summaryrefslogtreecommitdiff
path: root/pod/perlfork.pod
blob: 82ac6891dbdeeae472ad773df5f7585327505254 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
=head1 NAME

perlfork - Perl's fork() emulation

=head1 SYNOPSIS

Perl provides a fork() keyword that corresponds to the Unix system call
of the same name.  On most Unix-like platforms where the fork() system
call is available, Perl's fork() simply calls it.

On some platforms such as Windows where the fork() system call is not
available, Perl can be built to emulate fork() at the interpreter level.
While the emulation is designed to be as compatible as possible with the
real fork() at the level of the Perl program, there are certain
important differences that stem from the fact that all the pseudo child
"processes" created this way live in the same real process as far as the
operating system is concerned.

This document provides a general overview of the capabilities and
limitations of the fork() emulation.  Note that the issues discussed here
are not applicable to platforms where a real fork() is available and Perl
has been configured to use it.

=head1 DESCRIPTION

The fork() emulation is implemented at the level of the Perl interpreter.
What this means in general is that running fork() will actually clone the
running interpreter and all its state, and run the cloned interpreter in
a separate thread, beginning execution in the new thread just after the
point where the fork() was called in the parent.  We will refer to the
thread that implements this child "process" as the pseudo-process.

To the Perl program that called fork(), all this is designed to be
transparent.  The parent returns from the fork() with a pseudo-process
ID that can be subsequently used in any process manipulation functions;
the child returns from the fork() with a value of C<0> to signify that
it is the child pseudo-process.

=head2 Behavior of other Perl features in forked pseudo-processes

Most Perl features behave in a natural way within pseudo-processes.

=over 8

=item $$ or $PROCESS_ID

This special variable is correctly set to the pseudo-process ID.
It can be used to identify pseudo-processes within a particular
session.  Note that this value is subject to recycling if any
pseudo-processes are launched after others have been wait()-ed on.

=item %ENV

Each pseudo-process maintains its own virtual environment.  Modifications
to %ENV affect the virtual environment, and are only visible within that
pseudo-process, and in any processes (or pseudo-processes) launched from
it.

=item chdir() and all other builtins that accept filenames

Each pseudo-process maintains its own virtual idea of the current directory.
Modifications to the current directory using chdir() are only visible within
that pseudo-process, and in any processes (or pseudo-processes) launched from
it.  All file and directory accesses from the pseudo-process will correctly
map the virtual working directory to the real working directory appropriately.

=item wait() and waitpid()

wait() and waitpid() can be passed a pseudo-process ID returned by fork().
These calls will properly wait for the termination of the pseudo-process
and return its status.

=item kill()

kill() can be used to terminate a pseudo-process by passing it the ID returned
by fork().  This should not be used except under dire circumstances, because
the operating system may not guarantee integrity of the process resources
when a running thread is terminated.  Note that using kill() on a
pseudo-process() may typically cause memory leaks, because the thread that
implements the pseudo-process does not get a chance to clean up its resources.

=item exec()

Calling exec() within a pseudo-process actually spawns the requested
executable in a separate process and waits for it to complete before
exiting with the same exit status as that process.  This means that the
process ID reported within the running executable will be different from
what the earlier Perl fork() might have returned.  Similarly, any process
manipulation functions applied to the ID returned by fork() will affect the
waiting pseudo-process that called exec(), not the real process it is
waiting for after the exec().

=item exit()

exit() always exits just the executing pseudo-process, after automatically
wait()-ing for any outstanding child pseudo-processes.  Note that this means
that the process as a whole will not exit unless all running pseudo-processes
have exited.

=item Open handles to files, directories and network sockets

All open handles are dup()-ed in pseudo-processes, so that closing
any handles in one process does not affect the others.  See below for
some limitations.

=back

=head2 Resource limits

In the eyes of the operating system, pseudo-processes created via the fork()
emulation are simply threads in the same process.  This means that any
process-level limits imposed by the operating system apply to all
pseudo-processes taken together.  This includes any limits imposed by the
operating system on the number of open file, directory and socket handles,
limits on disk space usage, limits on memory size, limits on CPU utilization
etc.

=head2 Killing the parent process

If the parent process is killed (either using Perl's kill() builtin, or
using some external means) all the pseudo-processes are killed as well,
and the whole process exits.

=head2 Lifetime of the parent process and pseudo-processes

During the normal course of events, the parent process and every
pseudo-process started by it will wait for their respective pseudo-children
to complete before they exit.  This means that the parent and every
pseudo-child created by it that is also a pseudo-parent will only exit
after their pseudo-children have exited.

A way to mark a pseudo-processes as running detached from their parent (so
that the parent would not have to wait() for them if it doesn't want to)
will be provided in future.

=head2 CAVEATS AND LIMITATIONS

=over 8

=item BEGIN blocks

The fork() emulation will not work entirely correctly when called from
within a BEGIN block.  The forked copy will run the contents of the
BEGIN block, but will not continue parsing the source stream after the
BEGIN block.  For example, consider the following code:

    BEGIN {
        fork and exit;		# fork child and exit the parent
	print "inner\n";
    }
    print "outer\n";

This will print:

    inner

rather than the expected:

    inner
    outer

This limitation arises from fundamental technical difficulties in
cloning and restarting the stacks used by the Perl parser in the
middle of a parse.

=item Open filehandles

Any filehandles open at the time of the fork() will be dup()-ed.  Thus,
the files can be closed independently in the parent and child, but beware
that the dup()-ed handles will still share the same seek pointer.  Changing
the seek position in the parent will change it in the child and vice-versa.
One can avoid this by opening files that need distinct seek pointers
separately in the child.

=item Forking pipe open() not yet implemented

The C<open(FOO, "|-")> and C<open(BAR, "-|")> constructs are not yet
implemented.  This limitation can be easily worked around in new code
by creating a pipe explicitly.  The following example shows how to
write to a forked child:

    # simulate open(FOO, "|-")
    sub pipe_to_fork ($) {
	my $parent = shift;
	pipe my $child, $parent or die;
	my $pid = fork();
	die "fork() failed: $!" unless defined $pid;
	if ($pid) {
	    close $child;
	}
	else {
	    close $parent;
	    open(STDIN, "<&=" . fileno($child)) or die;
	}
	$pid;
    }

    if (pipe_to_fork('FOO')) {
	# parent
	print FOO "pipe_to_fork\n";
	close FOO;
    }
    else {
	# child
	while (<STDIN>) { print; }
	close STDIN;
	exit(0);
    }

And this one reads from the child:

    # simulate open(FOO, "-|")
    sub pipe_from_fork ($) {
	my $parent = shift;
	pipe $parent, my $child or die;
	my $pid = fork();
	die "fork() failed: $!" unless defined $pid;
	if ($pid) {
	    close $child;
	}
	else {
	    close $parent;
	    open(STDOUT, ">&=" . fileno($child)) or die;
	}
	$pid;
    }

    if (pipe_from_fork('BAR')) {
	# parent
	while (<BAR>) { print; }
	close BAR;
    }
    else {
	# child
	print "pipe_from_fork\n";
	close STDOUT;
	exit(0);
    }

Forking pipe open() constructs will be supported in future.

=item Global state maintained by XSUBs 

External subroutines (XSUBs) that maintain their own global state may
not work correctly.  Such XSUBs will either need to maintain locks to
protect simultaneous access to global data from different pseudo-processes,
or maintain all their state on the Perl symbol table, which is copied
naturally when fork() is called.  A callback mechanism that provides
extensions an opportunity to clone their state will be provided in the
near future.

=item Interpreter embedded in larger application

The fork() emulation may not behave as expected when it is executed in an
application which embeds a Perl interpreter and calls Perl APIs that can
evaluate bits of Perl code.  This stems from the fact that the emulation
only has knowledge about the Perl interpreter's own data structures and
knows nothing about the containing application's state.  For example, any
state carried on the application's own call stack is out of reach.

=item Thread-safety of extensions

Since the fork() emulation runs code in multiple threads, extensions
calling into non-thread-safe libraries may not work reliably when
calling fork().  As Perl's threading support gradually becomes more
widely adopted even on platforms with a native fork(), such extensions
are expected to be fixed for thread-safety.

=back

=head1 BUGS

=over 8

=item *

Having pseudo-process IDs be negative integers breaks down for the integer
C<-1> because the wait() and waitpid() functions treat this number as
being special.  The tacit assumption in the current implementation is that
the system never allocates a thread ID of C<1> for user threads.  A better
representation for pseudo-process IDs will be implemented in future.

=item *

This document may be incomplete in some respects.

=back

=head1 AUTHOR

Support for concurrent interpreters and the fork() emulation was implemented
by ActiveState, with funding from Microsoft Corporation.

This document is authored and maintained by Gurusamy Sarathy
E<lt>gsar@activestate.comE<gt>.

=head1 SEE ALSO

L<perlfunc/"fork">, L<perlipc>

=cut