1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
|
=head1 NAME
perlembed - how to embed perl in your C program
=head1 DESCRIPTION
=head2 PREAMBLE
Do you want to:
=over 5
=item B<Use C from Perl?>
Read L<perlcall> and L<perlxs>.
=item B<Use a UNIX program from Perl?>
Read about back-quotes and about C<system> and C<exec> in L<perlfunc>.
=item B<Use Perl from Perl?>
Read about C<do> and C<eval> in L<perlfunc/do> and L<perlfunc/eval> and C<use>
and C<require> in L<perlmod> and L<perlfunc/require>, L<perlfunc/use>.
=item B<Use C from C?>
Rethink your design.
=item B<Use Perl from C?>
Read on...
=back
=head2 ROADMAP
L<Compiling your C program>
There's one example in each of the eight sections:
L<Adding a Perl interpreter to your C program>
L<Calling a Perl subroutine from your C program>
L<Evaluating a Perl statement from your C program>
L<Performing Perl pattern matches and substitutions from your C program>
L<Fiddling with the Perl stack from your C program>
L<Maintaining a persistent interpreter>
L<Maintaining multiple interpreter instances>
L<Using Perl modules, which themselves use C libraries, from your C program>
This documentation is UNIX specific.
=head2 Compiling your C program
Every C program that uses Perl must link in the I<perl library>.
What's that, you ask? Perl is itself written in C; the perl library
is the collection of compiled C programs that were used to create your
perl executable (I</usr/bin/perl> or equivalent). (Corollary: you
can't use Perl from your C program unless Perl has been compiled on
your machine, or installed properly--that's why you shouldn't blithely
copy Perl executables from machine to machine without also copying the
I<lib> directory.)
Your C program will--usually--allocate, "run", and deallocate a
I<PerlInterpreter> object, which is defined in the perl library.
If your copy of Perl is recent enough to contain this documentation
(version 5.002 or later), then the perl library (and I<EXTERN.h> and
I<perl.h>, which you'll also need) will
reside in a directory resembling this:
/usr/local/lib/perl5/your_architecture_here/CORE
or perhaps just
/usr/local/lib/perl5/CORE
or maybe something like
/usr/opt/perl5/CORE
Execute this statement for a hint about where to find CORE:
perl -MConfig -e 'print $Config{archlib}'
Here's how you might compile the example in the next section,
L<Adding a Perl interpreter to your C program>,
on a DEC Alpha running the OSF operating system:
% cc -o interp interp.c -L/usr/local/lib/perl5/alpha-dec_osf/CORE
-I/usr/local/lib/perl5/alpha-dec_osf/CORE -lperl -lm
You'll have to choose the appropriate compiler (I<cc>, I<gcc>, et al.) and
library directory (I</usr/local/lib/...>) for your machine. If your
compiler complains that certain functions are undefined, or that it
can't locate I<-lperl>, then you need to change the path following the
-L. If it complains that it can't find I<EXTERN.h> or I<perl.h>, you need
to change the path following the -I.
You may have to add extra libraries as well. Which ones?
Perhaps those printed by
perl -MConfig -e 'print $Config{libs}'
We strongly recommend you use the B<ExtUtils::Embed> module to determine
all of this information for you:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
If the B<ExtUtils::Embed> module is not part of your perl kit's
distribution you can retrieve it from:
http://www.perl.com/cgi-bin/cpan_mod?module=ExtUtils::Embed.
=head2 Adding a Perl interpreter to your C program
In a sense, perl (the C program) is a good example of embedding Perl
(the language), so I'll demonstrate embedding with I<miniperlmain.c>,
from the source distribution. Here's a bastardized, non-portable version of
I<miniperlmain.c> containing the essentials of embedding:
#include <EXTERN.h> /* from the Perl distribution */
#include <perl.h> /* from the Perl distribution */
static PerlInterpreter *my_perl; /*** The Perl interpreter ***/
int main(int argc, char **argv, char **env)
{
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);
}
Note that we do not use the C<env> pointer here or in any of the
following examples.
Normally handed to C<perl_parse> as its final argument,
we hand it a B<NULL> instead, in which case the current environment
is used.
Now compile this program (I'll call it I<interp.c>) into an executable:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
After a successful compilation, you'll be able to use I<interp> just
like perl itself:
% interp
print "Pretty Good Perl \n";
print "10890 - 9801 is ", 10890 - 9801;
<CTRL-D>
Pretty Good Perl
10890 - 9801 is 1089
or
% interp -e 'printf("%x", 3735928559)'
deadbeef
You can also read and execute Perl statements from a file while in the
midst of your C program, by placing the filename in I<argv[1]> before
calling I<perl_run()>.
=head2 Calling a Perl subroutine from your C program
To call individual Perl subroutines, you can use any of the B<perl_call_*>
functions documented in the L<perlcall> man page.
In this example we'll use I<perl_call_argv>.
That's shown below, in a program I'll call I<showtime.c>.
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
int main(int argc, char **argv, char **env)
{
char *args[] = { NULL };
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, NULL);
/*** skipping perl_run() ***/
perl_call_argv("showtime", G_DISCARD | G_NOARGS, args);
perl_destruct(my_perl);
perl_free(my_perl);
}
where I<showtime> is a Perl subroutine that takes no arguments (that's the
I<G_NOARGS>) and for which I'll ignore the return value (that's the
I<G_DISCARD>). Those flags, and others, are discussed in L<perlcall>.
I'll define the I<showtime> subroutine in a file called I<showtime.pl>:
print "I shan't be printed.";
sub showtime {
print time;
}
Simple enough. Now compile and run:
% cc -o showtime showtime.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% showtime showtime.pl
818284590
yielding the number of seconds that elapsed between January 1, 1970
(the beginning of the UNIX epoch), and the moment I began writing this
sentence.
Note that in this particular case we are not required to call I<perl_run>,
however, in general it's considered good practice to ensure proper
initialization of library code including execution of all object C<DESTROY>
methods and package C<END {}> blocks.
If you want to pass some arguments to the Perl subroutine, you may add
strings to the C<NULL> terminated C<args> list passed to I<perl_call_argv>.
In order to pass arguments of another data type and/or examine return values
of the subroutine you'll need to manipulate the
Perl stack, demonstrated in the last section of this document:
L<Fiddling with the Perl stack from your C program>
=head2 Evaluating a Perl statement from your C program
One way to evaluate pieces of Perl code is to use L<perlguts/perl_eval_sv>.
We have wrapped this function with our own I<perl_eval()> function, which
converts a command string to an SV, passing this and the L<perlcall/G_DISCARD>
flag to L<perlguts/perl_eval_sv>.
Arguably, this is the only routine you'll ever need to execute
snippets of Perl code from within your C program. Your string can be
as long as you wish; it can contain multiple statements; it can
include L<perlfunc/use>, L<perlfunc/require> and L<perlfunc/do> to
include external Perl files.
Our I<perl_eval()> lets us evaluate individual Perl strings, and then
extract variables for coercion into C types. The following program,
I<string.c>, executes three Perl strings, extracting an C<int> from
the first, a C<float> from the second, and a C<char *> from the third.
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
I32 perl_eval(char *string)
{
return perl_eval_sv(newSVpv(string,0), G_DISCARD);
}
main (int argc, char **argv, char **env)
{
char *embedding[] = { "", "-e", "0" };
STRLEN length;
my_perl = perl_alloc();
perl_construct( my_perl );
perl_parse(my_perl, NULL, 3, embedding, NULL);
perl_run(my_perl);
/** Treat $a as an integer **/
perl_eval("$a = 3; $a **= 2");
printf("a = %d\n", SvIV(perl_get_sv("a", FALSE)));
/** Treat $a as a float **/
perl_eval("$a = 3.14; $a **= 2");
printf("a = %f\n", SvNV(perl_get_sv("a", FALSE)));
/** Treat $a as a string **/
perl_eval("$a = 'rekcaH lreP rehtonA tsuJ'; $a = reverse($a); ");
printf("a = %s\n", SvPV(perl_get_sv("a", FALSE), length));
perl_destruct(my_perl);
perl_free(my_perl);
}
All of those strange functions with I<sv> in their names help convert Perl scalars to C types. They're described in L<perlguts>.
If you compile and run I<string.c>, you'll see the results of using
I<SvIV()> to create an C<int>, I<SvNV()> to create a C<float>, and
I<SvPV()> to create a string:
a = 9
a = 9.859600
a = Just Another Perl Hacker
=head2 Performing Perl pattern matches and substitutions from your C program
Our I<perl_eval()> lets us evaluate strings of Perl code, so we can
define some functions that use it to "specialize" in matches and
substitutions: I<match()>, I<substitute()>, and I<matches()>.
char match(char *string, char *pattern);
Given a string and a pattern (e.g., "m/clasp/" or "/\b\w*\b/", which in
your program might be represented as C<"/\\b\\w*\\b/">),
returns 1 if the string matches the pattern and 0 otherwise.
int substitute(char *string[], char *pattern);
Given a pointer to a string and an "=~" operation (e.g., "s/bob/robert/g" or
"tr[A-Z][a-z]"), modifies the string according to the operation,
returning the number of substitutions made.
int matches(char *string, char *pattern, char **matches[]);
Given a string, a pattern, and a pointer to an empty array of strings,
evaluates C<$string =~ $pattern> in an array context, and fills in
I<matches> with the array elements (allocating memory as it does so),
returning the number of matches found.
Here's a sample program, I<match.c>, that uses all three (long lines have
been wrapped here):
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
I32 perl_eval(char *string)
{
return perl_eval_sv(newSVpv(string,0), G_DISCARD);
}
/** match(string, pattern)
**
** Used for matches in a scalar context.
**
** Returns 1 if the match was successful; 0 otherwise.
**/
char match(char *string, char *pattern)
{
char *command;
command = malloc(sizeof(char) * strlen(string) + strlen(pattern) + 37);
sprintf(command, "$string = '%s'; $return = $string =~ %s",
string, pattern);
perl_eval(command);
free(command);
return SvIV(perl_get_sv("return", FALSE));
}
/** substitute(string, pattern)
**
** Used for =~ operations that modify their left-hand side (s/// and tr///)
**
** Returns the number of successful matches, and
** modifies the input string if there were any.
**/
int substitute(char *string[], char *pattern)
{
char *command;
STRLEN length;
command = malloc(sizeof(char) * strlen(*string) + strlen(pattern) + 35);
sprintf(command, "$string = '%s'; $ret = ($string =~ %s)",
*string, pattern);
perl_eval(command);
free(command);
*string = SvPV(perl_get_sv("string", FALSE), length);
return SvIV(perl_get_sv("ret", FALSE));
}
/** matches(string, pattern, matches)
**
** Used for matches in an array context.
**
** Returns the number of matches,
** and fills in **matches with the matching substrings (allocates memory!)
**/
int matches(char *string, char *pattern, char **match_list[])
{
char *command;
SV *current_match;
AV *array;
I32 num_matches;
STRLEN length;
int i;
command = malloc(sizeof(char) * strlen(string) + strlen(pattern) + 38);
sprintf(command, "$string = '%s'; @array = ($string =~ %s)",
string, pattern);
perl_eval(command);
free(command);
array = perl_get_av("array", FALSE);
num_matches = av_len(array) + 1; /** assume $[ is 0 **/
*match_list = (char **) malloc(sizeof(char *) * num_matches);
for (i = 0; i <= num_matches; i++) {
current_match = av_shift(array);
(*match_list)[i] = SvPV(current_match, length);
}
return num_matches;
}
main (int argc, char **argv, char **env)
{
char *embedding[] = { "", "-e", "0" };
char *text, **match_list;
int num_matches, i;
int j;
my_perl = perl_alloc();
perl_construct( my_perl );
perl_parse(my_perl, NULL, 3, embedding, NULL);
perl_run(my_perl);
text = (char *) malloc(sizeof(char) * 486); /** A long string follows! **/
sprintf(text, "%s", "When he is at a convenience store and the bill \
comes to some amount like 76 cents, Maynard is aware that there is \
something he *should* do, something that will enable him to get back \
a quarter, but he has no idea *what*. He fumbles through his red \
squeezey changepurse and gives the boy three extra pennies with his \
dollar, hoping that he might luck into the correct amount. The boy \
gives him back two of his own pennies and then the big shiny quarter \
that is his prize. -RICHH");
if (match(text, "m/quarter/")) /** Does text contain 'quarter'? **/
printf("match: Text contains the word 'quarter'.\n\n");
else
printf("match: Text doesn't contain the word 'quarter'.\n\n");
if (match(text, "m/eighth/")) /** Does text contain 'eighth'? **/
printf("match: Text contains the word 'eighth'.\n\n");
else
printf("match: Text doesn't contain the word 'eighth'.\n\n");
/** Match all occurrences of /wi../ **/
num_matches = matches(text, "m/(wi..)/g", &match_list);
printf("matches: m/(wi..)/g found %d matches...\n", num_matches);
for (i = 0; i < num_matches; i++)
printf("match: %s\n", match_list[i]);
printf("\n");
for (i = 0; i < num_matches; i++) {
free(match_list[i]);
}
free(match_list);
/** Remove all vowels from text **/
num_matches = substitute(&text, "s/[aeiou]//gi");
if (num_matches) {
printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
num_matches);
printf("Now text is: %s\n\n", text);
}
/** Attempt a substitution **/
if (!substitute(&text, "s/Perl/C/")) {
printf("substitute: s/Perl/C...No substitution made.\n\n");
}
free(text);
perl_destruct(my_perl);
perl_free(my_perl);
}
which produces the output (again, long lines have been wrapped here)
perl_match: Text contains the word 'quarter'.
perl_match: Text doesn't contain the word 'eighth'.
perl_matches: m/(wi..)/g found 2 matches...
match: will
match: with
perl_substitute: s/[aeiou]//gi...139 substitutions made.
Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt bck
qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct mnt. Th by gvs
hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s hs prz. -RCHH
perl_substitute: s/Perl/C...No substitution made.
=head2 Fiddling with the Perl stack from your C program
When trying to explain stacks, most computer science textbooks mumble
something about spring-loaded columns of cafeteria plates: the last
thing you pushed on the stack is the first thing you pop off. That'll
do for our purposes: your C program will push some arguments onto "the Perl
stack", shut its eyes while some magic happens, and then pop the
results--the return value of your Perl subroutine--off the stack.
First you'll need to know how to convert between C types and Perl
types, with newSViv() and sv_setnv() and newAV() and all their
friends. They're described in L<perlguts>.
Then you'll need to know how to manipulate the Perl stack. That's
described in L<perlcall>.
Once you've understood those, embedding Perl in C is easy.
Because C has no built-in function for integer exponentiation, let's
make Perl's ** operator available to it (this is less useful than it
sounds, because Perl implements ** with C's I<pow()> function). First
I'll create a stub exponentiation function in I<power.pl>:
sub expo {
my ($a, $b) = @_;
return $a ** $b;
}
Now I'll create a C program, I<power.c>, with a function
I<PerlPower()> that contains all the perlguts necessary to push the
two arguments into I<expo()> and to pop the return value out. Take a
deep breath...
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
static void
PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(sp); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
perl_call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer */
/* pop the return value from stack */
printf ("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args.*/
}
int main (int argc, char **argv, char **env)
{
char *my_argv[2];
my_perl = perl_alloc();
perl_construct( my_perl );
my_argv[1] = (char *) malloc(10);
sprintf(my_argv[1], "power.pl");
perl_parse(my_perl, NULL, argc, my_argv, NULL);
perl_run(my_perl);
PerlPower(3, 4); /*** Compute 3 ** 4 ***/
perl_destruct(my_perl);
perl_free(my_perl);
}
Compile and run:
% cc -o power power.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% power
3 to the 4th power is 81.
=head2 Maintaining a persistent interpreter
When developing interactive, potentially long-running applications, it's
a good idea to maintain a persistent interpreter rather than allocating
and constructing a new interpreter multiple times. The major gain here is
speed, avoiding the penalty of Perl start-up time. However, a persistent
interpreter will require you to be more cautious in your use of namespace
and variable scoping. In previous examples we've been using global variables
in the default package B<main>. We knew exactly what code would be run,
making it safe to assume we'd avoid any variable collision or outrageous
symbol table growth.
Let's say your application is a server, which must run perl code from an
arbitrary file during each transaction. Your server has no way of knowing
what code is inside anyone of these files.
If the file was pulled in by B<perl_parse()>, compiled into a newly
constructed interpreter, then cleaned out with B<perl_destruct()> after the
the transaction, you'd be shielded from most namespace troubles.
One way to avoid namespace collisions in this scenerio, is to translate the
file name into a valid Perl package name, which is most likely to be unique,
then compile the code into that package using L<perlfunc/eval>.
In the example below, each file will only be compiled once, unless it is
updated on disk.
Optionally, the application may choose to clean out the symbol table
associated with the file after we are done with it. We'll call the subroutine
B<Embed::Persistent::eval_file> which lives in the file B<persistent.pl>, with
L<perlcall/perl_call_argv>, passing the filename and boolean cleanup/cache
flag as arguments.
Note that the process will continue to grow for each file that is compiled,
and each file it pulls in via L<perlfunc/require>, L<perlfunc/use> or
L<perlfunc/do>. In addition, there maybe B<AUTOLOAD>ed subroutines and
other conditions that cause Perl's symbol table to grow. You may wish to
add logic which keeps track of process size or restarts itself after n number
of requests to ensure memory consumption is kept to a minimum. You also need
to consider the importance of variable scoping with L<perlfunc/my> to futher
reduce symbol table growth.
package Embed::Persistent;
#persistent.pl
use strict;
use vars '%Cache';
#use Devel::Symdump ();
sub valid_package_name {
my($string) = @_;
$string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;
# second pass only for words starting with a digit
$string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;
# Dress it up as a real package name
$string =~ s|/|::|g;
return "Embed" . $string;
}
#borrowed from Safe.pm
sub delete_package {
my $pkg = shift;
my ($stem, $leaf);
no strict 'refs';
$pkg = "main::$pkg\::"; # expand to full symbol table name
($stem, $leaf) = $pkg =~ m/(.*::)(\w+::)$/;
my $stem_symtab = *{$stem}{HASH};
delete $stem_symtab->{$leaf};
}
sub eval_file {
my($filename, $delete) = @_;
my $package = valid_package_name($filename);
my $mtime = -M $filename;
if(defined $Cache{$package}{mtime}
&&
$Cache{$package}{mtime} <= $mtime)
{
# we have compiled this subroutine already,
# it has not been updated on disk, nothing left to do
print STDERR "already compiled $package->handler\n";
}
else {
local *FH;
open FH, $filename or die "open '$filename' $!";
local($/) = undef;
my $sub = <FH>;
close FH;
#wrap the code into a subroutine inside our unique package
my $eval = qq{package $package; sub handler { $sub; }};
{
# hide our variables within this block
my($filename,$mtime,$package,$sub);
eval $eval;
}
die $@ if $@;
#cache it unless we're cleaning out each time
$Cache{$package}{mtime} = $mtime unless $delete;
}
eval {$package->handler;};
die $@ if $@;
delete_package($package) if $delete;
#take a look if you want
#print Devel::Symdump->rnew($package)->as_string, $/;
}
1;
__END__
/* persistent.c */
#include <EXTERN.h>
#include <perl.h>
/* 1 = clean out filename's symbol table after each request, 0 = don't */
#ifndef DO_CLEAN
#define DO_CLEAN 0
#endif
static PerlInterpreter *perl = NULL;
int
main(int argc, char **argv, char **env)
{
char *embedding[] = { "", "persistent.pl" };
char *args[] = { "", DO_CLEAN, NULL };
char filename [1024];
int exitstatus = 0;
if((perl = perl_alloc()) == NULL) {
fprintf(stderr, "no memory!");
exit(1);
}
perl_construct(perl);
exitstatus = perl_parse(perl, NULL, 2, embedding, NULL);
if(!exitstatus) {
exitstatus = perl_run(perl);
while(printf("Enter file name: ") && gets(filename)) {
/* call the subroutine, passing it the filename as an argument */
args[0] = filename;
perl_call_argv("Embed::Persistent::eval_file",
G_DISCARD | G_EVAL, args);
/* check $@ */
if(SvTRUE(GvSV(errgv)))
fprintf(stderr, "eval error: %s\n", SvPV(GvSV(errgv),na));
}
}
perl_destruct_level = 0;
perl_destruct(perl);
perl_free(perl);
exit(exitstatus);
}
Now compile:
% cc -o persistent persistent.c `perl -MExtUtils::Embed -e ldopts`
Here's a example script file:
#test.pl
my $string = "hello";
foo($string);
sub foo {
print "foo says: @_\n";
}
Now run:
% persistent
Enter file name: test.pl
foo says: hello
Enter file name: test.pl
already compiled Embed::test_2epl->handler
foo says: hello
Enter file name: ^C
=head2 Maintaining multiple interpreter instances
The previous examples have gone through several steps to startup, use and
shutdown an embedded Perl interpreter. Certain applications may require
more than one instance of an interpreter to be created during the lifespan
of a single process. Such an application may take different approaches in
it's use of interpreter objects. For example, a particular transaction may
want to create an interpreter instance, then release any resources associated
with the object once the transaction is completed. When a single process
does this once, resources are released upon exit of the program and the next
time it starts, the interpreter's global state is fresh.
In the same process, the program must take care to ensure that these
actions take place before constructing a new interpreter. By default, the
global variable C<perl_destruct_level> is set to C<0> since extra cleaning
is not needed when a program constructs a single interpreter, such as the
perl executable itself in C</usr/bin/perl> or some such.
You can tell Perl to make everything squeeky clean by setting
C<perl_destruct_level> to C<1>.
perl_destruct_level = 1; /* perl global variable */
while(1) {
...
/* reset global variables here with perl_destruct_level = 1 */
perl_contruct(my_perl);
...
/* clean and reset _everything_ during perl_destruct */
perl_destruct(my_perl); /* ah, nice and fresh */
perl_free(my_perl);
...
/* let's go do it again! */
}
Now, when I<perl_destruct()> is called, the interpreter's syntax parsetree
and symbol tables are cleaned out, along with reseting global variables.
So, we've seen how to startup and shutdown an interpreter more than once
in the same process, but there was only one instance in existance at any
one time. Hmm, wonder if we can have more than one interpreter instance
running at the _same_ time?
Indeed this is possible, however when you build Perl, you must compile with
C<-DMULTIPLICITY>.
It's a little tricky for the Perl runtime to handle multiple interpreters,
introducing some overhead that most programs with a single interpreter don't
get burdened with. When you compile with C<-DMULTIPLICITY>, by default,
C<perl_destruct_level> is set to C<1> for each interpreter.
Let's give it a try:
#include <EXTERN.h>
#include <perl.h>
/* we're going to embed two interpreters */
/* we're going to embed two interpreters */
#define SAY_HELLO "-e", "print qq(Hi, I'm $^X\n)"
int main(int argc, char **argv, char **env)
{
PerlInterpreter
*one_perl = perl_alloc(),
*two_perl = perl_alloc();
char *one_args[] = { "one_perl", SAY_HELLO };
char *two_args[] = { "two_perl", SAY_HELLO };
perl_construct(one_perl);
perl_construct(two_perl);
perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);
perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);
perl_run(one_perl);
perl_run(two_perl);
perl_destruct(one_perl);
perl_destruct(two_perl);
perl_free(one_perl);
perl_free(two_perl);
}
Compile as usual:
% cc -o multiplicity multiplicity.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
Run it, Run it:
% multiplicity
Hi, I'm one_perl
Hi, I'm two_perl
=head2 Using Perl modules, which themselves use C libraries, from your C program
If you've played with the examples above and tried to embed a script
that I<use()>s a Perl module (such as I<Socket>) which itself uses a C or C++ library,
this probably happened:
Can't load module Socket, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports
dynamic loading or has the Socket module statically linked into it.)
What's wrong?
Your interpreter doesn't know how to communicate with these extensions
on its own. A little glue will help. Up until now you've been
calling I<perl_parse()>, handing it NULL for the second argument:
perl_parse(my_perl, NULL, argc, my_argv, NULL);
That's where the glue code can be inserted to create the initial contact between
Perl and linked C/C++ routines. Let's take a look some pieces of I<perlmain.c>
to see how Perl does this:
#ifdef __cplusplus
# define EXTERN_C extern "C"
#else
# define EXTERN_C extern
#endif
static void xs_init _((void));
EXTERN_C void boot_DynaLoader _((CV* cv));
EXTERN_C void boot_Socket _((CV* cv));
EXTERN_C void
xs_init()
{
char *file = __FILE__;
/* DynaLoader is a special case */
newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
newXS("Socket::bootstrap", boot_Socket, file);
}
Simply put: for each extension linked with your Perl executable
(determined during its initial configuration on your
computer or when adding a new extension),
a Perl subroutine is created to incorporate the extension's
routines. Normally, that subroutine is named
I<Module::bootstrap()> and is invoked when you say I<use Module>. In
turn, this hooks into an XSUB, I<boot_Module>, which creates a Perl
counterpart for each of the extension's XSUBs. Don't worry about this
part; leave that to the I<xsubpp> and extension authors. If your
extension is dynamically loaded, DynaLoader creates I<Module::bootstrap()>
for you on the fly. In fact, if you have a working DynaLoader then there
is rarely any need to link in any other extensions statically.
Once you have this code, slap it into the second argument of I<perl_parse()>:
perl_parse(my_perl, xs_init, argc, my_argv, NULL);
Then compile:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ldopts`
% interp
use Socket;
use SomeDynamicallyLoadedModule;
print "Now I can use extensions!\n"'
B<ExtUtils::Embed> can also automate writing the I<xs_init> glue code.
% perl -MExtUtils::Embed -e xsinit -o perlxsi.c
% cc -c perlxsi.c `perl -MExtUtils::Embed -e ccopts`
% cc -c interp.c `perl -MExtUtils::Embed -e ccopts`
% cc -o interp perlxsi.o interp.o `perl -MExtUtils::Embed -e ldopts`
Consult L<perlxs> and L<perlguts> for more details.
=head1 MORAL
You can sometimes I<write faster code> in C, but
you can always I<write code faster> in Perl. Because you can use
each from the other, combine them as you wish.
=head1 AUTHOR
Jon Orwant F<E<lt>orwant@media.mit.eduE<gt>>,
co-authored by Doug MacEachern F<E<lt>dougm@osf.orgE<gt>>,
with contributions from
Tim Bunce, Tom Christiansen, Dov Grobgeld, and Ilya
Zakharevich.
June 17, 1996
Some of this material is excerpted from my book: I<Perl 5 Interactive>,
Waite Group Press, 1996 (ISBN 1-57169-064-6) and appears
courtesy of Waite Group Press.
|