1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
|
=head1 NAME
X<function>
perlfunc - Perl builtin functions
=head1 DESCRIPTION
The functions in this section can serve as terms in an expression.
They fall into two major categories: list operators and named unary
operators. These differ in their precedence relationship with a
following comma. (See the precedence table in L<perlop>.) List
operators take more than one argument, while unary operators can never
take more than one argument. Thus, a comma terminates the argument of
a unary operator, but merely separates the arguments of a list
operator. A unary operator generally provides scalar context to its
argument, while a list operator may provide either scalar or list
contexts for its arguments. If it does both, scalar arguments
come first and list argument follow, and there can only ever
be one such list argument. For instance, splice() has three scalar
arguments followed by a list, whereas gethostbyname() has four scalar
arguments.
In the syntax descriptions that follow, list operators that expect a
list (and provide list context for elements of the list) are shown
with LIST as an argument. Such a list may consist of any combination
of scalar arguments or list values; the list values will be included
in the list as if each individual element were interpolated at that
point in the list, forming a longer single-dimensional list value.
Commas should separate literal elements of the LIST.
Any function in the list below may be used either with or without
parentheses around its arguments. (The syntax descriptions omit the
parentheses.) If you use parentheses, the simple but occasionally
surprising rule is this: It I<looks> like a function, therefore it I<is> a
function, and precedence doesn't matter. Otherwise it's a list
operator or unary operator, and precedence does matter. Whitespace
between the function and left parenthesis doesn't count, so sometimes
you need to be careful:
print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.
If you run Perl with the B<-w> switch it can warn you about this. For
example, the third line above produces:
print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at - line 1.
A few functions take no arguments at all, and therefore work as neither
unary nor list operators. These include such functions as C<time>
and C<endpwent>. For example, C<time+86_400> always means
C<time() + 86_400>.
For functions that can be used in either a scalar or list context,
nonabortive failure is generally indicated in scalar context by
returning the undefined value, and in list context by returning the
empty list.
Remember the following important rule: There is B<no rule> that relates
the behavior of an expression in list context to its behavior in scalar
context, or vice versa. It might do two totally different things.
Each operator and function decides which sort of value would be most
appropriate to return in scalar context. Some operators return the
length of the list that would have been returned in list context. Some
operators return the first value in the list. Some operators return the
last value in the list. Some operators return a count of successful
operations. In general, they do what you want, unless you want
consistency.
X<context>
A named array in scalar context is quite different from what would at
first glance appear to be a list in scalar context. You can't get a list
like C<(1,2,3)> into being in scalar context, because the compiler knows
the context at compile time. It would generate the scalar comma operator
there, not the list construction version of the comma. That means it
was never a list to start with.
In general, functions in Perl that serve as wrappers for system calls ("syscalls")
of the same name (like chown(2), fork(2), closedir(2), etc.) return
true when they succeed and C<undef> otherwise, as is usually mentioned
in the descriptions below. This is different from the C interfaces,
which return C<-1> on failure. Exceptions to this rule include C<wait>,
C<waitpid>, and C<syscall>. System calls also set the special C<$!>
variable on failure. Other functions do not, except accidentally.
Extension modules can also hook into the Perl parser to define new
kinds of keyword-headed expression. These may look like functions, but
may also look completely different. The syntax following the keyword
is defined entirely by the extension. If you are an implementor, see
L<perlapi/PL_keyword_plugin> for the mechanism. If you are using such
a module, see the module's documentation for details of the syntax that
it defines.
=head2 Perl Functions by Category
X<function>
Here are Perl's functions (including things that look like
functions, like some keywords and named operators)
arranged by category. Some functions appear in more
than one place.
=over 4
=item Functions for SCALARs or strings
X<scalar> X<string> X<character>
=for Pod::Functions =String
C<chomp>, C<chop>, C<chr>, C<crypt>, C<fc>, C<hex>, C<index>, C<lc>,
C<lcfirst>, C<length>, C<oct>, C<ord>, C<pack>, C<q//>, C<qq//>, C<reverse>,
C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
C<fc> is available only if the C<"fc"> feature is enabled or if it is
prefixed with C<CORE::>. The C<"fc"> feature is enabled automatically
with a C<use v5.16> (or higher) declaration in the current scope.
=item Regular expressions and pattern matching
X<regular expression> X<regex> X<regexp>
=for Pod::Functions =Regexp
C<m//>, C<pos>, C<qr//>, C<quotemeta>, C<s///>, C<split>, C<study>
=item Numeric functions
X<numeric> X<number> X<trigonometric> X<trigonometry>
=for Pod::Functions =Math
C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
C<sin>, C<sqrt>, C<srand>
=item Functions for real @ARRAYs
X<array>
=for Pod::Functions =ARRAY
C<each>, C<keys>, C<pop>, C<push>, C<shift>, C<splice>, C<unshift>, C<values>
=item Functions for list data
X<list>
=for Pod::Functions =LIST
C<grep>, C<join>, C<map>, C<qw//>, C<reverse>, C<sort>, C<unpack>
=item Functions for real %HASHes
X<hash>
=for Pod::Functions =HASH
C<delete>, C<each>, C<exists>, C<keys>, C<values>
=item Input and output functions
X<I/O> X<input> X<output> X<dbm>
=for Pod::Functions =I/O
C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
C<readdir>, C<readline> C<rewinddir>, C<say>, C<seek>, C<seekdir>, C<select>,
C<syscall>, C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>,
C<truncate>, C<warn>, C<write>
C<say> is available only if the C<"say"> feature is enabled or if it is
prefixed with C<CORE::>. The C<"say"> feature is enabled automatically
with a C<use v5.10> (or higher) declaration in the current scope.
=item Functions for fixed-length data or records
=for Pod::Functions =Binary
C<pack>, C<read>, C<syscall>, C<sysread>, C<sysseek>, C<syswrite>, C<unpack>,
C<vec>
=item Functions for filehandles, files, or directories
X<file> X<filehandle> X<directory> X<pipe> X<link> X<symlink>
=for Pod::Functions =File
C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
C<umask>, C<unlink>, C<utime>
=item Keywords related to the control flow of your Perl program
X<control flow>
=for Pod::Functions =Flow
C<break>, C<caller>, C<continue>, C<die>, C<do>,
C<dump>, C<eval>, C<evalbytes> C<exit>,
C<__FILE__>, C<goto>, C<last>, C<__LINE__>, C<next>, C<__PACKAGE__>,
C<redo>, C<return>, C<sub>, C<__SUB__>, C<wantarray>
C<break> is available only if you enable the experimental C<"switch">
feature or use the C<CORE::> prefix. The C<"switch"> feature also enables
the C<default>, C<given> and C<when> statements, which are documented in
L<perlsyn/"Switch Statements">. The C<"switch"> feature is enabled
automatically with a C<use v5.10> (or higher) declaration in the current
scope. In Perl v5.14 and earlier, C<continue> required the C<"switch">
feature, like the other keywords.
C<evalbytes> is only available with the C<"evalbytes"> feature (see
L<feature>) or if prefixed with C<CORE::>. C<__SUB__> is only available
with the C<"current_sub"> feature or if prefixed with C<CORE::>. Both
the C<"evalbytes"> and C<"current_sub"> features are enabled automatically
with a C<use v5.16> (or higher) declaration in the current scope.
=item Keywords related to scoping
=for Pod::Functions =Namespace
C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<state>, C<use>
C<state> is available only if the C<"state"> feature is enabled or if it is
prefixed with C<CORE::>. The C<"state"> feature is enabled automatically
with a C<use v5.10> (or higher) declaration in the current scope.
=item Miscellaneous functions
=for Pod::Functions =Misc
C<defined>, C<formline>, C<lock>, C<prototype>, C<reset>, C<scalar>, C<undef>
=item Functions for processes and process groups
X<process> X<pid> X<process id>
=for Pod::Functions =Process
C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
C<pipe>, C<qx//>, C<readpipe>, C<setpgrp>,
C<setpriority>, C<sleep>, C<system>,
C<times>, C<wait>, C<waitpid>
=item Keywords related to Perl modules
X<module>
=for Pod::Functions =Modules
C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
=item Keywords related to classes and object-orientation
X<object> X<class> X<package>
=for Pod::Functions =Objects
C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
C<untie>, C<use>
=item Low-level socket functions
X<socket> X<sock>
=for Pod::Functions =Socket
C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
C<socket>, C<socketpair>
=item System V interprocess communication functions
X<IPC> X<System V> X<semaphore> X<shared memory> X<memory> X<message>
=for Pod::Functions =SysV
C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
=item Fetching user and group info
X<user> X<group> X<password> X<uid> X<gid> X<passwd> X</etc/passwd>
=for Pod::Functions =User
C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
C<getpwuid>, C<setgrent>, C<setpwent>
=item Fetching network info
X<network> X<protocol> X<host> X<hostname> X<IP> X<address> X<service>
=for Pod::Functions =Network
C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
C<setnetent>, C<setprotoent>, C<setservent>
=item Time-related functions
X<time> X<date>
=for Pod::Functions =Time
C<gmtime>, C<localtime>, C<time>, C<times>
=item Non-function keywords
=for Pod::Functions =!Non-functions
C<and>, C<AUTOLOAD>, C<BEGIN>, C<CHECK>, C<cmp>, C<CORE>, C<__DATA__>,
C<default>, C<DESTROY>, C<else>, C<elseif>, C<elsif>, C<END>, C<__END__>,
C<eq>, C<for>, C<foreach>, C<ge>, C<given>, C<gt>, C<if>, C<INIT>, C<le>,
C<lt>, C<ne>, C<not>, C<or>, C<UNITCHECK>, C<unless>, C<until>, C<when>,
C<while>, C<x>, C<xor>
=back
=head2 Portability
X<portability> X<Unix> X<portable>
Perl was born in Unix and can therefore access all common Unix
system calls. In non-Unix environments, the functionality of some
Unix system calls may not be available or details of the available
functionality may differ slightly. The Perl functions affected
by this are:
C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
C<getppid>, C<getpgrp>, C<getpriority>, C<getprotobynumber>,
C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
C<shmwrite>, C<socket>, C<socketpair>,
C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
C<times>, C<truncate>, C<umask>, C<unlink>,
C<utime>, C<wait>, C<waitpid>
For more information about the portability of these functions, see
L<perlport> and other available platform-specific documentation.
=head2 Alphabetical Listing of Perl Functions
=over
=item -X FILEHANDLE
X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
=item -X EXPR
=item -X DIRHANDLE
=item -X
=for Pod::Functions a file test (-r, -x, etc)
A file test, where X is one of the letters listed below. This unary
operator takes one argument, either a filename, a filehandle, or a dirhandle,
and tests the associated file to see if something is true about it. If the
argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
Unless otherwise documented, it returns C<1> for true and C<''> for false.
If the file doesn't exist or can't be examined, it returns C<undef> and
sets C<$!> (errno). Despite the funny names, precedence is the same as any
other named unary operator. The operator may be any of:
-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-o File is owned by effective uid.
-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.
-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).
-f File is a plain file.
-d File is a directory.
-l File is a symbolic link (false if symlinks aren't
supported by the file system).
-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File is a socket.
-b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.
-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.
-T File is an ASCII or UTF-8 text file (heuristic guess).
-B File is a "binary" file (opposite of -T).
-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other
platforms)
Example:
while (<>) {
chomp;
next unless -f $_; # ignore specials
#...
}
Note that C<-s/a/b/> does not do a negated substitution. Saying
C<-exp($foo)> still works as expected, however: only single letters
following a minus are interpreted as file tests.
These operators are exempt from the "looks like a function rule" described
above. That is, an opening parenthesis after the operator does not affect
how much of the following code constitutes the argument. Put the opening
parentheses before the operator to separate it from code that follows (this
applies only to operators with higher precedence than unary operators, of
course):
-s($file) + 1024 # probably wrong; same as -s($file + 1024)
(-s $file) + 1024 # correct
The interpretation of the file permission operators C<-r>, C<-R>,
C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
of the file and the uids and gids of the user. There may be other
reasons you can't actually read, write, or execute the file: for
example network filesystem access controls, ACLs (access control lists),
read-only filesystems, and unrecognized executable formats. Note
that the use of these six specific operators to verify if some operation
is possible is usually a mistake, because it may be open to race
conditions.
Also note that, for the superuser on the local filesystems, the C<-r>,
C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
if any execute bit is set in the mode. Scripts run by the superuser
may thus need to do a stat() to determine the actual mode of the file,
or temporarily set their effective uid to something else.
If you are using ACLs, there is a pragma called C<filetest> that may
produce more accurate results than the bare stat() mode bits.
When under C<use filetest 'access'> the above-mentioned filetests
test whether the permission can(not) be granted using the
access(2) family of system calls. Also note that the C<-x> and C<-X> may
under this pragma return true even if there are no execute permission
bits set (nor any extra execute permission ACLs). This strangeness is
due to the underlying system calls' definitions. Note also that, due to
the implementation of C<use filetest 'access'>, the C<_> special
filehandle won't cache the results of the file tests when this pragma is
in effect. Read the documentation for the C<filetest> pragma for more
information.
The C<-T> and C<-B> switches work as follows. The first block or so of
the file is examined to see if it is valid UTF-8 that includes non-ASCII
characters. If, so it's a C<-T> file. Otherwise, that same portion of
the file is examined for odd characters such as strange control codes or
characters with the high bit set. If more than a third of the
characters are strange, it's a C<-B> file; otherwise it's a C<-T> file.
Also, any file containing a zero byte in the examined portion is
considered a binary file. (If executed within the scope of a L<S<use
locale>|perllocale> which includes C<LC_CTYPE>, odd characters are
anything that isn't a printable nor space in the current locale.) If
C<-T> or C<-B> is used on a filehandle, the current IO buffer is
examined
rather than the first block. Both C<-T> and C<-B> return true on an empty
file, or a file at EOF when testing a filehandle. Because you have to
read a file to do the C<-T> test, on most occasions you want to use a C<-f>
against the file first, as in C<next unless -f $file && -T $file>.
If any of the file tests (or either the C<stat> or C<lstat> operator) is given
the special filehandle consisting of a solitary underline, then the stat
structure of the previous file test (or stat operator) is used, saving
a system call. (This doesn't work with C<-t>, and you need to remember
that lstat() and C<-l> leave values in the stat structure for the
symbolic link, not the real file.) (Also, if the stat buffer was filled by
an C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
Example:
print "Can do.\n" if -r $a || -w _ || -x _;
stat($filename);
print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;
print "Text\n" if -T _;
print "Binary\n" if -B _;
As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file
test operators, in a way that C<-f -w -x $file> is equivalent to
C<-x $file && -w _ && -f _>. (This is only fancy syntax: if you use
the return value of C<-f $file> as an argument to another filetest
operator, no special magic will happen.)
Portability issues: L<perlport/-X>.
To avoid confusing would-be users of your code with mysterious
syntax errors, put something like this at the top of your script:
use 5.010; # so filetest ops can stack
=item abs VALUE
X<abs> X<absolute>
=item abs
=for Pod::Functions absolute value function
Returns the absolute value of its argument.
If VALUE is omitted, uses C<$_>.
=item accept NEWSOCKET,GENERICSOCKET
X<accept>
=for Pod::Functions accept an incoming socket connect
Accepts an incoming socket connect, just as accept(2)
does. Returns the packed address if it succeeded, false otherwise.
See the example in L<perlipc/"Sockets: Client/Server Communication">.
On systems that support a close-on-exec flag on files, the flag will
be set for the newly opened file descriptor, as determined by the
value of $^F. See L<perlvar/$^F>.
=item alarm SECONDS
X<alarm>
X<SIGALRM>
X<timer>
=item alarm
=for Pod::Functions schedule a SIGALRM
Arranges to have a SIGALRM delivered to this process after the
specified number of wallclock seconds has elapsed. If SECONDS is not
specified, the value stored in C<$_> is used. (On some machines,
unfortunately, the elapsed time may be up to one second less or more
than you specified because of how seconds are counted, and process
scheduling may delay the delivery of the signal even further.)
Only one timer may be counting at once. Each call disables the
previous timer, and an argument of C<0> may be supplied to cancel the
previous timer without starting a new one. The returned value is the
amount of time remaining on the previous timer.
For delays of finer granularity than one second, the Time::HiRes module
(from CPAN, and starting from Perl 5.8 part of the standard
distribution) provides ualarm(). You may also use Perl's four-argument
version of select() leaving the first three arguments undefined, or you
might be able to use the C<syscall> interface to access setitimer(2) if
your system supports it. See L<perlfaq8> for details.
It is usually a mistake to intermix C<alarm> and C<sleep> calls, because
C<sleep> may be internally implemented on your system with C<alarm>.
If you want to use C<alarm> to time out a system call you need to use an
C<eval>/C<die> pair. You can't rely on the alarm causing the system call to
fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
restart system calls on some systems. Using C<eval>/C<die> always works,
modulo the caveats given in L<perlipc/"Signals">.
eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;
};
if ($@) {
die unless $@ eq "alarm\n"; # propagate unexpected errors
# timed out
}
else {
# didn't
}
For more information see L<perlipc>.
Portability issues: L<perlport/alarm>.
=item atan2 Y,X
X<atan2> X<arctangent> X<tan> X<tangent>
=for Pod::Functions arctangent of Y/X in the range -PI to PI
Returns the arctangent of Y/X in the range -PI to PI.
For the tangent operation, you may use the C<Math::Trig::tan>
function, or use the familiar relation:
sub tan { sin($_[0]) / cos($_[0]) }
The return value for C<atan2(0,0)> is implementation-defined; consult
your atan2(3) manpage for more information.
Portability issues: L<perlport/atan2>.
=item bind SOCKET,NAME
X<bind>
=for Pod::Functions binds an address to a socket
Binds a network address to a socket, just as bind(2)
does. Returns true if it succeeded, false otherwise. NAME should be a
packed address of the appropriate type for the socket. See the examples in
L<perlipc/"Sockets: Client/Server Communication">.
=item binmode FILEHANDLE, LAYER
X<binmode> X<binary> X<text> X<DOS> X<Windows>
=item binmode FILEHANDLE
=for Pod::Functions prepare binary files for I/O
Arranges for FILEHANDLE to be read or written in "binary" or "text"
mode on systems where the run-time libraries distinguish between
binary and text files. If FILEHANDLE is an expression, the value is
taken as the name of the filehandle. Returns true on success,
otherwise it returns C<undef> and sets C<$!> (errno).
On some systems (in general, DOS- and Windows-based systems) binmode()
is necessary when you're not working with a text file. For the sake
of portability it is a good idea always to use it when appropriate,
and never to use it when it isn't appropriate. Also, people can
set their I/O to be by default UTF8-encoded Unicode, not bytes.
In other words: regardless of platform, use binmode() on binary data,
like images, for example.
If LAYER is present it is a single string, but may contain multiple
directives. The directives alter the behaviour of the filehandle.
When LAYER is present, using binmode on a text file makes sense.
If LAYER is omitted or specified as C<:raw> the filehandle is made
suitable for passing binary data. This includes turning off possible CRLF
translation and marking it as bytes (as opposed to Unicode characters).
Note that, despite what may be implied in I<"Programming Perl"> (the
Camel, 3rd edition) or elsewhere, C<:raw> is I<not> simply the inverse of C<:crlf>.
Other layers that would affect the binary nature of the stream are
I<also> disabled. See L<PerlIO>, L<perlrun>, and the discussion about the
PERLIO environment variable.
The C<:bytes>, C<:crlf>, C<:utf8>, and any other directives of the
form C<:...>, are called I/O I<layers>. The C<open> pragma can be used to
establish default I/O layers. See L<open>.
I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
in "Programming Perl, 3rd Edition". However, since the publishing of this
book, by many known as "Camel III", the consensus of the naming of this
functionality has moved from "discipline" to "layer". All documentation
of this version of Perl therefore refers to "layers" rather than to
"disciplines". Now back to the regularly scheduled documentation...>
To mark FILEHANDLE as UTF-8, use C<:utf8> or C<:encoding(UTF-8)>.
C<:utf8> just marks the data as UTF-8 without further checking,
while C<:encoding(UTF-8)> checks the data for actually being valid
UTF-8. More details can be found in L<PerlIO::encoding>.
In general, binmode() should be called after open() but before any I/O
is done on the filehandle. Calling binmode() normally flushes any
pending buffered output data (and perhaps pending input data) on the
handle. An exception to this is the C<:encoding> layer that
changes the default character encoding of the handle; see L</open>.
The C<:encoding> layer sometimes needs to be called in
mid-stream, and it doesn't flush the stream. The C<:encoding>
also implicitly pushes on top of itself the C<:utf8> layer because
internally Perl operates on UTF8-encoded Unicode characters.
The operating system, device drivers, C libraries, and Perl run-time
system all conspire to let the programmer treat a single
character (C<\n>) as the line terminator, irrespective of external
representation. On many operating systems, the native text file
representation matches the internal representation, but on some
platforms the external representation of C<\n> is made up of more than
one character.
All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use
a single character to end each line in the external representation of text
(even though that single character is CARRIAGE RETURN on old, pre-Darwin
flavors of Mac OS, and is LINE FEED on Unix and most VMS files). In other
systems like OS/2, DOS, and the various flavors of MS-Windows, your program
sees a C<\n> as a simple C<\cJ>, but what's stored in text files are the
two characters C<\cM\cJ>. That means that if you don't use binmode() on
these systems, C<\cM\cJ> sequences on disk will be converted to C<\n> on
input, and any C<\n> in your program will be converted back to C<\cM\cJ> on
output. This is what you want for text files, but it can be disastrous for
binary files.
Another consequence of using binmode() (on some systems) is that
special end-of-file markers will be seen as part of the data stream.
For systems from the Microsoft family this means that, if your binary
data contain C<\cZ>, the I/O subsystem will regard it as the end of
the file, unless you use binmode().
binmode() is important not only for readline() and print() operations,
but also when using read(), seek(), sysread(), syswrite() and tell()
(see L<perlport> for more details). See the C<$/> and C<$\> variables
in L<perlvar> for how to manually set your input and output
line-termination sequences.
Portability issues: L<perlport/binmode>.
=item bless REF,CLASSNAME
X<bless>
=item bless REF
=for Pod::Functions create an object
This function tells the thingy referenced by REF that it is now an object
in the CLASSNAME package. If CLASSNAME is omitted, the current package
is used. Because a C<bless> is often the last thing in a constructor,
it returns the reference for convenience. Always use the two-argument
version if a derived class might inherit the function doing the blessing.
See L<perlobj> for more about the blessing (and blessings) of objects.
Consider always blessing objects in CLASSNAMEs that are mixed case.
Namespaces with all lowercase names are considered reserved for
Perl pragmata. Builtin types have all uppercase names. To prevent
confusion, you may wish to avoid such package names as well. Make sure
that CLASSNAME is a true value.
See L<perlmod/"Perl Modules">.
=item break
=for Pod::Functions +switch break out of a C<given> block
Break out of a C<given()> block.
This keyword is enabled by the C<"switch"> feature; see L<feature> for
more information on C<"switch">. You can also access it by prefixing it
with C<CORE::>. Alternatively, include a C<use v5.10> or later to the
current scope.
=item caller EXPR
X<caller> X<call stack> X<stack> X<stack trace>
=item caller
=for Pod::Functions get context of the current subroutine call
Returns the context of the current pure perl subroutine call. In scalar
context, returns the caller's package name if there I<is> a caller (that is, if
we're in a subroutine or C<eval> or C<require>) and the undefined value
otherwise. caller never returns XS subs and they are skipped. The next pure
perl sub will appear instead of the XS
sub in caller's return values. In list
context, caller returns
# 0 1 2
($package, $filename, $line) = caller;
With EXPR, it returns some extra information that the debugger uses to
print a stack trace. The value of EXPR indicates how many call frames
to go back before the current one.
# 0 1 2 3 4
($package, $filename, $line, $subroutine, $hasargs,
# 5 6 7 8 9 10
$wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)
= caller($i);
Here, $subroutine is the function that the caller called (rather than the
function containing the caller). Note that $subroutine may be C<(eval)> if
the frame is not a subroutine call, but an C<eval>. In such a case
additional elements $evaltext and
C<$is_require> are set: C<$is_require> is true if the frame is created by a
C<require> or C<use> statement, $evaltext contains the text of the
C<eval EXPR> statement. In particular, for an C<eval BLOCK> statement,
$subroutine is C<(eval)>, but $evaltext is undefined. (Note also that
each C<use> statement creates a C<require> frame inside an C<eval EXPR>
frame.) $subroutine may also be C<(unknown)> if this particular
subroutine happens to have been deleted from the symbol table.
C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
compiled with. C<$hints> corresponds to C<$^H>, and C<$bitmask>
corresponds to C<${^WARNING_BITS}>. The
C<$hints> and C<$bitmask> values are subject
to change between versions of Perl, and are not meant for external use.
C<$hinthash> is a reference to a hash containing the value of C<%^H> when the
caller was compiled, or C<undef> if C<%^H> was empty. Do not modify the values
of this hash, as they are the actual values stored in the optree.
Furthermore, when called from within the DB package in
list context, and with an argument, caller returns more
detailed information: it sets the list variable C<@DB::args> to be the
arguments with which the subroutine was invoked.
Be aware that the optimizer might have optimized call frames away before
C<caller> had a chance to get the information. That means that C<caller(N)>
might not return information about the call frame you expect it to, for
C<< N > 1 >>. In particular, C<@DB::args> might have information from the
previous time C<caller> was called.
Be aware that setting C<@DB::args> is I<best effort>, intended for
debugging or generating backtraces, and should not be relied upon. In
particular, as C<@_> contains aliases to the caller's arguments, Perl does
not take a copy of C<@_>, so C<@DB::args> will contain modifications the
subroutine makes to C<@_> or its contents, not the original values at call
time. C<@DB::args>, like C<@_>, does not hold explicit references to its
elements, so under certain cases its elements may have become freed and
reallocated for other variables or temporary values. Finally, a side effect
of the current implementation is that the effects of C<shift @_> can
I<normally> be undone (but not C<pop @_> or other splicing, I<and> not if a
reference to C<@_> has been taken, I<and> subject to the caveat about reallocated
elements), so C<@DB::args> is actually a hybrid of the current state and
initial state of C<@_>. Buyer beware.
=item chdir EXPR
X<chdir>
X<cd>
X<directory, change>
=item chdir FILEHANDLE
=item chdir DIRHANDLE
=item chdir
=for Pod::Functions change your current working directory
Changes the working directory to EXPR, if possible. If EXPR is omitted,
changes to the directory specified by C<$ENV{HOME}>, if set; if not,
changes to the directory specified by C<$ENV{LOGDIR}>. (Under VMS, the
variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.) If
neither is set, C<chdir> does nothing. It returns true on success,
false otherwise. See the example under C<die>.
On systems that support fchdir(2), you may pass a filehandle or
directory handle as the argument. On systems that don't support fchdir(2),
passing handles raises an exception.
=item chmod LIST
X<chmod> X<permission> X<mode>
=for Pod::Functions changes the permissions on a list of files
Changes the permissions of a list of files. The first element of the
list must be the numeric mode, which should probably be an octal
number, and which definitely should I<not> be a string of octal digits:
C<0644> is okay, but C<"0644"> is not. Returns the number of files
successfully changed. See also L</oct> if all you have is a string.
$cnt = chmod 0755, "foo", "bar";
chmod 0755, @executables;
$mode = "0644"; chmod $mode, "foo"; # !!! sets mode to
# --w----r-T
$mode = "0644"; chmod oct($mode), "foo"; # this is better
$mode = 0644; chmod $mode, "foo"; # this is best
On systems that support fchmod(2), you may pass filehandles among the
files. On systems that don't support fchmod(2), passing filehandles raises
an exception. Filehandles must be passed as globs or glob references to be
recognized; barewords are considered filenames.
open(my $fh, "<", "foo");
my $perm = (stat $fh)[2] & 07777;
chmod($perm | 0600, $fh);
You can also import the symbolic C<S_I*> constants from the C<Fcntl>
module:
use Fcntl qw( :mode );
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
# Identical to the chmod 0755 of the example above.
Portability issues: L<perlport/chmod>.
=item chomp VARIABLE
X<chomp> X<INPUT_RECORD_SEPARATOR> X<$/> X<newline> X<eol>
=item chomp( LIST )
=item chomp
=for Pod::Functions remove a trailing record separator from a string
This safer version of L</chop> removes any trailing string
that corresponds to the current value of C<$/> (also known as
$INPUT_RECORD_SEPARATOR in the C<English> module). It returns the total
number of characters removed from all its arguments. It's often used to
remove the newline from the end of an input record when you're worried
that the final record may be missing its newline. When in paragraph
mode (C<$/ = "">), it removes all trailing newlines from the string.
When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
a reference to an integer or the like; see L<perlvar>) chomp() won't
remove anything.
If VARIABLE is omitted, it chomps C<$_>. Example:
while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);
# ...
}
If VARIABLE is a hash, it chomps the hash's values, but not its keys,
resetting the C<each> iterator in the process.
You can actually chomp anything that's an lvalue, including an assignment:
chomp($cwd = `pwd`);
chomp($answer = <STDIN>);
If you chomp a list, each element is chomped, and the total number of
characters removed is returned.
Note that parentheses are necessary when you're chomping anything
that is not a simple variable. This is because C<chomp $cwd = `pwd`;>
is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
C<chomp( $cwd = `pwd` )> which you might expect. Similarly,
C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
as C<chomp($a, $b)>.
=item chop VARIABLE
X<chop>
=item chop( LIST )
=item chop
=for Pod::Functions remove the last character from a string
Chops off the last character of a string and returns the character
chopped. It is much more efficient than C<s/.$//s> because it neither
scans nor copies the string. If VARIABLE is omitted, chops C<$_>.
If VARIABLE is a hash, it chops the hash's values, but not its keys,
resetting the C<each> iterator in the process.
You can actually chop anything that's an lvalue, including an assignment.
If you chop a list, each element is chopped. Only the value of the
last C<chop> is returned.
Note that C<chop> returns the last character. To return all but the last
character, use C<substr($string, 0, -1)>.
See also L</chomp>.
=item chown LIST
X<chown> X<owner> X<user> X<group>
=for Pod::Functions change the ownership on a list of files
Changes the owner (and group) of a list of files. The first two
elements of the list must be the I<numeric> uid and gid, in that
order. A value of -1 in either position is interpreted by most
systems to leave that value unchanged. Returns the number of files
successfully changed.
$cnt = chown $uid, $gid, 'foo', 'bar';
chown $uid, $gid, @filenames;
On systems that support fchown(2), you may pass filehandles among the
files. On systems that don't support fchown(2), passing filehandles raises
an exception. Filehandles must be passed as globs or glob references to be
recognized; barewords are considered filenames.
Here's an example that looks up nonnumeric uids in the passwd file:
print "User: ";
chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);
($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";
@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;
On most systems, you are not allowed to change the ownership of the
file unless you're the superuser, although you should be able to change
the group to any of your secondary groups. On insecure systems, these
restrictions may be relaxed, but this is not a portable assumption.
On POSIX systems, you can detect this condition this way:
use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
Portability issues: L<perlport/chown>.
=item chr NUMBER
X<chr> X<character> X<ASCII> X<Unicode>
=item chr
=for Pod::Functions get character this number represents
Returns the character represented by that NUMBER in the character set.
For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
chr(0x263a) is a Unicode smiley face.
Negative values give the Unicode replacement character (chr(0xfffd)),
except under the L<bytes> pragma, where the low eight bits of the value
(truncated to an integer) are used.
If NUMBER is omitted, uses C<$_>.
For the reverse, use L</ord>.
Note that characters from 128 to 255 (inclusive) are by default
internally not encoded as UTF-8 for backward compatibility reasons.
See L<perlunicode> for more about Unicode.
=item chroot FILENAME
X<chroot> X<root>
=item chroot
=for Pod::Functions make directory new root for path lookups
This function works like the system call by the same name: it makes the
named directory the new root directory for all further pathnames that
begin with a C</> by your process and all its children. (It doesn't
change your current working directory, which is unaffected.) For security
reasons, this call is restricted to the superuser. If FILENAME is
omitted, does a C<chroot> to C<$_>.
B<NOTE:> It is good security practice to do C<chdir("/")> (to the root
directory) immediately after a C<chroot()>.
Portability issues: L<perlport/chroot>.
=item close FILEHANDLE
X<close>
=item close
=for Pod::Functions close file (or pipe or socket) handle
Closes the file or pipe associated with the filehandle, flushes the IO
buffers, and closes the system file descriptor. Returns true if those
operations succeed and if no error was reported by any PerlIO
layer. Closes the currently selected filehandle if the argument is
omitted.
You don't have to close FILEHANDLE if you are immediately going to do
another C<open> on it, because C<open> closes it for you. (See
L<open|/open FILEHANDLE>.) However, an explicit C<close> on an input file resets the line
counter (C<$.>), while the implicit close done by C<open> does not.
If the filehandle came from a piped open, C<close> returns false if one of
the other syscalls involved fails or if its program exits with non-zero
status. If the only problem was that the program exited non-zero, C<$!>
will be set to C<0>. Closing a pipe also waits for the process executing
on the pipe to exit--in case you wish to look at the output of the pipe
afterwards--and implicitly puts the exit status value of that command into
C<$?> and C<${^CHILD_ERROR_NATIVE}>.
If there are multiple threads running, C<close> on a filehandle from a
piped open returns true without waiting for the child process to terminate,
if the filehandle is still open in another thread.
Closing the read end of a pipe before the process writing to it at the
other end is done writing results in the writer receiving a SIGPIPE. If
the other end can't handle that, be sure to read all the data before
closing the pipe.
Example:
open(OUTPUT, '|sort >foo') # pipe to sort
or die "Can't start sort: $!";
#... # print stuff to output
close OUTPUT # wait for sort to finish
or warn $! ? "Error closing sort pipe: $!"
: "Exit status $? from sort";
open(INPUT, 'foo') # get sort's results
or die "Can't open 'foo' for input: $!";
FILEHANDLE may be an expression whose value can be used as an indirect
filehandle, usually the real filehandle name or an autovivified handle.
=item closedir DIRHANDLE
X<closedir>
=for Pod::Functions close directory handle
Closes a directory opened by C<opendir> and returns the success of that
system call.
=item connect SOCKET,NAME
X<connect>
=for Pod::Functions connect to a remote socket
Attempts to connect to a remote socket, just like connect(2).
Returns true if it succeeded, false otherwise. NAME should be a
packed address of the appropriate type for the socket. See the examples in
L<perlipc/"Sockets: Client/Server Communication">.
=item continue BLOCK
X<continue>
=item continue
=for Pod::Functions optional trailing block in a while or foreach
When followed by a BLOCK, C<continue> is actually a
flow control statement rather than a function. If
there is a C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
C<foreach>), it is always executed just before the conditional is about to
be evaluated again, just like the third part of a C<for> loop in C. Thus
it can be used to increment a loop variable, even when the loop has been
continued via the C<next> statement (which is similar to the C C<continue>
statement).
C<last>, C<next>, or C<redo> may appear within a C<continue>
block; C<last> and C<redo> behave as if they had been executed within
the main block. So will C<next>, but since it will execute a C<continue>
block, it may be more entertaining.
while (EXPR) {
### redo always comes here
do_something;
} continue {
### next always comes here
do_something_else;
# then back the top to re-check EXPR
}
### last always comes here
Omitting the C<continue> section is equivalent to using an
empty one, logically enough, so C<next> goes directly back
to check the condition at the top of the loop.
When there is no BLOCK, C<continue> is a function that
falls through the current C<when> or C<default> block instead of iterating
a dynamically enclosing C<foreach> or exiting a lexically enclosing C<given>.
In Perl 5.14 and earlier, this form of C<continue> was
only available when the C<"switch"> feature was enabled.
See L<feature> and L<perlsyn/"Switch Statements"> for more
information.
=item cos EXPR
X<cos> X<cosine> X<acos> X<arccosine>
=item cos
=for Pod::Functions cosine function
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted,
takes the cosine of C<$_>.
For the inverse cosine operation, you may use the C<Math::Trig::acos()>
function, or use this relation:
sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
=item crypt PLAINTEXT,SALT
X<crypt> X<digest> X<hash> X<salt> X<plaintext> X<password>
X<decrypt> X<cryptography> X<passwd> X<encrypt>
=for Pod::Functions one-way passwd-style encryption
Creates a digest string exactly like the crypt(3) function in the C
library (assuming that you actually have a version there that has not
been extirpated as a potential munition).
crypt() is a one-way hash function. The PLAINTEXT and SALT are turned
into a short string, called a digest, which is returned. The same
PLAINTEXT and SALT will always return the same string, but there is no
(known) way to get the original PLAINTEXT from the hash. Small
changes in the PLAINTEXT or SALT will result in large changes in the
digest.
There is no decrypt function. This function isn't all that useful for
cryptography (for that, look for F<Crypt> modules on your nearby CPAN
mirror) and the name "crypt" is a bit of a misnomer. Instead it is
primarily used to check if two pieces of text are the same without
having to transmit or store the text itself. An example is checking
if a correct password is given. The digest of the password is stored,
not the password itself. The user types in a password that is
crypt()'d with the same salt as the stored digest. If the two digests
match, the password is correct.
When verifying an existing digest string you should use the digest as
the salt (like C<crypt($plain, $digest) eq $digest>). The SALT used
to create the digest is visible as part of the digest. This ensures
crypt() will hash the new string with the same salt as the digest.
This allows your code to work with the standard L<crypt|/crypt> and
with more exotic implementations. In other words, assume
nothing about the returned string itself nor about how many bytes
of SALT may matter.
Traditionally the result is a string of 13 bytes: two first bytes of
the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
the first eight bytes of PLAINTEXT mattered. But alternative
hashing schemes (like MD5), higher level security schemes (like C2),
and implementations on non-Unix platforms may produce different
strings.
When choosing a new salt create a random two character string whose
characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
'/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>). This set of
characters is just a recommendation; the characters allowed in
the salt depend solely on your system's crypt library, and Perl can't
restrict what salts C<crypt()> accepts.
Here's an example that makes sure that whoever runs this program knows
their password:
$pwd = (getpwuid($<))[1];
system "stty -echo";
print "Password: ";
chomp($word = <STDIN>);
print "\n";
system "stty echo";
if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";
} else {
print "ok\n";
}
Of course, typing in your own password to whoever asks you
for it is unwise.
The L<crypt|/crypt> function is unsuitable for hashing large quantities
of data, not least of all because you can't get the information
back. Look at the L<Digest> module for more robust algorithms.
If using crypt() on a Unicode string (which I<potentially> has
characters with codepoints above 255), Perl tries to make sense
of the situation by trying to downgrade (a copy of)
the string back to an eight-bit byte string before calling crypt()
(on that copy). If that works, good. If not, crypt() dies with
C<Wide character in crypt>.
Portability issues: L<perlport/crypt>.
=item dbmclose HASH
X<dbmclose>
=for Pod::Functions breaks binding on a tied dbm file
[This function has been largely superseded by the C<untie> function.]
Breaks the binding between a DBM file and a hash.
Portability issues: L<perlport/dbmclose>.
=item dbmopen HASH,DBNAME,MASK
X<dbmopen> X<dbm> X<ndbm> X<sdbm> X<gdbm>
=for Pod::Functions create binding on a tied dbm file
[This function has been largely superseded by the
L<tie|/tie VARIABLE,CLASSNAME,LIST> function.]
This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
hash. HASH is the name of the hash. (Unlike normal C<open>, the first
argument is I<not> a filehandle, even though it looks like one). DBNAME
is the name of the database (without the F<.dir> or F<.pag> extension if
any). If the database does not exist, it is created with protection
specified by MASK (as modified by the C<umask>). To prevent creation of
the database if it doesn't exist, you may specify a MODE
of 0, and the function will return a false value if it
can't find an existing database. If your system supports
only the older DBM functions, you may make only one C<dbmopen> call in your
program. In older versions of Perl, if your system had neither DBM nor
ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
sdbm(3).
If you don't have write access to the DBM file, you can only read hash
variables, not set them. If you want to test whether you can write,
either use file tests or try setting a dummy hash entry inside an C<eval>
to trap the error.
Note that functions such as C<keys> and C<values> may return huge lists
when used on large DBM files. You may prefer to use the C<each>
function to iterate over large DBM files. Example:
# print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {
print $key, ' = ', unpack('L',$val), "\n";
}
dbmclose(%HIST);
See also L<AnyDBM_File> for a more general description of the pros and
cons of the various dbm approaches, as well as L<DB_File> for a particularly
rich implementation.
You can control which DBM library you use by loading that library
before you call dbmopen():
use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
or die "Can't open netscape history file: $!";
Portability issues: L<perlport/dbmopen>.
=item defined EXPR
X<defined> X<undef> X<undefined>
=item defined
=for Pod::Functions test whether a value, variable, or function is defined
Returns a Boolean value telling whether EXPR has a value other than
the undefined value C<undef>. If EXPR is not present, C<$_> is
checked.
Many operations return C<undef> to indicate failure, end of file,
system error, uninitialized variable, and other exceptional
conditions. This function allows you to distinguish C<undef> from
other values. (A simple Boolean test will not distinguish among
C<undef>, zero, the empty string, and C<"0">, which are all equally
false.) Note that since C<undef> is a valid scalar, its presence
doesn't I<necessarily> indicate an exceptional condition: C<pop>
returns C<undef> when its argument is an empty array, I<or> when the
element to return happens to be C<undef>.
You may also use C<defined(&func)> to check whether subroutine C<&func>
has ever been defined. The return value is unaffected by any forward
declarations of C<&func>. A subroutine that is not defined
may still be callable: its package may have an C<AUTOLOAD> method that
makes it spring into existence the first time that it is called; see
L<perlsub>.
Use of C<defined> on aggregates (hashes and arrays) is deprecated. It
used to report whether memory for that aggregate had ever been
allocated. This behavior may disappear in future versions of Perl.
You should instead use a simple test for size:
if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }
When used on a hash element, it tells you whether the value is defined,
not whether the key exists in the hash. Use L</exists> for the latter
purpose.
Examples:
print if defined $switch{D};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;
Note: Many folks tend to overuse C<defined> and are then surprised to
discover that the number C<0> and C<""> (the zero-length string) are, in fact,
defined values. For example, if you say
"ab" =~ /a(.*)b/;
The pattern match succeeds and C<$1> is defined, although it
matched "nothing". It didn't really fail to match anything. Rather, it
matched something that happened to be zero characters long. This is all
very above-board and honest. When a function returns an undefined value,
it's an admission that it couldn't give you an honest answer. So you
should use C<defined> only when questioning the integrity of what
you're trying to do. At other times, a simple comparison to C<0> or C<""> is
what you want.
See also L</undef>, L</exists>, L</ref>.
=item delete EXPR
X<delete>
=for Pod::Functions deletes a value from a hash
Given an expression that specifies an element or slice of a hash, C<delete>
deletes the specified elements from that hash so that exists() on that element
no longer returns true. Setting a hash element to the undefined value does
not remove its key, but deleting it does; see L</exists>.
In list context, returns the value or values deleted, or the last such
element in scalar context. The return list's length always matches that of
the argument list: deleting non-existent elements returns the undefined value
in their corresponding positions.
delete() may also be used on arrays and array slices, but its behavior is less
straightforward. Although exists() will return false for deleted entries,
deleting array elements never changes indices of existing values; use shift()
or splice() for that. However, if any deleted elements fall at the end of an
array, the array's size shrinks to the position of the highest element that
still tests true for exists(), or to 0 if none do. In other words, an
array won't have trailing nonexistent elements after a delete.
B<WARNING:> Calling delete on array values is deprecated and likely to
be removed in a future version of Perl.
Deleting from C<%ENV> modifies the environment. Deleting from a hash tied to
a DBM file deletes the entry from the DBM file. Deleting from a C<tied> hash
or array may not necessarily return anything; it depends on the implementation
of the C<tied> package's DELETE method, which may do whatever it pleases.
The C<delete local EXPR> construct localizes the deletion to the current
block at run time. Until the block exits, elements locally deleted
temporarily no longer exist. See L<perlsub/"Localized deletion of elements
of composite types">.
%hash = (foo => 11, bar => 22, baz => 33);
$scalar = delete $hash{foo}; # $scalar is 11
$scalar = delete @hash{qw(foo bar)}; # $scalar is 22
@array = delete @hash{qw(foo baz)}; # @array is (undef,33)
The following (inefficiently) deletes all the values of %HASH and @ARRAY:
foreach $key (keys %HASH) {
delete $HASH{$key};
}
foreach $index (0 .. $#ARRAY) {
delete $ARRAY[$index];
}
And so do these:
delete @HASH{keys %HASH};
delete @ARRAY[0 .. $#ARRAY];
But both are slower than assigning the empty list
or undefining %HASH or @ARRAY, which is the customary
way to empty out an aggregate:
%HASH = (); # completely empty %HASH
undef %HASH; # forget %HASH ever existed
@ARRAY = (); # completely empty @ARRAY
undef @ARRAY; # forget @ARRAY ever existed
The EXPR can be arbitrarily complicated provided its
final operation is an element or slice of an aggregate:
delete $ref->[$x][$y]{$key};
delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
delete $ref->[$x][$y][$index];
delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
=item die LIST
X<die> X<throw> X<exception> X<raise> X<$@> X<abort>
=for Pod::Functions raise an exception or bail out
C<die> raises an exception. Inside an C<eval> the error message is stuffed
into C<$@> and the C<eval> is terminated with the undefined value.
If the exception is outside of all enclosing C<eval>s, then the uncaught
exception prints LIST to C<STDERR> and exits with a non-zero value. If you
need to exit the process with a specific exit code, see L</exit>.
Equivalent examples:
die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
If the last element of LIST does not end in a newline, the current
script line number and input line number (if any) are also printed,
and a newline is supplied. Note that the "input line number" (also
known as "chunk") is subject to whatever notion of "line" happens to
be currently in effect, and is also available as the special variable
C<$.>. See L<perlvar/"$/"> and L<perlvar/"$.">.
Hint: sometimes appending C<", stopped"> to your message will cause it
to make better sense when the string C<"at foo line 123"> is appended.
Suppose you are running script "canasta".
die "/etc/games is no good";
die "/etc/games is no good, stopped";
produce, respectively
/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.
If the output is empty and C<$@> already contains a value (typically from a
previous eval) that value is reused after appending C<"\t...propagated">.
This is useful for propagating exceptions:
eval { ... };
die unless $@ =~ /Expected exception/;
If the output is empty and C<$@> contains an object reference that has a
C<PROPAGATE> method, that method will be called with additional file
and line number parameters. The return value replaces the value in
C<$@>; i.e., as if C<< $@ = eval { $@->PROPAGATE(__FILE__, __LINE__) }; >>
were called.
If C<$@> is empty then the string C<"Died"> is used.
If an uncaught exception results in interpreter exit, the exit code is
determined from the values of C<$!> and C<$?> with this pseudocode:
exit $! if $!; # errno
exit $? >> 8 if $? >> 8; # child exit status
exit 255; # last resort
The intent is to squeeze as much possible information about the likely cause
into the limited space of the system exit
code. However, as C<$!> is the value
of C's C<errno>, which can be set by any system call, this means that the value
of the exit code used by C<die> can be non-predictable, so should not be relied
upon, other than to be non-zero.
You can also call C<die> with a reference argument, and if this is trapped
within an C<eval>, C<$@> contains that reference. This permits more
elaborate exception handling using objects that maintain arbitrary state
about the exception. Such a scheme is sometimes preferable to matching
particular string values of C<$@> with regular expressions. Because C<$@>
is a global variable and C<eval> may be used within object implementations,
be careful that analyzing the error object doesn't replace the reference in
the global variable. It's easiest to make a local copy of the reference
before any manipulations. Here's an example:
use Scalar::Util "blessed";
eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
if (my $ev_err = $@) {
if (blessed($ev_err)
&& $ev_err->isa("Some::Module::Exception")) {
# handle Some::Module::Exception
}
else {
# handle all other possible exceptions
}
}
Because Perl stringifies uncaught exception messages before display,
you'll probably want to overload stringification operations on
exception objects. See L<overload> for details about that.
You can arrange for a callback to be run just before the C<die>
does its deed, by setting the C<$SIG{__DIE__}> hook. The associated
handler is called with the error text and can change the error
message, if it sees fit, by calling C<die> again. See
L<perlvar/%SIG> for details on setting C<%SIG> entries, and
L<"eval BLOCK"> for some examples. Although this feature was
to be run only right before your program was to exit, this is not
currently so: the C<$SIG{__DIE__}> hook is currently called
even inside eval()ed blocks/strings! If one wants the hook to do
nothing in such situations, put
die @_ if $^S;
as the first line of the handler (see L<perlvar/$^S>). Because
this promotes strange action at a distance, this counterintuitive
behavior may be fixed in a future release.
See also exit(), warn(), and the Carp module.
=item do BLOCK
X<do> X<block>
=for Pod::Functions turn a BLOCK into a TERM
Not really a function. Returns the value of the last command in the
sequence of commands indicated by BLOCK. When modified by the C<while> or
C<until> loop modifier, executes the BLOCK once before testing the loop
condition. (On other statements the loop modifiers test the conditional
first.)
C<do BLOCK> does I<not> count as a loop, so the loop control statements
C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
See L<perlsyn> for alternative strategies.
=item do EXPR
X<do>
Uses the value of EXPR as a filename and executes the contents of the
file as a Perl script.
do 'stat.pl';
is largely like
eval `cat stat.pl`;
except that it's more concise, runs no external processes, keeps track of
the current
filename for error messages, searches the C<@INC> directories, and updates
C<%INC> if the file is found. See L<perlvar/@INC> and L<perlvar/%INC> for
these variables. It also differs in that code evaluated with C<do FILENAME>
cannot see lexicals in the enclosing scope; C<eval STRING> does. It's the
same, however, in that it does reparse the file every time you call it,
so you probably don't want to do this inside a loop.
If C<do> can read the file but cannot compile it, it returns C<undef> and sets
an error message in C<$@>. If C<do> cannot read the file, it returns undef
and sets C<$!> to the error. Always check C<$@> first, as compilation
could fail in a way that also sets C<$!>. If the file is successfully
compiled, C<do> returns the value of the last expression evaluated.
Inclusion of library modules is better done with the
C<use> and C<require> operators, which also do automatic error checking
and raise an exception if there's a problem.
You might like to use C<do> to read in a program configuration
file. Manual error checking can be done this way:
# read in config files: system first, then user
for $file ("/share/prog/defaults.rc",
"$ENV{HOME}/.someprogrc")
{
unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;
}
}
=item dump LABEL
X<dump> X<core> X<undump>
=item dump EXPR
=item dump
=for Pod::Functions create an immediate core dump
This function causes an immediate core dump. See also the B<-u>
command-line switch in L<perlrun>, which does the same thing.
Primarily this is so that you can use the B<undump> program (not
supplied) to turn your core dump into an executable binary after
having initialized all your variables at the beginning of the
program. When the new binary is executed it will begin by executing
a C<goto LABEL> (with all the restrictions that C<goto> suffers).
Think of it as a goto with an intervening core dump and reincarnation.
If C<LABEL> is omitted, restarts the program from the top. The
C<dump EXPR> form, available starting in Perl 5.18.0, allows a name to be
computed at run time, being otherwise identical to C<dump LABEL>.
B<WARNING>: Any files opened at the time of the dump will I<not>
be open any more when the program is reincarnated, with possible
resulting confusion by Perl.
This function is now largely obsolete, mostly because it's very hard to
convert a core file into an executable. That's why you should now invoke
it as C<CORE::dump()>, if you don't want to be warned against a possible
typo.
Unlike most named operators, this has the same precedence as assignment.
It is also exempt from the looks-like-a-function rule, so
C<dump ("foo")."bar"> will cause "bar" to be part of the argument to
C<dump>.
Portability issues: L<perlport/dump>.
=item each HASH
X<each> X<hash, iterator>
=item each ARRAY
X<array, iterator>
=item each EXPR
=for Pod::Functions retrieve the next key/value pair from a hash
When called on a hash in list context, returns a 2-element list
consisting of the key and value for the next element of a hash. In Perl
5.12 and later only, it will also return the index and value for the next
element of an array so that you can iterate over it; older Perls consider
this a syntax error. When called in scalar context, returns only the key
(not the value) in a hash, or the index in an array.
Hash entries are returned in an apparently random order. The actual random
order is specific to a given hash; the exact same series of operations
on two hashes may result in a different order for each hash. Any insertion
into the hash may change the order, as will any deletion, with the exception
that the most recent key returned by C<each> or C<keys> may be deleted
without changing the order. So long as a given hash is unmodified you may
rely on C<keys>, C<values> and C<each> to repeatedly return the same order
as each other. See L<perlsec/"Algorithmic Complexity Attacks"> for
details on why hash order is randomized. Aside from the guarantees
provided here the exact details of Perl's hash algorithm and the hash
traversal order are subject to change in any release of Perl.
After C<each> has returned all entries from the hash or array, the next
call to C<each> returns the empty list in list context and C<undef> in
scalar context; the next call following I<that> one restarts iteration.
Each hash or array has its own internal iterator, accessed by C<each>,
C<keys>, and C<values>. The iterator is implicitly reset when C<each> has
reached the end as just described; it can be explicitly reset by calling
C<keys> or C<values> on the hash or array. If you add or delete a hash's
elements while iterating over it, the effect on the iterator is
unspecified; for example, entries may be skipped or duplicated--so don't
do that. Exception: It is always safe to delete the item most recently
returned by C<each()>, so the following code works properly:
while (($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key}; # This is safe
}
Tied hashes may have a different ordering behaviour to perl's hash
implementation.
This prints out your environment like the printenv(1) program,
but in a different order:
while (($key,$value) = each %ENV) {
print "$key=$value\n";
}
Starting with Perl 5.14, C<each> can take a scalar EXPR, which must hold
reference to an unblessed hash or array. The argument will be dereferenced
automatically. This aspect of C<each> is considered highly experimental.
The exact behaviour may change in a future version of Perl.
while (($key,$value) = each $hashref) { ... }
As of Perl 5.18 you can use a bare C<each> in a C<while> loop,
which will set C<$_> on every iteration.
while(each %ENV) {
print "$_=$ENV{$_}\n";
}
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.012; # so keys/values/each work on arrays
use 5.014; # so keys/values/each work on scalars (experimental)
use 5.018; # so each assigns to $_ in a lone while test
See also C<keys>, C<values>, and C<sort>.
=item eof FILEHANDLE
X<eof>
X<end of file>
X<end-of-file>
=item eof ()
=item eof
=for Pod::Functions test a filehandle for its end
Returns 1 if the next read on FILEHANDLE will return end of file I<or> if
FILEHANDLE is not open. FILEHANDLE may be an expression whose value
gives the real filehandle. (Note that this function actually
reads a character and then C<ungetc>s it, so isn't useful in an
interactive context.) Do not read from a terminal file (or call
C<eof(FILEHANDLE)> on it) after end-of-file is reached. File types such
as terminals may lose the end-of-file condition if you do.
An C<eof> without an argument uses the last file read. Using C<eof()>
with empty parentheses is different. It refers to the pseudo file
formed from the files listed on the command line and accessed via the
C<< <> >> operator. Since C<< <> >> isn't explicitly opened,
as a normal filehandle is, an C<eof()> before C<< <> >> has been
used will cause C<@ARGV> to be examined to determine if input is
available. Similarly, an C<eof()> after C<< <> >> has returned
end-of-file will assume you are processing another C<@ARGV> list,
and if you haven't set C<@ARGV>, will read input from C<STDIN>;
see L<perlop/"I/O Operators">.
In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
detect the end of each file, whereas C<eof()> will detect the end
of the very last file only. Examples:
# reset line numbering on each input file
while (<>) {
next if /^\s*#/; # skip comments
print "$.\t$_";
} continue {
close ARGV if eof; # Not eof()!
}
# insert dashes just before last line of last file
while (<>) {
if (eof()) { # check for end of last file
print "--------------\n";
}
print;
last if eof(); # needed if we're reading from a terminal
}
Practical hint: you almost never need to use C<eof> in Perl, because the
input operators typically return C<undef> when they run out of data or
encounter an error.
=item eval EXPR
X<eval> X<try> X<catch> X<evaluate> X<parse> X<execute>
X<error, handling> X<exception, handling>
=item eval BLOCK
=item eval
=for Pod::Functions catch exceptions or compile and run code
In the first form, often referred to as a "string eval", the return
value of EXPR is parsed and executed as if it
were a little Perl program. The value of the expression (which is itself
determined within scalar context) is first parsed, and if there were no
errors, executed as a block within the lexical context of the current Perl
program. This means, that in particular, any outer lexical variables are
visible to it, and any package variable settings or subroutine and format
definitions remain afterwards.
Note that the value is parsed every time the C<eval> executes.
If EXPR is omitted, evaluates C<$_>. This form is typically used to
delay parsing and subsequent execution of the text of EXPR until run time.
If the C<unicode_eval> feature is enabled (which is the default under a
C<use 5.16> or higher declaration), EXPR or C<$_> is treated as a string of
characters, so C<use utf8> declarations have no effect, and source filters
are forbidden. In the absence of the C<unicode_eval> feature, the string
will sometimes be treated as characters and sometimes as bytes, depending
on the internal encoding, and source filters activated within the C<eval>
exhibit the erratic, but historical, behaviour of affecting some outer file
scope that is still compiling. See also the L</evalbytes> keyword, which
always treats its input as a byte stream and works properly with source
filters, and the L<feature> pragma.
Problems can arise if the string expands a scalar containing a floating
point number. That scalar can expand to letters, such as C<"NaN"> or
C<"Infinity">; or, within the scope of a C<use locale>, the decimal
point character may be something other than a dot (such as a comma).
None of these are likely to parse as you are likely expecting.
In the second form, the code within the BLOCK is parsed only once--at the
same time the code surrounding the C<eval> itself was parsed--and executed
within the context of the current Perl program. This form is typically
used to trap exceptions more efficiently than the first (see below), while
also providing the benefit of checking the code within BLOCK at compile
time.
The final semicolon, if any, may be omitted from the value of EXPR or within
the BLOCK.
In both forms, the value returned is the value of the last expression
evaluated inside the mini-program; a return statement may be also used, just
as with subroutines. The expression providing the return value is evaluated
in void, scalar, or list context, depending on the context of the C<eval>
itself. See L</wantarray> for more on how the evaluation context can be
determined.
If there is a syntax error or runtime error, or a C<die> statement is
executed, C<eval> returns C<undef> in scalar context
or an empty list in list context, and C<$@> is set to the error
message. (Prior to 5.16, a bug caused C<undef> to be returned
in list context for syntax errors, but not for runtime errors.)
If there was no error, C<$@> is set to the empty string. A
control flow operator like C<last> or C<goto> can bypass the setting of
C<$@>. Beware that using C<eval> neither silences Perl from printing
warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
See L</warn>, L<perlvar>, and L<warnings>.
Note that, because C<eval> traps otherwise-fatal errors, it is useful for
determining whether a particular feature (such as C<socket> or C<symlink>)
is implemented. It is also Perl's exception-trapping mechanism, where
the die operator is used to raise exceptions.
If you want to trap errors when loading an XS module, some problems with
the binary interface (such as Perl version skew) may be fatal even with
C<eval> unless C<$ENV{PERL_DL_NONLAZY}> is set. See L<perlrun>.
If the code to be executed doesn't vary, you may use the eval-BLOCK
form to trap run-time errors without incurring the penalty of
recompiling each time. The error, if any, is still returned in C<$@>.
Examples:
# make divide-by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;
# same thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;
# a compile-time error
eval { $answer = }; # WRONG
# a run-time error
eval '$answer ='; # sets $@
Using the C<eval{}> form as an exception trap in libraries does have some
issues. Due to the current arguably broken state of C<__DIE__> hooks, you
may wish not to trigger any C<__DIE__> hooks that user code may have installed.
You can use the C<local $SIG{__DIE__}> construct for this purpose,
as this example shows:
# a private exception trap for divide-by-zero
eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
warn $@ if $@;
This is especially significant, given that C<__DIE__> hooks can call
C<die> again, which has the effect of changing their error messages:
# __DIE__ hooks may modify error messages
{
local $SIG{'__DIE__'} =
sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"
}
Because this promotes action at a distance, this counterintuitive behavior
may be fixed in a future release.
With an C<eval>, you should be especially careful to remember what's
being looked at when:
eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x'; # CASE 3
eval { $x }; # CASE 4
eval "\$$x++"; # CASE 5
$$x++; # CASE 6
Cases 1 and 2 above behave identically: they run the code contained in
the variable $x. (Although case 2 has misleading double quotes making
the reader wonder what else might be happening (nothing is).) Cases 3
and 4 likewise behave in the same way: they run the code C<'$x'>, which
does nothing but return the value of $x. (Case 4 is preferred for
purely visual reasons, but it also has the advantage of compiling at
compile-time instead of at run-time.) Case 5 is a place where
normally you I<would> like to use double quotes, except that in this
particular situation, you can just use symbolic references instead, as
in case 6.
Before Perl 5.14, the assignment to C<$@> occurred before restoration
of localized variables, which means that for your code to run on older
versions, a temporary is required if you want to mask some but not all
errors:
# alter $@ on nefarious repugnancy only
{
my $e;
{
local $@; # protect existing $@
eval { test_repugnancy() };
# $@ =~ /nefarious/ and die $@; # Perl 5.14 and higher only
$@ =~ /nefarious/ and $e = $@;
}
die $e if defined $e
}
C<eval BLOCK> does I<not> count as a loop, so the loop control statements
C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
An C<eval ''> executed within a subroutine defined
in the C<DB> package doesn't see the usual
surrounding lexical scope, but rather the scope of the first non-DB piece
of code that called it. You don't normally need to worry about this unless
you are writing a Perl debugger.
=item evalbytes EXPR
X<evalbytes>
=item evalbytes
=for Pod::Functions +evalbytes similar to string eval, but intend to parse a bytestream
This function is like L</eval> with a string argument, except it always
parses its argument, or C<$_> if EXPR is omitted, as a string of bytes. A
string containing characters whose ordinal value exceeds 255 results in an
error. Source filters activated within the evaluated code apply to the
code itself.
This function is only available under the C<evalbytes> feature, a
C<use v5.16> (or higher) declaration, or with a C<CORE::> prefix. See
L<feature> for more information.
=item exec LIST
X<exec> X<execute>
=item exec PROGRAM LIST
=for Pod::Functions abandon this program to run another
The C<exec> function executes a system command I<and never returns>;
use C<system> instead of C<exec> if you want it to return. It fails and
returns false only if the command does not exist I<and> it is executed
directly instead of via your system's command shell (see below).
Since it's a common mistake to use C<exec> instead of C<system>, Perl
warns you if C<exec> is called in void context and if there is a following
statement that isn't C<die>, C<warn>, or C<exit> (if C<-w> is set--but
you always do that, right?). If you I<really> want to follow an C<exec>
with some other statement, you can use one of these styles to avoid the warning:
exec ('foo') or print STDERR "couldn't exec foo: $!";
{ exec ('foo') }; print STDERR "couldn't exec foo: $!";
If there is more than one argument in LIST, this calls execvp(3) with the
arguments in LIST. If there is only one element in LIST, the argument is
checked for shell metacharacters, and if there are any, the entire
argument is passed to the system's command shell for parsing (this is
C</bin/sh -c> on Unix platforms, but varies on other platforms). If
there are no shell metacharacters in the argument, it is split into words
and passed directly to C<execvp>, which is more efficient. Examples:
exec '/bin/echo', 'Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";
If you don't really want to execute the first argument, but want to lie
to the program you are executing about its own name, you can specify
the program you actually want to run as an "indirect object" (without a
comma) in front of the LIST, as in C<exec PROGRAM LIST>. (This always
forces interpretation of the LIST as a multivalued list, even if there
is only a single scalar in the list.) Example:
$shell = '/bin/csh';
exec $shell '-sh'; # pretend it's a login shell
or, more directly,
exec {'/bin/csh'} '-sh'; # pretend it's a login shell
When the arguments get executed via the system shell, results are
subject to its quirks and capabilities. See L<perlop/"`STRING`">
for details.
Using an indirect object with C<exec> or C<system> is also more
secure. This usage (which also works fine with system()) forces
interpretation of the arguments as a multivalued list, even if the
list had just one argument. That way you're safe from the shell
expanding wildcards or splitting up words with whitespace in them.
@args = ( "echo surprise" );
exec @args; # subject to shell escapes
# if @args == 1
exec { $args[0] } @args; # safe even with one-arg list
The first version, the one without the indirect object, ran the I<echo>
program, passing it C<"surprise"> an argument. The second version didn't;
it tried to run a program named I<"echo surprise">, didn't find it, and set
C<$?> to a non-zero value indicating failure.
On Windows, only the C<exec PROGRAM LIST> indirect object syntax will
reliably avoid using the shell; C<exec LIST>, even with more than one
element, will fall back to the shell if the first spawn fails.
Perl attempts to flush all files opened for output before the exec,
but this may not be supported on some platforms (see L<perlport>).
To be safe, you may need to set C<$|> ($AUTOFLUSH in English) or
call the C<autoflush()> method of C<IO::Handle> on any open handles
to avoid lost output.
Note that C<exec> will not call your C<END> blocks, nor will it invoke
C<DESTROY> methods on your objects.
Portability issues: L<perlport/exec>.
=item exists EXPR
X<exists> X<autovivification>
=for Pod::Functions test whether a hash key is present
Given an expression that specifies an element of a hash, returns true if the
specified element in the hash has ever been initialized, even if the
corresponding value is undefined.
print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key};
exists may also be called on array elements, but its behavior is much less
obvious and is strongly tied to the use of L</delete> on arrays. B<Be aware>
that calling exists on array values is deprecated and likely to be removed in
a future version of Perl.
print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];
A hash or array element can be true only if it's defined and defined only if
it exists, but the reverse doesn't necessarily hold true.
Given an expression that specifies the name of a subroutine,
returns true if the specified subroutine has ever been declared, even
if it is undefined. Mentioning a subroutine name for exists or defined
does not count as declaring it. Note that a subroutine that does not
exist may still be callable: its package may have an C<AUTOLOAD>
method that makes it spring into existence the first time that it is
called; see L<perlsub>.
print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;
Note that the EXPR can be arbitrarily complicated as long as the final
operation is a hash or array key lookup or subroutine name:
if (exists $ref->{A}->{B}->{$key}) { }
if (exists $hash{A}{B}{$key}) { }
if (exists $ref->{A}->{B}->[$ix]) { }
if (exists $hash{A}{B}[$ix]) { }
if (exists &{$ref->{A}{B}{$key}}) { }
Although the most deeply nested array or hash element will not spring into
existence just because its existence was tested, any intervening ones will.
Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
into existence due to the existence test for the $key element above.
This happens anywhere the arrow operator is used, including even here:
undef $ref;
if (exists $ref->{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)
This surprising autovivification in what does not at first--or even
second--glance appear to be an lvalue context may be fixed in a future
release.
Use of a subroutine call, rather than a subroutine name, as an argument
to exists() is an error.
exists ⊂ # OK
exists &sub(); # Error
=item exit EXPR
X<exit> X<terminate> X<abort>
=item exit
=for Pod::Functions terminate this program
Evaluates EXPR and exits immediately with that value. Example:
$ans = <STDIN>;
exit 0 if $ans =~ /^[Xx]/;
See also C<die>. If EXPR is omitted, exits with C<0> status. The only
universally recognized values for EXPR are C<0> for success and C<1>
for error; other values are subject to interpretation depending on the
environment in which the Perl program is running. For example, exiting
69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
the mailer to return the item undelivered, but that's not true everywhere.
Don't use C<exit> to abort a subroutine if there's any chance that
someone might want to trap whatever error happened. Use C<die> instead,
which can be trapped by an C<eval>.
The exit() function does not always exit immediately. It calls any
defined C<END> routines first, but these C<END> routines may not
themselves abort the exit. Likewise any object destructors that need to
be called are called before the real exit. C<END> routines and destructors
can change the exit status by modifying C<$?>. If this is a problem, you
can call C<POSIX::_exit($status)> to avoid END and destructor processing.
See L<perlmod> for details.
Portability issues: L<perlport/exit>.
=item exp EXPR
X<exp> X<exponential> X<antilog> X<antilogarithm> X<e>
=item exp
=for Pod::Functions raise I<e> to a power
Returns I<e> (the natural logarithm base) to the power of EXPR.
If EXPR is omitted, gives C<exp($_)>.
=item fc EXPR
X<fc> X<foldcase> X<casefold> X<fold-case> X<case-fold>
=item fc
=for Pod::Functions +fc return casefolded version of a string
Returns the casefolded version of EXPR. This is the internal function
implementing the C<\F> escape in double-quoted strings.
Casefolding is the process of mapping strings to a form where case
differences are erased; comparing two strings in their casefolded
form is effectively a way of asking if two strings are equal,
regardless of case.
Roughly, if you ever found yourself writing this
lc($this) eq lc($that) # Wrong!
# or
uc($this) eq uc($that) # Also wrong!
# or
$this =~ /^\Q$that\E\z/i # Right!
Now you can write
fc($this) eq fc($that)
And get the correct results.
Perl only implements the full form of casefolding,
but you can access the simple folds using L<Unicode::UCD/casefold()> and
L<Unicode::UCD/prop_invmap()>.
For further information on casefolding, refer to
the Unicode Standard, specifically sections 3.13 C<Default Case Operations>,
4.2 C<Case-Normative>, and 5.18 C<Case Mappings>,
available at L<http://www.unicode.org/versions/latest/>, as well as the
Case Charts available at L<http://www.unicode.org/charts/case/>.
If EXPR is omitted, uses C<$_>.
This function behaves the same way under various pragma, such as within
S<C<"use feature 'unicode_strings">>, as L</lc> does, with the single
exception of C<fc> of LATIN CAPITAL LETTER SHARP S (U+1E9E) within the
scope of S<C<use locale>>. The foldcase of this character would
normally be C<"ss">, but as explained in the L</lc> section, case
changes that cross the 255/256 boundary are problematic under locales,
and are hence prohibited. Therefore, this function under locale returns
instead the string C<"\x{17F}\x{17F}">, which is the LATIN SMALL LETTER
LONG S. Since that character itself folds to C<"s">, the string of two
of them together should be equivalent to a single U+1E9E when foldcased.
While the Unicode Standard defines two additional forms of casefolding,
one for Turkic languages and one that never maps one character into multiple
characters, these are not provided by the Perl core; However, the CPAN module
C<Unicode::Casing> may be used to provide an implementation.
This keyword is available only when the C<"fc"> feature is enabled,
or when prefixed with C<CORE::>; See L<feature>. Alternately,
include a C<use v5.16> or later to the current scope.
=item fcntl FILEHANDLE,FUNCTION,SCALAR
X<fcntl>
=for Pod::Functions file control system call
Implements the fcntl(2) function. You'll probably have to say
use Fcntl;
first to get the correct constant definitions. Argument processing and
value returned work just like C<ioctl> below.
For example:
use Fcntl;
fcntl($filehandle, F_GETFL, $packed_return_buffer)
or die "can't fcntl F_GETFL: $!";
You don't have to check for C<defined> on the return from C<fcntl>.
Like C<ioctl>, it maps a C<0> return from the system call into
C<"0 but true"> in Perl. This string is true in boolean context and C<0>
in numeric context. It is also exempt from the normal B<-w> warnings
on improper numeric conversions.
Note that C<fcntl> raises an exception if used on a machine that
doesn't implement fcntl(2). See the Fcntl module or your fcntl(2)
manpage to learn what functions are available on your system.
Here's an example of setting a filehandle named C<REMOTE> to be
non-blocking at the system level. You'll have to negotiate C<$|>
on your own, though.
use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
$flags = fcntl(REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $!\n";
$flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";
Portability issues: L<perlport/fcntl>.
=item __FILE__
X<__FILE__>
=for Pod::Functions the name of the current source file
A special token that returns the name of the file in which it occurs.
=item fileno FILEHANDLE
X<fileno>
=for Pod::Functions return file descriptor from filehandle
Returns the file descriptor for a filehandle, or undefined if the
filehandle is not open. If there is no real file descriptor at the OS
level, as can happen with filehandles connected to memory objects via
C<open> with a reference for the third argument, -1 is returned.
This is mainly useful for constructing
bitmaps for C<select> and low-level POSIX tty-handling operations.
If FILEHANDLE is an expression, the value is taken as an indirect
filehandle, generally its name.
You can use this to find out whether two handles refer to the
same underlying descriptor:
if (fileno(THIS) != -1 && fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";
} elsif (fileno(THIS) != -1 && fileno(THAT) != -1) {
print "THIS and THAT have different " .
"underlying file descriptors\n";
} else {
print "At least one of THIS and THAT does " .
"not have a real file descriptor\n";
}
=item flock FILEHANDLE,OPERATION
X<flock> X<lock> X<locking>
=for Pod::Functions lock an entire file with an advisory lock
Calls flock(2), or an emulation of it, on FILEHANDLE. Returns true
for success, false on failure. Produces a fatal error if used on a
machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
C<flock> is Perl's portable file-locking interface, although it locks
entire files only, not records.
Two potentially non-obvious but traditional C<flock> semantics are
that it waits indefinitely until the lock is granted, and that its locks
are B<merely advisory>. Such discretionary locks are more flexible, but
offer fewer guarantees. This means that programs that do not also use
C<flock> may modify files locked with C<flock>. See L<perlport>,
your port's specific documentation, and your system-specific local manpages
for details. It's best to assume traditional behavior if you're writing
portable programs. (But if you're not, you should as always feel perfectly
free to write for your own system's idiosyncrasies (sometimes called
"features"). Slavish adherence to portability concerns shouldn't get
in the way of your getting your job done.)
OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but
you can use the symbolic names if you import them from the L<Fcntl> module,
either individually, or as a group using the C<:flock> tag. LOCK_SH
requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
releases a previously requested lock. If LOCK_NB is bitwise-or'ed with
LOCK_SH or LOCK_EX, then C<flock> returns immediately rather than blocking
waiting for the lock; check the return status to see if you got it.
To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
before locking or unlocking it.
Note that the emulation built with lockf(3) doesn't provide shared
locks, and it requires that FILEHANDLE be open with write intent. These
are the semantics that lockf(3) implements. Most if not all systems
implement lockf(3) in terms of fcntl(2) locking, though, so the
differing semantics shouldn't bite too many people.
Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
be open with read intent to use LOCK_SH and requires that it be open
with write intent to use LOCK_EX.
Note also that some versions of C<flock> cannot lock things over the
network; you would need to use the more system-specific C<fcntl> for
that. If you like you can force Perl to ignore your system's flock(2)
function, and so provide its own fcntl(2)-based emulation, by passing
the switch C<-Ud_flock> to the F<Configure> program when you configure
and build a new Perl.
Here's a mailbox appender for BSD systems.
# import LOCK_* and SEEK_END constants
use Fcntl qw(:flock SEEK_END);
sub lock {
my ($fh) = @_;
flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";
# and, in case someone appended while we were waiting...
seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";
}
sub unlock {
my ($fh) = @_;
flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";
}
open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
or die "Can't open mailbox: $!";
lock($mbox);
print $mbox $msg,"\n\n";
unlock($mbox);
On systems that support a real flock(2), locks are inherited across fork()
calls, whereas those that must resort to the more capricious fcntl(2)
function lose their locks, making it seriously harder to write servers.
See also L<DB_File> for other flock() examples.
Portability issues: L<perlport/flock>.
=item fork
X<fork> X<child> X<parent>
=for Pod::Functions create a new process just like this one
Does a fork(2) system call to create a new process running the
same program at the same point. It returns the child pid to the
parent process, C<0> to the child process, or C<undef> if the fork is
unsuccessful. File descriptors (and sometimes locks on those descriptors)
are shared, while everything else is copied. On most systems supporting
fork(), great care has gone into making it extremely efficient (for
example, using copy-on-write technology on data pages), making it the
dominant paradigm for multitasking over the last few decades.
Perl attempts to flush all files opened for
output before forking the child process, but this may not be supported
on some platforms (see L<perlport>). To be safe, you may need to set
C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
C<IO::Handle> on any open handles to avoid duplicate output.
If you C<fork> without ever waiting on your children, you will
accumulate zombies. On some systems, you can avoid this by setting
C<$SIG{CHLD}> to C<"IGNORE">. See also L<perlipc> for more examples of
forking and reaping moribund children.
Note that if your forked child inherits system file descriptors like
STDIN and STDOUT that are actually connected by a pipe or socket, even
if you exit, then the remote server (such as, say, a CGI script or a
backgrounded job launched from a remote shell) won't think you're done.
You should reopen those to F</dev/null> if it's any issue.
On some platforms such as Windows, where the fork() system call is not available,
Perl can be built to emulate fork() in the Perl interpreter.
The emulation is designed, at the level of the Perl program,
to be as compatible as possible with the "Unix" fork().
However it has limitations that have to be considered in code intended to be portable.
See L<perlfork> for more details.
Portability issues: L<perlport/fork>.
=item format
X<format>
=for Pod::Functions declare a picture format with use by the write() function
Declare a picture format for use by the C<write> function. For
example:
format Something =
Test: @<<<<<<<< @||||| @>>>>>
$str, $%, '$' . int($num)
.
$str = "widget";
$num = $cost/$quantity;
$~ = 'Something';
write;
See L<perlform> for many details and examples.
=item formline PICTURE,LIST
X<formline>
=for Pod::Functions internal function used for formats
This is an internal function used by C<format>s, though you may call it,
too. It formats (see L<perlform>) a list of values according to the
contents of PICTURE, placing the output into the format output
accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
Eventually, when a C<write> is done, the contents of
C<$^A> are written to some filehandle. You could also read C<$^A>
and then set C<$^A> back to C<"">. Note that a format typically
does one C<formline> per line of form, but the C<formline> function itself
doesn't care how many newlines are embedded in the PICTURE. This means
that the C<~> and C<~~> tokens treat the entire PICTURE as a single line.
You may therefore need to use multiple formlines to implement a single
record format, just like the C<format> compiler.
Be careful if you put double quotes around the picture, because an C<@>
character may be taken to mean the beginning of an array name.
C<formline> always returns true. See L<perlform> for other examples.
If you are trying to use this instead of C<write> to capture the output,
you may find it easier to open a filehandle to a scalar
(C<< open $fh, ">", \$output >>) and write to that instead.
=item getc FILEHANDLE
X<getc> X<getchar> X<character> X<file, read>
=item getc
=for Pod::Functions get the next character from the filehandle
Returns the next character from the input file attached to FILEHANDLE,
or the undefined value at end of file or if there was an error (in
the latter case C<$!> is set). If FILEHANDLE is omitted, reads from
STDIN. This is not particularly efficient. However, it cannot be
used by itself to fetch single characters without waiting for the user
to hit enter. For that, try something more like:
if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";
}
else {
system "stty", '-icanon', 'eol', "\001";
}
$key = getc(STDIN);
if ($BSD_STYLE) {
system "stty -cbreak </dev/tty >/dev/tty 2>&1";
}
else {
system 'stty', 'icanon', 'eol', '^@'; # ASCII NUL
}
print "\n";
Determination of whether $BSD_STYLE should be set
is left as an exercise to the reader.
The C<POSIX::getattr> function can do this more portably on
systems purporting POSIX compliance. See also the C<Term::ReadKey>
module from your nearest L<CPAN|http://www.cpan.org> site.
=item getlogin
X<getlogin> X<login>
=for Pod::Functions return who logged in at this tty
This implements the C library function of the same name, which on most
systems returns the current login from F</etc/utmp>, if any. If it
returns the empty string, use C<getpwuid>.
$login = getlogin || getpwuid($<) || "Kilroy";
Do not consider C<getlogin> for authentication: it is not as
secure as C<getpwuid>.
Portability issues: L<perlport/getlogin>.
=item getpeername SOCKET
X<getpeername> X<peer>
=for Pod::Functions find the other end of a socket connection
Returns the packed sockaddr address of the other end of the SOCKET
connection.
use Socket;
$hersockaddr = getpeername(SOCK);
($port, $iaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);
=item getpgrp PID
X<getpgrp> X<group>
=for Pod::Functions get process group
Returns the current process group for the specified PID. Use
a PID of C<0> to get the current process group for the
current process. Will raise an exception if used on a machine that
doesn't implement getpgrp(2). If PID is omitted, returns the process
group of the current process. Note that the POSIX version of C<getpgrp>
does not accept a PID argument, so only C<PID==0> is truly portable.
Portability issues: L<perlport/getpgrp>.
=item getppid
X<getppid> X<parent> X<pid>
=for Pod::Functions get parent process ID
Returns the process id of the parent process.
Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work
around non-POSIX thread semantics the minority of Linux systems (and
Debian GNU/kFreeBSD systems) that used LinuxThreads, this emulation
has since been removed. See the documentation for L<$$|perlvar/$$> for
details.
Portability issues: L<perlport/getppid>.
=item getpriority WHICH,WHO
X<getpriority> X<priority> X<nice>
=for Pod::Functions get current nice value
Returns the current priority for a process, a process group, or a user.
(See L<getpriority(2)>.) Will raise a fatal exception if used on a
machine that doesn't implement getpriority(2).
Portability issues: L<perlport/getpriority>.
=item getpwnam NAME
X<getpwnam> X<getgrnam> X<gethostbyname> X<getnetbyname> X<getprotobyname>
X<getpwuid> X<getgrgid> X<getservbyname> X<gethostbyaddr> X<getnetbyaddr>
X<getprotobynumber> X<getservbyport> X<getpwent> X<getgrent> X<gethostent>
X<getnetent> X<getprotoent> X<getservent> X<setpwent> X<setgrent> X<sethostent>
X<setnetent> X<setprotoent> X<setservent> X<endpwent> X<endgrent> X<endhostent>
X<endnetent> X<endprotoent> X<endservent>
=for Pod::Functions get passwd record given user login name
=item getgrnam NAME
=for Pod::Functions get group record given group name
=item gethostbyname NAME
=for Pod::Functions get host record given name
=item getnetbyname NAME
=for Pod::Functions get networks record given name
=item getprotobyname NAME
=for Pod::Functions get protocol record given name
=item getpwuid UID
=for Pod::Functions get passwd record given user ID
=item getgrgid GID
=for Pod::Functions get group record given group user ID
=item getservbyname NAME,PROTO
=for Pod::Functions get services record given its name
=item gethostbyaddr ADDR,ADDRTYPE
=for Pod::Functions get host record given its address
=item getnetbyaddr ADDR,ADDRTYPE
=for Pod::Functions get network record given its address
=item getprotobynumber NUMBER
=for Pod::Functions get protocol record numeric protocol
=item getservbyport PORT,PROTO
=for Pod::Functions get services record given numeric port
=item getpwent
=for Pod::Functions get next passwd record
=item getgrent
=for Pod::Functions get next group record
=item gethostent
=for Pod::Functions get next hosts record
=item getnetent
=for Pod::Functions get next networks record
=item getprotoent
=for Pod::Functions get next protocols record
=item getservent
=for Pod::Functions get next services record
=item setpwent
=for Pod::Functions prepare passwd file for use
=item setgrent
=for Pod::Functions prepare group file for use
=item sethostent STAYOPEN
=for Pod::Functions prepare hosts file for use
=item setnetent STAYOPEN
=for Pod::Functions prepare networks file for use
=item setprotoent STAYOPEN
=for Pod::Functions prepare protocols file for use
=item setservent STAYOPEN
=for Pod::Functions prepare services file for use
=item endpwent
=for Pod::Functions be done using passwd file
=item endgrent
=for Pod::Functions be done using group file
=item endhostent
=for Pod::Functions be done using hosts file
=item endnetent
=for Pod::Functions be done using networks file
=item endprotoent
=for Pod::Functions be done using protocols file
=item endservent
=for Pod::Functions be done using services file
These routines are the same as their counterparts in the
system C library. In list context, the return values from the
various get routines are as follows:
# 0 1 2 3 4
( $name, $passwd, $gid, $members ) = getgr*
( $name, $aliases, $addrtype, $net ) = getnet*
( $name, $aliases, $port, $proto ) = getserv*
( $name, $aliases, $proto ) = getproto*
( $name, $aliases, $addrtype, $length, @addrs ) = gethost*
( $name, $passwd, $uid, $gid, $quota,
$comment, $gcos, $dir, $shell, $expire ) = getpw*
# 5 6 7 8 9
(If the entry doesn't exist you get an empty list.)
The exact meaning of the $gcos field varies but it usually contains
the real name of the user (as opposed to the login name) and other
information pertaining to the user. Beware, however, that in many
system users are able to change this information and therefore it
cannot be trusted and therefore the $gcos is tainted (see
L<perlsec>). The $passwd and $shell, user's encrypted password and
login shell, are also tainted, for the same reason.
In scalar context, you get the name, unless the function was a
lookup by name, in which case you get the other thing, whatever it is.
(If the entry doesn't exist you get the undefined value.) For example:
$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();
$gid = getgrnam($name);
$name = getgrgid($num);
$name = getgrent();
#etc.
In I<getpw*()> the fields $quota, $comment, and $expire are special
in that they are unsupported on many systems. If the
$quota is unsupported, it is an empty scalar. If it is supported, it
usually encodes the disk quota. If the $comment field is unsupported,
it is an empty scalar. If it is supported it usually encodes some
administrative comment about the user. In some systems the $quota
field may be $change or $age, fields that have to do with password
aging. In some systems the $comment field may be $class. The $expire
field, if present, encodes the expiration period of the account or the
password. For the availability and the exact meaning of these fields
in your system, please consult getpwnam(3) and your system's
F<pwd.h> file. You can also find out from within Perl what your
$quota and $comment fields mean and whether you have the $expire field
by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>. Shadow password
files are supported only if your vendor has implemented them in the
intuitive fashion that calling the regular C library routines gets the
shadow versions if you're running under privilege or if there exists
the shadow(3) functions as found in System V (this includes Solaris
and Linux). Those systems that implement a proprietary shadow password
facility are unlikely to be supported.
The $members value returned by I<getgr*()> is a space-separated list of
the login names of the members of the group.
For the I<gethost*()> functions, if the C<h_errno> variable is supported in
C, it will be returned to you via C<$?> if the function call fails. The
C<@addrs> value returned by a successful call is a list of raw
addresses returned by the corresponding library call. In the
Internet domain, each address is four bytes long; you can unpack it
by saying something like:
($a,$b,$c,$d) = unpack('W4',$addr[0]);
The Socket library makes this slightly easier:
use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);
# or going the other way
$straddr = inet_ntoa($iaddr);
In the opposite way, to resolve a hostname to the IP address
you can write this:
use Socket;
$packed_ip = gethostbyname("www.perl.org");
if (defined $packed_ip) {
$ip_address = inet_ntoa($packed_ip);
}
Make sure C<gethostbyname()> is called in SCALAR context and that
its return value is checked for definedness.
The C<getprotobynumber> function, even though it only takes one argument,
has the precedence of a list operator, so beware:
getprotobynumber $number eq 'icmp' # WRONG
getprotobynumber($number eq 'icmp') # actually means this
getprotobynumber($number) eq 'icmp' # better this way
If you get tired of remembering which element of the return list
contains which return value, by-name interfaces are provided
in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
and C<User::grent>. These override the normal built-ins, supplying
versions that return objects with the appropriate names
for each field. For example:
use File::stat;
use User::pwent;
$is_his = (stat($filename)->uid == pwent($whoever)->uid);
Even though it looks as though they're the same method calls (uid),
they aren't, because a C<File::stat> object is different from
a C<User::pwent> object.
Portability issues: L<perlport/getpwnam> to L<perlport/endservent>.
=item getsockname SOCKET
X<getsockname>
=for Pod::Functions retrieve the sockaddr for a given socket
Returns the packed sockaddr address of this end of the SOCKET connection,
in case you don't know the address because you have several different
IPs that the connection might have come in on.
use Socket;
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",
scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);
=item getsockopt SOCKET,LEVEL,OPTNAME
X<getsockopt>
=for Pod::Functions get socket options on a given socket
Queries the option named OPTNAME associated with SOCKET at a given LEVEL.
Options may exist at multiple protocol levels depending on the socket
type, but at least the uppermost socket level SOL_SOCKET (defined in the
C<Socket> module) will exist. To query options at another level the
protocol number of the appropriate protocol controlling the option
should be supplied. For example, to indicate that an option is to be
interpreted by the TCP protocol, LEVEL should be set to the protocol
number of TCP, which you can get using C<getprotobyname>.
The function returns a packed string representing the requested socket
option, or C<undef> on error, with the reason for the error placed in
C<$!>. Just what is in the packed string depends on LEVEL and OPTNAME;
consult getsockopt(2) for details. A common case is that the option is an
integer, in which case the result is a packed integer, which you can decode
using C<unpack> with the C<i> (or C<I>) format.
Here's an example to test whether Nagle's algorithm is enabled on a socket:
use Socket qw(:all);
defined(my $tcp = getprotobyname("tcp"))
or die "Could not determine the protocol number for tcp";
# my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
or die "getsockopt TCP_NODELAY: $!";
my $nodelay = unpack("I", $packed);
print "Nagle's algorithm is turned ",
$nodelay ? "off\n" : "on\n";
Portability issues: L<perlport/getsockopt>.
=item glob EXPR
X<glob> X<wildcard> X<filename, expansion> X<expand>
=item glob
=for Pod::Functions expand filenames using wildcards
In list context, returns a (possibly empty) list of filename expansions on
the value of EXPR such as the standard Unix shell F</bin/csh> would do. In
scalar context, glob iterates through such filename expansions, returning
undef when the list is exhausted. This is the internal function
implementing the C<< <*.c> >> operator, but you can use it directly. If
EXPR is omitted, C<$_> is used. The C<< <*.c> >> operator is discussed in
more detail in L<perlop/"I/O Operators">.
Note that C<glob> splits its arguments on whitespace and treats
each segment as separate pattern. As such, C<glob("*.c *.h")>
matches all files with a F<.c> or F<.h> extension. The expression
C<glob(".* *")> matches all files in the current working directory.
If you want to glob filenames that might contain whitespace, you'll
have to use extra quotes around the spacey filename to protect it.
For example, to glob filenames that have an C<e> followed by a space
followed by an C<f>, use either of:
@spacies = <"*e f*">;
@spacies = glob '"*e f*"';
@spacies = glob q("*e f*");
If you had to get a variable through, you could do this:
@spacies = glob "'*${var}e f*'";
@spacies = glob qq("*${var}e f*");
If non-empty braces are the only wildcard characters used in the
C<glob>, no filenames are matched, but potentially many strings
are returned. For example, this produces nine strings, one for
each pairing of fruits and colors:
@many = glob "{apple,tomato,cherry}={green,yellow,red}";
This operator is implemented using the standard
C<File::Glob> extension. See L<File::Glob> for details, including
C<bsd_glob> which does not treat whitespace as a pattern separator.
Portability issues: L<perlport/glob>.
=item gmtime EXPR
X<gmtime> X<UTC> X<Greenwich>
=item gmtime
=for Pod::Functions convert UNIX time into record or string using Greenwich time
Works just like L</localtime> but the returned values are
localized for the standard Greenwich time zone.
Note: When called in list context, $isdst, the last value
returned by gmtime, is always C<0>. There is no
Daylight Saving Time in GMT.
Portability issues: L<perlport/gmtime>.
=item goto LABEL
X<goto> X<jump> X<jmp>
=item goto EXPR
=item goto &NAME
=for Pod::Functions create spaghetti code
The C<goto LABEL> form finds the statement labeled with LABEL and
resumes execution there. It can't be used to get out of a block or
subroutine given to C<sort>. It can be used to go almost anywhere
else within the dynamic scope, including out of subroutines, but it's
usually better to use some other construct such as C<last> or C<die>.
The author of Perl has never felt the need to use this form of C<goto>
(in Perl, that is; C is another matter). (The difference is that C
does not offer named loops combined with loop control. Perl does, and
this replaces most structured uses of C<goto> in other languages.)
The C<goto EXPR> form expects to evaluate C<EXPR> to a code reference or
a label name. If it evaluates to a code reference, it will be handled
like C<goto &NAME>, below. This is especially useful for implementing
tail recursion via C<goto __SUB__>.
If the expression evaluates to a label name, its scope will be resolved
dynamically. This allows for computed C<goto>s per FORTRAN, but isn't
necessarily recommended if you're optimizing for maintainability:
goto ("FOO", "BAR", "GLARCH")[$i];
As shown in this example, C<goto EXPR> is exempt from the "looks like a
function" rule. A pair of parentheses following it does not (necessarily)
delimit its argument. C<goto("NE")."XT"> is equivalent to C<goto NEXT>.
Also, unlike most named operators, this has the same precedence as
assignment.
Use of C<goto LABEL> or C<goto EXPR> to jump into a construct is
deprecated and will issue a warning. Even then, it may not be used to
go into any construct that requires initialization, such as a
subroutine or a C<foreach> loop. It also can't be used to go into a
construct that is optimized away.
The C<goto &NAME> form is quite different from the other forms of
C<goto>. In fact, it isn't a goto in the normal sense at all, and
doesn't have the stigma associated with other gotos. Instead, it
exits the current subroutine (losing any changes set by local()) and
immediately calls in its place the named subroutine using the current
value of @_. This is used by C<AUTOLOAD> subroutines that wish to
load another subroutine and then pretend that the other subroutine had
been called in the first place (except that any modifications to C<@_>
in the current subroutine are propagated to the other subroutine.)
After the C<goto>, not even C<caller> will be able to tell that this
routine was called first.
NAME needn't be the name of a subroutine; it can be a scalar variable
containing a code reference or a block that evaluates to a code
reference.
=item grep BLOCK LIST
X<grep>
=item grep EXPR,LIST
=for Pod::Functions locate elements in a list test true against a given criterion
This is similar in spirit to, but not the same as, grep(1) and its
relatives. In particular, it is not limited to using regular expressions.
Evaluates the BLOCK or EXPR for each element of LIST (locally setting
C<$_> to each element) and returns the list value consisting of those
elements for which the expression evaluated to true. In scalar
context, returns the number of times the expression was true.
@foo = grep(!/^#/, @bar); # weed out comments
or equivalently,
@foo = grep {!/^#/} @bar; # weed out comments
Note that C<$_> is an alias to the list value, so it can be used to
modify the elements of the LIST. While this is useful and supported,
it can cause bizarre results if the elements of LIST are not variables.
Similarly, grep returns aliases into the original list, much as a for
loop's index variable aliases the list elements. That is, modifying an
element of a list returned by grep (for example, in a C<foreach>, C<map>
or another C<grep>) actually modifies the element in the original list.
This is usually something to be avoided when writing clear code.
If C<$_> is lexical in the scope where the C<grep> appears (because it has
been declared with the deprecated C<my $_> construct)
then, in addition to being locally aliased to
the list elements, C<$_> keeps being lexical inside the block; i.e., it
can't be seen from the outside, avoiding any potential side-effects.
See also L</map> for a list composed of the results of the BLOCK or EXPR.
=item hex EXPR
X<hex> X<hexadecimal>
=item hex
=for Pod::Functions convert a string to a hexadecimal number
Interprets EXPR as a hex string and returns the corresponding value.
(To convert strings that might start with either C<0>, C<0x>, or C<0b>, see
L</oct>.) If EXPR is omitted, uses C<$_>.
print hex '0xAf'; # prints '175'
print hex 'aF'; # same
Hex strings may only represent integers. Strings that would cause
integer overflow trigger a warning. Leading whitespace is not stripped,
unlike oct(). To present something as hex, look into L</printf>,
L</sprintf>, and L</unpack>.
=item import LIST
X<import>
=for Pod::Functions patch a module's namespace into your own
There is no builtin C<import> function. It is just an ordinary
method (subroutine) defined (or inherited) by modules that wish to export
names to another module. The C<use> function calls the C<import> method
for the package used. See also L</use>, L<perlmod>, and L<Exporter>.
=item index STR,SUBSTR,POSITION
X<index> X<indexOf> X<InStr>
=item index STR,SUBSTR
=for Pod::Functions find a substring within a string
The index function searches for one string within another, but without
the wildcard-like behavior of a full regular-expression pattern match.
It returns the position of the first occurrence of SUBSTR in STR at
or after POSITION. If POSITION is omitted, starts searching from the
beginning of the string. POSITION before the beginning of the string
or after its end is treated as if it were the beginning or the end,
respectively. POSITION and the return value are based at zero.
If the substring is not found, C<index> returns -1.
=item int EXPR
X<int> X<integer> X<truncate> X<trunc> X<floor>
=item int
=for Pod::Functions get the integer portion of a number
Returns the integer portion of EXPR. If EXPR is omitted, uses C<$_>.
You should not use this function for rounding: one because it truncates
towards C<0>, and two because machine representations of floating-point
numbers can sometimes produce counterintuitive results. For example,
C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
because it's really more like -268.99999999999994315658 instead. Usually,
the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
functions will serve you better than will int().
=item ioctl FILEHANDLE,FUNCTION,SCALAR
X<ioctl>
=for Pod::Functions system-dependent device control system call
Implements the ioctl(2) function. You'll probably first have to say
require "sys/ioctl.ph"; # probably in
# $Config{archlib}/sys/ioctl.ph
to get the correct function definitions. If F<sys/ioctl.ph> doesn't
exist or doesn't have the correct definitions you'll have to roll your
own, based on your C header files such as F<< <sys/ioctl.h> >>.
(There is a Perl script called B<h2ph> that comes with the Perl kit that
may help you in this, but it's nontrivial.) SCALAR will be read and/or
written depending on the FUNCTION; a C pointer to the string value of SCALAR
will be passed as the third argument of the actual C<ioctl> call. (If SCALAR
has no string value but does have a numeric value, that value will be
passed rather than a pointer to the string value. To guarantee this to be
true, add a C<0> to the scalar before using it.) The C<pack> and C<unpack>
functions may be needed to manipulate the values of structures used by
C<ioctl>.
The return value of C<ioctl> (and C<fcntl>) is as follows:
if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number
Thus Perl returns true on success and false on failure, yet you can
still easily determine the actual value returned by the operating
system:
$retval = ioctl(...) || -1;
printf "System returned %d\n", $retval;
The special string C<"0 but true"> is exempt from B<-w> complaints
about improper numeric conversions.
Portability issues: L<perlport/ioctl>.
=item join EXPR,LIST
X<join>
=for Pod::Functions join a list into a string using a separator
Joins the separate strings of LIST into a single string with fields
separated by the value of EXPR, and returns that new string. Example:
$rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Beware that unlike C<split>, C<join> doesn't take a pattern as its
first argument. Compare L</split>.
=item keys HASH
X<keys> X<key>
=item keys ARRAY
=item keys EXPR
=for Pod::Functions retrieve list of indices from a hash
Called in list context, returns a list consisting of all the keys of the
named hash, or in Perl 5.12 or later only, the indices of an array. Perl
releases prior to 5.12 will produce a syntax error if you try to use an
array argument. In scalar context, returns the number of keys or indices.
Hash entries are returned in an apparently random order. The actual random
order is specific to a given hash; the exact same series of operations
on two hashes may result in a different order for each hash. Any insertion
into the hash may change the order, as will any deletion, with the exception
that the most recent key returned by C<each> or C<keys> may be deleted
without changing the order. So long as a given hash is unmodified you may
rely on C<keys>, C<values> and C<each> to repeatedly return the same order
as each other. See L<perlsec/"Algorithmic Complexity Attacks"> for
details on why hash order is randomized. Aside from the guarantees
provided here the exact details of Perl's hash algorithm and the hash
traversal order are subject to change in any release of Perl. Tied hashes
may behave differently to Perl's hashes with respect to changes in order on
insertion and deletion of items.
As a side effect, calling keys() resets the internal iterator of the HASH or
ARRAY (see L</each>). In particular, calling keys() in void context resets
the iterator with no other overhead.
Here is yet another way to print your environment:
@keys = keys %ENV;
@values = values %ENV;
while (@keys) {
print pop(@keys), '=', pop(@values), "\n";
}
or how about sorted by key:
foreach $key (sort(keys %ENV)) {
print $key, '=', $ENV{$key}, "\n";
}
The returned values are copies of the original keys in the hash, so
modifying them will not affect the original hash. Compare L</values>.
To sort a hash by value, you'll need to use a C<sort> function.
Here's a descending numeric sort of a hash by its values:
foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;
}
Used as an lvalue, C<keys> allows you to increase the number of hash buckets
allocated for the given hash. This can gain you a measure of efficiency if
you know the hash is going to get big. (This is similar to pre-extending
an array by assigning a larger number to $#array.) If you say
keys %hash = 200;
then C<%hash> will have at least 200 buckets allocated for it--256 of them,
in fact, since it rounds up to the next power of two. These
buckets will be retained even if you do C<%hash = ()>, use C<undef
%hash> if you want to free the storage while C<%hash> is still in scope.
You can't shrink the number of buckets allocated for the hash using
C<keys> in this way (but you needn't worry about doing this by accident,
as trying has no effect). C<keys @array> in an lvalue context is a syntax
error.
Starting with Perl 5.14, C<keys> can take a scalar EXPR, which must contain
a reference to an unblessed hash or array. The argument will be
dereferenced automatically. This aspect of C<keys> is considered highly
experimental. The exact behaviour may change in a future version of Perl.
for (keys $hashref) { ... }
for (keys $obj->get_arrayref) { ... }
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.012; # so keys/values/each work on arrays
use 5.014; # so keys/values/each work on scalars (experimental)
See also C<each>, C<values>, and C<sort>.
=item kill SIGNAL, LIST
=item kill SIGNAL
X<kill> X<signal>
=for Pod::Functions send a signal to a process or process group
Sends a signal to a list of processes. Returns the number of arguments
that were successfully used to signal (which is not necessarily the same
as the number of processes actually killed, e.g. where a process group is
killed).
$cnt = kill 'HUP', $child1, $child2;
kill 'KILL', @goners;
SIGNAL may be either a signal name (a string) or a signal number. A signal
name may start with a C<SIG> prefix, thus C<FOO> and C<SIGFOO> refer to the
same signal. The string form of SIGNAL is recommended for portability because
the same signal may have different numbers in different operating systems.
A list of signal names supported by the current platform can be found in
C<$Config{sig_name}>, which is provided by the C<Config> module. See L<Config>
for more details.
A negative signal name is the same as a negative signal number, killing process
groups instead of processes. For example, C<kill '-KILL', $pgrp> and
C<kill -9, $pgrp> will send C<SIGKILL> to
the entire process group specified. That
means you usually want to use positive not negative signals.
If SIGNAL is either the number 0 or the string C<ZERO> (or C<SIGZERO>),
no signal is sent to
the process, but C<kill> checks whether it's I<possible> to send a signal to it
(that means, to be brief, that the process is owned by the same user, or we are
the super-user). This is useful to check that a child process is still
alive (even if only as a zombie) and hasn't changed its UID. See
L<perlport> for notes on the portability of this construct.
The behavior of kill when a I<PROCESS> number is zero or negative depends on
the operating system. For example, on POSIX-conforming systems, zero will
signal the current process group, -1 will signal all processes, and any
other negative PROCESS number will act as a negative signal number and
kill the entire process group specified.
If both the SIGNAL and the PROCESS are negative, the results are undefined.
A warning may be produced in a future version.
See L<perlipc/"Signals"> for more details.
On some platforms such as Windows where the fork() system call is not
available, Perl can be built to emulate fork() at the interpreter level.
This emulation has limitations related to kill that have to be considered,
for code running on Windows and in code intended to be portable.
See L<perlfork> for more details.
If there is no I<LIST> of processes, no signal is sent, and the return
value is 0. This form is sometimes used, however, because it causes
tainting checks to be run. But see
L<perlsec/Laundering and Detecting Tainted Data>.
Portability issues: L<perlport/kill>.
=item last LABEL
X<last> X<break>
=item last EXPR
=item last
=for Pod::Functions exit a block prematurely
The C<last> command is like the C<break> statement in C (as used in
loops); it immediately exits the loop in question. If the LABEL is
omitted, the command refers to the innermost enclosing
loop. The C<last EXPR> form, available starting in Perl
5.18.0, allows a label name to be computed at run time,
and is otherwise identical to C<last LABEL>. The
C<continue> block, if any, is not executed:
LINE: while (<STDIN>) {
last LINE if /^$/; # exit when done with header
#...
}
C<last> cannot be used to exit a block that returns a value such as
C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
a grep() or map() operation.
Note that a block by itself is semantically identical to a loop
that executes once. Thus C<last> can be used to effect an early
exit out of such a block.
See also L</continue> for an illustration of how C<last>, C<next>, and
C<redo> work.
Unlike most named operators, this has the same precedence as assignment.
It is also exempt from the looks-like-a-function rule, so
C<last ("foo")."bar"> will cause "bar" to be part of the argument to
C<last>.
=item lc EXPR
X<lc> X<lowercase>
=item lc
=for Pod::Functions return lower-case version of a string
Returns a lowercased version of EXPR. This is the internal function
implementing the C<\L> escape in double-quoted strings.
If EXPR is omitted, uses C<$_>.
What gets returned depends on several factors:
=over
=item If C<use bytes> is in effect:
The results follow ASCII rules. Only the characters C<A-Z> change,
to C<a-z> respectively.
=item Otherwise, if C<use locale> for C<LC_CTYPE> is in effect:
Respects current C<LC_CTYPE> locale for code points < 256; and uses Unicode
rules for the remaining code points (this last can only happen if
the UTF8 flag is also set). See L<perllocale>.
Starting in v5.20, Perl wil use full Unicode rules if the locale is
UTF-8. Otherwise, there is a deficiency in this scheme, which is that
case changes that cross the 255/256
boundary are not well-defined. For example, the lower case of LATIN CAPITAL
LETTER SHARP S (U+1E9E) in Unicode rules is U+00DF (on ASCII
platforms). But under C<use locale> (prior to v5.20 or not a UTF-8
locale), the lower case of U+1E9E is
itself, because 0xDF may not be LATIN SMALL LETTER SHARP S in the
current locale, and Perl has no way of knowing if that character even
exists in the locale, much less what code point it is. Perl returns
the input character unchanged, for all instances (and there aren't
many) where the 255/256 boundary would otherwise be crossed.
=item Otherwise, If EXPR has the UTF8 flag set:
Unicode rules are used for the case change.
=item Otherwise, if C<use feature 'unicode_strings'> or C<use locale ':not_characters'> is in effect:
Unicode rules are used for the case change.
=item Otherwise:
ASCII rules are used for the case change. The lowercase of any character
outside the ASCII range is the character itself.
=back
=item lcfirst EXPR
X<lcfirst> X<lowercase>
=item lcfirst
=for Pod::Functions return a string with just the next letter in lower case
Returns the value of EXPR with the first character lowercased. This
is the internal function implementing the C<\l> escape in
double-quoted strings.
If EXPR is omitted, uses C<$_>.
This function behaves the same way under various pragmata, such as in a locale,
as L</lc> does.
=item length EXPR
X<length> X<size>
=item length
=for Pod::Functions return the number of characters in a string
Returns the length in I<characters> of the value of EXPR. If EXPR is
omitted, returns the length of C<$_>. If EXPR is undefined, returns
C<undef>.
This function cannot be used on an entire array or hash to find out how
many elements these have. For that, use C<scalar @array> and C<scalar keys
%hash>, respectively.
Like all Perl character operations, length() normally deals in logical
characters, not physical bytes. For how many bytes a string encoded as
UTF-8 would take up, use C<length(Encode::encode_utf8(EXPR))> (you'll have
to C<use Encode> first). See L<Encode> and L<perlunicode>.
=item __LINE__
X<__LINE__>
=for Pod::Functions the current source line number
A special token that compiles to the current line number.
=item link OLDFILE,NEWFILE
X<link>
=for Pod::Functions create a hard link in the filesystem
Creates a new filename linked to the old filename. Returns true for
success, false otherwise.
Portability issues: L<perlport/link>.
=item listen SOCKET,QUEUESIZE
X<listen>
=for Pod::Functions register your socket as a server
Does the same thing that the listen(2) system call does. Returns true if
it succeeded, false otherwise. See the example in
L<perlipc/"Sockets: Client/Server Communication">.
=item local EXPR
X<local>
=for Pod::Functions create a temporary value for a global variable (dynamic scoping)
You really probably want to be using C<my> instead, because C<local> isn't
what most people think of as "local". See
L<perlsub/"Private Variables via my()"> for details.
A local modifies the listed variables to be local to the enclosing
block, file, or eval. If more than one value is listed, the list must
be placed in parentheses. See L<perlsub/"Temporary Values via local()">
for details, including issues with tied arrays and hashes.
The C<delete local EXPR> construct can also be used to localize the deletion
of array/hash elements to the current block.
See L<perlsub/"Localized deletion of elements of composite types">.
=item localtime EXPR
X<localtime> X<ctime>
=item localtime
=for Pod::Functions convert UNIX time into record or string using local time
Converts a time as returned by the time function to a 9-element list
with the time analyzed for the local time zone. Typically used as
follows:
# 0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time);
All list elements are numeric and come straight out of the C `struct
tm'. C<$sec>, C<$min>, and C<$hour> are the seconds, minutes, and hours
of the specified time.
C<$mday> is the day of the month and C<$mon> the month in
the range C<0..11>, with 0 indicating January and 11 indicating December.
This makes it easy to get a month name from a list:
my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
# $mon=9, $mday=18 gives "Oct 18"
C<$year> contains the number of years since 1900. To get a 4-digit
year write:
$year += 1900;
To get the last two digits of the year (e.g., "01" in 2001) do:
$year = sprintf("%02d", $year % 100);
C<$wday> is the day of the week, with 0 indicating Sunday and 3 indicating
Wednesday. C<$yday> is the day of the year, in the range C<0..364>
(or C<0..365> in leap years.)
C<$isdst> is true if the specified time occurs during Daylight Saving
Time, false otherwise.
If EXPR is omitted, C<localtime()> uses the current time (as returned
by time(3)).
In scalar context, C<localtime()> returns the ctime(3) value:
$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"
The format of this scalar value is B<not> locale-dependent
but built into Perl. For GMT instead of local
time use the L</gmtime> builtin. See also the
C<Time::Local> module (for converting seconds, minutes, hours, and such back to
the integer value returned by time()), and the L<POSIX> module's strftime(3)
and mktime(3) functions.
To get somewhat similar but locale-dependent date strings, set up your
locale environment variables appropriately (please see L<perllocale>) and
try for example:
use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
# or for GMT formatted appropriately for your locale:
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
Note that the C<%a> and C<%b>, the short forms of the day of the week
and the month of the year, may not necessarily be three characters wide.
The L<Time::gmtime> and L<Time::localtime> modules provide a convenient,
by-name access mechanism to the gmtime() and localtime() functions,
respectively.
For a comprehensive date and time representation look at the
L<DateTime> module on CPAN.
Portability issues: L<perlport/localtime>.
=item lock THING
X<lock>
=for Pod::Functions +5.005 get a thread lock on a variable, subroutine, or method
This function places an advisory lock on a shared variable or referenced
object contained in I<THING> until the lock goes out of scope.
The value returned is the scalar itself, if the argument is a scalar, or a
reference, if the argument is a hash, array or subroutine.
lock() is a "weak keyword" : this means that if you've defined a function
by this name (before any calls to it), that function will be called
instead. If you are not under C<use threads::shared> this does nothing.
See L<threads::shared>.
=item log EXPR
X<log> X<logarithm> X<e> X<ln> X<base>
=item log
=for Pod::Functions retrieve the natural logarithm for a number
Returns the natural logarithm (base I<e>) of EXPR. If EXPR is omitted,
returns the log of C<$_>. To get the
log of another base, use basic algebra:
The base-N log of a number is equal to the natural log of that number
divided by the natural log of N. For example:
sub log10 {
my $n = shift;
return log($n)/log(10);
}
See also L</exp> for the inverse operation.
=item lstat FILEHANDLE
X<lstat>
=item lstat EXPR
=item lstat DIRHANDLE
=item lstat
=for Pod::Functions stat a symbolic link
Does the same thing as the C<stat> function (including setting the
special C<_> filehandle) but stats a symbolic link instead of the file
the symbolic link points to. If symbolic links are unimplemented on
your system, a normal C<stat> is done. For much more detailed
information, please see the documentation for C<stat>.
If EXPR is omitted, stats C<$_>.
Portability issues: L<perlport/lstat>.
=item m//
=for Pod::Functions match a string with a regular expression pattern
The match operator. See L<perlop/"Regexp Quote-Like Operators">.
=item map BLOCK LIST
X<map>
=item map EXPR,LIST
=for Pod::Functions apply a change to a list to get back a new list with the changes
Evaluates the BLOCK or EXPR for each element of LIST (locally setting
C<$_> to each element) and returns the list value composed of the
results of each such evaluation. In scalar context, returns the
total number of elements so generated. Evaluates BLOCK or EXPR in
list context, so each element of LIST may produce zero, one, or
more elements in the returned value.
@chars = map(chr, @numbers);
translates a list of numbers to the corresponding characters.
my @squares = map { $_ * $_ } @numbers;
translates a list of numbers to their squared values.
my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;
shows that number of returned elements can differ from the number of
input elements. To omit an element, return an empty list ().
This could also be achieved by writing
my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;
which makes the intention more clear.
Map always returns a list, which can be
assigned to a hash such that the elements
become key/value pairs. See L<perldata> for more details.
%hash = map { get_a_key_for($_) => $_ } @array;
is just a funny way to write
%hash = ();
foreach (@array) {
$hash{get_a_key_for($_)} = $_;
}
Note that C<$_> is an alias to the list value, so it can be used to
modify the elements of the LIST. While this is useful and supported,
it can cause bizarre results if the elements of LIST are not variables.
Using a regular C<foreach> loop for this purpose would be clearer in
most cases. See also L</grep> for an array composed of those items of
the original list for which the BLOCK or EXPR evaluates to true.
If C<$_> is lexical in the scope where the C<map> appears (because it has
been declared with the deprecated C<my $_> construct),
then, in addition to being locally aliased to
the list elements, C<$_> keeps being lexical inside the block; that is, it
can't be seen from the outside, avoiding any potential side-effects.
C<{> starts both hash references and blocks, so C<map { ...> could be either
the start of map BLOCK LIST or map EXPR, LIST. Because Perl doesn't look
ahead for the closing C<}> it has to take a guess at which it's dealing with
based on what it finds just after the
C<{>. Usually it gets it right, but if it
doesn't it won't realize something is wrong until it gets to the C<}> and
encounters the missing (or unexpected) comma. The syntax error will be
reported close to the C<}>, but you'll need to change something near the C<{>
such as using a unary C<+> to give Perl some help:
%hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong
%hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_" => 1) } @array # this also works
%hash = map { lc($_) => 1 } @array # as does this.
%hash = map +( lc($_) => 1 ), @array # this is EXPR and works!
%hash = map ( lc($_), 1 ), @array # evaluates to (1, @array)
or to force an anon hash constructor use C<+{>:
@hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs
# comma at end
to get a list of anonymous hashes each with only one entry apiece.
=item mkdir FILENAME,MASK
X<mkdir> X<md> X<directory, create>
=item mkdir FILENAME
=item mkdir
=for Pod::Functions create a directory
Creates the directory specified by FILENAME, with permissions
specified by MASK (as modified by C<umask>). If it succeeds it
returns true; otherwise it returns false and sets C<$!> (errno).
MASK defaults to 0777 if omitted, and FILENAME defaults
to C<$_> if omitted.
In general, it is better to create directories with a permissive MASK
and let the user modify that with their C<umask> than it is to supply
a restrictive MASK and give the user no way to be more permissive.
The exceptions to this rule are when the file or directory should be
kept private (mail files, for instance). The perlfunc(1) entry on
C<umask> discusses the choice of MASK in more detail.
Note that according to the POSIX 1003.1-1996 the FILENAME may have any
number of trailing slashes. Some operating and filesystems do not get
this right, so Perl automatically removes all trailing slashes to keep
everyone happy.
To recursively create a directory structure, look at
the C<make_path> function of the L<File::Path> module.
=item msgctl ID,CMD,ARG
X<msgctl>
=for Pod::Functions SysV IPC message control operations
Calls the System V IPC function msgctl(2). You'll probably have to say
use IPC::SysV;
first to get the correct constant definitions. If CMD is C<IPC_STAT>,
then ARG must be a variable that will hold the returned C<msqid_ds>
structure. Returns like C<ioctl>: the undefined value for error,
C<"0 but true"> for zero, or the actual return value otherwise. See also
L<perlipc/"SysV IPC"> and the documentation for C<IPC::SysV> and
C<IPC::Semaphore>.
Portability issues: L<perlport/msgctl>.
=item msgget KEY,FLAGS
X<msgget>
=for Pod::Functions get SysV IPC message queue
Calls the System V IPC function msgget(2). Returns the message queue
id, or C<undef> on error. See also
L<perlipc/"SysV IPC"> and the documentation for C<IPC::SysV> and
C<IPC::Msg>.
Portability issues: L<perlport/msgget>.
=item msgrcv ID,VAR,SIZE,TYPE,FLAGS
X<msgrcv>
=for Pod::Functions receive a SysV IPC message from a message queue
Calls the System V IPC function msgrcv to receive a message from
message queue ID into variable VAR with a maximum message size of
SIZE. Note that when a message is received, the message type as a
native long integer will be the first thing in VAR, followed by the
actual message. This packing may be opened with C<unpack("l! a*")>.
Taints the variable. Returns true if successful, false
on error. See also L<perlipc/"SysV IPC"> and the documentation for
C<IPC::SysV> and C<IPC::SysV::Msg>.
Portability issues: L<perlport/msgrcv>.
=item msgsnd ID,MSG,FLAGS
X<msgsnd>
=for Pod::Functions send a SysV IPC message to a message queue
Calls the System V IPC function msgsnd to send the message MSG to the
message queue ID. MSG must begin with the native long integer message
type, be followed by the length of the actual message, and then finally
the message itself. This kind of packing can be achieved with
C<pack("l! a*", $type, $message)>. Returns true if successful,
false on error. See also the C<IPC::SysV>
and C<IPC::SysV::Msg> documentation.
Portability issues: L<perlport/msgsnd>.
=item my VARLIST
X<my>
=item my TYPE VARLIST
=item my VARLIST : ATTRS
=item my TYPE VARLIST : ATTRS
=for Pod::Functions declare and assign a local variable (lexical scoping)
A C<my> declares the listed variables to be local (lexically) to the
enclosing block, file, or C<eval>. If more than one variable is listed,
the list must be placed in parentheses.
The exact semantics and interface of TYPE and ATTRS are still
evolving. TYPE may be a bareword, a constant declared
with C<use constant>, or C<__PACKAGE__>. It is
currently bound to the use of the C<fields> pragma,
and attributes are handled using the C<attributes> pragma, or starting
from Perl 5.8.0 also via the C<Attribute::Handlers> module. See
L<perlsub/"Private Variables via my()"> for details, and L<fields>,
L<attributes>, and L<Attribute::Handlers>.
Note that with a parenthesised list, C<undef> can be used as a dummy
placeholder, for example to skip assignment of initial values:
my ( undef, $min, $hour ) = localtime;
=item next LABEL
X<next> X<continue>
=item next EXPR
=item next
=for Pod::Functions iterate a block prematurely
The C<next> command is like the C<continue> statement in C; it starts
the next iteration of the loop:
LINE: while (<STDIN>) {
next LINE if /^#/; # discard comments
#...
}
Note that if there were a C<continue> block on the above, it would get
executed even on discarded lines. If LABEL is omitted, the command
refers to the innermost enclosing loop. The C<next EXPR> form, available
as of Perl 5.18.0, allows a label name to be computed at run time, being
otherwise identical to C<next LABEL>.
C<next> cannot be used to exit a block which returns a value such as
C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
a grep() or map() operation.
Note that a block by itself is semantically identical to a loop
that executes once. Thus C<next> will exit such a block early.
See also L</continue> for an illustration of how C<last>, C<next>, and
C<redo> work.
Unlike most named operators, this has the same precedence as assignment.
It is also exempt from the looks-like-a-function rule, so
C<next ("foo")."bar"> will cause "bar" to be part of the argument to
C<next>.
=item no MODULE VERSION LIST
X<no declarations>
X<unimporting>
=item no MODULE VERSION
=item no MODULE LIST
=item no MODULE
=item no VERSION
=for Pod::Functions unimport some module symbols or semantics at compile time
See the C<use> function, of which C<no> is the opposite.
=item oct EXPR
X<oct> X<octal> X<hex> X<hexadecimal> X<binary> X<bin>
=item oct
=for Pod::Functions convert a string to an octal number
Interprets EXPR as an octal string and returns the corresponding
value. (If EXPR happens to start off with C<0x>, interprets it as a
hex string. If EXPR starts off with C<0b>, it is interpreted as a
binary string. Leading whitespace is ignored in all three cases.)
The following will handle decimal, binary, octal, and hex in standard
Perl notation:
$val = oct($val) if $val =~ /^0/;
If EXPR is omitted, uses C<$_>. To go the other way (produce a number
in octal), use sprintf() or printf():
$dec_perms = (stat("filename"))[2] & 07777;
$oct_perm_str = sprintf "%o", $perms;
The oct() function is commonly used when a string such as C<644> needs
to be converted into a file mode, for example. Although Perl
automatically converts strings into numbers as needed, this automatic
conversion assumes base 10.
Leading white space is ignored without warning, as too are any trailing
non-digits, such as a decimal point (C<oct> only handles non-negative
integers, not negative integers or floating point).
=item open FILEHANDLE,EXPR
X<open> X<pipe> X<file, open> X<fopen>
=item open FILEHANDLE,MODE,EXPR
=item open FILEHANDLE,MODE,EXPR,LIST
=item open FILEHANDLE,MODE,REFERENCE
=item open FILEHANDLE
=for Pod::Functions open a file, pipe, or descriptor
Opens the file whose filename is given by EXPR, and associates it with
FILEHANDLE.
Simple examples to open a file for reading:
open(my $fh, "<", "input.txt")
or die "cannot open < input.txt: $!";
and for writing:
open(my $fh, ">", "output.txt")
or die "cannot open > output.txt: $!";
(The following is a comprehensive reference to open(): for a gentler
introduction you may consider L<perlopentut>.)
If FILEHANDLE is an undefined scalar variable (or array or hash element), a
new filehandle is autovivified, meaning that the variable is assigned a
reference to a newly allocated anonymous filehandle. Otherwise if
FILEHANDLE is an expression, its value is the real filehandle. (This is
considered a symbolic reference, so C<use strict "refs"> should I<not> be
in effect.)
If three (or more) arguments are specified, the open mode (including
optional encoding) in the second argument are distinct from the filename in
the third. If MODE is C<< < >> or nothing, the file is opened for input.
If MODE is C<< > >>, the file is opened for output, with existing files
first being truncated ("clobbered") and nonexisting files newly created.
If MODE is C<<< >> >>>, the file is opened for appending, again being
created if necessary.
You can put a C<+> in front of the C<< > >> or C<< < >> to
indicate that you want both read and write access to the file; thus
C<< +< >> is almost always preferred for read/write updates--the
C<< +> >> mode would clobber the file first. You can't usually use
either read-write mode for updating textfiles, since they have
variable-length records. See the B<-i> switch in L<perlrun> for a
better approach. The file is created with permissions of C<0666>
modified by the process's C<umask> value.
These various prefixes correspond to the fopen(3) modes of C<r>,
C<r+>, C<w>, C<w+>, C<a>, and C<a+>.
In the one- and two-argument forms of the call, the mode and filename
should be concatenated (in that order), preferably separated by white
space. You can--but shouldn't--omit the mode in these forms when that mode
is C<< < >>. It is always safe to use the two-argument form of C<open> if
the filename argument is a known literal.
For three or more arguments if MODE is C<|->, the filename is
interpreted as a command to which output is to be piped, and if MODE
is C<-|>, the filename is interpreted as a command that pipes
output to us. In the two-argument (and one-argument) form, one should
replace dash (C<->) with the command.
See L<perlipc/"Using open() for IPC"> for more examples of this.
(You are not allowed to C<open> to a command that pipes both in I<and>
out, but see L<IPC::Open2>, L<IPC::Open3>, and
L<perlipc/"Bidirectional Communication with Another Process"> for
alternatives.)
In the form of pipe opens taking three or more arguments, if LIST is specified
(extra arguments after the command name) then LIST becomes arguments
to the command invoked if the platform supports it. The meaning of
C<open> with more than three arguments for non-pipe modes is not yet
defined, but experimental "layers" may give extra LIST arguments
meaning.
In the two-argument (and one-argument) form, opening C<< <- >>
or C<-> opens STDIN and opening C<< >- >> opens STDOUT.
You may (and usually should) use the three-argument form of open to specify
I/O layers (sometimes referred to as "disciplines") to apply to the handle
that affect how the input and output are processed (see L<open> and
L<PerlIO> for more details). For example:
open(my $fh, "<:encoding(UTF-8)", "filename")
|| die "can't open UTF-8 encoded filename: $!";
opens the UTF8-encoded file containing Unicode characters;
see L<perluniintro>. Note that if layers are specified in the
three-argument form, then default layers stored in ${^OPEN} (see L<perlvar>;
usually set by the B<open> pragma or the switch B<-CioD>) are ignored.
Those layers will also be ignored if you specifying a colon with no name
following it. In that case the default layer for the operating system
(:raw on Unix, :crlf on Windows) is used.
Open returns nonzero on success, the undefined value otherwise. If
the C<open> involved a pipe, the return value happens to be the pid of
the subprocess.
If you're running Perl on a system that distinguishes between text
files and binary files, then you should check out L</binmode> for tips
for dealing with this. The key distinction between systems that need
C<binmode> and those that don't is their text file formats. Systems
like Unix, Mac OS, and Plan 9, that end lines with a single
character and encode that character in C as C<"\n"> do not
need C<binmode>. The rest need it.
When opening a file, it's seldom a good idea to continue
if the request failed, so C<open> is frequently used with
C<die>. Even if C<die> won't do what you want (say, in a CGI script,
where you want to format a suitable error message (but there are
modules that can help with that problem)) always check
the return value from opening a file.
The filehandle will be closed when its reference count reaches zero.
If it is a lexically scoped variable declared with C<my>, that usually
means the end of the enclosing scope. However, this automatic close
does not check for errors, so it is better to explicitly close
filehandles, especially those used for writing:
close($handle)
|| warn "close failed: $!";
An older style is to use a bareword as the filehandle, as
open(FH, "<", "input.txt")
or die "cannot open < input.txt: $!";
Then you can use C<FH> as the filehandle, in C<< close FH >> and C<<
<FH> >> and so on. Note that it's a global variable, so this form is
not recommended in new code.
As a shortcut a one-argument call takes the filename from the global
scalar variable of the same name as the filehandle:
$ARTICLE = 100;
open(ARTICLE) or die "Can't find article $ARTICLE: $!\n";
Here C<$ARTICLE> must be a global (package) scalar variable - not one
declared with C<my> or C<state>.
As a special case the three-argument form with a read/write mode and the third
argument being C<undef>:
open(my $tmp, "+>", undef) or die ...
opens a filehandle to an anonymous temporary file. Also using C<< +< >>
works for symmetry, but you really should consider writing something
to the temporary file first. You will need to seek() to do the
reading.
Perl is built using PerlIO by default; Unless you've
changed this (such as building Perl with C<Configure -Uuseperlio>), you can
open filehandles directly to Perl scalars via:
open($fh, ">", \$variable) || ..
To (re)open C<STDOUT> or C<STDERR> as an in-memory file, close it first:
close STDOUT;
open(STDOUT, ">", \$variable)
or die "Can't open STDOUT: $!";
General examples:
open(LOG, ">>/usr/spool/news/twitlog"); # (log is reserved)
# if the open fails, output is discarded
open(my $dbase, "+<", "dbase.mine") # open for update
or die "Can't open 'dbase.mine' for update: $!";
open(my $dbase, "+<dbase.mine") # ditto
or die "Can't open 'dbase.mine' for update: $!";
open(ARTICLE, "-|", "caesar <$article") # decrypt article
or die "Can't start caesar: $!";
open(ARTICLE, "caesar <$article |") # ditto
or die "Can't start caesar: $!";
open(EXTRACT, "|sort >Tmp$$") # $$ is our process id
or die "Can't start sort: $!";
# in-memory files
open(MEMORY, ">", \$var)
or die "Can't open memory file: $!";
print MEMORY "foo!\n"; # output will appear in $var
# process argument list of files along with any includes
foreach $file (@ARGV) {
process($file, "fh00");
}
sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, "<", $filename)) {
print STDERR "Can't open $filename: $!\n";
return;
}
local $_;
while (<$input>) { # note use of indirection
if (/^#include "(.*)"/) {
process($1, $input);
next;
}
#... # whatever
}
}
See L<perliol> for detailed info on PerlIO.
You may also, in the Bourne shell tradition, specify an EXPR beginning
with C<< >& >>, in which case the rest of the string is interpreted
as the name of a filehandle (or file descriptor, if numeric) to be
duped (as C<dup(2)>) and opened. You may use C<&> after C<< > >>,
C<<< >> >>>, C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.
The mode you specify should match the mode of the original filehandle.
(Duping a filehandle does not take into account any existing contents
of IO buffers.) If you use the three-argument
form, then you can pass either a
number, the name of a filehandle, or the normal "reference to a glob".
Here is a script that saves, redirects, and restores C<STDOUT> and
C<STDERR> using various methods:
#!/usr/bin/perl
open(my $oldout, ">&STDOUT") or die "Can't dup STDOUT: $!";
open(OLDERR, ">&", \*STDERR) or die "Can't dup STDERR: $!";
open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
open(STDERR, ">&STDOUT") or die "Can't dup STDOUT: $!";
select STDERR; $| = 1; # make unbuffered
select STDOUT; $| = 1; # make unbuffered
print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too
open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
open(STDERR, ">&OLDERR") or die "Can't dup OLDERR: $!";
print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";
If you specify C<< '<&=X' >>, where C<X> is a file descriptor number
or a filehandle, then Perl will do an equivalent of C's C<fdopen> of
that file descriptor (and not call C<dup(2)>); this is more
parsimonious of file descriptors. For example:
# open for input, reusing the fileno of $fd
open(FILEHANDLE, "<&=$fd")
or
open(FILEHANDLE, "<&=", $fd)
or
# open for append, using the fileno of OLDFH
open(FH, ">>&=", OLDFH)
or
open(FH, ">>&=OLDFH")
Being parsimonious on filehandles is also useful (besides being
parsimonious) for example when something is dependent on file
descriptors, like for example locking using flock(). If you do just
C<< open(A, ">>&B") >>, the filehandle A will not have the same file
descriptor as B, and therefore flock(A) will not flock(B) nor vice
versa. But with C<< open(A, ">>&=B") >>, the filehandles will share
the same underlying system file descriptor.
Note that under Perls older than 5.8.0, Perl uses the standard C library's'
fdopen() to implement the C<=> functionality. On many Unix systems,
fdopen() fails when file descriptors exceed a certain value, typically 255.
For Perls 5.8.0 and later, PerlIO is (most often) the default.
You can see whether your Perl was built with PerlIO by running C<perl -V>
and looking for the C<useperlio=> line. If C<useperlio> is C<define>, you
have PerlIO; otherwise you don't.
If you open a pipe on the command C<-> (that is, specify either C<|-> or C<-|>
with the one- or two-argument forms of C<open>),
an implicit C<fork> is done, so C<open> returns twice: in the parent
process it returns the pid
of the child process, and in the child process it returns (a defined) C<0>.
Use C<defined($pid)> or C<//> to determine whether the open was successful.
For example, use either
$child_pid = open(FROM_KID, "-|") // die "can't fork: $!";
or
$child_pid = open(TO_KID, "|-") // die "can't fork: $!";
followed by
if ($child_pid) {
# am the parent:
# either write TO_KID or else read FROM_KID
...
waitpid $child_pid, 0;
} else {
# am the child; use STDIN/STDOUT normally
...
exit;
}
The filehandle behaves normally for the parent, but I/O to that
filehandle is piped from/to the STDOUT/STDIN of the child process.
In the child process, the filehandle isn't opened--I/O happens from/to
the new STDOUT/STDIN. Typically this is used like the normal
piped open when you want to exercise more control over just how the
pipe command gets executed, such as when running setuid and
you don't want to have to scan shell commands for metacharacters.
The following blocks are more or less equivalent:
open(FOO, "|tr '[a-z]' '[A-Z]'");
open(FOO, "|-", "tr '[a-z]' '[A-Z]'");
open(FOO, "|-") || exec 'tr', '[a-z]', '[A-Z]';
open(FOO, "|-", "tr", '[a-z]', '[A-Z]');
open(FOO, "cat -n '$file'|");
open(FOO, "-|", "cat -n '$file'");
open(FOO, "-|") || exec "cat", "-n", $file;
open(FOO, "-|", "cat", "-n", $file);
The last two examples in each block show the pipe as "list form", which is
not yet supported on all platforms. A good rule of thumb is that if
your platform has a real C<fork()> (in other words, if your platform is
Unix, including Linux and MacOS X), you can use the list form. You would
want to use the list form of the pipe so you can pass literal arguments
to the command without risk of the shell interpreting any shell metacharacters
in them. However, this also bars you from opening pipes to commands
that intentionally contain shell metacharacters, such as:
open(FOO, "|cat -n | expand -4 | lpr")
// die "Can't open pipeline to lpr: $!";
See L<perlipc/"Safe Pipe Opens"> for more examples of this.
Perl will attempt to flush all files opened for
output before any operation that may do a fork, but this may not be
supported on some platforms (see L<perlport>). To be safe, you may need
to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
of C<IO::Handle> on any open handles.
On systems that support a close-on-exec flag on files, the flag will
be set for the newly opened file descriptor as determined by the value
of C<$^F>. See L<perlvar/$^F>.
Closing any piped filehandle causes the parent process to wait for the
child to finish, then returns the status value in C<$?> and
C<${^CHILD_ERROR_NATIVE}>.
The filename passed to the one- and two-argument forms of open() will
have leading and trailing whitespace deleted and normal
redirection characters honored. This property, known as "magic open",
can often be used to good effect. A user could specify a filename of
F<"rsh cat file |">, or you could change certain filenames as needed:
$filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
open(FH, $filename) or die "Can't open $filename: $!";
Use the three-argument form to open a file with arbitrary weird characters in it,
open(FOO, "<", $file)
|| die "can't open < $file: $!";
otherwise it's necessary to protect any leading and trailing whitespace:
$file =~ s#^(\s)#./$1#;
open(FOO, "< $file\0")
|| die "open failed: $!";
(this may not work on some bizarre filesystems). One should
conscientiously choose between the I<magic> and I<three-argument> form
of open():
open(IN, $ARGV[0]) || die "can't open $ARGV[0]: $!";
will allow the user to specify an argument of the form C<"rsh cat file |">,
but will not work on a filename that happens to have a trailing space, while
open(IN, "<", $ARGV[0])
|| die "can't open < $ARGV[0]: $!";
will have exactly the opposite restrictions.
If you want a "real" C C<open> (see L<open(2)> on your system), then you
should use the C<sysopen> function, which involves no such magic (but may
use subtly different filemodes than Perl open(), which is mapped to C
fopen()). This is another way to protect your filenames from
interpretation. For example:
use IO::Handle;
sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
or die "sysopen $path: $!";
$oldfh = select(HANDLE); $| = 1; select($oldfh);
print HANDLE "stuff $$\n";
seek(HANDLE, 0, 0);
print "File contains: ", <HANDLE>;
See L</seek> for some details about mixing reading and writing.
Portability issues: L<perlport/open>.
=item opendir DIRHANDLE,EXPR
X<opendir>
=for Pod::Functions open a directory
Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
C<seekdir>, C<rewinddir>, and C<closedir>. Returns true if successful.
DIRHANDLE may be an expression whose value can be used as an indirect
dirhandle, usually the real dirhandle name. If DIRHANDLE is an undefined
scalar variable (or array or hash element), the variable is assigned a
reference to a new anonymous dirhandle; that is, it's autovivified.
DIRHANDLEs have their own namespace separate from FILEHANDLEs.
See the example at C<readdir>.
=item ord EXPR
X<ord> X<encoding>
=item ord
=for Pod::Functions find a character's numeric representation
Returns the numeric value of the first character of EXPR.
If EXPR is an empty string, returns 0. If EXPR is omitted, uses C<$_>.
(Note I<character>, not byte.)
For the reverse, see L</chr>.
See L<perlunicode> for more about Unicode.
=item our VARLIST
X<our> X<global>
=item our TYPE VARLIST
=item our VARLIST : ATTRS
=item our TYPE VARLIST : ATTRS
=for Pod::Functions +5.6.0 declare and assign a package variable (lexical scoping)
C<our> makes a lexical alias to a package (i.e. global) variable of the
same name in the current package for use within the current lexical scope.
C<our> has the same scoping rules as C<my> or C<state>, meaning that it is
only valid within a lexical scope. Unlike C<my> and C<state>, which both
declare new (lexical) variables, C<our> only creates an alias to an
existing variable: a package variable of the same name.
This means that when C<use strict 'vars'> is in effect, C<our> lets you use
a package variable without qualifying it with the package name, but only within
the lexical scope of the C<our> declaration.
package Foo;
use strict;
$Foo::foo = 23;
{
our $foo; # alias to $Foo::foo
print $foo; # prints 23
}
print $Foo::foo; # prints 23
print $foo; # ERROR: requires explicit package name
This works even if the package variable has not been used before, as
package variables spring into existence when first used.
package Foo;
use strict;
our $foo = 23; # just like $Foo::foo = 23
print $Foo::foo; # prints 23
If more than one variable is listed, the list must be placed
in parentheses.
our($bar, $baz);
An C<our> declaration declares an alias for a package variable that will be visible
across its entire lexical scope, even across package boundaries. The
package in which the variable is entered is determined at the point
of the declaration, not at the point of use. This means the following
behavior holds:
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;
package Bar;
print $bar; # prints 20, as it refers to $Foo::bar
Multiple C<our> declarations with the same name in the same lexical
scope are allowed if they are in different packages. If they happen
to be in the same package, Perl will emit warnings if you have asked
for them, just like multiple C<my> declarations. Unlike a second
C<my> declaration, which will bind the name to a fresh variable, a
second C<our> declaration in the same package, in the same scope, is
merely redundant.
use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;
package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30
our $bar; # emits warning but has no other effect
print $bar; # still prints 30
An C<our> declaration may also have a list of attributes associated
with it.
The exact semantics and interface of TYPE and ATTRS are still
evolving. TYPE is currently bound to the use of the C<fields> pragma,
and attributes are handled using the C<attributes> pragma, or, starting
from Perl 5.8.0, also via the C<Attribute::Handlers> module. See
L<perlsub/"Private Variables via my()"> for details, and L<fields>,
L<attributes>, and L<Attribute::Handlers>.
Note that with a parenthesised list, C<undef> can be used as a dummy
placeholder, for example to skip assignment of initial values:
our ( undef, $min, $hour ) = localtime;
C<our> differs from C<use vars>, which allows use of an unqualified name
I<only> within the affected package, but across scopes.
=item pack TEMPLATE,LIST
X<pack>
=for Pod::Functions convert a list into a binary representation
Takes a LIST of values and converts it into a string using the rules
given by the TEMPLATE. The resulting string is the concatenation of
the converted values. Typically, each converted value looks
like its machine-level representation. For example, on 32-bit machines
an integer may be represented by a sequence of 4 bytes, which will in
Perl be presented as a string that's 4 characters long.
See L<perlpacktut> for an introduction to this function.
The TEMPLATE is a sequence of characters that give the order and type
of values, as follows:
a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null-terminated (ASCIZ) string, will be null padded.
b A bit string (ascending bit order inside each byte,
like vec()).
B A bit string (descending bit order inside each byte).
h A hex string (low nybble first).
H A hex string (high nybble first).
c A signed char (8-bit) value.
C An unsigned char (octet) value.
W An unsigned char value (can be greater than 255).
s A signed short (16-bit) value.
S An unsigned short value.
l A signed long (32-bit) value.
L An unsigned long value.
q A signed quad (64-bit) value.
Q An unsigned quad value.
(Quads are available only if your system supports 64-bit
integer values _and_ if Perl has been compiled to support
those. Raises an exception otherwise.)
i A signed integer value.
I A unsigned integer value.
(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)
n An unsigned short (16-bit) in "network" (big-endian) order.
N An unsigned long (32-bit) in "network" (big-endian) order.
v An unsigned short (16-bit) in "VAX" (little-endian) order.
V An unsigned long (32-bit) in "VAX" (little-endian) order.
j A Perl internal signed integer value (IV).
J A Perl internal unsigned integer value (UV).
f A single-precision float in native format.
d A double-precision float in native format.
F A Perl internal floating-point value (NV) in native format
D A float of long-double precision in native format.
(Long doubles are available only if your system supports
long double values _and_ if Perl has been compiled to
support those. Raises an exception otherwise.
Note that there are different long double formats.)
p A pointer to a null-terminated string.
P A pointer to a structure (fixed-length string).
u A uuencoded string.
U A Unicode character number. Encodes to a character in char-
acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in
byte mode.
w A BER compressed integer (not an ASN.1 BER, see perlpacktut
for details). Its bytes represent an unsigned integer in
base 128, most significant digit first, with as few digits
as possible. Bit eight (the high bit) is set on each byte
except the last.
x A null byte (a.k.a ASCII NUL, "\000", chr(0))
X Back up a byte.
@ Null-fill or truncate to absolute position, counted from the
start of the innermost ()-group.
. Null-fill or truncate to absolute position specified by
the value.
( Start of a ()-group.
One or more modifiers below may optionally follow certain letters in the
TEMPLATE (the second column lists letters for which the modifier is valid):
! sSlLiI Forces native (short, long, int) sizes instead
of fixed (16-/32-bit) sizes.
! xX Make x and X act as alignment commands.
! nNvV Treat integers as signed instead of unsigned.
! @. Specify position as byte offset in the internal
representation of the packed string. Efficient
but dangerous.
> sSiIlLqQ Force big-endian byte-order on the type.
jJfFdDpP (The "big end" touches the construct.)
< sSiIlLqQ Force little-endian byte-order on the type.
jJfFdDpP (The "little end" touches the construct.)
The C<< > >> and C<< < >> modifiers can also be used on C<()> groups
to force a particular byte-order on all components in that group,
including all its subgroups.
=begin comment
Larry recalls that the hex and bit string formats (H, h, B, b) were added to
pack for processing data from NASA's Magellan probe. Magellan was in an
elliptical orbit, using the antenna for the radar mapping when close to
Venus and for communicating data back to Earth for the rest of the orbit.
There were two transmission units, but one of these failed, and then the
other developed a fault whereby it would randomly flip the sense of all the
bits. It was easy to automatically detect complete records with the correct
sense, and complete records with all the bits flipped. However, this didn't
recover the records where the sense flipped midway. A colleague of Larry's
was able to pretty much eyeball where the records flipped, so they wrote an
editor named kybble (a pun on the dog food Kibbles 'n Bits) to enable him to
manually correct the records and recover the data. For this purpose pack
gained the hex and bit string format specifiers.
git shows that they were added to perl 3.0 in patch #44 (Jan 1991, commit
27e2fb84680b9cc1), but the patch description makes no mention of their
addition, let alone the story behind them.
=end comment
The following rules apply:
=over
=item *
Each letter may optionally be followed by a number indicating the repeat
count. A numeric repeat count may optionally be enclosed in brackets, as
in C<pack("C[80]", @arr)>. The repeat count gobbles that many values from
the LIST when used with all format types other than C<a>, C<A>, C<Z>, C<b>,
C<B>, C<h>, C<H>, C<@>, C<.>, C<x>, C<X>, and C<P>, where it means
something else, described below. Supplying a C<*> for the repeat count
instead of a number means to use however many items are left, except for:
=over
=item *
C<@>, C<x>, and C<X>, where it is equivalent to C<0>.
=item *
<.>, where it means relative to the start of the string.
=item *
C<u>, where it is equivalent to 1 (or 45, which here is equivalent).
=back
One can replace a numeric repeat count with a template letter enclosed in
brackets to use the packed byte length of the bracketed template for the
repeat count.
For example, the template C<x[L]> skips as many bytes as in a packed long,
and the template C<"$t X[$t] $t"> unpacks twice whatever $t (when
variable-expanded) unpacks. If the template in brackets contains alignment
commands (such as C<x![d]>), its packed length is calculated as if the
start of the template had the maximal possible alignment.
When used with C<Z>, a C<*> as the repeat count is guaranteed to add a
trailing null byte, so the resulting string is always one byte longer than
the byte length of the item itself.
When used with C<@>, the repeat count represents an offset from the start
of the innermost C<()> group.
When used with C<.>, the repeat count determines the starting position to
calculate the value offset as follows:
=over
=item *
If the repeat count is C<0>, it's relative to the current position.
=item *
If the repeat count is C<*>, the offset is relative to the start of the
packed string.
=item *
And if it's an integer I<n>, the offset is relative to the start of the
I<n>th innermost C<( )> group, or to the start of the string if I<n> is
bigger then the group level.
=back
The repeat count for C<u> is interpreted as the maximal number of bytes
to encode per line of output, with 0, 1 and 2 replaced by 45. The repeat
count should not be more than 65.
=item *
The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
string of length count, padding with nulls or spaces as needed. When
unpacking, C<A> strips trailing whitespace and nulls, C<Z> strips everything
after the first null, and C<a> returns data with no stripping at all.
If the value to pack is too long, the result is truncated. If it's too
long and an explicit count is provided, C<Z> packs only C<$count-1> bytes,
followed by a null byte. Thus C<Z> always packs a trailing null, except
when the count is 0.
=item *
Likewise, the C<b> and C<B> formats pack a string that's that many bits long.
Each such format generates 1 bit of the result. These are typically followed
by a repeat count like C<B8> or C<B64>.
Each result bit is based on the least-significant bit of the corresponding
input character, i.e., on C<ord($char)%2>. In particular, characters C<"0">
and C<"1"> generate bits 0 and 1, as do characters C<"\000"> and C<"\001">.
Starting from the beginning of the input string, each 8-tuple
of characters is converted to 1 character of output. With format C<b>,
the first character of the 8-tuple determines the least-significant bit of a
character; with format C<B>, it determines the most-significant bit of
a character.
If the length of the input string is not evenly divisible by 8, the
remainder is packed as if the input string were padded by null characters
at the end. Similarly during unpacking, "extra" bits are ignored.
If the input string is longer than needed, remaining characters are ignored.
A C<*> for the repeat count uses all characters of the input field.
On unpacking, bits are converted to a string of C<0>s and C<1>s.
=item *
The C<h> and C<H> formats pack a string that many nybbles (4-bit groups,
representable as hexadecimal digits, C<"0".."9"> C<"a".."f">) long.
For each such format, pack() generates 4 bits of result.
With non-alphabetical characters, the result is based on the 4 least-significant
bits of the input character, i.e., on C<ord($char)%16>. In particular,
characters C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
C<"\000"> and C<"\001">. For characters C<"a".."f"> and C<"A".."F">, the result
is compatible with the usual hexadecimal digits, so that C<"a"> and
C<"A"> both generate the nybble C<0xA==10>. Use only these specific hex
characters with this format.
Starting from the beginning of the template to pack(), each pair
of characters is converted to 1 character of output. With format C<h>, the
first character of the pair determines the least-significant nybble of the
output character; with format C<H>, it determines the most-significant
nybble.
If the length of the input string is not even, it behaves as if padded by
a null character at the end. Similarly, "extra" nybbles are ignored during
unpacking.
If the input string is longer than needed, extra characters are ignored.
A C<*> for the repeat count uses all characters of the input field. For
unpack(), nybbles are converted to a string of hexadecimal digits.
=item *
The C<p> format packs a pointer to a null-terminated string. You are
responsible for ensuring that the string is not a temporary value, as that
could potentially get deallocated before you got around to using the packed
result. The C<P> format packs a pointer to a structure of the size indicated
by the length. A null pointer is created if the corresponding value for
C<p> or C<P> is C<undef>; similarly with unpack(), where a null pointer
unpacks into C<undef>.
If your system has a strange pointer size--meaning a pointer is neither as
big as an int nor as big as a long--it may not be possible to pack or
unpack pointers in big- or little-endian byte order. Attempting to do
so raises an exception.
=item *
The C</> template character allows packing and unpacking of a sequence of
items where the packed structure contains a packed item count followed by
the packed items themselves. This is useful when the structure you're
unpacking has encoded the sizes or repeat counts for some of its fields
within the structure itself as separate fields.
For C<pack>, you write I<length-item>C</>I<sequence-item>, and the
I<length-item> describes how the length value is packed. Formats likely
to be of most use are integer-packing ones like C<n> for Java strings,
C<w> for ASN.1 or SNMP, and C<N> for Sun XDR.
For C<pack>, I<sequence-item> may have a repeat count, in which case
the minimum of that and the number of available items is used as the argument
for I<length-item>. If it has no repeat count or uses a '*', the number
of available items is used.
For C<unpack>, an internal stack of integer arguments unpacked so far is
used. You write C</>I<sequence-item> and the repeat count is obtained by
popping off the last element from the stack. The I<sequence-item> must not
have a repeat count.
If I<sequence-item> refers to a string type (C<"A">, C<"a">, or C<"Z">),
the I<length-item> is the string length, not the number of strings. With
an explicit repeat count for pack, the packed string is adjusted to that
length. For example:
This code: gives this result:
unpack("W/a", "\004Gurusamy") ("Guru")
unpack("a3/A A*", "007 Bond J ") (" Bond", "J")
unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")
pack("n/a* w/a","hello,","world") "\000\006hello,\005world"
pack("a/W2", ord("a") .. ord("z")) "2ab"
The I<length-item> is not returned explicitly from C<unpack>.
Supplying a count to the I<length-item> format letter is only useful with
C<A>, C<a>, or C<Z>. Packing with a I<length-item> of C<a> or C<Z> may
introduce C<"\000"> characters, which Perl does not regard as legal in
numeric strings.
=item *
The integer types C<s>, C<S>, C<l>, and C<L> may be
followed by a C<!> modifier to specify native shorts or
longs. As shown in the example above, a bare C<l> means
exactly 32 bits, although the native C<long> as seen by the local C compiler
may be larger. This is mainly an issue on 64-bit platforms. You can
see whether using C<!> makes any difference this way:
printf "format s is %d, s! is %d\n",
length pack("s"), length pack("s!");
printf "format l is %d, l! is %d\n",
length pack("l"), length pack("l!");
C<i!> and C<I!> are also allowed, but only for completeness' sake:
they are identical to C<i> and C<I>.
The actual sizes (in bytes) of native shorts, ints, longs, and long
longs on the platform where Perl was built are also available from
the command line:
$ perl -V:{short,int,long{,long}}size
shortsize='2';
intsize='4';
longsize='4';
longlongsize='8';
or programmatically via the C<Config> module:
use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";
C<$Config{longlongsize}> is undefined on systems without
long long support.
=item *
The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J> are
inherently non-portable between processors and operating systems because
they obey native byteorder and endianness. For example, a 4-byte integer
0x12345678 (305419896 decimal) would be ordered natively (arranged in and
handled by the CPU registers) into bytes as
0x12 0x34 0x56 0x78 # big-endian
0x78 0x56 0x34 0x12 # little-endian
Basically, Intel and VAX CPUs are little-endian, while everybody else,
including Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are
big-endian. Alpha and MIPS can be either: Digital/Compaq uses (well, used)
them in little-endian mode, but SGI/Cray uses them in big-endian mode.
The names I<big-endian> and I<little-endian> are comic references to the
egg-eating habits of the little-endian Lilliputians and the big-endian
Blefuscudians from the classic Jonathan Swift satire, I<Gulliver's Travels>.
This entered computer lingo via the paper "On Holy Wars and a Plea for
Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980.
Some systems may have even weirder byte orders such as
0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56
You can determine your system endianness with this incantation:
printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);
The byteorder on the platform where Perl was built is also available
via L<Config>:
use Config;
print "$Config{byteorder}\n";
or from the command line:
$ perl -V:byteorder
Byteorders C<"1234"> and C<"12345678"> are little-endian; C<"4321">
and C<"87654321"> are big-endian.
For portably packed integers, either use the formats C<n>, C<N>, C<v>,
and C<V> or else use the C<< > >> and C<< < >> modifiers described
immediately below. See also L<perlport>.
=item *
Starting with Perl 5.10.0, integer and floating-point formats, along with
the C<p> and C<P> formats and C<()> groups, may all be followed by the
C<< > >> or C<< < >> endianness modifiers to respectively enforce big-
or little-endian byte-order. These modifiers are especially useful
given how C<n>, C<N>, C<v>, and C<V> don't cover signed integers,
64-bit integers, or floating-point values.
Here are some concerns to keep in mind when using an endianness modifier:
=over
=item *
Exchanging signed integers between different platforms works only
when all platforms store them in the same format. Most platforms store
signed integers in two's-complement notation, so usually this is not an issue.
=item *
The C<< > >> or C<< < >> modifiers can only be used on floating-point
formats on big- or little-endian machines. Otherwise, attempting to
use them raises an exception.
=item *
Forcing big- or little-endian byte-order on floating-point values for
data exchange can work only if all platforms use the same
binary representation such as IEEE floating-point. Even if all
platforms are using IEEE, there may still be subtle differences. Being able
to use C<< > >> or C<< < >> on floating-point values can be useful,
but also dangerous if you don't know exactly what you're doing.
It is not a general way to portably store floating-point values.
=item *
When using C<< > >> or C<< < >> on a C<()> group, this affects
all types inside the group that accept byte-order modifiers,
including all subgroups. It is silently ignored for all other
types. You are not allowed to override the byte-order within a group
that already has a byte-order modifier suffix.
=back
=item *
Real numbers (floats and doubles) are in native machine format only.
Due to the multiplicity of floating-point formats and the lack of a
standard "network" representation for them, no facility for interchange has been
made. This means that packed floating-point data written on one machine
may not be readable on another, even if both use IEEE floating-point
arithmetic (because the endianness of the memory representation is not part
of the IEEE spec). See also L<perlport>.
If you know I<exactly> what you're doing, you can use the C<< > >> or C<< < >>
modifiers to force big- or little-endian byte-order on floating-point values.
Because Perl uses doubles (or long doubles, if configured) internally for
all numeric calculation, converting from double into float and thence
to double again loses precision, so C<unpack("f", pack("f", $foo)>)
will not in general equal $foo.
=item *
Pack and unpack can operate in two modes: character mode (C<C0> mode) where
the packed string is processed per character, and UTF-8 mode (C<U0> mode)
where the packed string is processed in its UTF-8-encoded Unicode form on
a byte-by-byte basis. Character mode is the default
unless the format string starts with C<U>. You
can always switch mode mid-format with an explicit
C<C0> or C<U0> in the format. This mode remains in effect until the next
mode change, or until the end of the C<()> group it (directly) applies to.
Using C<C0> to get Unicode characters while using C<U0> to get I<non>-Unicode
bytes is not necessarily obvious. Probably only the first of these
is what you want:
$ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
perl -CS -ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'
03B1.03C9
$ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
perl -CS -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
CE.B1.CF.89
$ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
perl -C0 -ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'
CE.B1.CF.89
$ perl -CS -E 'say "\x{3B1}\x{3C9}"' |
perl -C0 -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
C3.8E.C2.B1.C3.8F.C2.89
Those examples also illustrate that you should not try to use
C<pack>/C<unpack> as a substitute for the L<Encode> module.
=item *
You must yourself do any alignment or padding by inserting, for example,
enough C<"x">es while packing. There is no way for pack() and unpack()
to know where characters are going to or coming from, so they
handle their output and input as flat sequences of characters.
=item *
A C<()> group is a sub-TEMPLATE enclosed in parentheses. A group may
take a repeat count either as postfix, or for unpack(), also via the C</>
template character. Within each repetition of a group, positioning with
C<@> starts over at 0. Therefore, the result of
pack("@1A((@2A)@3A)", qw[X Y Z])
is the string C<"\0X\0\0YZ">.
=item *
C<x> and C<X> accept the C<!> modifier to act as alignment commands: they
jump forward or back to the closest position aligned at a multiple of C<count>
characters. For example, to pack() or unpack() a C structure like
struct {
char c; /* one signed, 8-bit character */
double d;
char cc[2];
}
one may need to use the template C<c x![d] d c[2]>. This assumes that
doubles must be aligned to the size of double.
For alignment commands, a C<count> of 0 is equivalent to a C<count> of 1;
both are no-ops.
=item *
C<n>, C<N>, C<v> and C<V> accept the C<!> modifier to
represent signed 16-/32-bit integers in big-/little-endian order.
This is portable only when all platforms sharing packed data use the
same binary representation for signed integers; for example, when all
platforms use two's-complement representation.
=item *
Comments can be embedded in a TEMPLATE using C<#> through the end of line.
White space can separate pack codes from each other, but modifiers and
repeat counts must follow immediately. Breaking complex templates into
individual line-by-line components, suitably annotated, can do as much to
improve legibility and maintainability of pack/unpack formats as C</x> can
for complicated pattern matches.
=item *
If TEMPLATE requires more arguments than pack() is given, pack()
assumes additional C<""> arguments. If TEMPLATE requires fewer arguments
than given, extra arguments are ignored.
=back
Examples:
$foo = pack("WWWW",65,66,67,68);
# foo eq "ABCD"
$foo = pack("W4",65,66,67,68);
# same thing
$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
# same thing with Unicode circled letters.
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
# same thing with Unicode circled letters. You don't get the
# UTF-8 bytes because the U at the start of the format caused
# a switch to U0-mode, so the UTF-8 bytes get joined into
# characters
$foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
# foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
# This is the UTF-8 encoding of the string in the
# previous example
$foo = pack("ccxxcc",65,66,67,68);
# foo eq "AB\0\0CD"
# NOTE: The examples above featuring "W" and "c" are true
# only on ASCII and ASCII-derived systems such as ISO Latin 1
# and UTF-8. On EBCDIC systems, the first example would be
# $foo = pack("WWWW",193,194,195,196);
$foo = pack("s2",1,2);
# "\001\000\002\000" on little-endian
# "\000\001\000\002" on big-endian
$foo = pack("a4","abcd","x","y","z");
# "abcd"
$foo = pack("aaaa","abcd","x","y","z");
# "axyz"
$foo = pack("a14","abcdefg");
# "abcdefg\0\0\0\0\0\0\0"
$foo = pack("i9pl", gmtime);
# a real struct tm (on my system anyway)
$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmp1);
# a struct utmp (BSDish)
@utmp2 = unpack($utmp_template, $utmp);
# "@utmp1" eq "@utmp2"
sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
}
$foo = pack('sx2l', 12, 34);
# short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);
# short 12, zero fill to position 4, long 34
# $foo eq $bar
$baz = pack('s.l', 12, 4, 34);
# short 12, zero fill to position 4, long 34
$foo = pack('nN', 42, 4711);
# pack big-endian 16- and 32-bit unsigned integers
$foo = pack('S>L>', 42, 4711);
# exactly the same
$foo = pack('s<l<', -42, 4711);
# pack little-endian 16- and 32-bit signed integers
$foo = pack('(sl)<', -42, 4711);
# exactly the same
The same template may generally also be used in unpack().
=item package NAMESPACE
=item package NAMESPACE VERSION
X<package> X<module> X<namespace> X<version>
=item package NAMESPACE BLOCK
=item package NAMESPACE VERSION BLOCK
X<package> X<module> X<namespace> X<version>
=for Pod::Functions declare a separate global namespace
Declares the BLOCK or the rest of the compilation unit as being in the
given namespace. The scope of the package declaration is either the
supplied code BLOCK or, in the absence of a BLOCK, from the declaration
itself through the end of current scope (the enclosing block, file, or
C<eval>). That is, the forms without a BLOCK are operative through the end
of the current scope, just like the C<my>, C<state>, and C<our> operators.
All unqualified dynamic identifiers in this scope will be in the given
namespace, except where overridden by another C<package> declaration or
when they're one of the special identifiers that qualify into C<main::>,
like C<STDOUT>, C<ARGV>, C<ENV>, and the punctuation variables.
A package statement affects dynamic variables only, including those
you've used C<local> on, but I<not> lexically-scoped variables, which are created
with C<my>, C<state>, or C<our>. Typically it would be the first
declaration in a file included by C<require> or C<use>. You can switch into a
package in more than one place, since this only determines which default
symbol table the compiler uses for the rest of that block. You can refer to
identifiers in other packages than the current one by prefixing the identifier
with the package name and a double colon, as in C<$SomePack::var>
or C<ThatPack::INPUT_HANDLE>. If package name is omitted, the C<main>
package as assumed. That is, C<$::sail> is equivalent to
C<$main::sail> (as well as to C<$main'sail>, still seen in ancient
code, mostly from Perl 4).
If VERSION is provided, C<package> sets the C<$VERSION> variable in the given
namespace to a L<version> object with the VERSION provided. VERSION must be a
"strict" style version number as defined by the L<version> module: a positive
decimal number (integer or decimal-fraction) without exponentiation or else a
dotted-decimal v-string with a leading 'v' character and at least three
components. You should set C<$VERSION> only once per package.
See L<perlmod/"Packages"> for more information about packages, modules,
and classes. See L<perlsub> for other scoping issues.
=item __PACKAGE__
X<__PACKAGE__>
=for Pod::Functions +5.004 the current package
A special token that returns the name of the package in which it occurs.
=item pipe READHANDLE,WRITEHANDLE
X<pipe>
=for Pod::Functions open a pair of connected filehandles
Opens a pair of connected pipes like the corresponding system call.
Note that if you set up a loop of piped processes, deadlock can occur
unless you are very careful. In addition, note that Perl's pipes use
IO buffering, so you may need to set C<$|> to flush your WRITEHANDLE
after each command, depending on the application.
Returns true on success.
See L<IPC::Open2>, L<IPC::Open3>, and
L<perlipc/"Bidirectional Communication with Another Process">
for examples of such things.
On systems that support a close-on-exec flag on files, that flag is set
on all newly opened file descriptors whose C<fileno>s are I<higher> than
the current value of $^F (by default 2 for C<STDERR>). See L<perlvar/$^F>.
=item pop ARRAY
X<pop> X<stack>
=item pop EXPR
=item pop
=for Pod::Functions remove the last element from an array and return it
Pops and returns the last value of the array, shortening the array by
one element.
Returns the undefined value if the array is empty, although this may also
happen at other times. If ARRAY is omitted, pops the C<@ARGV> array in the
main program, but the C<@_> array in subroutines, just like C<shift>.
Starting with Perl 5.14, C<pop> can take a scalar EXPR, which must hold a
reference to an unblessed array. The argument will be dereferenced
automatically. This aspect of C<pop> is considered highly experimental.
The exact behaviour may change in a future version of Perl.
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.014; # so push/pop/etc work on scalars (experimental)
=item pos SCALAR
X<pos> X<match, position>
=item pos
=for Pod::Functions find or set the offset for the last/next m//g search
Returns the offset of where the last C<m//g> search left off for the
variable in question (C<$_> is used when the variable is not
specified). Note that 0 is a valid match offset. C<undef> indicates
that the search position is reset (usually due to match failure, but
can also be because no match has yet been run on the scalar).
C<pos> directly accesses the location used by the regexp engine to
store the offset, so assigning to C<pos> will change that offset, and
so will also influence the C<\G> zero-width assertion in regular
expressions. Both of these effects take place for the next match, so
you can't affect the position with C<pos> during the current match,
such as in C<(?{pos() = 5})> or C<s//pos() = 5/e>.
Setting C<pos> also resets the I<matched with zero-length> flag, described
under L<perlre/"Repeated Patterns Matching a Zero-length Substring">.
Because a failed C<m//gc> match doesn't reset the offset, the return
from C<pos> won't change either in this case. See L<perlre> and
L<perlop>.
=item print FILEHANDLE LIST
X<print>
=item print FILEHANDLE
=item print LIST
=item print
=for Pod::Functions output a list to a filehandle
Prints a string or a list of strings. Returns true if successful.
FILEHANDLE may be a scalar variable containing the name of or a reference
to the filehandle, thus introducing one level of indirection. (NOTE: If
FILEHANDLE is a variable and the next token is a term, it may be
misinterpreted as an operator unless you interpose a C<+> or put
parentheses around the arguments.) If FILEHANDLE is omitted, prints to the
last selected (see L</select>) output handle. If LIST is omitted, prints
C<$_> to the currently selected output handle. To use FILEHANDLE alone to
print the content of C<$_> to it, you must use a real filehandle like
C<FH>, not an indirect one like C<$fh>. To set the default output handle
to something other than STDOUT, use the select operation.
The current value of C<$,> (if any) is printed between each LIST item. The
current value of C<$\> (if any) is printed after the entire LIST has been
printed. Because print takes a LIST, anything in the LIST is evaluated in
list context, including any subroutines whose return lists you pass to
C<print>. Be careful not to follow the print keyword with a left
parenthesis unless you want the corresponding right parenthesis to
terminate the arguments to the print; put parentheses around all arguments
(or interpose a C<+>, but that doesn't look as good).
If you're storing handles in an array or hash, or in general whenever
you're using any expression more complex than a bareword handle or a plain,
unsubscripted scalar variable to retrieve it, you will have to use a block
returning the filehandle value instead, in which case the LIST may not be
omitted:
print { $files[$i] } "stuff\n";
print { $OK ? STDOUT : STDERR } "stuff\n";
Printing to a closed pipe or socket will generate a SIGPIPE signal. See
L<perlipc> for more on signal handling.
=item printf FILEHANDLE FORMAT, LIST
X<printf>
=item printf FILEHANDLE
=item printf FORMAT, LIST
=item printf
=for Pod::Functions output a formatted list to a filehandle
Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
(the output record separator) is not appended. The FORMAT and the
LIST are actually parsed as a single list. The first argument
of the list will be interpreted as the C<printf> format. This
means that C<printf(@_)> will use C<$_[0]> as the format. See
L<sprintf|/sprintf FORMAT, LIST> for an
explanation of the format argument. If C<use locale> for C<LC_NUMERIC>
Look for this throught pod
is in effect and
POSIX::setlocale() has been called, the character used for the decimal
separator in formatted floating-point numbers is affected by the C<LC_NUMERIC>
locale setting. See L<perllocale> and L<POSIX>.
For historical reasons, if you omit the list, C<$_> is used as the format;
to use FILEHANDLE without a list, you must use a real filehandle like
C<FH>, not an indirect one like C<$fh>. However, this will rarely do what
you want; if $_ contains formatting codes, they will be replaced with the
empty string and a warning will be emitted if warnings are enabled. Just
use C<print> if you want to print the contents of $_.
Don't fall into the trap of using a C<printf> when a simple
C<print> would do. The C<print> is more efficient and less
error prone.
=item prototype FUNCTION
X<prototype>
=for Pod::Functions +5.002 get the prototype (if any) of a subroutine
Returns the prototype of a function as a string (or C<undef> if the
function has no prototype). FUNCTION is a reference to, or the name of,
the function whose prototype you want to retrieve.
If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
name for a Perl builtin. If the builtin's arguments
cannot be adequately expressed by a prototype
(such as C<system>), prototype() returns C<undef>, because the builtin
does not really behave like a Perl function. Otherwise, the string
describing the equivalent prototype is returned.
=item push ARRAY,LIST
X<push> X<stack>
=item push EXPR,LIST
=for Pod::Functions append one or more elements to an array
Treats ARRAY as a stack by appending the values of LIST to the end of
ARRAY. The length of ARRAY increases by the length of LIST. Has the same
effect as
for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;
}
but is more efficient. Returns the number of elements in the array following
the completed C<push>.
Starting with Perl 5.14, C<push> can take a scalar EXPR, which must hold a
reference to an unblessed array. The argument will be dereferenced
automatically. This aspect of C<push> is considered highly experimental.
The exact behaviour may change in a future version of Perl.
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.014; # so push/pop/etc work on scalars (experimental)
=item q/STRING/
=for Pod::Functions singly quote a string
=item qq/STRING/
=for Pod::Functions doubly quote a string
=item qw/STRING/
=for Pod::Functions quote a list of words
=item qx/STRING/
=for Pod::Functions backquote quote a string
Generalized quotes. See L<perlop/"Quote-Like Operators">.
=item qr/STRING/
=for Pod::Functions +5.005 compile pattern
Regexp-like quote. See L<perlop/"Regexp Quote-Like Operators">.
=item quotemeta EXPR
X<quotemeta> X<metacharacter>
=item quotemeta
=for Pod::Functions quote regular expression magic characters
Returns the value of EXPR with all the ASCII non-"word"
characters backslashed. (That is, all ASCII characters not matching
C</[A-Za-z_0-9]/> will be preceded by a backslash in the
returned string, regardless of any locale settings.)
This is the internal function implementing
the C<\Q> escape in double-quoted strings.
(See below for the behavior on non-ASCII code points.)
If EXPR is omitted, uses C<$_>.
quotemeta (and C<\Q> ... C<\E>) are useful when interpolating strings into
regular expressions, because by default an interpolated variable will be
considered a mini-regular expression. For example:
my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =~ s{$substring}{big bad wolf};
Will cause C<$sentence> to become C<'The big bad wolf jumped over...'>.
On the other hand:
my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
$sentence =~ s{\Q$substring\E}{big bad wolf};
Or:
my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox';
my $quoted_substring = quotemeta($substring);
$sentence =~ s{$quoted_substring}{big bad wolf};
Will both leave the sentence as is.
Normally, when accepting literal string
input from the user, quotemeta() or C<\Q> must be used.
In Perl v5.14, all non-ASCII characters are quoted in non-UTF-8-encoded
strings, but not quoted in UTF-8 strings.
Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for
quoting non-ASCII characters; the quoting of ASCII characters is
unchanged.
Also unchanged is the quoting of non-UTF-8 strings when outside the
scope of a C<use feature 'unicode_strings'>, which is to quote all
characters in the upper Latin1 range. This provides complete backwards
compatibility for old programs which do not use Unicode. (Note that
C<unicode_strings> is automatically enabled within the scope of a
S<C<use v5.12>> or greater.)
Within the scope of C<use locale>, all non-ASCII Latin1 code points
are quoted whether the string is encoded as UTF-8 or not. As mentioned
above, locale does not affect the quoting of ASCII-range characters.
This protects against those locales where characters such as C<"|"> are
considered to be word characters.
Otherwise, Perl quotes non-ASCII characters using an adaptation from
Unicode (see L<http://www.unicode.org/reports/tr31/>).
The only code points that are quoted are those that have any of the
Unicode properties: Pattern_Syntax, Pattern_White_Space, White_Space,
Default_Ignorable_Code_Point, or General_Category=Control.
Of these properties, the two important ones are Pattern_Syntax and
Pattern_White_Space. They have been set up by Unicode for exactly this
purpose of deciding which characters in a regular expression pattern
should be quoted. No character that can be in an identifier has these
properties.
Perl promises, that if we ever add regular expression pattern
metacharacters to the dozen already defined
(C<\ E<verbar> ( ) [ { ^ $ * + ? .>), that we will only use ones that have the
Pattern_Syntax property. Perl also promises, that if we ever add
characters that are considered to be white space in regular expressions
(currently mostly affected by C</x>), they will all have the
Pattern_White_Space property.
Unicode promises that the set of code points that have these two
properties will never change, so something that is not quoted in v5.16
will never need to be quoted in any future Perl release. (Not all the
code points that match Pattern_Syntax have actually had characters
assigned to them; so there is room to grow, but they are quoted
whether assigned or not. Perl, of course, would never use an
unassigned code point as an actual metacharacter.)
Quoting characters that have the other 3 properties is done to enhance
the readability of the regular expression and not because they actually
need to be quoted for regular expression purposes (characters with the
White_Space property are likely to be indistinguishable on the page or
screen from those with the Pattern_White_Space property; and the other
two properties contain non-printing characters).
=item rand EXPR
X<rand> X<random>
=item rand
=for Pod::Functions retrieve the next pseudorandom number
Returns a random fractional number greater than or equal to C<0> and less
than the value of EXPR. (EXPR should be positive.) If EXPR is
omitted, the value C<1> is used. Currently EXPR with the value C<0> is
also special-cased as C<1> (this was undocumented before Perl 5.8.0
and is subject to change in future versions of Perl). Automatically calls
C<srand> unless C<srand> has already been called. See also C<srand>.
Apply C<int()> to the value returned by C<rand()> if you want random
integers instead of random fractional numbers. For example,
int(rand(10))
returns a random integer between C<0> and C<9>, inclusive.
(Note: If your rand function consistently returns numbers that are too
large or too small, then your version of Perl was probably compiled
with the wrong number of RANDBITS.)
B<C<rand()> is not cryptographically secure. You should not rely
on it in security-sensitive situations.> As of this writing, a
number of third-party CPAN modules offer random number generators
intended by their authors to be cryptographically secure,
including: L<Data::Entropy>, L<Crypt::Random>, L<Math::Random::Secure>,
and L<Math::TrulyRandom>.
=item read FILEHANDLE,SCALAR,LENGTH,OFFSET
X<read> X<file, read>
=item read FILEHANDLE,SCALAR,LENGTH
=for Pod::Functions fixed-length buffered input from a filehandle
Attempts to read LENGTH I<characters> of data into variable SCALAR
from the specified FILEHANDLE. Returns the number of characters
actually read, C<0> at end of file, or undef if there was an error (in
the latter case C<$!> is also set). SCALAR will be grown or shrunk
so that the last character actually read is the last character of the
scalar after the read.
An OFFSET may be specified to place the read data at some place in the
string other than the beginning. A negative OFFSET specifies
placement at that many characters counting backwards from the end of
the string. A positive OFFSET greater than the length of SCALAR
results in the string being padded to the required size with C<"\0">
bytes before the result of the read is appended.
The call is implemented in terms of either Perl's or your system's native
fread(3) library function. To get a true read(2) system call, see
L<sysread|/sysread FILEHANDLE,SCALAR,LENGTH,OFFSET>.
Note the I<characters>: depending on the status of the filehandle,
either (8-bit) bytes or characters are read. By default, all
filehandles operate on bytes, but for example if the filehandle has
been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
pragma, L<open>), the I/O will operate on UTF8-encoded Unicode
characters, not bytes. Similarly for the C<:encoding> pragma:
in that case pretty much any characters can be read.
=item readdir DIRHANDLE
X<readdir>
=for Pod::Functions get a directory from a directory handle
Returns the next directory entry for a directory opened by C<opendir>.
If used in list context, returns all the rest of the entries in the
directory. If there are no more entries, returns the undefined value in
scalar context and the empty list in list context.
If you're planning to filetest the return values out of a C<readdir>, you'd
better prepend the directory in question. Otherwise, because we didn't
C<chdir> there, it would have been testing the wrong file.
opendir(my $dh, $some_dir) || die "can't opendir $some_dir: $!";
@dots = grep { /^\./ && -f "$some_dir/$_" } readdir($dh);
closedir $dh;
As of Perl 5.12 you can use a bare C<readdir> in a C<while> loop,
which will set C<$_> on every iteration.
opendir(my $dh, $some_dir) || die;
while(readdir $dh) {
print "$some_dir/$_\n";
}
closedir $dh;
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious failures, put this sort of thing at the
top of your file to signal that your code will work I<only> on Perls of a
recent vintage:
use 5.012; # so readdir assigns to $_ in a lone while test
=item readline EXPR
=item readline
X<readline> X<gets> X<fgets>
=for Pod::Functions fetch a record from a file
Reads from the filehandle whose typeglob is contained in EXPR (or from
C<*ARGV> if EXPR is not provided). In scalar context, each call reads and
returns the next line until end-of-file is reached, whereupon the
subsequent call returns C<undef>. In list context, reads until end-of-file
is reached and returns a list of lines. Note that the notion of "line"
used here is whatever you may have defined with C<$/> or
C<$INPUT_RECORD_SEPARATOR>). See L<perlvar/"$/">.
When C<$/> is set to C<undef>, when C<readline> is in scalar
context (i.e., file slurp mode), and when an empty file is read, it
returns C<''> the first time, followed by C<undef> subsequently.
This is the internal function implementing the C<< <EXPR> >>
operator, but you can use it directly. The C<< <EXPR> >>
operator is discussed in more detail in L<perlop/"I/O Operators">.
$line = <STDIN>;
$line = readline(*STDIN); # same thing
If C<readline> encounters an operating system error, C<$!> will be set
with the corresponding error message. It can be helpful to check
C<$!> when you are reading from filehandles you don't trust, such as a
tty or a socket. The following example uses the operator form of
C<readline> and dies if the result is not defined.
while ( ! eof($fh) ) {
defined( $_ = <$fh> ) or die "readline failed: $!";
...
}
Note that you have can't handle C<readline> errors that way with the
C<ARGV> filehandle. In that case, you have to open each element of
C<@ARGV> yourself since C<eof> handles C<ARGV> differently.
foreach my $arg (@ARGV) {
open(my $fh, $arg) or warn "Can't open $arg: $!";
while ( ! eof($fh) ) {
defined( $_ = <$fh> )
or die "readline failed for $arg: $!";
...
}
}
=item readlink EXPR
X<readlink>
=item readlink
=for Pod::Functions determine where a symbolic link is pointing
Returns the value of a symbolic link, if symbolic links are
implemented. If not, raises an exception. If there is a system
error, returns the undefined value and sets C<$!> (errno). If EXPR is
omitted, uses C<$_>.
Portability issues: L<perlport/readlink>.
=item readpipe EXPR
=item readpipe
X<readpipe>
=for Pod::Functions execute a system command and collect standard output
EXPR is executed as a system command.
The collected standard output of the command is returned.
In scalar context, it comes back as a single (potentially
multi-line) string. In list context, returns a list of lines
(however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
This is the internal function implementing the C<qx/EXPR/>
operator, but you can use it directly. The C<qx/EXPR/>
operator is discussed in more detail in L<perlop/"I/O Operators">.
If EXPR is omitted, uses C<$_>.
=item recv SOCKET,SCALAR,LENGTH,FLAGS
X<recv>
=for Pod::Functions receive a message over a Socket
Receives a message on a socket. Attempts to receive LENGTH characters
of data into variable SCALAR from the specified SOCKET filehandle.
SCALAR will be grown or shrunk to the length actually read. Takes the
same flags as the system call of the same name. Returns the address
of the sender if SOCKET's protocol supports this; returns an empty
string otherwise. If there's an error, returns the undefined value.
This call is actually implemented in terms of recvfrom(2) system call.
See L<perlipc/"UDP: Message Passing"> for examples.
Note the I<characters>: depending on the status of the socket, either
(8-bit) bytes or characters are received. By default all sockets
operate on bytes, but for example if the socket has been changed using
binmode() to operate with the C<:encoding(utf8)> I/O layer (see the
C<open> pragma, L<open>), the I/O will operate on UTF8-encoded Unicode
characters, not bytes. Similarly for the C<:encoding> pragma: in that
case pretty much any characters can be read.
=item redo LABEL
X<redo>
=item redo EXPR
=item redo
=for Pod::Functions start this loop iteration over again
The C<redo> command restarts the loop block without evaluating the
conditional again. The C<continue> block, if any, is not executed. If
the LABEL is omitted, the command refers to the innermost enclosing
loop. The C<redo EXPR> form, available starting in Perl 5.18.0, allows a
label name to be computed at run time, and is otherwise identical to C<redo
LABEL>. Programs that want to lie to themselves about what was just input
normally use this command:
# a simpleminded Pascal comment stripper
# (warning: assumes no { or } in strings)
LINE: while (<STDIN>) {
while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {
$front = $_;
while (<STDIN>) {
if (/}/) { # end of comment?
s|^|$front\{|;
redo LINE;
}
}
}
print;
}
C<redo> cannot be used to retry a block that returns a value such as
C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
a grep() or map() operation.
Note that a block by itself is semantically identical to a loop
that executes once. Thus C<redo> inside such a block will effectively
turn it into a looping construct.
See also L</continue> for an illustration of how C<last>, C<next>, and
C<redo> work.
Unlike most named operators, this has the same precedence as assignment.
It is also exempt from the looks-like-a-function rule, so
C<redo ("foo")."bar"> will cause "bar" to be part of the argument to
C<redo>.
=item ref EXPR
X<ref> X<reference>
=item ref
=for Pod::Functions find out the type of thing being referenced
Returns a non-empty string if EXPR is a reference, the empty
string otherwise. If EXPR is not specified, C<$_> will be used. The
value returned depends on the type of thing the reference is a reference to.
Builtin types include:
SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
IO
VSTRING
Regexp
You can think of C<ref> as a C<typeof> operator.
if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";
}
unless (ref($r)) {
print "r is not a reference at all.\n";
}
The return value C<LVALUE> indicates a reference to an lvalue that is not
a variable. You get this from taking the reference of function calls like
C<pos()> or C<substr()>. C<VSTRING> is returned if the reference points
to a L<version string|perldata/"Version Strings">.
The result C<Regexp> indicates that the argument is a regular expression
resulting from C<qr//>.
If the referenced object has been blessed into a package, then that package
name is returned instead. But don't use that, as it's now considered
"bad practice". For one reason, an object could be using a class called
C<Regexp> or C<IO>, or even C<HASH>. Also, C<ref> doesn't take into account
subclasses, like C<isa> does.
Instead, use C<blessed> (in the L<Scalar::Util> module) for boolean
checks, C<isa> for specific class checks and C<reftype> (also from
L<Scalar::Util>) for type checks. (See L<perlobj> for details and a
C<blessed/isa> example.)
See also L<perlref>.
=item rename OLDNAME,NEWNAME
X<rename> X<move> X<mv> X<ren>
=for Pod::Functions change a filename
Changes the name of a file; an existing file NEWNAME will be
clobbered. Returns true for success, false otherwise.
Behavior of this function varies wildly depending on your system
implementation. For example, it will usually not work across file system
boundaries, even though the system I<mv> command sometimes compensates
for this. Other restrictions include whether it works on directories,
open files, or pre-existing files. Check L<perlport> and either the
rename(2) manpage or equivalent system documentation for details.
For a platform independent C<move> function look at the L<File::Copy>
module.
Portability issues: L<perlport/rename>.
=item require VERSION
X<require>
=item require EXPR
=item require
=for Pod::Functions load in external functions from a library at runtime
Demands a version of Perl specified by VERSION, or demands some semantics
specified by EXPR or by C<$_> if EXPR is not supplied.
VERSION may be either a numeric argument such as 5.006, which will be
compared to C<$]>, or a literal of the form v5.6.1, which will be compared
to C<$^V> (aka $PERL_VERSION). An exception is raised if
VERSION is greater than the version of the current Perl interpreter.
Compare with L</use>, which can do a similar check at compile time.
Specifying VERSION as a literal of the form v5.6.1 should generally be
avoided, because it leads to misleading error messages under earlier
versions of Perl that do not support this syntax. The equivalent numeric
version should be used instead.
require v5.6.1; # run time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards
compatibility
Otherwise, C<require> demands that a library file be included if it
hasn't already been included. The file is included via the do-FILE
mechanism, which is essentially just a variety of C<eval> with the
caveat that lexical variables in the invoking script will be invisible
to the included code. If it were implemented in pure Perl, it
would have semantics similar to the following:
use Carp 'croak';
use version;
sub require {
my ($filename) = @_;
if ( my $version = eval { version->parse($filename) } ) {
if ( $version > $^V ) {
my $vn = $version->normal;
croak "Perl $vn required--this is only $^V, stopped";
}
return 1;
}
if (exists $INC{$filename}) {
return 1 if $INC{$filename};
croak "Compilation failed in require";
}
foreach $prefix (@INC) {
if (ref($prefix)) {
#... do other stuff - see text below ....
}
# (see text below about possible appending of .pmc
# suffix to $filename)
my $realfilename = "$prefix/$filename";
next if ! -e $realfilename || -d _ || -b _;
$INC{$filename} = $realfilename;
my $result = do($realfilename);
# but run in caller's namespace
if (!defined $result) {
$INC{$filename} = undef;
croak $@ ? "$@Compilation failed in require"
: "Can't locate $filename: $!\n";
}
if (!$result) {
delete $INC{$filename};
croak "$filename did not return true value";
}
$! = 0;
return $result;
}
croak "Can't locate $filename in \@INC ...";
}
Note that the file will not be included twice under the same specified
name.
The file must return true as the last statement to indicate
successful execution of any initialization code, so it's customary to
end such a file with C<1;> unless you're sure it'll return true
otherwise. But it's better just to put the C<1;>, in case you add more
statements.
If EXPR is a bareword, the require assumes a "F<.pm>" extension and
replaces "F<::>" with "F</>" in the filename for you,
to make it easy to load standard modules. This form of loading of
modules does not risk altering your namespace.
In other words, if you try this:
require Foo::Bar; # a splendid bareword
The require function will actually look for the "F<Foo/Bar.pm>" file in the
directories specified in the C<@INC> array.
But if you try this:
$class = 'Foo::Bar';
require $class; # $class is not a bareword
#or
require "Foo::Bar"; # not a bareword because of the ""
The require function will look for the "F<Foo::Bar>" file in the @INC array and
will complain about not finding "F<Foo::Bar>" there. In this case you can do:
eval "require $class";
Now that you understand how C<require> looks for files with a
bareword argument, there is a little extra functionality going on behind
the scenes. Before C<require> looks for a "F<.pm>" extension, it will
first look for a similar filename with a "F<.pmc>" extension. If this file
is found, it will be loaded in place of any file ending in a "F<.pm>"
extension.
You can also insert hooks into the import facility by putting Perl code
directly into the @INC array. There are three forms of hooks: subroutine
references, array references, and blessed objects.
Subroutine references are the simplest case. When the inclusion system
walks through @INC and encounters a subroutine, this subroutine gets
called with two parameters, the first a reference to itself, and the
second the name of the file to be included (e.g., "F<Foo/Bar.pm>"). The
subroutine should return either nothing or else a list of up to four
values in the following order:
=over
=item 1
A reference to a scalar, containing any initial source code to prepend to
the file or generator output.
=item 2
A filehandle, from which the file will be read.
=item 3
A reference to a subroutine. If there is no filehandle (previous item),
then this subroutine is expected to generate one line of source code per
call, writing the line into C<$_> and returning 1, then finally at end of
file returning 0. If there is a filehandle, then the subroutine will be
called to act as a simple source filter, with the line as read in C<$_>.
Again, return 1 for each valid line, and 0 after all lines have been
returned.
=item 4
Optional state for the subroutine. The state is passed in as C<$_[1]>. A
reference to the subroutine itself is passed in as C<$_[0]>.
=back
If an empty list, C<undef>, or nothing that matches the first 3 values above
is returned, then C<require> looks at the remaining elements of @INC.
Note that this filehandle must be a real filehandle (strictly a typeglob
or reference to a typeglob, whether blessed or unblessed); tied filehandles
will be ignored and processing will stop there.
If the hook is an array reference, its first element must be a subroutine
reference. This subroutine is called as above, but the first parameter is
the array reference. This lets you indirectly pass arguments to
the subroutine.
In other words, you can write:
push @INC, \&my_sub;
sub my_sub {
my ($coderef, $filename) = @_; # $coderef is \&my_sub
...
}
or:
push @INC, [ \&my_sub, $x, $y, ... ];
sub my_sub {
my ($arrayref, $filename) = @_;
# Retrieve $x, $y, ...
my @parameters = @$arrayref[1..$#$arrayref];
...
}
If the hook is an object, it must provide an INC method that will be
called as above, the first parameter being the object itself. (Note that
you must fully qualify the sub's name, as unqualified C<INC> is always forced
into package C<main>.) Here is a typical code layout:
# In Foo.pm
package Foo;
sub new { ... }
sub Foo::INC {
my ($self, $filename) = @_;
...
}
# In the main program
push @INC, Foo->new(...);
These hooks are also permitted to set the %INC entry
corresponding to the files they have loaded. See L<perlvar/%INC>.
For a yet-more-powerful import facility, see L</use> and L<perlmod>.
=item reset EXPR
X<reset>
=item reset
=for Pod::Functions clear all variables of a given name
Generally used in a C<continue> block at the end of a loop to clear
variables and reset C<??> searches so that they work again. The
expression is interpreted as a list of single characters (hyphens
allowed for ranges). All variables and arrays beginning with one of
those letters are reset to their pristine state. If the expression is
omitted, one-match searches (C<?pattern?>) are reset to match again.
Only resets variables or searches in the current package. Always returns
1. Examples:
reset 'X'; # reset all X variables
reset 'a-z'; # reset lower case variables
reset; # just reset ?one-time? searches
Resetting C<"A-Z"> is not recommended because you'll wipe out your
C<@ARGV> and C<@INC> arrays and your C<%ENV> hash. Resets only package
variables; lexical variables are unaffected, but they clean themselves
up on scope exit anyway, so you'll probably want to use them instead.
See L</my>.
=item return EXPR
X<return>
=item return
=for Pod::Functions get out of a function early
Returns from a subroutine, C<eval>, or C<do FILE> with the value
given in EXPR. Evaluation of EXPR may be in list, scalar, or void
context, depending on how the return value will be used, and the context
may vary from one execution to the next (see L</wantarray>). If no EXPR
is given, returns an empty list in list context, the undefined value in
scalar context, and (of course) nothing at all in void context.
(In the absence of an explicit C<return>, a subroutine, eval,
or do FILE automatically returns the value of the last expression
evaluated.)
Unlike most named operators, this is also exempt from the
looks-like-a-function rule, so C<return ("foo")."bar"> will
cause "bar" to be part of the argument to C<return>.
=item reverse LIST
X<reverse> X<rev> X<invert>
=for Pod::Functions flip a string or a list
In list context, returns a list value consisting of the elements
of LIST in the opposite order. In scalar context, concatenates the
elements of LIST and returns a string value with all characters
in the opposite order.
print join(", ", reverse "world", "Hello"); # Hello, world
print scalar reverse "dlrow ,", "olleH"; # Hello, world
Used without arguments in scalar context, reverse() reverses C<$_>.
$_ = "dlrow ,olleH";
print reverse; # No output, list context
print scalar reverse; # Hello, world
Note that reversing an array to itself (as in C<@a = reverse @a>) will
preserve non-existent elements whenever possible; i.e., for non-magical
arrays or for tied arrays with C<EXISTS> and C<DELETE> methods.
This operator is also handy for inverting a hash, although there are some
caveats. If a value is duplicated in the original hash, only one of those
can be represented as a key in the inverted hash. Also, this has to
unwind one hash and build a whole new one, which may take some time
on a large hash, such as from a DBM file.
%by_name = reverse %by_address; # Invert the hash
=item rewinddir DIRHANDLE
X<rewinddir>
=for Pod::Functions reset directory handle
Sets the current position to the beginning of the directory for the
C<readdir> routine on DIRHANDLE.
Portability issues: L<perlport/rewinddir>.
=item rindex STR,SUBSTR,POSITION
X<rindex>
=item rindex STR,SUBSTR
=for Pod::Functions right-to-left substring search
Works just like index() except that it returns the position of the I<last>
occurrence of SUBSTR in STR. If POSITION is specified, returns the
last occurrence beginning at or before that position.
=item rmdir FILENAME
X<rmdir> X<rd> X<directory, remove>
=item rmdir
=for Pod::Functions remove a directory
Deletes the directory specified by FILENAME if that directory is
empty. If it succeeds it returns true; otherwise it returns false and
sets C<$!> (errno). If FILENAME is omitted, uses C<$_>.
To remove a directory tree recursively (C<rm -rf> on Unix) look at
the C<rmtree> function of the L<File::Path> module.
=item s///
=for Pod::Functions replace a pattern with a string
The substitution operator. See L<perlop/"Regexp Quote-Like Operators">.
=item say FILEHANDLE LIST
X<say>
=item say FILEHANDLE
=item say LIST
=item say
=for Pod::Functions +say output a list to a filehandle, appending a newline
Just like C<print>, but implicitly appends a newline. C<say LIST> is
simply an abbreviation for C<{ local $\ = "\n"; print LIST }>. To use
FILEHANDLE without a LIST to print the contents of C<$_> to it, you must
use a real filehandle like C<FH>, not an indirect one like C<$fh>.
This keyword is available only when the C<"say"> feature
is enabled, or when prefixed with C<CORE::>; see
L<feature>. Alternately, include a C<use v5.10> or later to the current
scope.
=item scalar EXPR
X<scalar> X<context>
=for Pod::Functions force a scalar context
Forces EXPR to be interpreted in scalar context and returns the value
of EXPR.
@counts = ( scalar @a, scalar @b, scalar @c );
There is no equivalent operator to force an expression to
be interpolated in list context because in practice, this is never
needed. If you really wanted to do so, however, you could use
the construction C<@{[ (some expression) ]}>, but usually a simple
C<(some expression)> suffices.
Because C<scalar> is a unary operator, if you accidentally use a
parenthesized list for the EXPR, this behaves as a scalar comma expression,
evaluating all but the last element in void context and returning the final
element evaluated in scalar context. This is seldom what you want.
The following single statement:
print uc(scalar(&foo,$bar)),$baz;
is the moral equivalent of these two:
&foo;
print(uc($bar),$baz);
See L<perlop> for more details on unary operators and the comma operator.
=item seek FILEHANDLE,POSITION,WHENCE
X<seek> X<fseek> X<filehandle, position>
=for Pod::Functions reposition file pointer for random-access I/O
Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
FILEHANDLE may be an expression whose value gives the name of the
filehandle. The values for WHENCE are C<0> to set the new position
I<in bytes> to POSITION; C<1> to set it to the current position plus
POSITION; and C<2> to set it to EOF plus POSITION, typically
negative. For WHENCE you may use the constants C<SEEK_SET>,
C<SEEK_CUR>, and C<SEEK_END> (start of the file, current position, end
of the file) from the L<Fcntl> module. Returns C<1> on success, false
otherwise.
Note the I<in bytes>: even if the filehandle has been set to
operate on characters (for example by using the C<:encoding(utf8)> open
layer), tell() will return byte offsets, not character offsets
(because implementing that would render seek() and tell() rather slow).
If you want to position the file for C<sysread> or C<syswrite>, don't use
C<seek>, because buffering makes its effect on the file's read-write position
unpredictable and non-portable. Use C<sysseek> instead.
Due to the rules and rigors of ANSI C, on some systems you have to do a
seek whenever you switch between reading and writing. Amongst other
things, this may have the effect of calling stdio's clearerr(3).
A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
seek(TEST,0,1);
This is also useful for applications emulating C<tail -f>. Once you hit
EOF on your read and then sleep for a while, you (probably) have to stick in a
dummy seek() to reset things. The C<seek> doesn't change the position,
but it I<does> clear the end-of-file condition on the handle, so that the
next C<< <FILE> >> makes Perl try again to read something. (We hope.)
If that doesn't work (some I/O implementations are particularly
cantankerous), you might need something like this:
for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>;
$curpos = tell(FILE)) {
# search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);
}
=item seekdir DIRHANDLE,POS
X<seekdir>
=for Pod::Functions reposition directory pointer
Sets the current position for the C<readdir> routine on DIRHANDLE. POS
must be a value returned by C<telldir>. C<seekdir> also has the same caveats
about possible directory compaction as the corresponding system library
routine.
=item select FILEHANDLE
X<select> X<filehandle, default>
=item select
=for Pod::Functions reset default output or do I/O multiplexing
Returns the currently selected filehandle. If FILEHANDLE is supplied,
sets the new current default filehandle for output. This has two
effects: first, a C<write> or a C<print> without a filehandle
default to this FILEHANDLE. Second, references to variables related to
output will refer to this output channel.
For example, to set the top-of-form format for more than one
output channel, you might do the following:
select(REPORT1);
$^ = 'report1_top';
select(REPORT2);
$^ = 'report2_top';
FILEHANDLE may be an expression whose value gives the name of the
actual filehandle. Thus:
$oldfh = select(STDERR); $| = 1; select($oldfh);
Some programmers may prefer to think of filehandles as objects with
methods, preferring to write the last example as:
use IO::Handle;
STDERR->autoflush(1);
Portability issues: L<perlport/select>.
=item select RBITS,WBITS,EBITS,TIMEOUT
X<select>
This calls the select(2) syscall with the bit masks specified, which
can be constructed using C<fileno> and C<vec>, along these lines:
$rin = $win = $ein = '';
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;
If you want to select on many filehandles, you may wish to write a
subroutine like this:
sub fhbits {
my @fhlist = @_;
my $bits = "";
for my $fh (@fhlist) {
vec($bits, fileno($fh), 1) = 1;
}
return $bits;
}
$rin = fhbits(*STDIN, *TTY, *MYSOCK);
The usual idiom is:
($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
or to block until something becomes ready just do this
$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
Most systems do not bother to return anything useful in $timeleft, so
calling select() in scalar context just returns $nfound.
Any of the bit masks can also be undef. The timeout, if specified, is
in seconds, which may be fractional. Note: not all implementations are
capable of returning the $timeleft. If not, they always return
$timeleft equal to the supplied $timeout.
You can effect a sleep of 250 milliseconds this way:
select(undef, undef, undef, 0.25);
Note that whether C<select> gets restarted after signals (say, SIGALRM)
is implementation-dependent. See also L<perlport> for notes on the
portability of C<select>.
On error, C<select> behaves just like select(2): it returns
-1 and sets C<$!>.
On some Unixes, select(2) may report a socket file descriptor as "ready for
reading" even when no data is available, and thus any subsequent C<read>
would block. This can be avoided if you always use O_NONBLOCK on the
socket. See select(2) and fcntl(2) for further details.
The standard C<IO::Select> module provides a user-friendlier interface
to C<select>, mostly because it does all the bit-mask work for you.
B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
or <FH>) with C<select>, except as permitted by POSIX, and even
then only on POSIX systems. You have to use C<sysread> instead.
Portability issues: L<perlport/select>.
=item semctl ID,SEMNUM,CMD,ARG
X<semctl>
=for Pod::Functions SysV semaphore control operations
Calls the System V IPC function semctl(2). You'll probably have to say
use IPC::SysV;
first to get the correct constant definitions. If CMD is IPC_STAT or
GETALL, then ARG must be a variable that will hold the returned
semid_ds structure or semaphore value array. Returns like C<ioctl>:
the undefined value for error, "C<0 but true>" for zero, or the actual
return value otherwise. The ARG must consist of a vector of native
short integers, which may be created with C<pack("s!",(0)x$nsem)>.
See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
documentation.
Portability issues: L<perlport/semctl>.
=item semget KEY,NSEMS,FLAGS
X<semget>
=for Pod::Functions get set of SysV semaphores
Calls the System V IPC function semget(2). Returns the semaphore id, or
the undefined value on error. See also
L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
documentation.
Portability issues: L<perlport/semget>.
=item semop KEY,OPSTRING
X<semop>
=for Pod::Functions SysV semaphore operations
Calls the System V IPC function semop(2) for semaphore operations
such as signalling and waiting. OPSTRING must be a packed array of
semop structures. Each semop structure can be generated with
C<pack("s!3", $semnum, $semop, $semflag)>. The length of OPSTRING
implies the number of semaphore operations. Returns true if
successful, false on error. As an example, the
following code waits on semaphore $semnum of semaphore id $semid:
$semop = pack("s!3", $semnum, -1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);
To signal the semaphore, replace C<-1> with C<1>. See also
L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
documentation.
Portability issues: L<perlport/semop>.
=item send SOCKET,MSG,FLAGS,TO
X<send>
=item send SOCKET,MSG,FLAGS
=for Pod::Functions send a message over a socket
Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET
filehandle. Takes the same flags as the system call of the same name. On
unconnected sockets, you must specify a destination to I<send to>, in which
case it does a sendto(2) syscall. Returns the number of characters sent,
or the undefined value on error. The sendmsg(2) syscall is currently
unimplemented. See L<perlipc/"UDP: Message Passing"> for examples.
Note the I<characters>: depending on the status of the socket, either
(8-bit) bytes or characters are sent. By default all sockets operate
on bytes, but for example if the socket has been changed using
binmode() to operate with the C<:encoding(utf8)> I/O layer (see
L</open>, or the C<open> pragma, L<open>), the I/O will operate on UTF-8
encoded Unicode characters, not bytes. Similarly for the C<:encoding>
pragma: in that case pretty much any characters can be sent.
=item setpgrp PID,PGRP
X<setpgrp> X<group>
=for Pod::Functions set the process group of a process
Sets the current process group for the specified PID, C<0> for the current
process. Raises an exception when used on a machine that doesn't
implement POSIX setpgid(2) or BSD setpgrp(2). If the arguments are omitted,
it defaults to C<0,0>. Note that the BSD 4.2 version of C<setpgrp> does not
accept any arguments, so only C<setpgrp(0,0)> is portable. See also
C<POSIX::setsid()>.
Portability issues: L<perlport/setpgrp>.
=item setpriority WHICH,WHO,PRIORITY
X<setpriority> X<priority> X<nice> X<renice>
=for Pod::Functions set a process's nice value
Sets the current priority for a process, a process group, or a user.
(See setpriority(2).) Raises an exception when used on a machine
that doesn't implement setpriority(2).
Portability issues: L<perlport/setpriority>.
=item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
X<setsockopt>
=for Pod::Functions set some socket options
Sets the socket option requested. Returns C<undef> on error.
Use integer constants provided by the C<Socket> module for
LEVEL and OPNAME. Values for LEVEL can also be obtained from
getprotobyname. OPTVAL might either be a packed string or an integer.
An integer OPTVAL is shorthand for pack("i", OPTVAL).
An example disabling Nagle's algorithm on a socket:
use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);
Portability issues: L<perlport/setsockopt>.
=item shift ARRAY
X<shift>
=item shift EXPR
=item shift
=for Pod::Functions remove the first element of an array, and return it
Shifts the first value of the array off and returns it, shortening the
array by 1 and moving everything down. If there are no elements in the
array, returns the undefined value. If ARRAY is omitted, shifts the
C<@_> array within the lexical scope of subroutines and formats, and the
C<@ARGV> array outside a subroutine and also within the lexical scopes
established by the C<eval STRING>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>,
C<UNITCHECK {}>, and C<END {}> constructs.
Starting with Perl 5.14, C<shift> can take a scalar EXPR, which must hold a
reference to an unblessed array. The argument will be dereferenced
automatically. This aspect of C<shift> is considered highly experimental.
The exact behaviour may change in a future version of Perl.
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.014; # so push/pop/etc work on scalars (experimental)
See also C<unshift>, C<push>, and C<pop>. C<shift> and C<unshift> do the
same thing to the left end of an array that C<pop> and C<push> do to the
right end.
=item shmctl ID,CMD,ARG
X<shmctl>
=for Pod::Functions SysV shared memory operations
Calls the System V IPC function shmctl. You'll probably have to say
use IPC::SysV;
first to get the correct constant definitions. If CMD is C<IPC_STAT>,
then ARG must be a variable that will hold the returned C<shmid_ds>
structure. Returns like ioctl: C<undef> for error; "C<0> but
true" for zero; and the actual return value otherwise.
See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
Portability issues: L<perlport/shmctl>.
=item shmget KEY,SIZE,FLAGS
X<shmget>
=for Pod::Functions get SysV shared memory segment identifier
Calls the System V IPC function shmget. Returns the shared memory
segment id, or C<undef> on error.
See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
Portability issues: L<perlport/shmget>.
=item shmread ID,VAR,POS,SIZE
X<shmread>
X<shmwrite>
=for Pod::Functions read SysV shared memory
=item shmwrite ID,STRING,POS,SIZE
=for Pod::Functions write SysV shared memory
Reads or writes the System V shared memory segment ID starting at
position POS for size SIZE by attaching to it, copying in/out, and
detaching from it. When reading, VAR must be a variable that will
hold the data read. When writing, if STRING is too long, only SIZE
bytes are used; if STRING is too short, nulls are written to fill out
SIZE bytes. Return true if successful, false on error.
shmread() taints the variable. See also L<perlipc/"SysV IPC">,
C<IPC::SysV>, and the C<IPC::Shareable> module from CPAN.
Portability issues: L<perlport/shmread> and L<perlport/shmwrite>.
=item shutdown SOCKET,HOW
X<shutdown>
=for Pod::Functions close down just half of a socket connection
Shuts down a socket connection in the manner indicated by HOW, which
has the same interpretation as in the syscall of the same name.
shutdown(SOCKET, 0); # I/we have stopped reading data
shutdown(SOCKET, 1); # I/we have stopped writing data
shutdown(SOCKET, 2); # I/we have stopped using this socket
This is useful with sockets when you want to tell the other
side you're done writing but not done reading, or vice versa.
It's also a more insistent form of close because it also
disables the file descriptor in any forked copies in other
processes.
Returns C<1> for success; on error, returns C<undef> if
the first argument is not a valid filehandle, or returns C<0> and sets
C<$!> for any other failure.
=item sin EXPR
X<sin> X<sine> X<asin> X<arcsine>
=item sin
=for Pod::Functions return the sine of a number
Returns the sine of EXPR (expressed in radians). If EXPR is omitted,
returns sine of C<$_>.
For the inverse sine operation, you may use the C<Math::Trig::asin>
function, or use this relation:
sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
=item sleep EXPR
X<sleep> X<pause>
=item sleep
=for Pod::Functions block for some number of seconds
Causes the script to sleep for (integer) EXPR seconds, or forever if no
argument is given. Returns the integer number of seconds actually slept.
May be interrupted if the process receives a signal such as C<SIGALRM>.
eval {
local $SIG{ALARM} = sub { die "Alarm!\n" };
sleep;
};
die $@ unless $@ eq "Alarm!\n";
You probably cannot mix C<alarm> and C<sleep> calls, because C<sleep>
is often implemented using C<alarm>.
On some older systems, it may sleep up to a full second less than what
you requested, depending on how it counts seconds. Most modern systems
always sleep the full amount. They may appear to sleep longer than that,
however, because your process might not be scheduled right away in a
busy multitasking system.
For delays of finer granularity than one second, the Time::HiRes module
(from CPAN, and starting from Perl 5.8 part of the standard
distribution) provides usleep(). You may also use Perl's four-argument
version of select() leaving the first three arguments undefined, or you
might be able to use the C<syscall> interface to access setitimer(2) if
your system supports it. See L<perlfaq8> for details.
See also the POSIX module's C<pause> function.
=item socket SOCKET,DOMAIN,TYPE,PROTOCOL
X<socket>
=for Pod::Functions create a socket
Opens a socket of the specified kind and attaches it to filehandle
SOCKET. DOMAIN, TYPE, and PROTOCOL are specified the same as for
the syscall of the same name. You should C<use Socket> first
to get the proper definitions imported. See the examples in
L<perlipc/"Sockets: Client/Server Communication">.
On systems that support a close-on-exec flag on files, the flag will
be set for the newly opened file descriptor, as determined by the
value of $^F. See L<perlvar/$^F>.
=item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
X<socketpair>
=for Pod::Functions create a pair of sockets
Creates an unnamed pair of sockets in the specified domain, of the
specified type. DOMAIN, TYPE, and PROTOCOL are specified the same as
for the syscall of the same name. If unimplemented, raises an exception.
Returns true if successful.
On systems that support a close-on-exec flag on files, the flag will
be set for the newly opened file descriptors, as determined by the value
of $^F. See L<perlvar/$^F>.
Some systems defined C<pipe> in terms of C<socketpair>, in which a call
to C<pipe(Rdr, Wtr)> is essentially:
use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer
See L<perlipc> for an example of socketpair use. Perl 5.8 and later will
emulate socketpair using IP sockets to localhost if your system implements
sockets but not socketpair.
Portability issues: L<perlport/socketpair>.
=item sort SUBNAME LIST
X<sort> X<qsort> X<quicksort> X<mergesort>
=item sort BLOCK LIST
=item sort LIST
=for Pod::Functions sort a list of values
In list context, this sorts the LIST and returns the sorted list value.
In scalar context, the behaviour of C<sort()> is undefined.
If SUBNAME or BLOCK is omitted, C<sort>s in standard string comparison
order. If SUBNAME is specified, it gives the name of a subroutine
that returns an integer less than, equal to, or greater than C<0>,
depending on how the elements of the list are to be ordered. (The
C<< <=> >> and C<cmp> operators are extremely useful in such routines.)
SUBNAME may be a scalar variable name (unsubscripted), in which case
the value provides the name of (or a reference to) the actual
subroutine to use. In place of a SUBNAME, you can provide a BLOCK as
an anonymous, in-line sort subroutine.
If the subroutine's prototype is C<($$)>, the elements to be compared are
passed by reference in C<@_>, as for a normal subroutine. This is slower
than unprototyped subroutines, where the elements to be compared are passed
into the subroutine as the package global variables $a and $b (see example
below). Note that in the latter case, it is usually highly counter-productive
to declare $a and $b as lexicals.
If the subroutine is an XSUB, the elements to be compared are pushed on to
the stack, the way arguments are usually passed to XSUBs. $a and $b are
not set.
The values to be compared are always passed by reference and should not
be modified.
You also cannot exit out of the sort block or subroutine using any of the
loop control operators described in L<perlsyn> or with C<goto>.
When C<use locale> (but not C<use locale 'not_characters'>) is in
effect, C<sort LIST> sorts LIST according to the
current collation locale. See L<perllocale>.
sort() returns aliases into the original list, much as a for loop's index
variable aliases the list elements. That is, modifying an element of a
list returned by sort() (for example, in a C<foreach>, C<map> or C<grep>)
actually modifies the element in the original list. This is usually
something to be avoided when writing clear code.
Perl 5.6 and earlier used a quicksort algorithm to implement sort.
That algorithm was not stable, so I<could> go quadratic. (A I<stable> sort
preserves the input order of elements that compare equal. Although
quicksort's run time is O(NlogN) when averaged over all arrays of
length N, the time can be O(N**2), I<quadratic> behavior, for some
inputs.) In 5.7, the quicksort implementation was replaced with
a stable mergesort algorithm whose worst-case behavior is O(NlogN).
But benchmarks indicated that for some inputs, on some platforms,
the original quicksort was faster. 5.8 has a sort pragma for
limited control of the sort. Its rather blunt control of the
underlying algorithm may not persist into future Perls, but the
ability to characterize the input or output in implementation
independent ways quite probably will. See L<the sort pragma|sort>.
Examples:
# sort lexically
@articles = sort @files;
# same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;
# now case-insensitively
@articles = sort {fc($a) cmp fc($b)} @files;
# same thing in reversed order
@articles = sort {$b cmp $a} @files;
# sort numerically ascending
@articles = sort {$a <=> $b} @files;
# sort numerically descending
@articles = sort {$b <=> $a} @files;
# this sorts the %age hash by value instead of key
# using an in-line function
@eldest = sort { $age{$b} <=> $age{$a} } keys %age;
# sort using explicit subroutine name
sub byage {
$age{$a} <=> $age{$b}; # presuming numeric
}
@sortedclass = sort byage @class;
sub backwards { $b cmp $a }
@harry = qw(dog cat x Cain Abel);
@george = qw(gone chased yz Punished Axed);
print sort @harry;
# prints AbelCaincatdogx
print sort backwards @harry;
# prints xdogcatCainAbel
print sort @george, 'to', @harry;
# prints AbelAxedCainPunishedcatchaseddoggonetoxyz
# inefficiently sort by descending numeric compare using
# the first integer after the first = sign, or the
# whole record case-insensitively otherwise
my @new = sort {
($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
||
fc($a) cmp fc($b)
} @old;
# same thing, but much more efficiently;
# we'll build auxiliary indices instead
# for speed
my @nums = @caps = ();
for (@old) {
push @nums, ( /=(\d+)/ ? $1 : undef );
push @caps, fc($_);
}
my @new = @old[ sort {
$nums[$b] <=> $nums[$a]
||
$caps[$a] cmp $caps[$b]
} 0..$#old
];
# same thing, but without any temps
@new = map { $_->[0] }
sort { $b->[1] <=> $a->[1]
||
$a->[2] cmp $b->[2]
} map { [$_, /=(\d+)/, fc($_)] } @old;
# using a prototype allows you to use any comparison subroutine
# as a sort subroutine (including other package's subroutines)
package other;
sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are
# not set here
package main;
@new = sort other::backwards @old;
# guarantee stability, regardless of algorithm
use sort 'stable';
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
# force use of mergesort (not portable outside Perl 5.8)
use sort '_mergesort'; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
Warning: syntactical care is required when sorting the list returned from
a function. If you want to sort the list returned by the function call
C<find_records(@key)>, you can use:
@contact = sort { $a cmp $b } find_records @key;
@contact = sort +find_records(@key);
@contact = sort &find_records(@key);
@contact = sort(find_records(@key));
If instead you want to sort the array @key with the comparison routine
C<find_records()> then you can use:
@contact = sort { find_records() } @key;
@contact = sort find_records(@key);
@contact = sort(find_records @key);
@contact = sort(find_records (@key));
If you're using strict, you I<must not> declare $a
and $b as lexicals. They are package globals. That means
that if you're in the C<main> package and type
@articles = sort {$b <=> $a} @files;
then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
but if you're in the C<FooPack> package, it's the same as typing
@articles = sort {$FooPack::b <=> $FooPack::a} @files;
The comparison function is required to behave. If it returns
inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
sometimes saying the opposite, for example) the results are not
well-defined.
Because C<< <=> >> returns C<undef> when either operand is C<NaN>
(not-a-number), be careful when sorting with a
comparison function like C<< $a <=> $b >> any lists that might contain a
C<NaN>. The following example takes advantage that C<NaN != NaN> to
eliminate any C<NaN>s from the input list.
@result = sort { $a <=> $b } grep { $_ == $_ } @input;
=item splice ARRAY or EXPR,OFFSET,LENGTH,LIST
X<splice>
=item splice ARRAY or EXPR,OFFSET,LENGTH
=item splice ARRAY or EXPR,OFFSET
=item splice ARRAY or EXPR
=for Pod::Functions add or remove elements anywhere in an array
Removes the elements designated by OFFSET and LENGTH from an array, and
replaces them with the elements of LIST, if any. In list context,
returns the elements removed from the array. In scalar context,
returns the last element removed, or C<undef> if no elements are
removed. The array grows or shrinks as necessary.
If OFFSET is negative then it starts that far from the end of the array.
If LENGTH is omitted, removes everything from OFFSET onward.
If LENGTH is negative, removes the elements from OFFSET onward
except for -LENGTH elements at the end of the array.
If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is
past the end of the array and a LENGTH was provided, Perl issues a warning,
and splices at the end of the array.
The following equivalences hold (assuming C<< $#a >= $i >> )
push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = $y splice(@a,$i,1,$y)
C<splice> can be used, for example, to implement n-ary queue processing:
sub nary_print {
my $n = shift;
while (my @next_n = splice @_, 0, $n) {
say join q{ -- }, @next_n;
}
}
nary_print(3, qw(a b c d e f g h));
# prints:
# a -- b -- c
# d -- e -- f
# g -- h
Starting with Perl 5.14, C<splice> can take scalar EXPR, which must hold a
reference to an unblessed array. The argument will be dereferenced
automatically. This aspect of C<splice> is considered highly experimental.
The exact behaviour may change in a future version of Perl.
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.014; # so push/pop/etc work on scalars (experimental)
=item split /PATTERN/,EXPR,LIMIT
X<split>
=item split /PATTERN/,EXPR
=item split /PATTERN/
=item split
=for Pod::Functions split up a string using a regexp delimiter
Splits the string EXPR into a list of strings and returns the
list in list context, or the size of the list in scalar context.
If only PATTERN is given, EXPR defaults to C<$_>.
Anything in EXPR that matches PATTERN is taken to be a separator
that separates the EXPR into substrings (called "I<fields>") that
do B<not> include the separator. Note that a separator may be
longer than one character or even have no characters at all (the
empty string, which is a zero-width match).
The PATTERN need not be constant; an expression may be used
to specify a pattern that varies at runtime.
If PATTERN matches the empty string, the EXPR is split at the match
position (between characters). As an example, the following:
print join(':', split('b', 'abc')), "\n";
uses the 'b' in 'abc' as a separator to produce the output 'a:c'.
However, this:
print join(':', split('', 'abc')), "\n";
uses empty string matches as separators to produce the output
'a:b:c'; thus, the empty string may be used to split EXPR into a
list of its component characters.
As a special case for C<split>, the empty pattern given in
L<match operator|perlop/"m/PATTERN/msixpodualgc"> syntax (C<//>) specifically matches the empty string, which is contrary to its usual
interpretation as the last successful match.
If PATTERN is C</^/>, then it is treated as if it used the
L<multiline modifier|perlreref/OPERATORS> (C</^/m>), since it
isn't much use otherwise.
As another special case, C<split> emulates the default behavior of the
command line tool B<awk> when the PATTERN is either omitted or a I<literal
string> composed of a single space character (such as S<C<' '>> or
S<C<"\x20">>, but not e.g. S<C</ />>). In this case, any leading
whitespace in EXPR is removed before splitting occurs, and the PATTERN is
instead treated as if it were C</\s+/>; in particular, this means that
I<any> contiguous whitespace (not just a single space character) is used as
a separator. However, this special treatment can be avoided by specifying
the pattern S<C</ />> instead of the string S<C<" ">>, thereby allowing
only a single space character to be a separator. In earlier Perls this
special case was restricted to the use of a plain S<C<" ">> as the
pattern argument to split, in Perl 5.18.0 and later this special case is
triggered by any expression which evaluates as the simple string S<C<" ">>.
If omitted, PATTERN defaults to a single space, S<C<" ">>, triggering
the previously described I<awk> emulation.
If LIMIT is specified and positive, it represents the maximum number
of fields into which the EXPR may be split; in other words, LIMIT is
one greater than the maximum number of times EXPR may be split. Thus,
the LIMIT value C<1> means that EXPR may be split a maximum of zero
times, producing a maximum of one field (namely, the entire value of
EXPR). For instance:
print join(':', split(//, 'abc', 1)), "\n";
produces the output 'abc', and this:
print join(':', split(//, 'abc', 2)), "\n";
produces the output 'a:bc', and each of these:
print join(':', split(//, 'abc', 3)), "\n";
print join(':', split(//, 'abc', 4)), "\n";
produces the output 'a:b:c'.
If LIMIT is negative, it is treated as if it were instead arbitrarily
large; as many fields as possible are produced.
If LIMIT is omitted (or, equivalently, zero), then it is usually
treated as if it were instead negative but with the exception that
trailing empty fields are stripped (empty leading fields are always
preserved); if all fields are empty, then all fields are considered to
be trailing (and are thus stripped in this case). Thus, the following:
print join(':', split(',', 'a,b,c,,,')), "\n";
produces the output 'a:b:c', but the following:
print join(':', split(',', 'a,b,c,,,', -1)), "\n";
produces the output 'a:b:c:::'.
In time-critical applications, it is worthwhile to avoid splitting
into more fields than necessary. Thus, when assigning to a list,
if LIMIT is omitted (or zero), then LIMIT is treated as though it
were one larger than the number of variables in the list; for the
following, LIMIT is implicitly 3:
($login, $passwd) = split(/:/);
Note that splitting an EXPR that evaluates to the empty string always
produces zero fields, regardless of the LIMIT specified.
An empty leading field is produced when there is a positive-width
match at the beginning of EXPR. For instance:
print join(':', split(/ /, ' abc')), "\n";
produces the output ':abc'. However, a zero-width match at the
beginning of EXPR never produces an empty field, so that:
print join(':', split(//, ' abc'));
produces the output S<' :a:b:c'> (rather than S<': :a:b:c'>).
An empty trailing field, on the other hand, is produced when there is a
match at the end of EXPR, regardless of the length of the match
(of course, unless a non-zero LIMIT is given explicitly, such fields are
removed, as in the last example). Thus:
print join(':', split(//, ' abc', -1)), "\n";
produces the output S<' :a:b:c:'>.
If the PATTERN contains
L<capturing groups|perlretut/Grouping things and hierarchical matching>,
then for each separator, an additional field is produced for each substring
captured by a group (in the order in which the groups are specified,
as per L<backreferences|perlretut/Backreferences>); if any group does not
match, then it captures the C<undef> value instead of a substring. Also,
note that any such additional field is produced whenever there is a
separator (that is, whenever a split occurs), and such an additional field
does B<not> count towards the LIMIT. Consider the following expressions
evaluated in list context (each returned list is provided in the associated
comment):
split(/-|,/, "1-10,20", 3)
# ('1', '10', '20')
split(/(-|,)/, "1-10,20", 3)
# ('1', '-', '10', ',', '20')
split(/-|(,)/, "1-10,20", 3)
# ('1', undef, '10', ',', '20')
split(/(-)|,/, "1-10,20", 3)
# ('1', '-', '10', undef, '20')
split(/(-)|(,)/, "1-10,20", 3)
# ('1', '-', undef, '10', undef, ',', '20')
=item sprintf FORMAT, LIST
X<sprintf>
=for Pod::Functions formatted print into a string
Returns a string formatted by the usual C<printf> conventions of the C
library function C<sprintf>. See below for more details
and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
the general principles.
For example:
# Format number with up to 8 leading zeroes
$result = sprintf("%08d", $number);
# Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", $number);
Perl does its own C<sprintf> formatting: it emulates the C
function sprintf(3), but doesn't use it except for floating-point
numbers, and even then only standard modifiers are allowed.
Non-standard extensions in your local sprintf(3) are
therefore unavailable from Perl.
Unlike C<printf>, C<sprintf> does not do what you probably mean when you
pass it an array as your first argument.
The array is given scalar context,
and instead of using the 0th element of the array as the format, Perl will
use the count of elements in the array as the format, which is almost never
useful.
Perl's C<sprintf> permits the following universally-known conversions:
%% a percent sign
%c a character with the given number
%s a string
%d a signed integer, in decimal
%u an unsigned integer, in decimal
%o an unsigned integer, in octal
%x an unsigned integer, in hexadecimal
%e a floating-point number, in scientific notation
%f a floating-point number, in fixed decimal notation
%g a floating-point number, in %e or %f notation
In addition, Perl permits the following widely-supported conversions:
%X like %x, but using upper-case letters
%E like %e, but using an upper-case "E"
%G like %g, but with an upper-case "E" (if applicable)
%b an unsigned integer, in binary
%B like %b, but using an upper-case "B" with the # flag
%p a pointer (outputs the Perl value's address in hexadecimal)
%n special: *stores* the number of characters output so far
into the next argument in the parameter list
%a hexadecimal floating point
%A like %a, but using upper-case letters
Finally, for backward (and we do mean "backward") compatibility, Perl
permits these unnecessary but widely-supported conversions:
%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%O a synonym for %lo
%F a synonym for %f
Note that the number of exponent digits in the scientific notation produced
by C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
exponent less than 100 is system-dependent: it may be three or less
(zero-padded as necessary). In other words, 1.23 times ten to the
99th may be either "1.23e99" or "1.23e099". Similarly for C<%a> and C<%A>:
the exponent or the hexadecimal digits may float: especially the
"long doubles" Perl configuration option may cause surprises.
Between the C<%> and the format letter, you may specify several
additional attributes controlling the interpretation of the format.
In order, these are:
=over 4
=item format parameter index
An explicit format parameter index, such as C<2$>. By default sprintf
will format the next unused argument in the list, but this allows you
to take the arguments out of order:
printf '%2$d %1$d', 12, 34; # prints "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"
=item flags
one or more of:
space prefix non-negative number with a space
+ prefix non-negative number with a plus sign
- left-justify within the field
0 use zeros, not spaces, to right-justify
# ensure the leading "0" for any octal,
prefix non-zero hexadecimal with "0x" or "0X",
prefix non-zero binary with "0b" or "0B"
For example:
printf '<% d>', 12; # prints "< 12>"
printf '<%+d>', 12; # prints "<+12>"
printf '<%6s>', 12; # prints "< 12>"
printf '<%-6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o>', 12; # prints "<014>"
printf '<%#x>', 12; # prints "<0xc>"
printf '<%#X>', 12; # prints "<0XC>"
printf '<%#b>', 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"
When a space and a plus sign are given as the flags at once,
a plus sign is used to prefix a positive number.
printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"
When the # flag and a precision are given in the %o conversion,
the precision is incremented if it's necessary for the leading "0".
printf '<%#.5o>', 012; # prints "<00012>"
printf '<%#.5o>', 012345; # prints "<012345>"
printf '<%#.0o>', 0; # prints "<0>"
=item vector flag
This flag tells Perl to interpret the supplied string as a vector of
integers, one for each character in the string. Perl applies the format to
each integer in turn, then joins the resulting strings with a separator (a
dot C<.> by default). This can be useful for displaying ordinal values of
characters in arbitrary strings:
printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n", $^V; # Perl's version
Put an asterisk C<*> before the C<v> to override the string to
use to separate the numbers:
printf "address is %*vX\n", ":", $addr; # IPv6 address
printf "bits are %0*v8b\n", " ", $bits; # random bitstring
You can also explicitly specify the argument number to use for
the join string using something like C<*2$v>; for example:
printf '%*4$vX %*4$vX %*4$vX', # 3 IPv6 addresses
@addr[1..3], ":";
=item (minimum) width
Arguments are usually formatted to be only as wide as required to
display the given value. You can override the width by putting
a number here, or get the width from the next argument (with C<*>)
or from a specified argument (e.g., with C<*2$>):
printf "<%s>", "a"; # prints "<a>"
printf "<%6s>", "a"; # prints "< a>"
printf "<%*s>", 6, "a"; # prints "< a>"
printf '<%*2$s>', "a", 6; # prints "< a>"
printf "<%2s>", "long"; # prints "<long>" (does not truncate)
If a field width obtained through C<*> is negative, it has the same
effect as the C<-> flag: left-justification.
=item precision, or maximum width
X<precision>
You can specify a precision (for numeric conversions) or a maximum
width (for string conversions) by specifying a C<.> followed by a number.
For floating-point formats except C<g> and C<G>, this specifies
how many places right of the decimal point to show (the default being 6).
For example:
# these examples are subject to system-specific variation
printf '<%f>', 1; # prints "<1.000000>"
printf '<%.1f>', 1; # prints "<1.0>"
printf '<%.0f>', 1; # prints "<1>"
printf '<%e>', 10; # prints "<1.000000e+01>"
printf '<%.1e>', 10; # prints "<1.0e+01>"
For "g" and "G", this specifies the maximum number of digits to show,
including those prior to the decimal point and those after it; for
example:
# These examples are subject to system-specific variation.
printf '<%g>', 1; # prints "<1>"
printf '<%.10g>', 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>', 100; # prints "<1e+02>"
printf '<%.2g>', 100.01; # prints "<1e+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"
For integer conversions, specifying a precision implies that the
output of the number itself should be zero-padded to this width,
where the 0 flag is ignored:
printf '<%.6d>', 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%-10.6d>', 1; # prints "<000001 >"
printf '<%10.6d>', 1; # prints "< 000001>"
printf '<%010.6d>', 1; # prints "< 000001>"
printf '<%+10.6d>', 1; # prints "< +000001>"
printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%-10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>', 1; # prints "< 000001>"
printf '<%#10.6x>', 1; # prints "< 0x000001>"
For string conversions, specifying a precision truncates the string
to fit the specified width:
printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"
You can also get the precision from the next argument using C<.*>:
printf '<%.6x>', 1; # prints "<000001>"
printf '<%.*x>', 6, 1; # prints "<000001>"
If a precision obtained through C<*> is negative, it counts
as having no precision at all.
printf '<%.*s>', 7, "string"; # prints "<string>"
printf '<%.*s>', 3, "string"; # prints "<str>"
printf '<%.*s>', 0, "string"; # prints "<>"
printf '<%.*s>', -1, "string"; # prints "<string>"
printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', -1, 0; # prints "<0>"
You cannot currently get the precision from a specified number,
but it is intended that this will be possible in the future, for
example using C<.*2$>:
printf '<%.*2$x>', 1, 6; # INVALID, but in future will print
# "<000001>"
=item size
For numeric conversions, you can specify the size to interpret the
number as using C<l>, C<h>, C<V>, C<q>, C<L>, or C<ll>. For integer
conversions (C<d u o x X b i D U O>), numbers are usually assumed to be
whatever the default integer size is on your platform (usually 32 or 64
bits), but you can override this to use instead one of the standard C types,
as supported by the compiler used to build Perl:
hh interpret integer as C type "char" or "unsigned
char" on Perl 5.14 or later
h interpret integer as C type "short" or
"unsigned short"
j interpret integer as C type "intmax_t" on Perl
5.14 or later, and only with a C99 compiler
(unportable)
l interpret integer as C type "long" or
"unsigned long"
q, L, or ll interpret integer as C type "long long",
"unsigned long long", or "quad" (typically
64-bit integers)
t interpret integer as C type "ptrdiff_t" on Perl
5.14 or later
z interpret integer as C type "size_t" on Perl 5.14
or later
As of 5.14, none of these raises an exception if they are not supported on
your platform. However, if warnings are enabled, a warning of the
C<printf> warning class is issued on an unsupported conversion flag.
Should you instead prefer an exception, do this:
use warnings FATAL => "printf";
If you would like to know about a version dependency before you
start running the program, put something like this at its top:
use 5.014; # for hh/j/t/z/ printf modifiers
You can find out whether your Perl supports quads via L<Config>:
use Config;
if ($Config{use64bitint} eq "define"
|| $Config{longsize} >= 8) {
print "Nice quads!\n";
}
For floating-point conversions (C<e f g E F G>), numbers are usually assumed
to be the default floating-point size on your platform (double or long double),
but you can force "long double" with C<q>, C<L>, or C<ll> if your
platform supports them. You can find out whether your Perl supports long
doubles via L<Config>:
use Config;
print "long doubles\n" if $Config{d_longdbl} eq "define";
You can find out whether Perl considers "long double" to be the default
floating-point size to use on your platform via L<Config>:
use Config;
if ($Config{uselongdouble} eq "define") {
print "long doubles by default\n";
}
It can also be that long doubles and doubles are the same thing:
use Config;
($Config{doublesize} == $Config{longdblsize}) &&
print "doubles are long doubles\n";
The size specifier C<V> has no effect for Perl code, but is supported for
compatibility with XS code. It means "use the standard size for a Perl
integer or floating-point number", which is the default.
=item order of arguments
Normally, sprintf() takes the next unused argument as the value to
format for each format specification. If the format specification
uses C<*> to require additional arguments, these are consumed from
the argument list in the order they appear in the format
specification I<before> the value to format. Where an argument is
specified by an explicit index, this does not affect the normal
order for the arguments, even when the explicitly specified index
would have been the next argument.
So:
printf "<%*.*s>", $a, $b, $c;
uses C<$a> for the width, C<$b> for the precision, and C<$c>
as the value to format; while:
printf '<%*1$.*s>', $a, $b;
would use C<$a> for the width and precision, and C<$b> as the
value to format.
Here are some more examples; be aware that when using an explicit
index, the C<$> may need escaping:
printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
=back
If C<use locale> (including C<use locale 'not_characters'>) is in effect
and POSIX::setlocale() has been called,
the character used for the decimal separator in formatted floating-point
numbers is affected by the C<LC_NUMERIC> locale. See L<perllocale>
and L<POSIX>.
=item sqrt EXPR
X<sqrt> X<root> X<square root>
=item sqrt
=for Pod::Functions square root function
Return the positive square root of EXPR. If EXPR is omitted, uses
C<$_>. Works only for non-negative operands unless you've
loaded the C<Math::Complex> module.
use Math::Complex;
print sqrt(-4); # prints 2i
=item srand EXPR
X<srand> X<seed> X<randseed>
=item srand
=for Pod::Functions seed the random number generator
Sets and returns the random number seed for the C<rand> operator.
The point of the function is to "seed" the C<rand> function so that C<rand>
can produce a different sequence each time you run your program. When
called with a parameter, C<srand> uses that for the seed; otherwise it
(semi-)randomly chooses a seed. In either case, starting with Perl 5.14,
it returns the seed. To signal that your code will work I<only> on Perls
of a recent vintage:
use 5.014; # so srand returns the seed
If C<srand()> is not called explicitly, it is called implicitly without a
parameter at the first use of the C<rand> operator.
However, there are a few situations where programs are likely to
want to call C<srand>. One is for generating predictable results, generally for
testing or debugging. There, you use C<srand($seed)>, with the same C<$seed>
each time. Another case is that you may want to call C<srand()>
after a C<fork()> to avoid child processes sharing the same seed value as the
parent (and consequently each other).
Do B<not> call C<srand()> (i.e., without an argument) more than once per
process. The internal state of the random number generator should
contain more entropy than can be provided by any seed, so calling
C<srand()> again actually I<loses> randomness.
Most implementations of C<srand> take an integer and will silently
truncate decimal numbers. This means C<srand(42)> will usually
produce the same results as C<srand(42.1)>. To be safe, always pass
C<srand> an integer.
A typical use of the returned seed is for a test program which has too many
combinations to test comprehensively in the time available to it each run. It
can test a random subset each time, and should there be a failure, log the seed
used for that run so that it can later be used to reproduce the same results.
B<C<rand()> is not cryptographically secure. You should not rely
on it in security-sensitive situations.> As of this writing, a
number of third-party CPAN modules offer random number generators
intended by their authors to be cryptographically secure,
including: L<Data::Entropy>, L<Crypt::Random>, L<Math::Random::Secure>,
and L<Math::TrulyRandom>.
=item stat FILEHANDLE
X<stat> X<file, status> X<ctime>
=item stat EXPR
=item stat DIRHANDLE
=item stat
=for Pod::Functions get a file's status information
Returns a 13-element list giving the status info for a file, either
the file opened via FILEHANDLE or DIRHANDLE, or named by EXPR. If EXPR is
omitted, it stats C<$_> (not C<_>!). Returns the empty list if C<stat> fails. Typically
used as follows:
($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)
= stat($filename);
Not all fields are supported on all filesystem types. Here are the
meanings of the fields:
0 dev device number of filesystem
1 ino inode number
2 mode file mode (type and permissions)
3 nlink number of (hard) links to the file
4 uid numeric user ID of file's owner
5 gid numeric group ID of file's owner
6 rdev the device identifier (special files only)
7 size total size of file, in bytes
8 atime last access time in seconds since the epoch
9 mtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)
11 blksize preferred I/O size in bytes for interacting with the
file (may vary from file to file)
12 blocks actual number of system-specific blocks allocated
on disk (often, but not always, 512 bytes each)
(The epoch was at 00:00 January 1, 1970 GMT.)
(*) Not all fields are supported on all filesystem types. Notably, the
ctime field is non-portable. In particular, you cannot expect it to be a
"creation time"; see L<perlport/"Files and Filesystems"> for details.
If C<stat> is passed the special filehandle consisting of an underline, no
stat is done, but the current contents of the stat structure from the
last C<stat>, C<lstat>, or filetest are returned. Example:
if (-x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";
}
(This works on machines only for which the device number is negative
under NFS.)
Because the mode contains both the file type and its permissions, you
should mask off the file type portion and (s)printf using a C<"%o">
if you want to see the real permissions.
$mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;
In scalar context, C<stat> returns a boolean value indicating success
or failure, and, if successful, sets the information associated with
the special filehandle C<_>.
The L<File::stat> module provides a convenient, by-name access mechanism:
use File::stat;
$sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",
$filename, $sb->size, $sb->mode & 07777,
scalar localtime $sb->mtime;
You can import symbolic mode constants (C<S_IF*>) and functions
(C<S_IS*>) from the Fcntl module:
use Fcntl ':mode';
$mode = (stat($filename))[2];
$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH;
printf "Permissions are %04o\n", S_IMODE($mode), "\n";
$is_setuid = $mode & S_ISUID;
$is_directory = S_ISDIR($mode);
You could write the last two using the C<-u> and C<-d> operators.
Commonly available C<S_IF*> constants are:
# Permissions: read, write, execute, for user, group, others.
S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH
# Setuid/Setgid/Stickiness/SaveText.
# Note that the exact meaning of these is system-dependent.
S_ISUID S_ISGID S_ISVTX S_ISTXT
# File types. Not all are necessarily available on
# your system.
S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR
S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
# The following are compatibility aliases for S_IRUSR,
# S_IWUSR, and S_IXUSR.
S_IREAD S_IWRITE S_IEXEC
and the C<S_IF*> functions are
S_IMODE($mode) the part of $mode containing the permission
bits and the setuid/setgid/sticky bits
S_IFMT($mode) the part of $mode containing the file type
which can be bit-anded with (for example)
S_IFREG or with the following functions
# The operators -f, -d, -l, -b, -c, -p, and -S.
S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
# No direct -X operator counterpart, but for the first one
# the -g operator is often equivalent. The ENFMT stands for
# record flocking enforcement, a platform-dependent feature.
S_ISENFMT($mode) S_ISWHT($mode)
See your native chmod(2) and stat(2) documentation for more details
about the C<S_*> constants. To get status info for a symbolic link
instead of the target file behind the link, use the C<lstat> function.
Portability issues: L<perlport/stat>.
=item state VARLIST
X<state>
=item state TYPE VARLIST
=item state VARLIST : ATTRS
=item state TYPE VARLIST : ATTRS
=for Pod::Functions +state declare and assign a persistent lexical variable
C<state> declares a lexically scoped variable, just like C<my>.
However, those variables will never be reinitialized, contrary to
lexical variables that are reinitialized each time their enclosing block
is entered.
See L<perlsub/"Persistent Private Variables"> for details.
If more than one variable is listed, the list must be placed in
parentheses. With a parenthesised list, C<undef> can be used as a
dummy placeholder. However, since initialization of state variables in
list context is currently not possible this would serve no purpose.
C<state> variables are enabled only when the C<use feature "state"> pragma
is in effect, unless the keyword is written as C<CORE::state>.
See also L<feature>.
=item study SCALAR
X<study>
=item study
=for Pod::Functions optimize input data for repeated searches
Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
doing many pattern matches on the string before it is next modified.
This may or may not save time, depending on the nature and number of
patterns you are searching and the distribution of character
frequencies in the string to be searched; you probably want to compare
run times with and without it to see which is faster. Those loops
that scan for many short constant strings (including the constant
parts of more complex patterns) will benefit most.
(The way C<study> works is this: a linked list of every
character in the string to be searched is made, so we know, for
example, where all the C<'k'> characters are. From each search string,
the rarest character is selected, based on some static frequency tables
constructed from some C programs and English text. Only those places
that contain this "rarest" character are examined.)
For example, here is a loop that inserts index producing entries
before any line containing a certain pattern:
while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
# ...
print;
}
In searching for C</\bfoo\b/>, only locations in C<$_> that contain C<f>
will be looked at, because C<f> is rarer than C<o>. In general, this is
a big win except in pathological cases. The only question is whether
it saves you more time than it took to build the linked list in the
first place.
Note that if you have to look for strings that you don't know till
runtime, you can build an entire loop as a string and C<eval> that to
avoid recompiling all your patterns all the time. Together with
undefining C<$/> to input entire files as one record, this can be quite
fast, often faster than specialized programs like fgrep(1). The following
scans a list of files (C<@files>) for a list of words (C<@words>), and prints
out the names of those files that contain a match:
$search = 'while (<>) { study;';
foreach $word (@words) {
$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
}
$search .= "}";
@ARGV = @files;
undef $/;
eval $search; # this screams
$/ = "\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {
print $file, "\n";
}
=item sub NAME BLOCK
X<sub>
=item sub NAME (PROTO) BLOCK
=item sub NAME : ATTRS BLOCK
=item sub NAME (PROTO) : ATTRS BLOCK
=for Pod::Functions declare a subroutine, possibly anonymously
This is subroutine definition, not a real function I<per se>. Without a
BLOCK it's just a forward declaration. Without a NAME, it's an anonymous
function declaration, so does return a value: the CODE ref of the closure
just created.
See L<perlsub> and L<perlref> for details about subroutines and
references; see L<attributes> and L<Attribute::Handlers> for more
information about attributes.
=item __SUB__
X<__SUB__>
=for Pod::Functions +current_sub the current subroutine, or C<undef> if not in a subroutine
A special token that returns a reference to the current subroutine, or
C<undef> outside of a subroutine.
The behaviour of C<__SUB__> within a regex code block (such as C</(?{...})/>)
is subject to change.
This token is only available under C<use v5.16> or the "current_sub"
feature. See L<feature>.
=item substr EXPR,OFFSET,LENGTH,REPLACEMENT
X<substr> X<substring> X<mid> X<left> X<right>
=item substr EXPR,OFFSET,LENGTH
=item substr EXPR,OFFSET
=for Pod::Functions get or alter a portion of a string
Extracts a substring out of EXPR and returns it. First character is at
offset zero. If OFFSET is negative, starts
that far back from the end of the string. If LENGTH is omitted, returns
everything through the end of the string. If LENGTH is negative, leaves that
many characters off the end of the string.
my $s = "The black cat climbed the green tree";
my $color = substr $s, 4, 5; # black
my $middle = substr $s, 4, -11; # black cat climbed the
my $end = substr $s, 14; # climbed the green tree
my $tail = substr $s, -4; # tree
my $z = substr $s, -4, 2; # tr
You can use the substr() function as an lvalue, in which case EXPR
must itself be an lvalue. If you assign something shorter than LENGTH,
the string will shrink, and if you assign something longer than LENGTH,
the string will grow to accommodate it. To keep the string the same
length, you may need to pad or chop your value using C<sprintf>.
If OFFSET and LENGTH specify a substring that is partly outside the
string, only the part within the string is returned. If the substring
is beyond either end of the string, substr() returns the undefined
value and produces a warning. When used as an lvalue, specifying a
substring that is entirely outside the string raises an exception.
Here's an example showing the behavior for boundary cases:
my $name = 'fred';
substr($name, 4) = 'dy'; # $name is now 'freddy'
my $null = substr $name, 6, 2; # returns "" (no warning)
my $oops = substr $name, 7; # returns undef, with warning
substr($name, 7) = 'gap'; # raises an exception
An alternative to using substr() as an lvalue is to specify the
replacement string as the 4th argument. This allows you to replace
parts of the EXPR and return what was there before in one operation,
just as you can with splice().
my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # climbed
# $s is now "The black cat jumped from the green tree"
Note that the lvalue returned by the three-argument version of substr() acts as
a 'magic bullet'; each time it is assigned to, it remembers which part
of the original string is being modified; for example:
$x = '1234';
for (substr($x,1,2)) {
$_ = 'a'; print $x,"\n"; # prints 1a4
$_ = 'xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_ = 'pq'; print $x,"\n"; # prints 5pq9
}
With negative offsets, it remembers its position from the end of the string
when the target string is modified:
$x = '1234';
for (substr($x, -3, 2)) {
$_ = 'a'; print $x,"\n"; # prints 1a4, as above
$x = 'abcdefg';
print $_,"\n"; # prints f
}
Prior to Perl version 5.10, the result of using an lvalue multiple times was
unspecified. Prior to 5.16, the result with negative offsets was
unspecified.
=item symlink OLDFILE,NEWFILE
X<symlink> X<link> X<symbolic link> X<link, symbolic>
=for Pod::Functions create a symbolic link to a file
Creates a new filename symbolically linked to the old filename.
Returns C<1> for success, C<0> otherwise. On systems that don't support
symbolic links, raises an exception. To check for that,
use eval:
$symlink_exists = eval { symlink("",""); 1 };
Portability issues: L<perlport/symlink>.
=item syscall NUMBER, LIST
X<syscall> X<system call>
=for Pod::Functions execute an arbitrary system call
Calls the system call specified as the first element of the list,
passing the remaining elements as arguments to the system call. If
unimplemented, raises an exception. The arguments are interpreted
as follows: if a given argument is numeric, the argument is passed as
an int. If not, the pointer to the string value is passed. You are
responsible to make sure a string is pre-extended long enough to
receive any result that might be written into a string. You can't use a
string literal (or other read-only string) as an argument to C<syscall>
because Perl has to assume that any string pointer might be written
through. If your
integer arguments are not literals and have never been interpreted in a
numeric context, you may need to add C<0> to them to force them to look
like numbers. This emulates the C<syswrite> function (or vice versa):
require 'syscall.ph'; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);
Note that Perl supports passing of up to only 14 arguments to your syscall,
which in practice should (usually) suffice.
Syscall returns whatever value returned by the system call it calls.
If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
Note that some system calls I<can> legitimately return C<-1>. The proper
way to handle such calls is to assign C<$!=0> before the call, then
check the value of C<$!> if C<syscall> returns C<-1>.
There's a problem with C<syscall(&SYS_pipe)>: it returns the file
number of the read end of the pipe it creates, but there is no way
to retrieve the file number of the other end. You can avoid this
problem by using C<pipe> instead.
Portability issues: L<perlport/syscall>.
=item sysopen FILEHANDLE,FILENAME,MODE
X<sysopen>
=item sysopen FILEHANDLE,FILENAME,MODE,PERMS
=for Pod::Functions +5.002 open a file, pipe, or descriptor
Opens the file whose filename is given by FILENAME, and associates it with
FILEHANDLE. If FILEHANDLE is an expression, its value is used as the real
filehandle wanted; an undefined scalar will be suitably autovivified. This
function calls the underlying operating system's I<open>(2) function with the
parameters FILENAME, MODE, and PERMS.
The possible values and flag bits of the MODE parameter are
system-dependent; they are available via the standard module C<Fcntl>. See
the documentation of your operating system's I<open>(2) syscall to see
which values and flag bits are available. You may combine several flags
using the C<|>-operator.
Some of the most common values are C<O_RDONLY> for opening the file in
read-only mode, C<O_WRONLY> for opening the file in write-only mode,
and C<O_RDWR> for opening the file in read-write mode.
X<O_RDONLY> X<O_RDWR> X<O_WRONLY>
For historical reasons, some values work on almost every system
supported by Perl: 0 means read-only, 1 means write-only, and 2
means read/write. We know that these values do I<not> work under
OS/390 and on the Macintosh; you probably don't want to
use them in new code.
If the file named by FILENAME does not exist and the C<open> call creates
it (typically because MODE includes the C<O_CREAT> flag), then the value of
PERMS specifies the permissions of the newly created file. If you omit
the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
These permission values need to be in octal, and are modified by your
process's current C<umask>.
X<O_CREAT>
In many systems the C<O_EXCL> flag is available for opening files in
exclusive mode. This is B<not> locking: exclusiveness means here that
if the file already exists, sysopen() fails. C<O_EXCL> may not work
on network filesystems, and has no effect unless the C<O_CREAT> flag
is set as well. Setting C<O_CREAT|O_EXCL> prevents the file from
being opened if it is a symbolic link. It does not protect against
symbolic links in the file's path.
X<O_EXCL>
Sometimes you may want to truncate an already-existing file. This
can be done using the C<O_TRUNC> flag. The behavior of
C<O_TRUNC> with C<O_RDONLY> is undefined.
X<O_TRUNC>
You should seldom if ever use C<0644> as argument to C<sysopen>, because
that takes away the user's option to have a more permissive umask.
Better to omit it. See the perlfunc(1) entry on C<umask> for more
on this.
Note that C<sysopen> depends on the fdopen() C library function.
On many Unix systems, fdopen() is known to fail when file descriptors
exceed a certain value, typically 255. If you need more file
descriptors than that, consider using the POSIX::open() function.
See L<perlopentut> for a kinder, gentler explanation of opening files.
Portability issues: L<perlport/sysopen>.
=item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
X<sysread>
=item sysread FILEHANDLE,SCALAR,LENGTH
=for Pod::Functions fixed-length unbuffered input from a filehandle
Attempts to read LENGTH bytes of data into variable SCALAR from the
specified FILEHANDLE, using the read(2). It bypasses
buffered IO, so mixing this with other kinds of reads, C<print>,
C<write>, C<seek>, C<tell>, or C<eof> can cause confusion because the
perlio or stdio layers usually buffers data. Returns the number of
bytes actually read, C<0> at end of file, or undef if there was an
error (in the latter case C<$!> is also set). SCALAR will be grown or
shrunk so that the last byte actually read is the last byte of the
scalar after the read.
An OFFSET may be specified to place the read data at some place in the
string other than the beginning. A negative OFFSET specifies
placement at that many characters counting backwards from the end of
the string. A positive OFFSET greater than the length of SCALAR
results in the string being padded to the required size with C<"\0">
bytes before the result of the read is appended.
There is no syseof() function, which is ok, since eof() doesn't work
well on device files (like ttys) anyway. Use sysread() and check
for a return value for 0 to decide whether you're done.
Note that if the filehandle has been marked as C<:utf8> Unicode
characters are read instead of bytes (the LENGTH, OFFSET, and the
return value of sysread() are in Unicode characters).
The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
See L</binmode>, L</open>, and the C<open> pragma, L<open>.
=item sysseek FILEHANDLE,POSITION,WHENCE
X<sysseek> X<lseek>
=for Pod::Functions +5.004 position I/O pointer on handle used with sysread and syswrite
Sets FILEHANDLE's system position in bytes using lseek(2). FILEHANDLE may
be an expression whose value gives the name of the filehandle. The values
for WHENCE are C<0> to set the new position to POSITION; C<1> to set the it
to the current position plus POSITION; and C<2> to set it to EOF plus
POSITION, typically negative.
Note the I<in bytes>: even if the filehandle has been set to operate
on characters (for example by using the C<:encoding(utf8)> I/O layer),
tell() will return byte offsets, not character offsets (because
implementing that would render sysseek() unacceptably slow).
sysseek() bypasses normal buffered IO, so mixing it with reads other
than C<sysread> (for example C<< <> >> or read()) C<print>, C<write>,
C<seek>, C<tell>, or C<eof> may cause confusion.
For WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>,
and C<SEEK_END> (start of the file, current position, end of the file)
from the Fcntl module. Use of the constants is also more portable
than relying on 0, 1, and 2. For example to define a "systell" function:
use Fcntl 'SEEK_CUR';
sub systell { sysseek($_[0], 0, SEEK_CUR) }
Returns the new position, or the undefined value on failure. A position
of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
true on success and false on failure, yet you can still easily determine
the new position.
=item system LIST
X<system> X<shell>
=item system PROGRAM LIST
=for Pod::Functions run a separate program
Does exactly the same thing as C<exec LIST>, except that a fork is
done first and the parent process waits for the child process to
exit. Note that argument processing varies depending on the
number of arguments. If there is more than one argument in LIST,
or if LIST is an array with more than one value, starts the program
given by the first element of the list with arguments given by the
rest of the list. If there is only one scalar argument, the argument
is checked for shell metacharacters, and if there are any, the
entire argument is passed to the system's command shell for parsing
(this is C</bin/sh -c> on Unix platforms, but varies on other
platforms). If there are no shell metacharacters in the argument,
it is split into words and passed directly to C<execvp>, which is
more efficient. On Windows, only the C<system PROGRAM LIST> syntax will
reliably avoid using the shell; C<system LIST>, even with more than one
element, will fall back to the shell if the first spawn fails.
Perl will attempt to flush all files opened for
output before any operation that may do a fork, but this may not be
supported on some platforms (see L<perlport>). To be safe, you may need
to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
of C<IO::Handle> on any open handles.
The return value is the exit status of the program as returned by the
C<wait> call. To get the actual exit value, shift right by eight (see
below). See also L</exec>. This is I<not> what you want to use to capture
the output from a command; for that you should use merely backticks or
C<qx//>, as described in L<perlop/"`STRING`">. Return value of -1
indicates a failure to start the program or an error of the wait(2) system
call (inspect $! for the reason).
If you'd like to make C<system> (and many other bits of Perl) die on error,
have a look at the L<autodie> pragma.
Like C<exec>, C<system> allows you to lie to a program about its name if
you use the C<system PROGRAM LIST> syntax. Again, see L</exec>.
Since C<SIGINT> and C<SIGQUIT> are ignored during the execution of
C<system>, if you expect your program to terminate on receipt of these
signals you will need to arrange to do so yourself based on the return
value.
@args = ("command", "arg1", "arg2");
system(@args) == 0
or die "system @args failed: $?"
If you'd like to manually inspect C<system>'s failure, you can check all
possible failure modes by inspecting C<$?> like this:
if ($? == -1) {
print "failed to execute: $!\n";
}
elsif ($? & 127) {
printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';
}
else {
printf "child exited with value %d\n", $? >> 8;
}
Alternatively, you may inspect the value of C<${^CHILD_ERROR_NATIVE}>
with the C<W*()> calls from the POSIX module.
When C<system>'s arguments are executed indirectly by the shell,
results and return codes are subject to its quirks.
See L<perlop/"`STRING`"> and L</exec> for details.
Since C<system> does a C<fork> and C<wait> it may affect a C<SIGCHLD>
handler. See L<perlipc> for details.
Portability issues: L<perlport/system>.
=item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
X<syswrite>
=item syswrite FILEHANDLE,SCALAR,LENGTH
=item syswrite FILEHANDLE,SCALAR
=for Pod::Functions fixed-length unbuffered output to a filehandle
Attempts to write LENGTH bytes of data from variable SCALAR to the
specified FILEHANDLE, using write(2). If LENGTH is
not specified, writes whole SCALAR. It bypasses buffered IO, so
mixing this with reads (other than C<sysread())>, C<print>, C<write>,
C<seek>, C<tell>, or C<eof> may cause confusion because the perlio and
stdio layers usually buffer data. Returns the number of bytes
actually written, or C<undef> if there was an error (in this case the
errno variable C<$!> is also set). If the LENGTH is greater than the
data available in the SCALAR after the OFFSET, only as much data as is
available will be written.
An OFFSET may be specified to write the data from some part of the
string other than the beginning. A negative OFFSET specifies writing
that many characters counting backwards from the end of the string.
If SCALAR is of length zero, you can only use an OFFSET of 0.
B<WARNING>: If the filehandle is marked C<:utf8>, Unicode characters
encoded in UTF-8 are written instead of bytes, and the LENGTH, OFFSET, and
return value of syswrite() are in (UTF8-encoded Unicode) characters.
The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
Alternately, if the handle is not marked with an encoding but you
attempt to write characters with code points over 255, raises an exception.
See L</binmode>, L</open>, and the C<open> pragma, L<open>.
=item tell FILEHANDLE
X<tell>
=item tell
=for Pod::Functions get current seekpointer on a filehandle
Returns the current position I<in bytes> for FILEHANDLE, or -1 on
error. FILEHANDLE may be an expression whose value gives the name of
the actual filehandle. If FILEHANDLE is omitted, assumes the file
last read.
Note the I<in bytes>: even if the filehandle has been set to
operate on characters (for example by using the C<:encoding(utf8)> open
layer), tell() will return byte offsets, not character offsets (because
that would render seek() and tell() rather slow).
The return value of tell() for the standard streams like the STDIN
depends on the operating system: it may return -1 or something else.
tell() on pipes, fifos, and sockets usually returns -1.
There is no C<systell> function. Use C<sysseek(FH, 0, 1)> for that.
Do not use tell() (or other buffered I/O operations) on a filehandle
that has been manipulated by sysread(), syswrite(), or sysseek().
Those functions ignore the buffering, while tell() does not.
=item telldir DIRHANDLE
X<telldir>
=for Pod::Functions get current seekpointer on a directory handle
Returns the current position of the C<readdir> routines on DIRHANDLE.
Value may be given to C<seekdir> to access a particular location in a
directory. C<telldir> has the same caveats about possible directory
compaction as the corresponding system library routine.
=item tie VARIABLE,CLASSNAME,LIST
X<tie>
=for Pod::Functions +5.002 bind a variable to an object class
This function binds a variable to a package class that will provide the
implementation for the variable. VARIABLE is the name of the variable
to be enchanted. CLASSNAME is the name of a class implementing objects
of correct type. Any additional arguments are passed to the
appropriate constructor
method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
or C<TIEHASH>). Typically these are arguments such as might be passed
to the C<dbm_open()> function of C. The object returned by the
constructor is also returned by the C<tie> function, which would be useful
if you want to access other methods in CLASSNAME.
Note that functions such as C<keys> and C<values> may return huge lists
when used on large objects, like DBM files. You may prefer to use the
C<each> function to iterate over such. Example:
# print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' = ', unpack('L',$val), "\n";
}
untie(%HIST);
A class implementing a hash should have the following methods:
TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this
UNTIE this
A class implementing an ordinary array should have the following methods:
TIEARRAY classname, LIST
FETCH this, key
STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this
PUSH this, LIST
POP this
SHIFT this
UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DELETE this, key
EXISTS this, key
DESTROY this
UNTIE this
A class implementing a filehandle should have the following methods:
TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this
GETC this
WRITE this, scalar, length, offset
PRINT this, LIST
PRINTF this, format, LIST
BINMODE this
EOF this
FILENO this
SEEK this, position, whence
TELL this
OPEN this, mode, LIST
CLOSE this
DESTROY this
UNTIE this
A class implementing a scalar should have the following methods:
TIESCALAR classname, LIST
FETCH this,
STORE this, value
DESTROY this
UNTIE this
Not all methods indicated above need be implemented. See L<perltie>,
L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
Unlike C<dbmopen>, the C<tie> function will not C<use> or C<require> a module
for you; you need to do that explicitly yourself. See L<DB_File>
or the F<Config> module for interesting C<tie> implementations.
For further details see L<perltie>, L<"tied VARIABLE">.
=item tied VARIABLE
X<tied>
=for Pod::Functions get a reference to the object underlying a tied variable
Returns a reference to the object underlying VARIABLE (the same value
that was originally returned by the C<tie> call that bound the variable
to a package.) Returns the undefined value if VARIABLE isn't tied to a
package.
=item time
X<time> X<epoch>
=for Pod::Functions return number of seconds since 1970
Returns the number of non-leap seconds since whatever time the system
considers to be the epoch, suitable for feeding to C<gmtime> and
C<localtime>. On most systems the epoch is 00:00:00 UTC, January 1, 1970;
a prominent exception being Mac OS Classic which uses 00:00:00, January 1,
1904 in the current local time zone for its epoch.
For measuring time in better granularity than one second, use the
L<Time::HiRes> module from Perl 5.8 onwards (or from CPAN before then), or,
if you have gettimeofday(2), you may be able to use the C<syscall>
interface of Perl. See L<perlfaq8> for details.
For date and time processing look at the many related modules on CPAN.
For a comprehensive date and time representation look at the
L<DateTime> module.
=item times
X<times>
=for Pod::Functions return elapsed time for self and child processes
Returns a four-element list giving the user and system times in
seconds for this process and any exited children of this process.
($user,$system,$cuser,$csystem) = times;
In scalar context, C<times> returns C<$user>.
Children's times are only included for terminated children.
Portability issues: L<perlport/times>.
=item tr///
=for Pod::Functions transliterate a string
The transliteration operator. Same as C<y///>. See
L<perlop/"Quote-Like Operators">.
=item truncate FILEHANDLE,LENGTH
X<truncate>
=item truncate EXPR,LENGTH
=for Pod::Functions shorten a file
Truncates the file opened on FILEHANDLE, or named by EXPR, to the
specified length. Raises an exception if truncate isn't implemented
on your system. Returns true if successful, C<undef> on error.
The behavior is undefined if LENGTH is greater than the length of the
file.
The position in the file of FILEHANDLE is left unchanged. You may want to
call L<seek|/"seek FILEHANDLE,POSITION,WHENCE"> before writing to the file.
Portability issues: L<perlport/truncate>.
=item uc EXPR
X<uc> X<uppercase> X<toupper>
=item uc
=for Pod::Functions return upper-case version of a string
Returns an uppercased version of EXPR. This is the internal function
implementing the C<\U> escape in double-quoted strings.
It does not attempt to do titlecase mapping on initial letters. See
L</ucfirst> for that.
If EXPR is omitted, uses C<$_>.
This function behaves the same way under various pragma, such as in a locale,
as L</lc> does.
=item ucfirst EXPR
X<ucfirst> X<uppercase>
=item ucfirst
=for Pod::Functions return a string with just the next letter in upper case
Returns the value of EXPR with the first character in uppercase
(titlecase in Unicode). This is the internal function implementing
the C<\u> escape in double-quoted strings.
If EXPR is omitted, uses C<$_>.
This function behaves the same way under various pragma, such as in a locale,
as L</lc> does.
=item umask EXPR
X<umask>
=item umask
=for Pod::Functions set file creation mode mask
Sets the umask for the process to EXPR and returns the previous value.
If EXPR is omitted, merely returns the current umask.
The Unix permission C<rwxr-x---> is represented as three sets of three
bits, or three octal digits: C<0750> (the leading 0 indicates octal
and isn't one of the digits). The C<umask> value is such a number
representing disabled permissions bits. The permission (or "mode")
values you pass C<mkdir> or C<sysopen> are modified by your umask, so
even if you tell C<sysopen> to create a file with permissions C<0777>,
if your umask is C<0022>, then the file will actually be created with
permissions C<0755>. If your C<umask> were C<0027> (group can't
write; others can't read, write, or execute), then passing
C<sysopen> C<0666> would create a file with mode C<0640> (because
C<0666 &~ 027> is C<0640>).
Here's some advice: supply a creation mode of C<0666> for regular
files (in C<sysopen>) and one of C<0777> for directories (in
C<mkdir>) and executable files. This gives users the freedom of
choice: if they want protected files, they might choose process umasks
of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
Programs should rarely if ever make policy decisions better left to
the user. The exception to this is when writing files that should be
kept private: mail files, web browser cookies, I<.rhosts> files, and
so on.
If umask(2) is not implemented on your system and you are trying to
restrict access for I<yourself> (i.e., C<< (EXPR & 0700) > 0 >>),
raises an exception. If umask(2) is not implemented and you are
not trying to restrict access for yourself, returns C<undef>.
Remember that a umask is a number, usually given in octal; it is I<not> a
string of octal digits. See also L</oct>, if all you have is a string.
Portability issues: L<perlport/umask>.
=item undef EXPR
X<undef> X<undefine>
=item undef
=for Pod::Functions remove a variable or function definition
Undefines the value of EXPR, which must be an lvalue. Use only on a
scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
(using C<&>), or a typeglob (using C<*>). Saying C<undef $hash{$key}>
will probably not do what you expect on most predefined variables or
DBM list values, so don't do that; see L</delete>. Always returns the
undefined value. You can omit the EXPR, in which case nothing is
undefined, but you still get an undefined value that you could, for
instance, return from a subroutine, assign to a variable, or pass as a
parameter. Examples:
undef $foo;
undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
select undef, undef, undef, 0.25;
($a, $b, undef, $c) = &foo; # Ignore third value returned
Note that this is a unary operator, not a list operator.
=item unlink LIST
X<unlink> X<delete> X<remove> X<rm> X<del>
=item unlink
=for Pod::Functions remove one link to a file
Deletes a list of files. On success, it returns the number of files
it successfully deleted. On failure, it returns false and sets C<$!>
(errno):
my $unlinked = unlink 'a', 'b', 'c';
unlink @goners;
unlink glob "*.bak";
On error, C<unlink> will not tell you which files it could not remove.
If you want to know which files you could not remove, try them one
at a time:
foreach my $file ( @goners ) {
unlink $file or warn "Could not unlink $file: $!";
}
Note: C<unlink> will not attempt to delete directories unless you are
superuser and the B<-U> flag is supplied to Perl. Even if these
conditions are met, be warned that unlinking a directory can inflict
damage on your filesystem. Finally, using C<unlink> on directories is
not supported on many operating systems. Use C<rmdir> instead.
If LIST is omitted, C<unlink> uses C<$_>.
=item unpack TEMPLATE,EXPR
X<unpack>
=item unpack TEMPLATE
=for Pod::Functions convert binary structure into normal perl variables
C<unpack> does the reverse of C<pack>: it takes a string
and expands it out into a list of values.
(In scalar context, it returns merely the first value produced.)
If EXPR is omitted, unpacks the C<$_> string.
See L<perlpacktut> for an introduction to this function.
The string is broken into chunks described by the TEMPLATE. Each chunk
is converted separately to a value. Typically, either the string is a result
of C<pack>, or the characters of the string represent a C structure of some
kind.
The TEMPLATE has the same format as in the C<pack> function.
Here's a subroutine that does substring:
sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);
}
and then there's
sub ordinal { unpack("W",$_[0]); } # same as ord()
In addition to fields allowed in pack(), you may prefix a field with
a %<number> to indicate that
you want a <number>-bit checksum of the items instead of the items
themselves. Default is a 16-bit checksum. Checksum is calculated by
summing numeric values of expanded values (for string fields the sum of
C<ord($char)> is taken; for bit fields the sum of zeroes and ones).
For example, the following
computes the same number as the System V sum program:
$checksum = do {
local $/; # slurp!
unpack("%32W*",<>) % 65535;
};
The following efficiently counts the number of set bits in a bit vector:
$setbits = unpack("%32b*", $selectmask);
The C<p> and C<P> formats should be used with care. Since Perl
has no way of checking whether the value passed to C<unpack()>
corresponds to a valid memory location, passing a pointer value that's
not known to be valid is likely to have disastrous consequences.
If there are more pack codes or if the repeat count of a field or a group
is larger than what the remainder of the input string allows, the result
is not well defined: the repeat count may be decreased, or
C<unpack()> may produce empty strings or zeros, or it may raise an exception.
If the input string is longer than one described by the TEMPLATE,
the remainder of that input string is ignored.
See L</pack> for more examples and notes.
=item unshift ARRAY,LIST
X<unshift>
=item unshift EXPR,LIST
=for Pod::Functions prepend more elements to the beginning of a list
Does the opposite of a C<shift>. Or the opposite of a C<push>,
depending on how you look at it. Prepends list to the front of the
array and returns the new number of elements in the array.
unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;
Note the LIST is prepended whole, not one element at a time, so the
prepended elements stay in the same order. Use C<reverse> to do the
reverse.
Starting with Perl 5.14, C<unshift> can take a scalar EXPR, which must hold
a reference to an unblessed array. The argument will be dereferenced
automatically. This aspect of C<unshift> is considered highly
experimental. The exact behaviour may change in a future version of Perl.
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.014; # so push/pop/etc work on scalars (experimental)
=item untie VARIABLE
X<untie>
=for Pod::Functions break a tie binding to a variable
Breaks the binding between a variable and a package.
(See L<tie|/tie VARIABLE,CLASSNAME,LIST>.)
Has no effect if the variable is not tied.
=item use Module VERSION LIST
X<use> X<module> X<import>
=item use Module VERSION
=item use Module LIST
=item use Module
=item use VERSION
=for Pod::Functions load in a module at compile time and import its namespace
Imports some semantics into the current package from the named module,
generally by aliasing certain subroutine or variable names into your
package. It is exactly equivalent to
BEGIN { require Module; Module->import( LIST ); }
except that Module I<must> be a bareword.
The importation can be made conditional by using the L<if> module.
In the peculiar C<use VERSION> form, VERSION may be either a positive
decimal fraction such as 5.006, which will be compared to C<$]>, or a v-string
of the form v5.6.1, which will be compared to C<$^V> (aka $PERL_VERSION). An
exception is raised if VERSION is greater than the version of the
current Perl interpreter; Perl will not attempt to parse the rest of the
file. Compare with L</require>, which can do a similar check at run time.
Symmetrically, C<no VERSION> allows you to specify that you want a version
of Perl older than the specified one.
Specifying VERSION as a literal of the form v5.6.1 should generally be
avoided, because it leads to misleading error messages under earlier
versions of Perl (that is, prior to 5.6.0) that do not support this
syntax. The equivalent numeric version should be used instead.
use v5.6.1; # compile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility
This is often useful if you need to check the current Perl version before
C<use>ing library modules that won't work with older versions of Perl.
(We try not to do this more than we have to.)
C<use VERSION> also enables all features available in the requested
version as defined by the C<feature> pragma, disabling any features
not in the requested version's feature bundle. See L<feature>.
Similarly, if the specified Perl version is greater than or equal to
5.12.0, strictures are enabled lexically as
with C<use strict>. Any explicit use of
C<use strict> or C<no strict> overrides C<use VERSION>, even if it comes
before it. In both cases, the F<feature.pm> and F<strict.pm> files are
not actually loaded.
The C<BEGIN> forces the C<require> and C<import> to happen at compile time. The
C<require> makes sure the module is loaded into memory if it hasn't been
yet. The C<import> is not a builtin; it's just an ordinary static method
call into the C<Module> package to tell the module to import the list of
features back into the current package. The module can implement its
C<import> method any way it likes, though most modules just choose to
derive their C<import> method via inheritance from the C<Exporter> class that
is defined in the C<Exporter> module. See L<Exporter>. If no C<import>
method can be found then the call is skipped, even if there is an AUTOLOAD
method.
If you do not want to call the package's C<import> method (for instance,
to stop your namespace from being altered), explicitly supply the empty list:
use Module ();
That is exactly equivalent to
BEGIN { require Module }
If the VERSION argument is present between Module and LIST, then the
C<use> will call the VERSION method in class Module with the given
version as an argument. The default VERSION method, inherited from
the UNIVERSAL class, croaks if the given version is larger than the
value of the variable C<$Module::VERSION>.
Again, there is a distinction between omitting LIST (C<import> called
with no arguments) and an explicit empty LIST C<()> (C<import> not
called). Note that there is no comma after VERSION!
Because this is a wide-open interface, pragmas (compiler directives)
are also implemented this way. Currently implemented pragmas are:
use constant;
use diagnostics;
use integer;
use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qw(afunc blurfl);
use warnings qw(all);
use sort qw(stable _quicksort _mergesort);
Some of these pseudo-modules import semantics into the current
block scope (like C<strict> or C<integer>, unlike ordinary modules,
which import symbols into the current package (which are effective
through the end of the file).
Because C<use> takes effect at compile time, it doesn't respect the
ordinary flow control of the code being compiled. In particular, putting
a C<use> inside the false branch of a conditional doesn't prevent it
from being processed. If a module or pragma only needs to be loaded
conditionally, this can be done using the L<if> pragma:
use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);
There's a corresponding C<no> declaration that unimports meanings imported
by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
It behaves just as C<import> does with VERSION, an omitted or empty LIST,
or no unimport method being found.
no integer;
no strict 'refs';
no warnings;
Care should be taken when using the C<no VERSION> form of C<no>. It is
I<only> meant to be used to assert that the running Perl is of a earlier
version than its argument and I<not> to undo the feature-enabling side effects
of C<use VERSION>.
See L<perlmodlib> for a list of standard modules and pragmas. See L<perlrun>
for the C<-M> and C<-m> command-line options to Perl that give C<use>
functionality from the command-line.
=item utime LIST
X<utime>
=for Pod::Functions set a file's last access and modify times
Changes the access and modification times on each file of a list of
files. The first two elements of the list must be the NUMERIC access
and modification times, in that order. Returns the number of files
successfully changed. The inode change time of each file is set
to the current time. For example, this code has the same effect as the
Unix touch(1) command when the files I<already exist> and belong to
the user running the program:
#!/usr/bin/perl
$atime = $mtime = time;
utime $atime, $mtime, @ARGV;
Since Perl 5.8.0, if the first two elements of the list are C<undef>,
the utime(2) syscall from your C library is called with a null second
argument. On most systems, this will set the file's access and
modification times to the current time (i.e., equivalent to the example
above) and will work even on files you don't own provided you have write
permission:
for $file (@ARGV) {
utime(undef, undef, $file)
|| warn "couldn't touch $file: $!";
}
Under NFS this will use the time of the NFS server, not the time of
the local machine. If there is a time synchronization problem, the
NFS server and local machine will have different times. The Unix
touch(1) command will in fact normally use this form instead of the
one shown in the first example.
Passing only one of the first two elements as C<undef> is
equivalent to passing a 0 and will not have the effect
described when both are C<undef>. This also triggers an
uninitialized warning.
On systems that support futimes(2), you may pass filehandles among the
files. On systems that don't support futimes(2), passing filehandles raises
an exception. Filehandles must be passed as globs or glob references to be
recognized; barewords are considered filenames.
Portability issues: L<perlport/utime>.
=item values HASH
X<values>
=item values ARRAY
=item values EXPR
=for Pod::Functions return a list of the values in a hash
In list context, returns a list consisting of all the values of the named
hash. In Perl 5.12 or later only, will also return a list of the values of
an array; prior to that release, attempting to use an array argument will
produce a syntax error. In scalar context, returns the number of values.
Hash entries are returned in an apparently random order. The actual random
order is specific to a given hash; the exact same series of operations
on two hashes may result in a different order for each hash. Any insertion
into the hash may change the order, as will any deletion, with the exception
that the most recent key returned by C<each> or C<keys> may be deleted
without changing the order. So long as a given hash is unmodified you may
rely on C<keys>, C<values> and C<each> to repeatedly return the same order
as each other. See L<perlsec/"Algorithmic Complexity Attacks"> for
details on why hash order is randomized. Aside from the guarantees
provided here the exact details of Perl's hash algorithm and the hash
traversal order are subject to change in any release of Perl. Tied hashes
may behave differently to Perl's hashes with respect to changes in order on
insertion and deletion of items.
As a side effect, calling values() resets the HASH or ARRAY's internal
iterator, see L</each>. (In particular, calling values() in void context
resets the iterator with no other overhead. Apart from resetting the
iterator, C<values @array> in list context is the same as plain C<@array>.
(We recommend that you use void context C<keys @array> for this, but
reasoned that taking C<values @array> out would require more
documentation than leaving it in.)
Note that the values are not copied, which means modifying them will
modify the contents of the hash:
for (values %hash) { s/foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same
Starting with Perl 5.14, C<values> can take a scalar EXPR, which must hold
a reference to an unblessed hash or array. The argument will be
dereferenced automatically. This aspect of C<values> is considered highly
experimental. The exact behaviour may change in a future version of Perl.
for (values $hashref) { ... }
for (values $obj->get_arrayref) { ... }
To avoid confusing would-be users of your code who are running earlier
versions of Perl with mysterious syntax errors, put this sort of thing at
the top of your file to signal that your code will work I<only> on Perls of
a recent vintage:
use 5.012; # so keys/values/each work on arrays
use 5.014; # so keys/values/each work on scalars (experimental)
See also C<keys>, C<each>, and C<sort>.
=item vec EXPR,OFFSET,BITS
X<vec> X<bit> X<bit vector>
=for Pod::Functions test or set particular bits in a string
Treats the string in EXPR as a bit vector made up of elements of
width BITS and returns the value of the element specified by OFFSET
as an unsigned integer. BITS therefore specifies the number of bits
that are reserved for each element in the bit vector. This must
be a power of two from 1 to 32 (or 64, if your platform supports
that).
If BITS is 8, "elements" coincide with bytes of the input string.
If BITS is 16 or more, bytes of the input string are grouped into chunks
of size BITS/8, and each group is converted to a number as with
pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
for BITS==64). See L<"pack"> for details.
If bits is 4 or less, the string is broken into bytes, then the bits
of each byte are broken into 8/BITS groups. Bits of a byte are
numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>. For example,
breaking the single input byte C<chr(0x36)> into two groups gives a list
C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
C<vec> may also be assigned to, in which case parentheses are needed
to give the expression the correct precedence as in
vec($image, $max_x * $x + $y, 8) = 3;
If the selected element is outside the string, the value 0 is returned.
If an element off the end of the string is written to, Perl will first
extend the string with sufficiently many zero bytes. It is an error
to try to write off the beginning of the string (i.e., negative OFFSET).
If the string happens to be encoded as UTF-8 internally (and thus has
the UTF8 flag set), this is ignored by C<vec>, and it operates on the
internal byte string, not the conceptual character string, even if you
only have characters with values less than 256.
Strings created with C<vec> can also be manipulated with the logical
operators C<|>, C<&>, C<^>, and C<~>. These operators will assume a bit
vector operation is desired when both operands are strings.
See L<perlop/"Bitwise String Operators">.
The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
The comments show the string after each step. Note that this code works
in the same way on big-endian or little-endian machines.
my $foo = '';
vec($foo, 0, 32) = 0x5065726C; # 'Perl'
# $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')
vec($foo, 2, 16) = 0x5065; # 'PerlPe'
vec($foo, 3, 16) = 0x726C; # 'PerlPerl'
vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"
vec($foo, 21, 4) = 7; # 'PerlPerlPer'
# 'r' is "\x72"
vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"
vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"
vec($foo, 94, 1) = 1; # 'PerlPerlPerl'
# 'l' is "\x6c"
To transform a bit vector into a string or list of 0's and 1's, use these:
$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));
If you know the exact length in bits, it can be used in place of the C<*>.
Here is an example to illustrate how the bits actually fall in place:
#!/usr/bin/perl -wl
print <<'EOT';
0 1 2 3
unpack("V",$_) 01234567890123456789012345678901
------------------------------------------------------------------
EOT
for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {
for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;
}
}
}
format STDOUT =
vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$off, $width, $bits, $val, $res
.
__END__
Regardless of the machine architecture on which it runs, the
example above should print the following table:
0 1 2 3
unpack("V",$_) 01234567890123456789012345678901
------------------------------------------------------------------
vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000
vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000
vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
=item wait
X<wait>
=for Pod::Functions wait for any child process to die
Behaves like wait(2) on your system: it waits for a child
process to terminate and returns the pid of the deceased process, or
C<-1> if there are no child processes. The status is returned in C<$?>
and C<${^CHILD_ERROR_NATIVE}>.
Note that a return value of C<-1> could mean that child processes are
being automatically reaped, as described in L<perlipc>.
If you use wait in your handler for $SIG{CHLD} it may accidentally for the
child created by qx() or system(). See L<perlipc> for details.
Portability issues: L<perlport/wait>.
=item waitpid PID,FLAGS
X<waitpid>
=for Pod::Functions wait for a particular child process to die
Waits for a particular child process to terminate and returns the pid of
the deceased process, or C<-1> if there is no such child process. On some
systems, a value of 0 indicates that there are processes still running.
The status is returned in C<$?> and C<${^CHILD_ERROR_NATIVE}>. If you say
use POSIX ":sys_wait_h";
#...
do {
$kid = waitpid(-1, WNOHANG);
} while $kid > 0;
then you can do a non-blocking wait for all pending zombie processes.
Non-blocking wait is available on machines supporting either the
waitpid(2) or wait4(2) syscalls. However, waiting for a particular
pid with FLAGS of C<0> is implemented everywhere. (Perl emulates the
system call by remembering the status values of processes that have
exited but have not been harvested by the Perl script yet.)
Note that on some systems, a return value of C<-1> could mean that child
processes are being automatically reaped. See L<perlipc> for details,
and for other examples.
Portability issues: L<perlport/waitpid>.
=item wantarray
X<wantarray> X<context>
=for Pod::Functions get void vs scalar vs list context of current subroutine call
Returns true if the context of the currently executing subroutine or
C<eval> is looking for a list value. Returns false if the context is
looking for a scalar. Returns the undefined value if the context is
looking for no value (void context).
return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";
C<wantarray()>'s result is unspecified in the top level of a file,
in a C<BEGIN>, C<UNITCHECK>, C<CHECK>, C<INIT> or C<END> block, or
in a C<DESTROY> method.
This function should have been named wantlist() instead.
=item warn LIST
X<warn> X<warning> X<STDERR>
=for Pod::Functions print debugging info
Prints the value of LIST to STDERR. If the last element of LIST does
not end in a newline, it appends the same file/line number text as C<die>
does.
If the output is empty and C<$@> already contains a value (typically from a
previous eval) that value is used after appending C<"\t...caught">
to C<$@>. This is useful for staying almost, but not entirely similar to
C<die>.
If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
No message is printed if there is a C<$SIG{__WARN__}> handler
installed. It is the handler's responsibility to deal with the message
as it sees fit (like, for instance, converting it into a C<die>). Most
handlers must therefore arrange to actually display the
warnings that they are not prepared to deal with, by calling C<warn>
again in the handler. Note that this is quite safe and will not
produce an endless loop, since C<__WARN__> hooks are not called from
inside one.
You will find this behavior is slightly different from that of
C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
instead call C<die> again to change it).
Using a C<__WARN__> handler provides a powerful way to silence all
warnings (even the so-called mandatory ones). An example:
# wipe out *all* compile-time warnings
BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,
# but hey, you asked for it!
# no compile-time or run-time warnings before here
$DOWARN = 1;
# run-time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up
See L<perlvar> for details on setting C<%SIG> entries and for more
examples. See the Carp module for other kinds of warnings using its
carp() and cluck() functions.
=item write FILEHANDLE
X<write>
=item write EXPR
=item write
=for Pod::Functions print a picture record
Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
using the format associated with that file. By default the format for
a file is the one having the same name as the filehandle, but the
format for the current output channel (see the C<select> function) may be set
explicitly by assigning the name of the format to the C<$~> variable.
Top of form processing is handled automatically: if there is insufficient
room on the current page for the formatted record, the page is advanced by
writing a form feed and a special top-of-page
format is used to format the new
page header before the record is written. By default, the top-of-page
format is the name of the filehandle with "_TOP" appended, or "top"
in the current package if the former does not exist. This would be a
problem with autovivified filehandles, but it may be dynamically set to the
format of your choice by assigning the name to the C<$^> variable while
that filehandle is selected. The number of lines remaining on the current
page is in variable C<$->, which can be set to C<0> to force a new page.
If FILEHANDLE is unspecified, output goes to the current default output
channel, which starts out as STDOUT but may be changed by the
C<select> operator. If the FILEHANDLE is an EXPR, then the expression
is evaluated and the resulting string is used to look up the name of
the FILEHANDLE at run time. For more on formats, see L<perlform>.
Note that write is I<not> the opposite of C<read>. Unfortunately.
=item y///
=for Pod::Functions transliterate a string
The transliteration operator. Same as C<tr///>. See
L<perlop/"Quote-Like Operators">.
=back
=head2 Non-function Keywords by Cross-reference
=head3 perldata
=over
=item __DATA__
=item __END__
These keywords are documented in L<perldata/"Special Literals">.
=back
=head3 perlmod
=over
=item BEGIN
=item CHECK
=item END
=item INIT
=item UNITCHECK
These compile phase keywords are documented in L<perlmod/"BEGIN, UNITCHECK, CHECK, INIT and END">.
=back
=head3 perlobj
=over
=item DESTROY
This method keyword is documented in L<perlobj/"Destructors">.
=back
=head3 perlop
=over
=item and
=item cmp
=item eq
=item ge
=item gt
=item le
=item lt
=item ne
=item not
=item or
=item x
=item xor
These operators are documented in L<perlop>.
=back
=head3 perlsub
=over
=item AUTOLOAD
This keyword is documented in L<perlsub/"Autoloading">.
=back
=head3 perlsyn
=over
=item else
=item elsif
=item for
=item foreach
=item if
=item unless
=item until
=item while
These flow-control keywords are documented in L<perlsyn/"Compound Statements">.
=item elseif
The "else if" keyword is spelled C<elsif> in Perl. There's no C<elif>
or C<else if> either. It does parse C<elseif>, but only to warn you
about not using it.
See the documentation for flow-control keywords in L<perlsyn/"Compound
Statements">.
=back
=over
=item default
=item given
=item when
These flow-control keywords related to the experimental switch feature are
documented in L<perlsyn/"Switch Statements">.
=back
=cut
|