my ($x,$y) = f();
sub f : lvalue {
($x, $y) = (1,2);
*x1 = \$x;
$y, $x1;
}
(so a sub call on the RHS should be treated the same
as having a package var on the RHS).
* any other "dangerous" thing, such an op or built-in that
returns one of the above, e.g. pp_preinc
If RHS is not safe, what we can do however is at compile time flag
that the LHS are all my declarations, and at run time check whether
all the LHS have RC == 1, and if so skip the full scan.
Now consider array and hash vars on LHS: e.g. my (...,@a) = ...;
Here the issue is whether there can be elements of @a on the RHS
which will get prematurely freed when @a is cleared prior to
assignment. This is only a problem if the aliasing mechanism
is one which doesn't increase the refcount - only if RC == 1
will the RHS element be prematurely freed.
Because the array/hash is being INTROed, it or its elements
can't directly appear on the RHS:
my (@a) = ($a[0], @a, etc) # NOT POSSIBLE
but can indirectly, e.g.:
my $r = f();
my (@a) = @$r;
sub f { @a = 1..3; \@a }
So if the RHS isn't safe as defined by (A), we must always
mortalise and bump the ref count of any remaining RHS elements
when assigning to a non-empty LHS aggregate.
Lexical scalars on the RHS aren't safe if they've been involved in
aliasing, e.g.
use feature 'refaliasing';
f();
\(my $lex) = \$pkg;
my @a = ($lex,3); # equivalent to ($a[0],3)
sub f {
@a = (1,2);
\$pkg = \$a[0];
}
Similarly with lexical arrays and hashes on the RHS:
f();
my @b;
my @a = (@b);
sub f {
@a = (1,2);
\$b[0] = \$a[1];
\$b[1] = \$a[0];
}
C: As (B), but in addition the LHS may contain non-intro lexicals, e.g.
my $a; ($a, my $b) = (....);
The difference between (B) and (C) is that it is now physically
possible for the LHS vars to appear on the RHS too, where they
are not reference counted; but in this case, the compile-time
PL_generation sweep will detect such common vars.
So the rules for (C) differ from (B) in that if common vars are
detected, the runtime "test RC==1" optimisation can no longer be used,
and a full mark and sweep is required
D: As (C), but in addition the LHS may contain package vars.
Since package vars can be aliased without a corresponding refcount
increase, all bets are off. It's only safe if (A). E.g.
my ($x, $y) = (1,2);
for $x_alias ($x) {
($x_alias, $y) = (3, $x); # whoops
}
Ditto for LHS aggregate package vars.
E: Any other dangerous ops on LHS, e.g.
(f(), $a[0], @$r) = (...);
this is similar to (E) in that all bets are off. In addition, it's
impossible to determine at compile time whether the LHS
contains a scalar or an aggregate, e.g.
sub f : lvalue { @a }
(f()) = 1..3;
* ---------------------------------------------------------
*/
/* A set of bit flags returned by S_aassign_scan(). Each flag indicates
* that at least one of the things flagged was seen.
*/
enum {
AAS_MY_SCALAR = 0x001, /* my $scalar */
AAS_MY_AGG = 0x002, /* aggregate: my @array or my %hash */
AAS_LEX_SCALAR = 0x004, /* $lexical */
AAS_LEX_AGG = 0x008, /* @lexical or %lexical aggregate */
AAS_LEX_SCALAR_COMM = 0x010, /* $lexical seen on both sides */
AAS_PKG_SCALAR = 0x020, /* $scalar (where $scalar is pkg var) */
AAS_PKG_AGG = 0x040, /* package @array or %hash aggregate */
AAS_DANGEROUS = 0x080, /* an op (other than the above)
that's flagged OA_DANGEROUS */
AAS_SAFE_SCALAR = 0x100, /* produces at least one scalar SV that's
not in any of the categories above */
AAS_DEFAV = 0x200 /* contains just a single '@_' on RHS */
};
/* helper function for S_aassign_scan().
* check a PAD-related op for commonality and/or set its generation number.
* Returns a boolean indicating whether its shared */
static bool
S_aassign_padcheck(pTHX_ OP* o, bool rhs)
{
if (PAD_COMPNAME_GEN(o->op_targ) == PERL_INT_MAX)
/* lexical used in aliasing */
return TRUE;
if (rhs)
return cBOOL(PAD_COMPNAME_GEN(o->op_targ) == (STRLEN)PL_generation);
else
PAD_COMPNAME_GEN_set(o->op_targ, PL_generation);
return FALSE;
}
/*
Helper function for OPpASSIGN_COMMON* detection in rpeep().
It scans the left or right hand subtree of the aassign op, and returns a
set of flags indicating what sorts of things it found there.
'rhs' indicates whether we're scanning the LHS or RHS. If the former, we
set PL_generation on lexical vars; if the latter, we see if
PL_generation matches.
'scalars_p' is a pointer to a counter of the number of scalar SVs seen.
This fn will increment it by the number seen. It's not intended to
be an accurate count (especially as many ops can push a variable
number of SVs onto the stack); rather it's used as to test whether there
can be at most 1 SV pushed; so it's only meanings are "0, 1, many".
*/
static int
S_aassign_scan(pTHX_ OP* o, bool rhs, int *scalars_p)
{
OP *top_op = o;
OP *effective_top_op = o;
int all_flags = 0;
while (1) {
bool top = o == effective_top_op;
int flags = 0;
OP* next_kid = NULL;
/* first, look for a solitary @_ on the RHS */
if ( rhs
&& top
&& (o->op_flags & OPf_KIDS)
&& OP_TYPE_IS_OR_WAS(o, OP_LIST)
) {
OP *kid = cUNOPo->op_first;
if ( ( kid->op_type == OP_PUSHMARK
|| kid->op_type == OP_PADRANGE) /* ex-pushmark */
&& ((kid = OpSIBLING(kid)))
&& !OpHAS_SIBLING(kid)
&& kid->op_type == OP_RV2AV
&& !(kid->op_flags & OPf_REF)
&& !(kid->op_private & (OPpLVAL_INTRO|OPpMAYBE_LVSUB))
&& ((kid->op_flags & OPf_WANT) == OPf_WANT_LIST)
&& ((kid = cUNOPx(kid)->op_first))
&& kid->op_type == OP_GV
&& cGVOPx_gv(kid) == PL_defgv
)
flags = AAS_DEFAV;
}
switch (o->op_type) {
case OP_GVSV:
(*scalars_p)++;
all_flags |= AAS_PKG_SCALAR;
goto do_next;
case OP_PADAV:
case OP_PADHV:
(*scalars_p) += 2;
/* if !top, could be e.g. @a[0,1] */
all_flags |= (top && (o->op_flags & OPf_REF))
? ((o->op_private & OPpLVAL_INTRO)
? AAS_MY_AGG : AAS_LEX_AGG)
: AAS_DANGEROUS;
goto do_next;
case OP_PADSV:
{
int comm = S_aassign_padcheck(aTHX_ o, rhs)
? AAS_LEX_SCALAR_COMM : 0;
(*scalars_p)++;
all_flags |= (o->op_private & OPpLVAL_INTRO)
? (AAS_MY_SCALAR|comm) : (AAS_LEX_SCALAR|comm);
goto do_next;
}
case OP_RV2AV:
case OP_RV2HV:
(*scalars_p) += 2;
if (cUNOPx(o)->op_first->op_type != OP_GV)
all_flags |= AAS_DANGEROUS; /* @{expr}, %{expr} */
/* @pkg, %pkg */
/* if !top, could be e.g. @a[0,1] */
else if (top && (o->op_flags & OPf_REF))
all_flags |= AAS_PKG_AGG;
else
all_flags |= AAS_DANGEROUS;
goto do_next;
case OP_RV2SV:
(*scalars_p)++;
if (cUNOPx(o)->op_first->op_type != OP_GV) {
(*scalars_p) += 2;
all_flags |= AAS_DANGEROUS; /* ${expr} */
}
else
all_flags |= AAS_PKG_SCALAR; /* $pkg */
goto do_next;
case OP_SPLIT:
if (o->op_private & OPpSPLIT_ASSIGN) {
/* the assign in @a = split() has been optimised away
* and the @a attached directly to the split op
* Treat the array as appearing on the RHS, i.e.
* ... = (@a = split)
* is treated like
* ... = @a;
*/
if (o->op_flags & OPf_STACKED) {
/* @{expr} = split() - the array expression is tacked
* on as an extra child to split - process kid */
next_kid = cLISTOPo->op_last;
goto do_next;
}
/* ... else array is directly attached to split op */
(*scalars_p) += 2;
all_flags |= (PL_op->op_private & OPpSPLIT_LEX)
? ((o->op_private & OPpLVAL_INTRO)
? AAS_MY_AGG : AAS_LEX_AGG)
: AAS_PKG_AGG;
goto do_next;
}
(*scalars_p)++;
/* other args of split can't be returned */
all_flags |= AAS_SAFE_SCALAR;
goto do_next;
case OP_UNDEF:
/* undef counts as a scalar on the RHS:
* (undef, $x) = ...; # only 1 scalar on LHS: always safe
* ($x, $y) = (undef, $x); # 2 scalars on RHS: unsafe
*/
if (rhs)
(*scalars_p)++;
flags = AAS_SAFE_SCALAR;
break;
case OP_PUSHMARK:
case OP_STUB:
/* these are all no-ops; they don't push a potentially common SV
* onto the stack, so they are neither AAS_DANGEROUS nor
* AAS_SAFE_SCALAR */
goto do_next;
case OP_PADRANGE: /* Ignore padrange; checking its siblings is enough */
break;
case OP_NULL:
case OP_LIST:
/* these do nothing, but may have children */
break;
default:
if (PL_opargs[o->op_type] & OA_DANGEROUS) {
(*scalars_p) += 2;
flags = AAS_DANGEROUS;
break;
}
if ( (PL_opargs[o->op_type] & OA_TARGLEX)
&& (o->op_private & OPpTARGET_MY))
{
(*scalars_p)++;
all_flags |= S_aassign_padcheck(aTHX_ o, rhs)
? AAS_LEX_SCALAR_COMM : AAS_LEX_SCALAR;
goto do_next;
}
/* if its an unrecognised, non-dangerous op, assume that it
* it the cause of at least one safe scalar */
(*scalars_p)++;
flags = AAS_SAFE_SCALAR;
break;
}
all_flags |= flags;
/* by default, process all kids next
* XXX this assumes that all other ops are "transparent" - i.e. that
* they can return some of their children. While this true for e.g.
* sort and grep, it's not true for e.g. map. We really need a
* 'transparent' flag added to regen/opcodes
*/
if (o->op_flags & OPf_KIDS) {
next_kid = cUNOPo->op_first;
/* these ops do nothing but may have children; but their
* children should also be treated as top-level */
if ( o == effective_top_op
&& (o->op_type == OP_NULL || o->op_type == OP_LIST)
)
effective_top_op = next_kid;
}
/* If next_kid is set, someone in the code above wanted us to process
* that kid and all its remaining siblings. Otherwise, work our way
* back up the tree */
do_next:
while (!next_kid) {
if (o == top_op)
return all_flags; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o)) {
next_kid = o->op_sibparent;
if (o == effective_top_op)
effective_top_op = next_kid;
}
else
if (o == effective_top_op)
effective_top_op = o->op_sibparent;
o = o->op_sibparent; /* try parent's next sibling */
}
o = next_kid;
} /* while */
}
/* Check for in place reverse and sort assignments like "@a = reverse @a"
and modify the optree to make them work inplace */
STATIC void
S_inplace_aassign(pTHX_ OP *o) {
OP *modop, *modop_pushmark;
OP *oright;
OP *oleft, *oleft_pushmark;
PERL_ARGS_ASSERT_INPLACE_AASSIGN;
assert((o->op_flags & OPf_WANT) == OPf_WANT_VOID);
assert(cUNOPo->op_first->op_type == OP_NULL);
modop_pushmark = cUNOPx(cUNOPo->op_first)->op_first;
assert(modop_pushmark->op_type == OP_PUSHMARK);
modop = OpSIBLING(modop_pushmark);
if (modop->op_type != OP_SORT && modop->op_type != OP_REVERSE)
return;
/* no other operation except sort/reverse */
if (OpHAS_SIBLING(modop))
return;
assert(cUNOPx(modop)->op_first->op_type == OP_PUSHMARK);
if (!(oright = OpSIBLING(cUNOPx(modop)->op_first))) return;
if (modop->op_flags & OPf_STACKED) {
/* skip sort subroutine/block */
assert(oright->op_type == OP_NULL);
oright = OpSIBLING(oright);
}
assert(OpSIBLING(cUNOPo->op_first)->op_type == OP_NULL);
oleft_pushmark = cUNOPx(OpSIBLING(cUNOPo->op_first))->op_first;
assert(oleft_pushmark->op_type == OP_PUSHMARK);
oleft = OpSIBLING(oleft_pushmark);
/* Check the lhs is an array */
if (!oleft ||
(oleft->op_type != OP_RV2AV && oleft->op_type != OP_PADAV)
|| OpHAS_SIBLING(oleft)
|| (oleft->op_private & OPpLVAL_INTRO)
)
return;
/* Only one thing on the rhs */
if (OpHAS_SIBLING(oright))
return;
/* check the array is the same on both sides */
if (oleft->op_type == OP_RV2AV) {
if (oright->op_type != OP_RV2AV
|| !cUNOPx(oright)->op_first
|| cUNOPx(oright)->op_first->op_type != OP_GV
|| cUNOPx(oleft )->op_first->op_type != OP_GV
|| cGVOPx_gv(cUNOPx(oleft)->op_first) !=
cGVOPx_gv(cUNOPx(oright)->op_first)
)
return;
}
else if (oright->op_type != OP_PADAV
|| oright->op_targ != oleft->op_targ
)
return;
/* This actually is an inplace assignment */
modop->op_private |= OPpSORT_INPLACE;
/* transfer MODishness etc from LHS arg to RHS arg */
oright->op_flags = oleft->op_flags;
/* remove the aassign op and the lhs */
op_null(o);
op_null(oleft_pushmark);
if (oleft->op_type == OP_RV2AV && cUNOPx(oleft)->op_first)
op_null(cUNOPx(oleft)->op_first);
op_null(oleft);
}
/* S_maybe_multideref(): given an op_next chain of ops beginning at 'start'
* that potentially represent a series of one or more aggregate derefs
* (such as $a->[1]{$key}), examine the chain, and if appropriate, convert
* the whole chain to a single OP_MULTIDEREF op (maybe with a few
* additional ops left in too).
*
* The caller will have already verified that the first few ops in the
* chain following 'start' indicate a multideref candidate, and will have
* set 'orig_o' to the point further on in the chain where the first index
* expression (if any) begins. 'orig_action' specifies what type of
* beginning has already been determined by the ops between start..orig_o
* (e.g. $lex_ary[], $pkg_ary->{}, expr->[], etc).
*
* 'hints' contains any hints flags that need adding (currently just
* OPpHINT_STRICT_REFS) as found in any rv2av/hv skipped by the caller.
*/
STATIC void
S_maybe_multideref(pTHX_ OP *start, OP *orig_o, UV orig_action, U8 hints)
{
dVAR;
int pass;
UNOP_AUX_item *arg_buf = NULL;
bool reset_start_targ = FALSE; /* start->op_targ needs zeroing */
int index_skip = -1; /* don't output index arg on this action */
/* similar to regex compiling, do two passes; the first pass
* determines whether the op chain is convertible and calculates the
* buffer size; the second pass populates the buffer and makes any
* changes necessary to ops (such as moving consts to the pad on
* threaded builds).
*
* NB: for things like Coverity, note that both passes take the same
* path through the logic tree (except for 'if (pass)' bits), since
* both passes are following the same op_next chain; and in
* particular, if it would return early on the second pass, it would
* already have returned early on the first pass.
*/
for (pass = 0; pass < 2; pass++) {
OP *o = orig_o;
UV action = orig_action;
OP *first_elem_op = NULL; /* first seen aelem/helem */
OP *top_op = NULL; /* highest [ah]elem/exists/del/rv2[ah]v */
int action_count = 0; /* number of actions seen so far */
int action_ix = 0; /* action_count % (actions per IV) */
bool next_is_hash = FALSE; /* is the next lookup to be a hash? */
bool is_last = FALSE; /* no more derefs to follow */
bool maybe_aelemfast = FALSE; /* we can replace with aelemfast? */
UNOP_AUX_item *arg = arg_buf;
UNOP_AUX_item *action_ptr = arg_buf;
if (pass)
action_ptr->uv = 0;
arg++;
switch (action) {
case MDEREF_HV_gvsv_vivify_rv2hv_helem:
case MDEREF_HV_gvhv_helem:
next_is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_gvsv_vivify_rv2av_aelem:
case MDEREF_AV_gvav_aelem:
if (pass) {
#ifdef USE_ITHREADS
arg->pad_offset = cPADOPx(start)->op_padix;
/* stop it being swiped when nulled */
cPADOPx(start)->op_padix = 0;
#else
arg->sv = cSVOPx(start)->op_sv;
cSVOPx(start)->op_sv = NULL;
#endif
}
arg++;
break;
case MDEREF_HV_padhv_helem:
case MDEREF_HV_padsv_vivify_rv2hv_helem:
next_is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_padav_aelem:
case MDEREF_AV_padsv_vivify_rv2av_aelem:
if (pass) {
arg->pad_offset = start->op_targ;
/* we skip setting op_targ = 0 for now, since the intact
* OP_PADXV is needed by S_check_hash_fields_and_hekify */
reset_start_targ = TRUE;
}
arg++;
break;
case MDEREF_HV_pop_rv2hv_helem:
next_is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_pop_rv2av_aelem:
break;
default:
NOT_REACHED; /* NOTREACHED */
return;
}
while (!is_last) {
/* look for another (rv2av/hv; get index;
* aelem/helem/exists/delele) sequence */
OP *kid;
bool is_deref;
bool ok;
UV index_type = MDEREF_INDEX_none;
if (action_count) {
/* if this is not the first lookup, consume the rv2av/hv */
/* for N levels of aggregate lookup, we normally expect
* that the first N-1 [ah]elem ops will be flagged as
* /DEREF (so they autovivifiy if necessary), and the last
* lookup op not to be.
* For other things (like @{$h{k1}{k2}}) extra scope or
* leave ops can appear, so abandon the effort in that
* case */
if (o->op_type != OP_RV2AV && o->op_type != OP_RV2HV)
return;
/* rv2av or rv2hv sKR/1 */
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
if (o->op_flags != (OPf_WANT_SCALAR|OPf_KIDS|OPf_REF))
return;
/* at this point, we wouldn't expect any of these
* possible private flags:
* OPpMAYBE_LVSUB, OPpOUR_INTRO, OPpLVAL_INTRO
* OPpTRUEBOOL, OPpMAYBE_TRUEBOOL (rv2hv only)
*/
ASSUME(!(o->op_private &
~(OPpHINT_STRICT_REFS|OPpARG1_MASK|OPpSLICEWARNING)));
hints = (o->op_private & OPpHINT_STRICT_REFS);
/* make sure the type of the previous /DEREF matches the
* type of the next lookup */
ASSUME(o->op_type == (next_is_hash ? OP_RV2HV : OP_RV2AV));
top_op = o;
action = next_is_hash
? MDEREF_HV_vivify_rv2hv_helem
: MDEREF_AV_vivify_rv2av_aelem;
o = o->op_next;
}
/* if this is the second pass, and we're at the depth where
* previously we encountered a non-simple index expression,
* stop processing the index at this point */
if (action_count != index_skip) {
/* look for one or more simple ops that return an array
* index or hash key */
switch (o->op_type) {
case OP_PADSV:
/* it may be a lexical var index */
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
ASSUME(!(o->op_private &
~(OPpPAD_STATE|OPpDEREF|OPpLVAL_INTRO)));
if ( OP_GIMME(o,0) == G_SCALAR
&& !(o->op_flags & (OPf_REF|OPf_MOD))
&& o->op_private == 0)
{
if (pass)
arg->pad_offset = o->op_targ;
arg++;
index_type = MDEREF_INDEX_padsv;
o = o->op_next;
}
break;
case OP_CONST:
if (next_is_hash) {
/* it's a constant hash index */
if (!(SvFLAGS(cSVOPo_sv) & (SVf_IOK|SVf_NOK|SVf_POK)))
/* "use constant foo => FOO; $h{+foo}" for
* some weird FOO, can leave you with constants
* that aren't simple strings. It's not worth
* the extra hassle for those edge cases */
break;
{
UNOP *rop = NULL;
OP * helem_op = o->op_next;
ASSUME( helem_op->op_type == OP_HELEM
|| helem_op->op_type == OP_NULL
|| pass == 0);
if (helem_op->op_type == OP_HELEM) {
rop = (UNOP*)(((BINOP*)helem_op)->op_first);
if ( helem_op->op_private & OPpLVAL_INTRO
|| rop->op_type != OP_RV2HV
)
rop = NULL;
}
/* on first pass just check; on second pass
* hekify */
S_check_hash_fields_and_hekify(aTHX_ rop, cSVOPo,
pass);
}
if (pass) {
#ifdef USE_ITHREADS
/* Relocate sv to the pad for thread safety */
op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
arg->pad_offset = o->op_targ;
o->op_targ = 0;
#else
arg->sv = cSVOPx_sv(o);
#endif
}
}
else {
/* it's a constant array index */
IV iv;
SV *ix_sv = cSVOPo->op_sv;
if (!SvIOK(ix_sv))
break;
iv = SvIV(ix_sv);
if ( action_count == 0
&& iv >= -128
&& iv <= 127
&& ( action == MDEREF_AV_padav_aelem
|| action == MDEREF_AV_gvav_aelem)
)
maybe_aelemfast = TRUE;
if (pass) {
arg->iv = iv;
SvREFCNT_dec_NN(cSVOPo->op_sv);
}
}
if (pass)
/* we've taken ownership of the SV */
cSVOPo->op_sv = NULL;
arg++;
index_type = MDEREF_INDEX_const;
o = o->op_next;
break;
case OP_GV:
/* it may be a package var index */
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_PARENS|OPf_SPECIAL)));
ASSUME(!(o->op_private & ~(OPpEARLY_CV)));
if ( (o->op_flags & ~(OPf_PARENS|OPf_SPECIAL)) != OPf_WANT_SCALAR
|| o->op_private != 0
)
break;
kid = o->op_next;
if (kid->op_type != OP_RV2SV)
break;
ASSUME(!(kid->op_flags &
~(OPf_WANT|OPf_KIDS|OPf_MOD|OPf_REF
|OPf_SPECIAL|OPf_PARENS)));
ASSUME(!(kid->op_private &
~(OPpARG1_MASK
|OPpHINT_STRICT_REFS|OPpOUR_INTRO
|OPpDEREF|OPpLVAL_INTRO)));
if( (kid->op_flags &~ OPf_PARENS)
!= (OPf_WANT_SCALAR|OPf_KIDS)
|| (kid->op_private & ~(OPpARG1_MASK|HINT_STRICT_REFS))
)
break;
if (pass) {
#ifdef USE_ITHREADS
arg->pad_offset = cPADOPx(o)->op_padix;
/* stop it being swiped when nulled */
cPADOPx(o)->op_padix = 0;
#else
arg->sv = cSVOPx(o)->op_sv;
cSVOPo->op_sv = NULL;
#endif
}
arg++;
index_type = MDEREF_INDEX_gvsv;
o = kid->op_next;
break;
} /* switch */
} /* action_count != index_skip */
action |= index_type;
/* at this point we have either:
* * detected what looks like a simple index expression,
* and expect the next op to be an [ah]elem, or
* an nulled [ah]elem followed by a delete or exists;
* * found a more complex expression, so something other
* than the above follows.
*/
/* possibly an optimised away [ah]elem (where op_next is
* exists or delete) */
if (o->op_type == OP_NULL)
o = o->op_next;
/* at this point we're looking for an OP_AELEM, OP_HELEM,
* OP_EXISTS or OP_DELETE */
/* if a custom array/hash access checker is in scope,
* abandon optimisation attempt */
if ( (o->op_type == OP_AELEM || o->op_type == OP_HELEM)
&& PL_check[o->op_type] != Perl_ck_null)
return;
/* similarly for customised exists and delete */
if ( (o->op_type == OP_EXISTS)
&& PL_check[o->op_type] != Perl_ck_exists)
return;
if ( (o->op_type == OP_DELETE)
&& PL_check[o->op_type] != Perl_ck_delete)
return;
if ( o->op_type != OP_AELEM
|| (o->op_private &
(OPpLVAL_INTRO|OPpLVAL_DEFER|OPpDEREF|OPpMAYBE_LVSUB))
)
maybe_aelemfast = FALSE;
/* look for aelem/helem/exists/delete. If it's not the last elem
* lookup, it *must* have OPpDEREF_AV/HV, but not many other
* flags; if it's the last, then it mustn't have
* OPpDEREF_AV/HV, but may have lots of other flags, like
* OPpLVAL_INTRO etc
*/
if ( index_type == MDEREF_INDEX_none
|| ( o->op_type != OP_AELEM && o->op_type != OP_HELEM
&& o->op_type != OP_EXISTS && o->op_type != OP_DELETE)
)
ok = FALSE;
else {
/* we have aelem/helem/exists/delete with valid simple index */
is_deref = (o->op_type == OP_AELEM || o->op_type == OP_HELEM)
&& ( (o->op_private & OPpDEREF) == OPpDEREF_AV
|| (o->op_private & OPpDEREF) == OPpDEREF_HV);
/* This doesn't make much sense but is legal:
* @{ local $x[0][0] } = 1
* Since scope exit will undo the autovivification,
* don't bother in the first place. The OP_LEAVE
* assertion is in case there are other cases of both
* OPpLVAL_INTRO and OPpDEREF which don't include a scope
* exit that would undo the local - in which case this
* block of code would need rethinking.
*/
if (is_deref && (o->op_private & OPpLVAL_INTRO)) {
#ifdef DEBUGGING
OP *n = o->op_next;
while (n && ( n->op_type == OP_NULL
|| n->op_type == OP_LIST
|| n->op_type == OP_SCALAR))
n = n->op_next;
assert(n && n->op_type == OP_LEAVE);
#endif
o->op_private &= ~OPpDEREF;
is_deref = FALSE;
}
if (is_deref) {
ASSUME(!(o->op_flags &
~(OPf_WANT|OPf_KIDS|OPf_MOD|OPf_PARENS)));
ASSUME(!(o->op_private & ~(OPpARG2_MASK|OPpDEREF)));
ok = (o->op_flags &~ OPf_PARENS)
== (OPf_WANT_SCALAR|OPf_KIDS|OPf_MOD)
&& !(o->op_private & ~(OPpDEREF|OPpARG2_MASK));
}
else if (o->op_type == OP_EXISTS) {
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
ASSUME(!(o->op_private & ~(OPpARG1_MASK|OPpEXISTS_SUB)));
ok = !(o->op_private & ~OPpARG1_MASK);
}
else if (o->op_type == OP_DELETE) {
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
ASSUME(!(o->op_private &
~(OPpARG1_MASK|OPpSLICE|OPpLVAL_INTRO)));
/* don't handle slices or 'local delete'; the latter
* is fairly rare, and has a complex runtime */
ok = !(o->op_private & ~OPpARG1_MASK);
if (OP_TYPE_IS_OR_WAS(cUNOPo->op_first, OP_AELEM))
/* skip handling run-tome error */
ok = (ok && cBOOL(o->op_flags & OPf_SPECIAL));
}
else {
ASSUME(o->op_type == OP_AELEM || o->op_type == OP_HELEM);
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_MOD
|OPf_PARENS|OPf_REF|OPf_SPECIAL)));
ASSUME(!(o->op_private & ~(OPpARG2_MASK|OPpMAYBE_LVSUB
|OPpLVAL_DEFER|OPpDEREF|OPpLVAL_INTRO)));
ok = (o->op_private & OPpDEREF) != OPpDEREF_SV;
}
}
if (ok) {
if (!first_elem_op)
first_elem_op = o;
top_op = o;
if (is_deref) {
next_is_hash = cBOOL((o->op_private & OPpDEREF) == OPpDEREF_HV);
o = o->op_next;
}
else {
is_last = TRUE;
action |= MDEREF_FLAG_last;
}
}
else {
/* at this point we have something that started
* promisingly enough (with rv2av or whatever), but failed
* to find a simple index followed by an
* aelem/helem/exists/delete. If this is the first action,
* give up; but if we've already seen at least one
* aelem/helem, then keep them and add a new action with
* MDEREF_INDEX_none, which causes it to do the vivify
* from the end of the previous lookup, and do the deref,
* but stop at that point. So $a[0][expr] will do one
* av_fetch, vivify and deref, then continue executing at
* expr */
if (!action_count)
return;
is_last = TRUE;
index_skip = action_count;
action |= MDEREF_FLAG_last;
if (index_type != MDEREF_INDEX_none)
arg--;
}
if (pass)
action_ptr->uv |= (action << (action_ix * MDEREF_SHIFT));
action_ix++;
action_count++;
/* if there's no space for the next action, create a new slot
* for it *before* we start adding args for that action */
if ((action_ix + 1) * MDEREF_SHIFT > UVSIZE*8) {
action_ptr = arg;
if (pass)
arg->uv = 0;
arg++;
action_ix = 0;
}
} /* while !is_last */
/* success! */
if (pass) {
OP *mderef;
OP *p, *q;
mderef = newUNOP_AUX(OP_MULTIDEREF, 0, NULL, arg_buf);
if (index_skip == -1) {
mderef->op_flags = o->op_flags
& (OPf_WANT|OPf_MOD|(next_is_hash ? OPf_SPECIAL : 0));
if (o->op_type == OP_EXISTS)
mderef->op_private = OPpMULTIDEREF_EXISTS;
else if (o->op_type == OP_DELETE)
mderef->op_private = OPpMULTIDEREF_DELETE;
else
mderef->op_private = o->op_private
& (OPpMAYBE_LVSUB|OPpLVAL_DEFER|OPpLVAL_INTRO);
}
/* accumulate strictness from every level (although I don't think
* they can actually vary) */
mderef->op_private |= hints;
/* integrate the new multideref op into the optree and the
* op_next chain.
*
* In general an op like aelem or helem has two child
* sub-trees: the aggregate expression (a_expr) and the
* index expression (i_expr):
*
* aelem
* |
* a_expr - i_expr
*
* The a_expr returns an AV or HV, while the i-expr returns an
* index. In general a multideref replaces most or all of a
* multi-level tree, e.g.
*
* exists
* |
* ex-aelem
* |
* rv2av - i_expr1
* |
* helem
* |
* rv2hv - i_expr2
* |
* aelem
* |
* a_expr - i_expr3
*
* With multideref, all the i_exprs will be simple vars or
* constants, except that i_expr1 may be arbitrary in the case
* of MDEREF_INDEX_none.
*
* The bottom-most a_expr will be either:
* 1) a simple var (so padXv or gv+rv2Xv);
* 2) a simple scalar var dereferenced (e.g. $r->[0]):
* so a simple var with an extra rv2Xv;
* 3) or an arbitrary expression.
*
* 'start', the first op in the execution chain, will point to
* 1),2): the padXv or gv op;
* 3): the rv2Xv which forms the last op in the a_expr
* execution chain, and the top-most op in the a_expr
* subtree.
*
* For all cases, the 'start' node is no longer required,
* but we can't free it since one or more external nodes
* may point to it. E.g. consider
* $h{foo} = $a ? $b : $c
* Here, both the op_next and op_other branches of the
* cond_expr point to the gv[*h] of the hash expression, so
* we can't free the 'start' op.
*
* For expr->[...], we need to save the subtree containing the
* expression; for the other cases, we just need to save the
* start node.
* So in all cases, we null the start op and keep it around by
* making it the child of the multideref op; for the expr->
* case, the expr will be a subtree of the start node.
*
* So in the simple 1,2 case the optree above changes to
*
* ex-exists
* |
* multideref
* |
* ex-gv (or ex-padxv)
*
* with the op_next chain being
*
* -> ex-gv -> multideref -> op-following-ex-exists ->
*
* In the 3 case, we have
*
* ex-exists
* |
* multideref
* |
* ex-rv2xv
* |
* rest-of-a_expr
* subtree
*
* and
*
* -> rest-of-a_expr subtree ->
* ex-rv2xv -> multideref -> op-following-ex-exists ->
*
*
* Where the last i_expr is non-simple (i.e. MDEREF_INDEX_none,
* e.g. $a[0]{foo}[$x+1], the next rv2xv is nulled and the
* multideref attached as the child, e.g.
*
* exists
* |
* ex-aelem
* |
* ex-rv2av - i_expr1
* |
* multideref
* |
* ex-whatever
*
*/
/* if we free this op, don't free the pad entry */
if (reset_start_targ)
start->op_targ = 0;
/* Cut the bit we need to save out of the tree and attach to
* the multideref op, then free the rest of the tree */
/* find parent of node to be detached (for use by splice) */
p = first_elem_op;
if ( orig_action == MDEREF_AV_pop_rv2av_aelem
|| orig_action == MDEREF_HV_pop_rv2hv_helem)
{
/* there is an arbitrary expression preceding us, e.g.
* expr->[..]? so we need to save the 'expr' subtree */
if (p->op_type == OP_EXISTS || p->op_type == OP_DELETE)
p = cUNOPx(p)->op_first;
ASSUME( start->op_type == OP_RV2AV
|| start->op_type == OP_RV2HV);
}
else {
/* either a padXv or rv2Xv+gv, maybe with an ex-Xelem
* above for exists/delete. */
while ( (p->op_flags & OPf_KIDS)
&& cUNOPx(p)->op_first != start
)
p = cUNOPx(p)->op_first;
}
ASSUME(cUNOPx(p)->op_first == start);
/* detach from main tree, and re-attach under the multideref */
op_sibling_splice(mderef, NULL, 0,
op_sibling_splice(p, NULL, 1, NULL));
op_null(start);
start->op_next = mderef;
mderef->op_next = index_skip == -1 ? o->op_next : o;
/* excise and free the original tree, and replace with
* the multideref op */
p = op_sibling_splice(top_op, NULL, -1, mderef);
while (p) {
q = OpSIBLING(p);
op_free(p);
p = q;
}
op_null(top_op);
}
else {
Size_t size = arg - arg_buf;
if (maybe_aelemfast && action_count == 1)
return;
arg_buf = (UNOP_AUX_item*)PerlMemShared_malloc(
sizeof(UNOP_AUX_item) * (size + 1));
/* for dumping etc: store the length in a hidden first slot;
* we set the op_aux pointer to the second slot */
arg_buf->uv = size;
arg_buf++;
}
} /* for (pass = ...) */
}
/* See if the ops following o are such that o will always be executed in
* boolean context: that is, the SV which o pushes onto the stack will
* only ever be consumed by later ops via SvTRUE(sv) or similar.
* If so, set a suitable private flag on o. Normally this will be
* bool_flag; but see below why maybe_flag is needed too.
*
* Typically the two flags you pass will be the generic OPpTRUEBOOL and
* OPpMAYBE_TRUEBOOL, buts it's possible that for some ops those bits may
* already be taken, so you'll have to give that op two different flags.
*
* More explanation of 'maybe_flag' and 'safe_and' parameters.
* The binary logical ops &&, ||, // (plus 'if' and 'unless' which use
* those underlying ops) short-circuit, which means that rather than
* necessarily returning a truth value, they may return the LH argument,
* which may not be boolean. For example in $x = (keys %h || -1), keys
* should return a key count rather than a boolean, even though its
* sort-of being used in boolean context.
*
* So we only consider such logical ops to provide boolean context to
* their LH argument if they themselves are in void or boolean context.
* However, sometimes the context isn't known until run-time. In this
* case the op is marked with the maybe_flag flag it.
*
* Consider the following.
*
* sub f { ....; if (%h) { .... } }
*
* This is actually compiled as
*
* sub f { ....; %h && do { .... } }
*
* Here we won't know until runtime whether the final statement (and hence
* the &&) is in void context and so is safe to return a boolean value.
* So mark o with maybe_flag rather than the bool_flag.
* Note that there is cost associated with determining context at runtime
* (e.g. a call to block_gimme()), so it may not be worth setting (at
* compile time) and testing (at runtime) maybe_flag if the scalar verses
* boolean costs savings are marginal.
*
* However, we can do slightly better with && (compared to || and //):
* this op only returns its LH argument when that argument is false. In
* this case, as long as the op promises to return a false value which is
* valid in both boolean and scalar contexts, we can mark an op consumed
* by && with bool_flag rather than maybe_flag.
* For example as long as pp_padhv and pp_rv2hv return &PL_sv_zero rather
* than &PL_sv_no for a false result in boolean context, then it's safe. An
* op which promises to handle this case is indicated by setting safe_and
* to true.
*/
static void
S_check_for_bool_cxt(OP*o, bool safe_and, U8 bool_flag, U8 maybe_flag)
{
OP *lop;
U8 flag = 0;
assert((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR);
/* OPpTARGET_MY and boolean context probably don't mix well.
* If someone finds a valid use case, maybe add an extra flag to this
* function which indicates its safe to do so for this op? */
assert(!( (PL_opargs[o->op_type] & OA_TARGLEX)
&& (o->op_private & OPpTARGET_MY)));
lop = o->op_next;
while (lop) {
switch (lop->op_type) {
case OP_NULL:
case OP_SCALAR:
break;
/* these two consume the stack argument in the scalar case,
* and treat it as a boolean in the non linenumber case */
case OP_FLIP:
case OP_FLOP:
if ( ((lop->op_flags & OPf_WANT) == OPf_WANT_LIST)
|| (lop->op_private & OPpFLIP_LINENUM))
{
lop = NULL;
break;
}
/* FALLTHROUGH */
/* these never leave the original value on the stack */
case OP_NOT:
case OP_XOR:
case OP_COND_EXPR:
case OP_GREPWHILE:
flag = bool_flag;
lop = NULL;
break;
/* OR DOR and AND evaluate their arg as a boolean, but then may
* leave the original scalar value on the stack when following the
* op_next route. If not in void context, we need to ensure
* that whatever follows consumes the arg only in boolean context
* too.
*/
case OP_AND:
if (safe_and) {
flag = bool_flag;
lop = NULL;
break;
}
/* FALLTHROUGH */
case OP_OR:
case OP_DOR:
if ((lop->op_flags & OPf_WANT) == OPf_WANT_VOID) {
flag = bool_flag;
lop = NULL;
}
else if (!(lop->op_flags & OPf_WANT)) {
/* unknown context - decide at runtime */
flag = maybe_flag;
lop = NULL;
}
break;
default:
lop = NULL;
break;
}
if (lop)
lop = lop->op_next;
}
o->op_private |= flag;
}
/* mechanism for deferring recursion in rpeep() */
#define MAX_DEFERRED 4
#define DEFER(o) \
STMT_START { \
if (defer_ix == (MAX_DEFERRED-1)) { \
OP **defer = defer_queue[defer_base]; \
CALL_RPEEP(*defer); \
S_prune_chain_head(defer); \
defer_base = (defer_base + 1) % MAX_DEFERRED; \
defer_ix--; \
} \
defer_queue[(defer_base + ++defer_ix) % MAX_DEFERRED] = &(o); \
} STMT_END
#define IS_AND_OP(o) (o->op_type == OP_AND)
#define IS_OR_OP(o) (o->op_type == OP_OR)
/* A peephole optimizer. We visit the ops in the order they're to execute.
* See the comments at the top of this file for more details about when
* peep() is called */
void
Perl_rpeep(pTHX_ OP *o)
{
dVAR;
OP* oldop = NULL;
OP* oldoldop = NULL;
OP** defer_queue[MAX_DEFERRED]; /* small queue of deferred branches */
int defer_base = 0;
int defer_ix = -1;
if (!o || o->op_opt)
return;
assert(o->op_type != OP_FREED);
ENTER;
SAVEOP();
SAVEVPTR(PL_curcop);
for (;; o = o->op_next) {
if (o && o->op_opt)
o = NULL;
if (!o) {
while (defer_ix >= 0) {
OP **defer =
defer_queue[(defer_base + defer_ix--) % MAX_DEFERRED];
CALL_RPEEP(*defer);
S_prune_chain_head(defer);
}
break;
}
redo:
/* oldoldop -> oldop -> o should be a chain of 3 adjacent ops */
assert(!oldoldop || oldoldop->op_next == oldop);
assert(!oldop || oldop->op_next == o);
/* By default, this op has now been optimised. A couple of cases below
clear this again. */
o->op_opt = 1;
PL_op = o;
/* look for a series of 1 or more aggregate derefs, e.g.
* $a[1]{foo}[$i]{$k}
* and replace with a single OP_MULTIDEREF op.
* Each index must be either a const, or a simple variable,
*
* First, look for likely combinations of starting ops,
* corresponding to (global and lexical variants of)
* $a[...] $h{...}
* $r->[...] $r->{...}
* (preceding expression)->[...]
* (preceding expression)->{...}
* and if so, call maybe_multideref() to do a full inspection
* of the op chain and if appropriate, replace with an
* OP_MULTIDEREF
*/
{
UV action;
OP *o2 = o;
U8 hints = 0;
switch (o2->op_type) {
case OP_GV:
/* $pkg[..] : gv[*pkg]
* $pkg->[...]: gv[*pkg]; rv2sv sKM/DREFAV */
/* Fail if there are new op flag combinations that we're
* not aware of, rather than:
* * silently failing to optimise, or
* * silently optimising the flag away.
* If this ASSUME starts failing, examine what new flag
* has been added to the op, and decide whether the
* optimisation should still occur with that flag, then
* update the code accordingly. This applies to all the
* other ASSUMEs in the block of code too.
*/
ASSUME(!(o2->op_flags &
~(OPf_WANT|OPf_MOD|OPf_PARENS|OPf_SPECIAL)));
ASSUME(!(o2->op_private & ~OPpEARLY_CV));
o2 = o2->op_next;
if (o2->op_type == OP_RV2AV) {
action = MDEREF_AV_gvav_aelem;
goto do_deref;
}
if (o2->op_type == OP_RV2HV) {
action = MDEREF_HV_gvhv_helem;
goto do_deref;
}
if (o2->op_type != OP_RV2SV)
break;
/* at this point we've seen gv,rv2sv, so the only valid
* construct left is $pkg->[] or $pkg->{} */
ASSUME(!(o2->op_flags & OPf_STACKED));
if ((o2->op_flags & (OPf_WANT|OPf_REF|OPf_MOD|OPf_SPECIAL))
!= (OPf_WANT_SCALAR|OPf_MOD))
break;
ASSUME(!(o2->op_private & ~(OPpARG1_MASK|HINT_STRICT_REFS
|OPpOUR_INTRO|OPpDEREF|OPpLVAL_INTRO)));
if (o2->op_private & (OPpOUR_INTRO|OPpLVAL_INTRO))
break;
if ( (o2->op_private & OPpDEREF) != OPpDEREF_AV
&& (o2->op_private & OPpDEREF) != OPpDEREF_HV)
break;
o2 = o2->op_next;
if (o2->op_type == OP_RV2AV) {
action = MDEREF_AV_gvsv_vivify_rv2av_aelem;
goto do_deref;
}
if (o2->op_type == OP_RV2HV) {
action = MDEREF_HV_gvsv_vivify_rv2hv_helem;
goto do_deref;
}
break;
case OP_PADSV:
/* $lex->[...]: padsv[$lex] sM/DREFAV */
ASSUME(!(o2->op_flags &
~(OPf_WANT|OPf_PARENS|OPf_REF|OPf_MOD|OPf_SPECIAL)));
if ((o2->op_flags &
(OPf_WANT|OPf_REF|OPf_MOD|OPf_SPECIAL))
!= (OPf_WANT_SCALAR|OPf_MOD))
break;
ASSUME(!(o2->op_private &
~(OPpPAD_STATE|OPpDEREF|OPpLVAL_INTRO)));
/* skip if state or intro, or not a deref */
if ( o2->op_private != OPpDEREF_AV
&& o2->op_private != OPpDEREF_HV)
break;
o2 = o2->op_next;
if (o2->op_type == OP_RV2AV) {
action = MDEREF_AV_padsv_vivify_rv2av_aelem;
goto do_deref;
}
if (o2->op_type == OP_RV2HV) {
action = MDEREF_HV_padsv_vivify_rv2hv_helem;
goto do_deref;
}
break;
case OP_PADAV:
case OP_PADHV:
/* $lex[..]: padav[@lex:1,2] sR *
* or $lex{..}: padhv[%lex:1,2] sR */
ASSUME(!(o2->op_flags & ~(OPf_WANT|OPf_MOD|OPf_PARENS|
OPf_REF|OPf_SPECIAL)));
if ((o2->op_flags &
(OPf_WANT|OPf_REF|OPf_MOD|OPf_SPECIAL))
!= (OPf_WANT_SCALAR|OPf_REF))
break;
if (o2->op_flags != (OPf_WANT_SCALAR|OPf_REF))
break;
/* OPf_PARENS isn't currently used in this case;
* if that changes, let us know! */
ASSUME(!(o2->op_flags & OPf_PARENS));
/* at this point, we wouldn't expect any of the remaining
* possible private flags:
* OPpPAD_STATE, OPpLVAL_INTRO, OPpTRUEBOOL,
* OPpMAYBE_TRUEBOOL, OPpMAYBE_LVSUB
*
* OPpSLICEWARNING shouldn't affect runtime
*/
ASSUME(!(o2->op_private & ~(OPpSLICEWARNING)));
action = o2->op_type == OP_PADAV
? MDEREF_AV_padav_aelem
: MDEREF_HV_padhv_helem;
o2 = o2->op_next;
S_maybe_multideref(aTHX_ o, o2, action, 0);
break;
case OP_RV2AV:
case OP_RV2HV:
action = o2->op_type == OP_RV2AV
? MDEREF_AV_pop_rv2av_aelem
: MDEREF_HV_pop_rv2hv_helem;
/* FALLTHROUGH */
do_deref:
/* (expr)->[...]: rv2av sKR/1;
* (expr)->{...}: rv2hv sKR/1; */
ASSUME(o2->op_type == OP_RV2AV || o2->op_type == OP_RV2HV);
ASSUME(!(o2->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_STACKED|OPf_SPECIAL)));
if (o2->op_flags != (OPf_WANT_SCALAR|OPf_KIDS|OPf_REF))
break;
/* at this point, we wouldn't expect any of these
* possible private flags:
* OPpMAYBE_LVSUB, OPpLVAL_INTRO
* OPpTRUEBOOL, OPpMAYBE_TRUEBOOL, (rv2hv only)
*/
ASSUME(!(o2->op_private &
~(OPpHINT_STRICT_REFS|OPpARG1_MASK|OPpSLICEWARNING
|OPpOUR_INTRO)));
hints |= (o2->op_private & OPpHINT_STRICT_REFS);
o2 = o2->op_next;
S_maybe_multideref(aTHX_ o, o2, action, hints);
break;
default:
break;
}
}
switch (o->op_type) {
case OP_DBSTATE:
PL_curcop = ((COP*)o); /* for warnings */
break;
case OP_NEXTSTATE:
PL_curcop = ((COP*)o); /* for warnings */
/* Optimise a "return ..." at the end of a sub to just be "...".
* This saves 2 ops. Before:
* 1 <;> nextstate(main 1 -e:1) v ->2
* 4 <@> return K ->5
* 2 <0> pushmark s ->3
* - <1> ex-rv2sv sK/1 ->4
* 3 <#> gvsv[*cat] s ->4
*
* After:
* - <@> return K ->-
* - <0> pushmark s ->2
* - <1> ex-rv2sv sK/1 ->-
* 2 <$> gvsv(*cat) s ->3
*/
{
OP *next = o->op_next;
OP *sibling = OpSIBLING(o);
if ( OP_TYPE_IS(next, OP_PUSHMARK)
&& OP_TYPE_IS(sibling, OP_RETURN)
&& OP_TYPE_IS(sibling->op_next, OP_LINESEQ)
&& ( OP_TYPE_IS(sibling->op_next->op_next, OP_LEAVESUB)
||OP_TYPE_IS(sibling->op_next->op_next,
OP_LEAVESUBLV))
&& cUNOPx(sibling)->op_first == next
&& OpHAS_SIBLING(next) && OpSIBLING(next)->op_next
&& next->op_next
) {
/* Look through the PUSHMARK's siblings for one that
* points to the RETURN */
OP *top = OpSIBLING(next);
while (top && top->op_next) {
if (top->op_next == sibling) {
top->op_next = sibling->op_next;
o->op_next = next->op_next;
break;
}
top = OpSIBLING(top);
}
}
}
/* Optimise 'my $x; my $y;' into 'my ($x, $y);'
*
* This latter form is then suitable for conversion into padrange
* later on. Convert:
*
* nextstate1 -> padop1 -> nextstate2 -> padop2 -> nextstate3
*
* into:
*
* nextstate1 -> listop -> nextstate3
* / \
* pushmark -> padop1 -> padop2
*/
if (o->op_next && (
o->op_next->op_type == OP_PADSV
|| o->op_next->op_type == OP_PADAV
|| o->op_next->op_type == OP_PADHV
)
&& !(o->op_next->op_private & ~OPpLVAL_INTRO)
&& o->op_next->op_next && o->op_next->op_next->op_type == OP_NEXTSTATE
&& o->op_next->op_next->op_next && (
o->op_next->op_next->op_next->op_type == OP_PADSV
|| o->op_next->op_next->op_next->op_type == OP_PADAV
|| o->op_next->op_next->op_next->op_type == OP_PADHV
)
&& !(o->op_next->op_next->op_next->op_private & ~OPpLVAL_INTRO)
&& o->op_next->op_next->op_next->op_next && o->op_next->op_next->op_next->op_next->op_type == OP_NEXTSTATE
&& (!CopLABEL((COP*)o)) /* Don't mess with labels */
&& (!CopLABEL((COP*)o->op_next->op_next)) /* ... */
) {
OP *pad1, *ns2, *pad2, *ns3, *newop, *newpm;
pad1 = o->op_next;
ns2 = pad1->op_next;
pad2 = ns2->op_next;
ns3 = pad2->op_next;
/* we assume here that the op_next chain is the same as
* the op_sibling chain */
assert(OpSIBLING(o) == pad1);
assert(OpSIBLING(pad1) == ns2);
assert(OpSIBLING(ns2) == pad2);
assert(OpSIBLING(pad2) == ns3);
/* excise and delete ns2 */
op_sibling_splice(NULL, pad1, 1, NULL);
op_free(ns2);
/* excise pad1 and pad2 */
op_sibling_splice(NULL, o, 2, NULL);
/* create new listop, with children consisting of:
* a new pushmark, pad1, pad2. */
newop = newLISTOP(OP_LIST, 0, pad1, pad2);
newop->op_flags |= OPf_PARENS;
newop->op_flags = (newop->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
/* insert newop between o and ns3 */
op_sibling_splice(NULL, o, 0, newop);
/*fixup op_next chain */
newpm = cUNOPx(newop)->op_first; /* pushmark */
o ->op_next = newpm;
newpm->op_next = pad1;
pad1 ->op_next = pad2;
pad2 ->op_next = newop; /* listop */
newop->op_next = ns3;
/* Ensure pushmark has this flag if padops do */
if (pad1->op_flags & OPf_MOD && pad2->op_flags & OPf_MOD) {
newpm->op_flags |= OPf_MOD;
}
break;
}
/* Two NEXTSTATEs in a row serve no purpose. Except if they happen
to carry two labels. For now, take the easier option, and skip
this optimisation if the first NEXTSTATE has a label. */
if (!CopLABEL((COP*)o) && !PERLDB_NOOPT) {
OP *nextop = o->op_next;
while (nextop) {
switch (nextop->op_type) {
case OP_NULL:
case OP_SCALAR:
case OP_LINESEQ:
case OP_SCOPE:
nextop = nextop->op_next;
continue;
}
break;
}
if (nextop && (nextop->op_type == OP_NEXTSTATE)) {
op_null(o);
if (oldop)
oldop->op_next = nextop;
o = nextop;
/* Skip (old)oldop assignment since the current oldop's
op_next already points to the next op. */
goto redo;
}
}
break;
case OP_CONCAT:
if (o->op_next && o->op_next->op_type == OP_STRINGIFY) {
if (o->op_next->op_private & OPpTARGET_MY) {
if (o->op_flags & OPf_STACKED) /* chained concats */
break; /* ignore_optimization */
else {
/* assert(PL_opargs[o->op_type] & OA_TARGLEX); */
o->op_targ = o->op_next->op_targ;
o->op_next->op_targ = 0;
o->op_private |= OPpTARGET_MY;
}
}
op_null(o->op_next);
}
break;
case OP_STUB:
if ((o->op_flags & OPf_WANT) != OPf_WANT_LIST) {
break; /* Scalar stub must produce undef. List stub is noop */
}
goto nothin;
case OP_NULL:
if (o->op_targ == OP_NEXTSTATE
|| o->op_targ == OP_DBSTATE)
{
PL_curcop = ((COP*)o);
}
/* XXX: We avoid setting op_seq here to prevent later calls
to rpeep() from mistakenly concluding that optimisation
has already occurred. This doesn't fix the real problem,
though (See 20010220.007 (#5874)). AMS 20010719 */
/* op_seq functionality is now replaced by op_opt */
o->op_opt = 0;
/* FALLTHROUGH */
case OP_SCALAR:
case OP_LINESEQ:
case OP_SCOPE:
nothin:
if (oldop) {
oldop->op_next = o->op_next;
o->op_opt = 0;
continue;
}
break;
case OP_PUSHMARK:
/* Given
5 repeat/DOLIST
3 ex-list
1 pushmark
2 scalar or const
4 const[0]
convert repeat into a stub with no kids.
*/
if (o->op_next->op_type == OP_CONST
|| ( o->op_next->op_type == OP_PADSV
&& !(o->op_next->op_private & OPpLVAL_INTRO))
|| ( o->op_next->op_type == OP_GV
&& o->op_next->op_next->op_type == OP_RV2SV
&& !(o->op_next->op_next->op_private
& (OPpLVAL_INTRO|OPpOUR_INTRO))))
{
const OP *kid = o->op_next->op_next;
if (o->op_next->op_type == OP_GV)
kid = kid->op_next;
/* kid is now the ex-list. */
if (kid->op_type == OP_NULL
&& (kid = kid->op_next)->op_type == OP_CONST
/* kid is now the repeat count. */
&& kid->op_next->op_type == OP_REPEAT
&& kid->op_next->op_private & OPpREPEAT_DOLIST
&& (kid->op_next->op_flags & OPf_WANT) == OPf_WANT_LIST
&& SvIOK(kSVOP_sv) && SvIVX(kSVOP_sv) == 0
&& oldop)
{
o = kid->op_next; /* repeat */
oldop->op_next = o;
op_free(cBINOPo->op_first);
op_free(cBINOPo->op_last );
o->op_flags &=~ OPf_KIDS;
/* stub is a baseop; repeat is a binop */
STATIC_ASSERT_STMT(sizeof(OP) <= sizeof(BINOP));
OpTYPE_set(o, OP_STUB);
o->op_private = 0;
break;
}
}
/* Convert a series of PAD ops for my vars plus support into a
* single padrange op. Basically
*
* pushmark -> pad[ahs]v -> pad[ahs]?v -> ... -> (list) -> rest
*
* becomes, depending on circumstances, one of
*
* padrange ----------------------------------> (list) -> rest
* padrange --------------------------------------------> rest
*
* where all the pad indexes are sequential and of the same type
* (INTRO or not).
* We convert the pushmark into a padrange op, then skip
* any other pad ops, and possibly some trailing ops.
* Note that we don't null() the skipped ops, to make it
* easier for Deparse to undo this optimisation (and none of
* the skipped ops are holding any resourses). It also makes
* it easier for find_uninit_var(), as it can just ignore
* padrange, and examine the original pad ops.
*/
{
OP *p;
OP *followop = NULL; /* the op that will follow the padrange op */
U8 count = 0;
U8 intro = 0;
PADOFFSET base = 0; /* init only to stop compiler whining */
bool gvoid = 0; /* init only to stop compiler whining */
bool defav = 0; /* seen (...) = @_ */
bool reuse = 0; /* reuse an existing padrange op */
/* look for a pushmark -> gv[_] -> rv2av */
{
OP *rv2av, *q;
p = o->op_next;
if ( p->op_type == OP_GV
&& cGVOPx_gv(p) == PL_defgv
&& (rv2av = p->op_next)
&& rv2av->op_type == OP_RV2AV
&& !(rv2av->op_flags & OPf_REF)
&& !(rv2av->op_private & (OPpLVAL_INTRO|OPpMAYBE_LVSUB))
&& ((rv2av->op_flags & OPf_WANT) == OPf_WANT_LIST)
) {
q = rv2av->op_next;
if (q->op_type == OP_NULL)
q = q->op_next;
if (q->op_type == OP_PUSHMARK) {
defav = 1;
p = q;
}
}
}
if (!defav) {
p = o;
}
/* scan for PAD ops */
for (p = p->op_next; p; p = p->op_next) {
if (p->op_type == OP_NULL)
continue;
if (( p->op_type != OP_PADSV
&& p->op_type != OP_PADAV
&& p->op_type != OP_PADHV
)
/* any private flag other than INTRO? e.g. STATE */
|| (p->op_private & ~OPpLVAL_INTRO)
)
break;
/* let $a[N] potentially be optimised into AELEMFAST_LEX
* instead */
if ( p->op_type == OP_PADAV
&& p->op_next
&& p->op_next->op_type == OP_CONST
&& p->op_next->op_next
&& p->op_next->op_next->op_type == OP_AELEM
)
break;
/* for 1st padop, note what type it is and the range
* start; for the others, check that it's the same type
* and that the targs are contiguous */
if (count == 0) {
intro = (p->op_private & OPpLVAL_INTRO);
base = p->op_targ;
gvoid = OP_GIMME(p,0) == G_VOID;
}
else {
if ((p->op_private & OPpLVAL_INTRO) != intro)
break;
/* Note that you'd normally expect targs to be
* contiguous in my($a,$b,$c), but that's not the case
* when external modules start doing things, e.g.
* Function::Parameters */
if (p->op_targ != base + count)
break;
assert(p->op_targ == base + count);
/* Either all the padops or none of the padops should
be in void context. Since we only do the optimisa-
tion for av/hv when the aggregate itself is pushed
on to the stack (one item), there is no need to dis-
tinguish list from scalar context. */
if (gvoid != (OP_GIMME(p,0) == G_VOID))
break;
}
/* for AV, HV, only when we're not flattening */
if ( p->op_type != OP_PADSV
&& !gvoid
&& !(p->op_flags & OPf_REF)
)
break;
if (count >= OPpPADRANGE_COUNTMASK)
break;
/* there's a biggest base we can fit into a
* SAVEt_CLEARPADRANGE in pp_padrange.
* (The sizeof() stuff will be constant-folded, and is
* intended to avoid getting "comparison is always false"
* compiler warnings. See the comments above
* MEM_WRAP_CHECK for more explanation on why we do this
* in a weird way to avoid compiler warnings.)
*/
if ( intro
&& (8*sizeof(base) >
8*sizeof(UV)-OPpPADRANGE_COUNTSHIFT-SAVE_TIGHT_SHIFT
? (Size_t)base
: (UV_MAX >> (OPpPADRANGE_COUNTSHIFT+SAVE_TIGHT_SHIFT))
) >
(UV_MAX >> (OPpPADRANGE_COUNTSHIFT+SAVE_TIGHT_SHIFT))
)
break;
/* Success! We've got another valid pad op to optimise away */
count++;
followop = p->op_next;
}
if (count < 1 || (count == 1 && !defav))
break;
/* pp_padrange in specifically compile-time void context
* skips pushing a mark and lexicals; in all other contexts
* (including unknown till runtime) it pushes a mark and the
* lexicals. We must be very careful then, that the ops we
* optimise away would have exactly the same effect as the
* padrange.
* In particular in void context, we can only optimise to
* a padrange if we see the complete sequence
* pushmark, pad*v, ...., list
* which has the net effect of leaving the markstack as it
* was. Not pushing onto the stack (whereas padsv does touch
* the stack) makes no difference in void context.
*/
assert(followop);
if (gvoid) {
if (followop->op_type == OP_LIST
&& OP_GIMME(followop,0) == G_VOID
)
{
followop = followop->op_next; /* skip OP_LIST */
/* consolidate two successive my(...);'s */
if ( oldoldop
&& oldoldop->op_type == OP_PADRANGE
&& (oldoldop->op_flags & OPf_WANT) == OPf_WANT_VOID
&& (oldoldop->op_private & OPpLVAL_INTRO) == intro
&& !(oldoldop->op_flags & OPf_SPECIAL)
) {
U8 old_count;
assert(oldoldop->op_next == oldop);
assert( oldop->op_type == OP_NEXTSTATE
|| oldop->op_type == OP_DBSTATE);
assert(oldop->op_next == o);
old_count
= (oldoldop->op_private & OPpPADRANGE_COUNTMASK);
/* Do not assume pad offsets for $c and $d are con-
tiguous in
my ($a,$b,$c);
my ($d,$e,$f);
*/
if ( oldoldop->op_targ + old_count == base
&& old_count < OPpPADRANGE_COUNTMASK - count) {
base = oldoldop->op_targ;
count += old_count;
reuse = 1;
}
}
/* if there's any immediately following singleton
* my var's; then swallow them and the associated
* nextstates; i.e.
* my ($a,$b); my $c; my $d;
* is treated as
* my ($a,$b,$c,$d);
*/
while ( ((p = followop->op_next))
&& ( p->op_type == OP_PADSV
|| p->op_type == OP_PADAV
|| p->op_type == OP_PADHV)
&& (p->op_flags & OPf_WANT) == OPf_WANT_VOID
&& (p->op_private & OPpLVAL_INTRO) == intro
&& !(p->op_private & ~OPpLVAL_INTRO)
&& p->op_next
&& ( p->op_next->op_type == OP_NEXTSTATE
|| p->op_next->op_type == OP_DBSTATE)
&& count < OPpPADRANGE_COUNTMASK
&& base + count == p->op_targ
) {
count++;
followop = p->op_next;
}
}
else
break;
}
if (reuse) {
assert(oldoldop->op_type == OP_PADRANGE);
oldoldop->op_next = followop;
oldoldop->op_private = (intro | count);
o = oldoldop;
oldop = NULL;
oldoldop = NULL;
}
else {
/* Convert the pushmark into a padrange.
* To make Deparse easier, we guarantee that a padrange was
* *always* formerly a pushmark */
assert(o->op_type == OP_PUSHMARK);
o->op_next = followop;
OpTYPE_set(o, OP_PADRANGE);
o->op_targ = base;
/* bit 7: INTRO; bit 6..0: count */
o->op_private = (intro | count);
o->op_flags = ((o->op_flags & ~(OPf_WANT|OPf_SPECIAL))
| gvoid * OPf_WANT_VOID
| (defav ? OPf_SPECIAL : 0));
}
break;
}
case OP_RV2AV:
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
break;
case OP_RV2HV:
case OP_PADHV:
/*'keys %h' in void or scalar context: skip the OP_KEYS
* and perform the functionality directly in the RV2HV/PADHV
* op
*/
if (o->op_flags & OPf_REF) {
OP *k = o->op_next;
U8 want = (k->op_flags & OPf_WANT);
if ( k
&& k->op_type == OP_KEYS
&& ( want == OPf_WANT_VOID
|| want == OPf_WANT_SCALAR)
&& !(k->op_private & OPpMAYBE_LVSUB)
&& !(k->op_flags & OPf_MOD)
) {
o->op_next = k->op_next;
o->op_flags &= ~(OPf_REF|OPf_WANT);
o->op_flags |= want;
o->op_private |= (o->op_type == OP_PADHV ?
OPpPADHV_ISKEYS : OPpRV2HV_ISKEYS);
/* for keys(%lex), hold onto the OP_KEYS's targ
* since padhv doesn't have its own targ to return
* an int with */
if (!(o->op_type ==OP_PADHV && want == OPf_WANT_SCALAR))
op_null(k);
}
}
/* see if %h is used in boolean context */
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, OPpMAYBE_TRUEBOOL);
if (o->op_type != OP_PADHV)
break;
/* FALLTHROUGH */
case OP_PADAV:
if ( o->op_type == OP_PADAV
&& (o->op_flags & OPf_WANT) == OPf_WANT_SCALAR
)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
/* FALLTHROUGH */
case OP_PADSV:
/* Skip over state($x) in void context. */
if (oldop && o->op_private == (OPpPAD_STATE|OPpLVAL_INTRO)
&& (o->op_flags & OPf_WANT) == OPf_WANT_VOID)
{
oldop->op_next = o->op_next;
goto redo_nextstate;
}
if (o->op_type != OP_PADAV)
break;
/* FALLTHROUGH */
case OP_GV:
if (o->op_type == OP_PADAV || o->op_next->op_type == OP_RV2AV) {
OP* const pop = (o->op_type == OP_PADAV) ?
o->op_next : o->op_next->op_next;
IV i;
if (pop && pop->op_type == OP_CONST &&
((PL_op = pop->op_next)) &&
pop->op_next->op_type == OP_AELEM &&
!(pop->op_next->op_private &
(OPpLVAL_INTRO|OPpLVAL_DEFER|OPpDEREF|OPpMAYBE_LVSUB)) &&
(i = SvIV(((SVOP*)pop)->op_sv)) >= -128 && i <= 127)
{
GV *gv;
if (cSVOPx(pop)->op_private & OPpCONST_STRICT)
no_bareword_allowed(pop);
if (o->op_type == OP_GV)
op_null(o->op_next);
op_null(pop->op_next);
op_null(pop);
o->op_flags |= pop->op_next->op_flags & OPf_MOD;
o->op_next = pop->op_next->op_next;
o->op_ppaddr = PL_ppaddr[OP_AELEMFAST];
o->op_private = (U8)i;
if (o->op_type == OP_GV) {
gv = cGVOPo_gv;
GvAVn(gv);
o->op_type = OP_AELEMFAST;
}
else
o->op_type = OP_AELEMFAST_LEX;
}
if (o->op_type != OP_GV)
break;
}
/* Remove $foo from the op_next chain in void context. */
if (oldop
&& ( o->op_next->op_type == OP_RV2SV
|| o->op_next->op_type == OP_RV2AV
|| o->op_next->op_type == OP_RV2HV )
&& (o->op_next->op_flags & OPf_WANT) == OPf_WANT_VOID
&& !(o->op_next->op_private & OPpLVAL_INTRO))
{
oldop->op_next = o->op_next->op_next;
/* Reprocess the previous op if it is a nextstate, to
allow double-nextstate optimisation. */
redo_nextstate:
if (oldop->op_type == OP_NEXTSTATE) {
oldop->op_opt = 0;
o = oldop;
oldop = oldoldop;
oldoldop = NULL;
goto redo;
}
o = oldop->op_next;
goto redo;
}
else if (o->op_next->op_type == OP_RV2SV) {
if (!(o->op_next->op_private & OPpDEREF)) {
op_null(o->op_next);
o->op_private |= o->op_next->op_private & (OPpLVAL_INTRO
| OPpOUR_INTRO);
o->op_next = o->op_next->op_next;
OpTYPE_set(o, OP_GVSV);
}
}
else if (o->op_next->op_type == OP_READLINE
&& o->op_next->op_next->op_type == OP_CONCAT
&& (o->op_next->op_next->op_flags & OPf_STACKED))
{
/* Turn "$a .= <FH>" into an OP_RCATLINE. AMS 20010917 */
OpTYPE_set(o, OP_RCATLINE);
o->op_flags |= OPf_STACKED;
op_null(o->op_next->op_next);
op_null(o->op_next);
}
break;
case OP_NOT:
break;
case OP_AND:
case OP_OR:
case OP_DOR:
while (cLOGOP->op_other->op_type == OP_NULL)
cLOGOP->op_other = cLOGOP->op_other->op_next;
while (o->op_next && ( o->op_type == o->op_next->op_type
|| o->op_next->op_type == OP_NULL))
o->op_next = o->op_next->op_next;
/* If we're an OR and our next is an AND in void context, we'll
follow its op_other on short circuit, same for reverse.
We can't do this with OP_DOR since if it's true, its return
value is the underlying value which must be evaluated
by the next op. */
if (o->op_next &&
(
(IS_AND_OP(o) && IS_OR_OP(o->op_next))
|| (IS_OR_OP(o) && IS_AND_OP(o->op_next))
)
&& (o->op_next->op_flags & OPf_WANT) == OPf_WANT_VOID
) {
o->op_next = ((LOGOP*)o->op_next)->op_other;
}
DEFER(cLOGOP->op_other);
o->op_opt = 1;
break;
case OP_GREPWHILE:
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
/* FALLTHROUGH */
case OP_COND_EXPR:
case OP_MAPWHILE:
case OP_ANDASSIGN:
case OP_ORASSIGN:
case OP_DORASSIGN:
case OP_RANGE:
case OP_ONCE:
case OP_ARGDEFELEM:
while (cLOGOP->op_other->op_type == OP_NULL)
cLOGOP->op_other = cLOGOP->op_other->op_next;
DEFER(cLOGOP->op_other);
break;
case OP_ENTERLOOP:
case OP_ENTERITER:
while (cLOOP->op_redoop->op_type == OP_NULL)
cLOOP->op_redoop = cLOOP->op_redoop->op_next;
while (cLOOP->op_nextop->op_type == OP_NULL)
cLOOP->op_nextop = cLOOP->op_nextop->op_next;
while (cLOOP->op_lastop->op_type == OP_NULL)
cLOOP->op_lastop = cLOOP->op_lastop->op_next;
/* a while(1) loop doesn't have an op_next that escapes the
* loop, so we have to explicitly follow the op_lastop to
* process the rest of the code */
DEFER(cLOOP->op_lastop);
break;
case OP_ENTERTRY:
assert(cLOGOPo->op_other->op_type == OP_LEAVETRY);
DEFER(cLOGOPo->op_other);
break;
case OP_SUBST:
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
assert(!(cPMOP->op_pmflags & PMf_ONCE));
while (cPMOP->op_pmstashstartu.op_pmreplstart &&
cPMOP->op_pmstashstartu.op_pmreplstart->op_type == OP_NULL)
cPMOP->op_pmstashstartu.op_pmreplstart
= cPMOP->op_pmstashstartu.op_pmreplstart->op_next;
DEFER(cPMOP->op_pmstashstartu.op_pmreplstart);
break;
case OP_SORT: {
OP *oright;
if (o->op_flags & OPf_SPECIAL) {
/* first arg is a code block */
OP * const nullop = OpSIBLING(cLISTOP->op_first);
OP * kid = cUNOPx(nullop)->op_first;
assert(nullop->op_type == OP_NULL);
assert(kid->op_type == OP_SCOPE
|| (kid->op_type == OP_NULL && kid->op_targ == OP_LEAVE));
/* since OP_SORT doesn't have a handy op_other-style
* field that can point directly to the start of the code
* block, store it in the otherwise-unused op_next field
* of the top-level OP_NULL. This will be quicker at
* run-time, and it will also allow us to remove leading
* OP_NULLs by just messing with op_nexts without
* altering the basic op_first/op_sibling layout. */
kid = kLISTOP->op_first;
assert(
(kid->op_type == OP_NULL
&& ( kid->op_targ == OP_NEXTSTATE
|| kid->op_targ == OP_DBSTATE ))
|| kid->op_type == OP_STUB
|| kid->op_type == OP_ENTER
|| (PL_parser && PL_parser->error_count));
nullop->op_next = kid->op_next;
DEFER(nullop->op_next);
}
/* check that RHS of sort is a single plain array */
oright = cUNOPo->op_first;
if (!oright || oright->op_type != OP_PUSHMARK)
break;
if (o->op_private & OPpSORT_INPLACE)
break;
/* reverse sort ... can be optimised. */
if (!OpHAS_SIBLING(cUNOPo)) {
/* Nothing follows us on the list. */
OP * const reverse = o->op_next;
if (reverse->op_type == OP_REVERSE &&
(reverse->op_flags & OPf_WANT) == OPf_WANT_LIST) {
OP * const pushmark = cUNOPx(reverse)->op_first;
if (pushmark && (pushmark->op_type == OP_PUSHMARK)
&& (OpSIBLING(cUNOPx(pushmark)) == o)) {
/* reverse -> pushmark -> sort */
o->op_private |= OPpSORT_REVERSE;
op_null(reverse);
pushmark->op_next = oright->op_next;
op_null(oright);
}
}
}
break;
}
case OP_REVERSE: {
OP *ourmark, *theirmark, *ourlast, *iter, *expushmark, *rv2av;
OP *gvop = NULL;
LISTOP *enter, *exlist;
if (o->op_private & OPpSORT_INPLACE)
break;
enter = (LISTOP *) o->op_next;
if (!enter)
break;
if (enter->op_type == OP_NULL) {
enter = (LISTOP *) enter->op_next;
if (!enter)
break;
}
/* for $a (...) will have OP_GV then OP_RV2GV here.
for (...) just has an OP_GV. */
if (enter->op_type == OP_GV) {
gvop = (OP *) enter;
enter = (LISTOP *) enter->op_next;
if (!enter)
break;
if (enter->op_type == OP_RV2GV) {
enter = (LISTOP *) enter->op_next;
if (!enter)
break;
}
}
if (enter->op_type != OP_ENTERITER)
break;
iter = enter->op_next;
if (!iter || iter->op_type != OP_ITER)
break;
expushmark = enter->op_first;
if (!expushmark || expushmark->op_type != OP_NULL
|| expushmark->op_targ != OP_PUSHMARK)
break;
exlist = (LISTOP *) OpSIBLING(expushmark);
if (!exlist || exlist->op_type != OP_NULL
|| exlist->op_targ != OP_LIST)
break;
if (exlist->op_last != o) {
/* Mmm. Was expecting to point back to this op. */
break;
}
theirmark = exlist->op_first;
if (!theirmark || theirmark->op_type != OP_PUSHMARK)
break;
if (OpSIBLING(theirmark) != o) {
/* There's something between the mark and the reverse, eg
for (1, reverse (...))
so no go. */
break;
}
ourmark = ((LISTOP *)o)->op_first;
if (!ourmark || ourmark->op_type != OP_PUSHMARK)
break;
ourlast = ((LISTOP *)o)->op_last;
if (!ourlast || ourlast->op_next != o)
break;
rv2av = OpSIBLING(ourmark);
if (rv2av && rv2av->op_type == OP_RV2AV && !OpHAS_SIBLING(rv2av)
&& rv2av->op_flags == (OPf_WANT_LIST | OPf_KIDS)) {
/* We're just reversing a single array. */
rv2av->op_flags = OPf_WANT_SCALAR | OPf_KIDS | OPf_REF;
enter->op_flags |= OPf_STACKED;
}
/* We don't have control over who points to theirmark, so sacrifice
ours. */
theirmark->op_next = ourmark->op_next;
theirmark->op_flags = ourmark->op_flags;
ourlast->op_next = gvop ? gvop : (OP *) enter;
op_null(ourmark);
op_null(o);
enter->op_private |= OPpITER_REVERSED;
iter->op_private |= OPpITER_REVERSED;
oldoldop = NULL;
oldop = ourlast;
o = oldop->op_next;
goto redo;
NOT_REACHED; /* NOTREACHED */
break;
}
case OP_QR:
case OP_MATCH:
if (!(cPMOP->op_pmflags & PMf_ONCE)) {
assert (!cPMOP->op_pmstashstartu.op_pmreplstart);
}
break;
case OP_RUNCV:
if (!(o->op_private & OPpOFFBYONE) && !CvCLONE(PL_compcv)
&& (!CvANON(PL_compcv) || (!PL_cv_has_eval && !PL_perldb)))
{
SV *sv;
if (CvEVAL(PL_compcv)) sv = &PL_sv_undef;
else {
sv = newRV((SV *)PL_compcv);
sv_rvweaken(sv);
SvREADONLY_on(sv);
}
OpTYPE_set(o, OP_CONST);
o->op_flags |= OPf_SPECIAL;
cSVOPo->op_sv = sv;
}
break;
case OP_SASSIGN:
if (OP_GIMME(o,0) == G_VOID
|| ( o->op_next->op_type == OP_LINESEQ
&& ( o->op_next->op_next->op_type == OP_LEAVESUB
|| ( o->op_next->op_next->op_type == OP_RETURN
&& !CvLVALUE(PL_compcv)))))
{
OP *right = cBINOP->op_first;
if (right) {
/* sassign
* RIGHT
* substr
* pushmark
* arg1
* arg2
* ...
* becomes
*
* ex-sassign
* substr
* pushmark
* RIGHT
* arg1
* arg2
* ...
*/
OP *left = OpSIBLING(right);
if (left->op_type == OP_SUBSTR
&& (left->op_private & 7) < 4) {
op_null(o);
/* cut out right */
op_sibling_splice(o, NULL, 1, NULL);
/* and insert it as second child of OP_SUBSTR */
op_sibling_splice(left, cBINOPx(left)->op_first, 0,
right);
left->op_private |= OPpSUBSTR_REPL_FIRST;
left->op_flags =
(o->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
}
}
}
break;
case OP_AASSIGN: {
int l, r, lr, lscalars, rscalars;
/* handle common vars detection, e.g. ($a,$b) = ($b,$a).
Note that we do this now rather than in newASSIGNOP(),
since only by now are aliased lexicals flagged as such
See the essay "Common vars in list assignment" above for
the full details of the rationale behind all the conditions
below.
PL_generation sorcery:
To detect whether there are common vars, the global var
PL_generation is incremented for each assign op we scan.
Then we run through all the lexical variables on the LHS,
of the assignment, setting a spare slot in each of them to
PL_generation. Then we scan the RHS, and if any lexicals
already have that value, we know we've got commonality.
Also, if the generation number is already set to
PERL_INT_MAX, then the variable is involved in aliasing, so
we also have potential commonality in that case.
*/
PL_generation++;
/* scan LHS */
lscalars = 0;
l = S_aassign_scan(aTHX_ cLISTOPo->op_last, FALSE, &lscalars);
/* scan RHS */
rscalars = 0;
r = S_aassign_scan(aTHX_ cLISTOPo->op_first, TRUE, &rscalars);
lr = (l|r);
/* After looking for things which are *always* safe, this main
* if/else chain selects primarily based on the type of the
* LHS, gradually working its way down from the more dangerous
* to the more restrictive and thus safer cases */
if ( !l /* () = ....; */
|| !r /* .... = (); */
|| !(l & ~AAS_SAFE_SCALAR) /* (undef, pos()) = ...; */
|| !(r & ~AAS_SAFE_SCALAR) /* ... = (1,2,length,undef); */
|| (lscalars < 2) /* ($x, undef) = ... */
) {
NOOP; /* always safe */
}
else if (l & AAS_DANGEROUS) {
/* always dangerous */
o->op_private |= OPpASSIGN_COMMON_SCALAR;
o->op_private |= OPpASSIGN_COMMON_AGG;
}
else if (l & (AAS_PKG_SCALAR|AAS_PKG_AGG)) {
/* package vars are always dangerous - too many
* aliasing possibilities */
if (l & AAS_PKG_SCALAR)
o->op_private |= OPpASSIGN_COMMON_SCALAR;
if (l & AAS_PKG_AGG)
o->op_private |= OPpASSIGN_COMMON_AGG;
}
else if (l & ( AAS_MY_SCALAR|AAS_MY_AGG
|AAS_LEX_SCALAR|AAS_LEX_AGG))
{
/* LHS contains only lexicals and safe ops */
if (l & (AAS_MY_AGG|AAS_LEX_AGG))
o->op_private |= OPpASSIGN_COMMON_AGG;
if (l & (AAS_MY_SCALAR|AAS_LEX_SCALAR)) {
if (lr & AAS_LEX_SCALAR_COMM)
o->op_private |= OPpASSIGN_COMMON_SCALAR;
else if ( !(l & AAS_LEX_SCALAR)
&& (r & AAS_DEFAV))
{
/* falsely mark
* my (...) = @_
* as scalar-safe for performance reasons.
* (it will still have been marked _AGG if necessary */
NOOP;
}
else if (r & (AAS_PKG_SCALAR|AAS_PKG_AGG|AAS_DANGEROUS))
/* if there are only lexicals on the LHS and no
* common ones on the RHS, then we assume that the
* only way those lexicals could also get
* on the RHS is via some sort of dereffing or
* closure, e.g.
* $r = \$lex;
* ($lex, $x) = (1, $$r)
* and in this case we assume the var must have
* a bumped ref count. So if its ref count is 1,
* it must only be on the LHS.
*/
o->op_private |= OPpASSIGN_COMMON_RC1;
}
}
/* ... = ($x)
* may have to handle aggregate on LHS, but we can't
* have common scalars. */
if (rscalars < 2)
o->op_private &=
~(OPpASSIGN_COMMON_SCALAR|OPpASSIGN_COMMON_RC1);
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpASSIGN_TRUEBOOL, 0);
break;
}
case OP_REF:
/* see if ref() is used in boolean context */
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, OPpMAYBE_TRUEBOOL);
break;
case OP_LENGTH:
/* see if the op is used in known boolean context,
* but not if OA_TARGLEX optimisation is enabled */
if ( (o->op_flags & OPf_WANT) == OPf_WANT_SCALAR
&& !(o->op_private & OPpTARGET_MY)
)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
break;
case OP_POS:
/* see if the op is used in known boolean context */
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
break;
case OP_CUSTOM: {
Perl_cpeep_t cpeep =
XopENTRYCUSTOM(o, xop_peep);
if (cpeep)
cpeep(aTHX_ o, oldop);
break;
}
}
/* did we just null the current op? If so, re-process it to handle
* eliding "empty" ops from the chain */
if (o->op_type == OP_NULL && oldop && oldop->op_next == o) {
o->op_opt = 0;
o = oldop;
}
else {
oldoldop = oldop;
oldop = o;
}
}
LEAVE;
}
void
Perl_peep(pTHX_ OP *o)
{
CALL_RPEEP(o);
}
/*
=head1 Custom Operators
=for apidoc Perl_custom_op_xop
Return the XOP structure for a given custom op. This macro should be
considered internal to C<OP_NAME> and the other access macros: use them instead.
This macro does call a function. Prior
to 5.19.6, this was implemented as a
function.
=cut
*/
/* use PERL_MAGIC_ext to call a function to free the xop structure when
* freeing PL_custom_ops */
static int
custom_op_register_free(pTHX_ SV *sv, MAGIC *mg)
{
XOP *xop;
PERL_UNUSED_ARG(mg);
xop = INT2PTR(XOP *, SvIV(sv));
Safefree(xop->xop_name);
Safefree(xop->xop_desc);
Safefree(xop);
return 0;
}
static const MGVTBL custom_op_register_vtbl = {
0, /* get */
0, /* set */
0, /* len */
0, /* clear */
custom_op_register_free, /* free */
0, /* copy */
0, /* dup */
#ifdef MGf_LOCAL
0, /* local */
#endif
};
XOPRETANY
Perl_custom_op_get_field(pTHX_ const OP *o, const xop_flags_enum field)
{
SV *keysv;
HE *he = NULL;
XOP *xop;
static const XOP xop_null = { 0, 0, 0, 0, 0 };
PERL_ARGS_ASSERT_CUSTOM_OP_GET_FIELD;
assert(o->op_type == OP_CUSTOM);
/* This is wrong. It assumes a function pointer can be cast to IV,
* which isn't guaranteed, but this is what the old custom OP code
* did. In principle it should be safer to Copy the bytes of the
* pointer into a PV: since the new interface is hidden behind
* functions, this can be changed later if necessary. */
/* Change custom_op_xop if this ever happens */
keysv = sv_2mortal(newSViv(PTR2IV(o->op_ppaddr)));
if (PL_custom_ops)
he = hv_fetch_ent(PL_custom_ops, keysv, 0, 0);
/* See if the op isn't registered, but its name *is* registered.
* That implies someone is using the pre-5.14 API,where only name and
* description could be registered. If so, fake up a real
* registration.
* We only check for an existing name, and assume no one will have
* just registered a desc */
if (!he && PL_custom_op_names &&
(he = hv_fetch_ent(PL_custom_op_names, keysv, 0, 0))
) {
const char *pv;
STRLEN l;
/* XXX does all this need to be shared mem? */
Newxz(xop, 1, XOP);
pv = SvPV(HeVAL(he), l);
XopENTRY_set(xop, xop_name, savepvn(pv, l));
if (PL_custom_op_descs &&
(he = hv_fetch_ent(PL_custom_op_descs, keysv, 0, 0))
) {
pv = SvPV(HeVAL(he), l);
XopENTRY_set(xop, xop_desc, savepvn(pv, l));
}
Perl_custom_op_register(aTHX_ o->op_ppaddr, xop);
he = hv_fetch_ent(PL_custom_ops, keysv, 0, 0);
/* add magic to the SV so that the xop struct (pointed to by
* SvIV(sv)) is freed. Normally a static xop is registered, but
* for this backcompat hack, we've alloced one */
(void)sv_magicext(HeVAL(he), NULL, PERL_MAGIC_ext,
&custom_op_register_vtbl, NULL, 0);
}
else {
if (!he)
xop = (XOP *)&xop_null;
else
xop = INT2PTR(XOP *, SvIV(HeVAL(he)));
}
{
XOPRETANY any;
if(field == XOPe_xop_ptr) {
any.xop_ptr = xop;
} else {
const U32 flags = XopFLAGS(xop);
if(flags & field) {
switch(field) {
case XOPe_xop_name:
any.xop_name = xop->xop_name;
break;
case XOPe_xop_desc:
any.xop_desc = xop->xop_desc;
break;
case XOPe_xop_class:
any.xop_class = xop->xop_class;
break;
case XOPe_xop_peep:
any.xop_peep = xop->xop_peep;
break;
default:
NOT_REACHED; /* NOTREACHED */
break;
}
} else {
switch(field) {
case XOPe_xop_name:
any.xop_name = XOPd_xop_name;
break;
case XOPe_xop_desc:
any.xop_desc = XOPd_xop_desc;
break;
case XOPe_xop_class:
any.xop_class = XOPd_xop_class;
break;
case XOPe_xop_peep:
any.xop_peep = XOPd_xop_peep;
break;
default:
NOT_REACHED; /* NOTREACHED */
break;
}
}
}
/* On some platforms (HP-UX, IA64) gcc emits a warning for this function:
* op.c: In function 'Perl_custom_op_get_field':
* op.c:...: warning: 'any.xop_name' may be used uninitialized in this function [-Wmaybe-uninitialized]
* This is because on those platforms (with -DEBUGGING) NOT_REACHED
* expands to assert(0), which expands to ((0) ? (void)0 :
* __assert(...)), and gcc doesn't know that __assert can never return. */
return any;
}
}
/*
=for apidoc custom_op_register
Register a custom op. See L<perlguts/"Custom Operators">.
=cut
*/
void
Perl_custom_op_register(pTHX_ Perl_ppaddr_t ppaddr, const XOP *xop)
{
SV *keysv;
PERL_ARGS_ASSERT_CUSTOM_OP_REGISTER;
/* see the comment in custom_op_xop */
keysv = sv_2mortal(newSViv(PTR2IV(ppaddr)));
if (!PL_custom_ops)
PL_custom_ops = newHV();
if (!hv_store_ent(PL_custom_ops, keysv, newSViv(PTR2IV(xop)), 0))
Perl_croak(aTHX_ "panic: can't register custom OP %s", xop->xop_name);
}
/*
=for apidoc core_prototype
This function assigns the prototype of the named core function to C<sv>, or
to a new mortal SV if C<sv> is C<NULL>. It returns the modified C<sv>, or
C<NULL> if the core function has no prototype. C<code> is a code as returned
by C<keyword()>. It must not be equal to 0.
=cut
*/
SV *
Perl_core_prototype(pTHX_ SV *sv, const char *name, const int code,
int * const opnum)
{
int i = 0, n = 0, seen_question = 0, defgv = 0;
I32 oa;
#define MAX_ARGS_OP ((sizeof(I32) - 1) * 2)
char str[ MAX_ARGS_OP * 2 + 2 ]; /* One ';', one '\0' */
bool nullret = FALSE;
PERL_ARGS_ASSERT_CORE_PROTOTYPE;
assert (code);
if (!sv) sv = sv_newmortal();
#define retsetpvs(x,y) sv_setpvs(sv, x); if(opnum) *opnum=(y); return sv
switch (code < 0 ? -code : code) {
case KEY_and : case KEY_chop: case KEY_chomp:
case KEY_cmp : case KEY_defined: case KEY_delete: case KEY_exec :
case KEY_exists: case KEY_eq : case KEY_ge : case KEY_goto :
case KEY_grep : case KEY_gt : case KEY_last : case KEY_le :
case KEY_lt : case KEY_map : case KEY_ne : case KEY_next :
case KEY_or : case KEY_print : case KEY_printf: case KEY_qr :
case KEY_redo : case KEY_require: case KEY_return: case KEY_say :
case KEY_select: case KEY_sort : case KEY_split : case KEY_system:
case KEY_x : case KEY_xor :
if (!opnum) return NULL; nullret = TRUE; goto findopnum;
case KEY_glob: retsetpvs("_;", OP_GLOB);
case KEY_keys: retsetpvs("\\[%@]", OP_KEYS);
case KEY_values: retsetpvs("\\[%@]", OP_VALUES);
case KEY_each: retsetpvs("\\[%@]", OP_EACH);
case KEY_pos: retsetpvs(";\\[$*]", OP_POS);
case KEY___FILE__: case KEY___LINE__: case KEY___PACKAGE__:
retsetpvs("", 0);
case KEY_evalbytes:
name = "entereval"; break;
case KEY_readpipe:
name = "backtick";
}
#undef retsetpvs
findopnum:
while (i < MAXO) { /* The slow way. */
if (strEQ(name, PL_op_name[i])
|| strEQ(name, PL_op_desc[i]))
{
if (nullret) { assert(opnum); *opnum = i; return NULL; }
goto found;
}
i++;
}
return NULL;
found:
defgv = PL_opargs[i] & OA_DEFGV;
oa = PL_opargs[i] >> OASHIFT;
while (oa) {
if (oa & OA_OPTIONAL && !seen_question && (
!defgv || (oa & (OA_OPTIONAL - 1)) == OA_FILEREF
)) {
seen_question = 1;
str[n++] = ';';
}
if ((oa & (OA_OPTIONAL - 1)) >= OA_AVREF
&& (oa & (OA_OPTIONAL - 1)) <= OA_SCALARREF
/* But globs are already references (kinda) */
&& (oa & (OA_OPTIONAL - 1)) != OA_FILEREF
) {
str[n++] = '\\';
}
if ((oa & (OA_OPTIONAL - 1)) == OA_SCALARREF
&& !scalar_mod_type(NULL, i)) {
str[n++] = '[';
str[n++] = '$';
str[n++] = '@';
str[n++] = '%';
if (i == OP_LOCK || i == OP_UNDEF) str[n++] = '&';
str[n++] = '*';
str[n++] = ']';
}
else str[n++] = ("?$@@%&*$")[oa & (OA_OPTIONAL - 1)];
if (oa & OA_OPTIONAL && defgv && str[n-1] == '$') {
str[n-1] = '_'; defgv = 0;
}
oa = oa >> 4;
}
if (code == -KEY_not || code == -KEY_getprotobynumber) str[n++] = ';';
str[n++] = '\0';
sv_setpvn(sv, str, n - 1);
if (opnum) *opnum = i;
return sv;
}
OP *
Perl_coresub_op(pTHX_ SV * const coreargssv, const int code,
const int opnum)
{
OP * const argop = (opnum == OP_SELECT && code) ? NULL :
newSVOP(OP_COREARGS,0,coreargssv);
OP *o;
PERL_ARGS_ASSERT_CORESUB_OP;
switch(opnum) {
case 0:
return op_append_elem(OP_LINESEQ,
argop,
newSLICEOP(0,
newSVOP(OP_CONST, 0, newSViv(-code % 3)),
newOP(OP_CALLER,0)
)
);
case OP_EACH:
case OP_KEYS:
case OP_VALUES:
o = newUNOP(OP_AVHVSWITCH,0,argop);
o->op_private = opnum-OP_EACH;
return o;
case OP_SELECT: /* which represents OP_SSELECT as well */
if (code)
return newCONDOP(
0,
newBINOP(OP_GT, 0,
newAVREF(newGVOP(OP_GV, 0, PL_defgv)),
newSVOP(OP_CONST, 0, newSVuv(1))
),
coresub_op(newSVuv((UV)OP_SSELECT), 0,
OP_SSELECT),
coresub_op(coreargssv, 0, OP_SELECT)
);
/* FALLTHROUGH */
default:
switch (PL_opargs[opnum] & OA_CLASS_MASK) {
case OA_BASEOP:
return op_append_elem(
OP_LINESEQ, argop,
newOP(opnum,
opnum == OP_WANTARRAY || opnum == OP_RUNCV
? OPpOFFBYONE << 8 : 0)
);
case OA_BASEOP_OR_UNOP:
if (opnum == OP_ENTEREVAL) {
o = newUNOP(OP_ENTEREVAL,OPpEVAL_COPHH<<8,argop);
if (code == -KEY_evalbytes) o->op_private |= OPpEVAL_BYTES;
}
else o = newUNOP(opnum,0,argop);
if (opnum == OP_CALLER) o->op_private |= OPpOFFBYONE;
else {
onearg:
if (is_handle_constructor(o, 1))
argop->op_private |= OPpCOREARGS_DEREF1;
if (scalar_mod_type(NULL, opnum))
argop->op_private |= OPpCOREARGS_SCALARMOD;
}
return o;
default:
o = op_convert_list(opnum,OPf_SPECIAL*(opnum == OP_GLOB),argop);
if (is_handle_constructor(o, 2))
argop->op_private |= OPpCOREARGS_DEREF2;
if (opnum == OP_SUBSTR) {
o->op_private |= OPpMAYBE_LVSUB;
return o;
}
else goto onearg;
}
}
}
void
Perl_report_redefined_cv(pTHX_ const SV *name, const CV *old_cv,
SV * const *new_const_svp)
{
const char *hvname;
bool is_const = !!CvCONST(old_cv);
SV *old_const_sv = is_const ? cv_const_sv(old_cv) : NULL;
PERL_ARGS_ASSERT_REPORT_REDEFINED_CV;
if (is_const && new_const_svp && old_const_sv == *new_const_svp)
return;
/* They are 2 constant subroutines generated from
the same constant. This probably means that
they are really the "same" proxy subroutine
instantiated in 2 places. Most likely this is
when a constant is exported twice. Don't warn.
*/
if (
(ckWARN(WARN_REDEFINE)
&& !(
CvGV(old_cv) && GvSTASH(CvGV(old_cv))
&& HvNAMELEN(GvSTASH(CvGV(old_cv))) == 7
&& (hvname = HvNAME(GvSTASH(CvGV(old_cv))),
strEQ(hvname, "autouse"))
)
)
|| (is_const
&& ckWARN_d(WARN_REDEFINE)
&& (!new_const_svp || sv_cmp(old_const_sv, *new_const_svp))
)
)
Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
is_const
? "Constant subroutine %" SVf " redefined"
: "Subroutine %" SVf " redefined",
SVfARG(name));
}
/*
=head1 Hook manipulation
These functions provide convenient and thread-safe means of manipulating
hook variables.
=cut
*/
/*
=for apidoc wrap_op_checker
Puts a C function into the chain of check functions for a specified op
type. This is the preferred way to manipulate the L</PL_check> array.
C<opcode> specifies which type of op is to be affected. C<new_checker>
is a pointer to the C function that is to be added to that opcode's
check chain, and C<old_checker_p> points to the storage location where a
pointer to the next function in the chain will be stored. The value of
C<new_checker> is written into the L</PL_check> array, while the value
previously stored there is written to C<*old_checker_p>.
L</PL_check> is global to an entire process, and a module wishing to
hook op checking may find itself invoked more than once per process,
typically in different threads. To handle that situation, this function
is idempotent. The location C<*old_checker_p> must initially (once
per process) contain a null pointer. A C variable of static duration
(declared at file scope, typically also marked C<static> to give
it internal linkage) will be implicitly initialised appropriately,
if it does not have an explicit initialiser. This function will only
actually modify the check chain if it finds C<*old_checker_p> to be null.
This function is also thread safe on the small scale. It uses appropriate
locking to avoid race conditions in accessing L</PL_check>.
When this function is called, the function referenced by C<new_checker>
must be ready to be called, except for C<*old_checker_p> being unfilled.
In a threading situation, C<new_checker> may be called immediately,
even before this function has returned. C<*old_checker_p> will always
be appropriately set before C<new_checker> is called. If C<new_checker>
decides not to do anything special with an op that it is given (which
is the usual case for most uses of op check hooking), it must chain the
check function referenced by C<*old_checker_p>.
Taken all together, XS code to hook an op checker should typically look
something like this:
static Perl_check_t nxck_frob;
static OP *myck_frob(pTHX_ OP *op) {
...
op = nxck_frob(aTHX_ op);
...
return op;
}
BOOT:
wrap_op_checker(OP_FROB, myck_frob, &nxck_frob);
If you want to influence compilation of calls to a specific subroutine,
then use L</cv_set_call_checker_flags> rather than hooking checking of
all C<entersub> ops.
=cut
*/
void
Perl_wrap_op_checker(pTHX_ Optype opcode,
Perl_check_t new_checker, Perl_check_t *old_checker_p)
{
dVAR;
PERL_UNUSED_CONTEXT;
PERL_ARGS_ASSERT_WRAP_OP_CHECKER;
if (*old_checker_p) return;
OP_CHECK_MUTEX_LOCK;
if (!*old_checker_p) {
*old_checker_p = PL_check[opcode];
PL_check[opcode] = new_checker;
}
OP_CHECK_MUTEX_UNLOCK;
}
#include "XSUB.h"
/* Efficient sub that returns a constant scalar value. */
static void
const_sv_xsub(pTHX_ CV* cv)
{
dXSARGS;
SV *const sv = MUTABLE_SV(XSANY.any_ptr);
PERL_UNUSED_ARG(items);
if (!sv) {
XSRETURN(0);
}
EXTEND(sp, 1);
ST(0) = sv;
XSRETURN(1);
}
static void
const_av_xsub(pTHX_ CV* cv)
{
dXSARGS;
AV * const av = MUTABLE_AV(XSANY.any_ptr);
SP -= items;
assert(av);
#ifndef DEBUGGING
if (!av) {
XSRETURN(0);
}
#endif
if (SvRMAGICAL(av))
Perl_croak(aTHX_ "Magical list constants are not supported");
if (GIMME_V != G_ARRAY) {
EXTEND(SP, 1);
ST(0) = sv_2mortal(newSViv((IV)AvFILLp(av)+1));
XSRETURN(1);
}
EXTEND(SP, AvFILLp(av)+1);
Copy(AvARRAY(av), &ST(0), AvFILLp(av)+1, SV *);
XSRETURN(AvFILLp(av)+1);
}
/* Copy an existing cop->cop_warnings field.
* If it's one of the standard addresses, just re-use the address.
* This is the e implementation for the DUP_WARNINGS() macro
*/
STRLEN*
Perl_dup_warnings(pTHX_ STRLEN* warnings)
{
Size_t size;
STRLEN *new_warnings;
if (warnings == NULL || specialWARN(warnings))
return warnings;
size = sizeof(*warnings) + *warnings;
new_warnings = (STRLEN*)PerlMemShared_malloc(size);
Copy(warnings, new_warnings, size, char);
return new_warnings;
}
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|