1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
|
=head1 NAME
perlintro -- a brief introduction and overview of Perl
=head1 DESCRIPTION
This document is intended to give you a quick overview of the Perl
programming language, along with pointers to further documentation. It
is intended as a "bootstrap" guide for those who are new to the
language, and provides just enough information for you to be able to
read other peoples' Perl and understand roughly what it's doing, or
write your own simple scripts.
This introductory document does not aim to be complete. It does not
even aim to be entirely accurate. In some cases perfection has been
sacrificed in the goal of getting the general idea across. You are
I<strongly> advised to follow this introduction with more information
from the full Perl manual, the table of contents to which can be found
in L<perltoc>.
Throughout this document you'll see references to other parts of the
Perl documentation. You can read that documentation using the C<perldoc>
command or whatever method you're using to read this document.
=head2 What is Perl?
Perl is a general-purpose programming language originally developed for
text manipulation and now used for a wide range of tasks including
system administration, web development, network programming, GUI
development, and more.
The language is intended to be practical (easy to use, efficient,
complete) rather than beautiful (tiny, elegant, minimal). Its major
features are that it's easy to use, supports both procedural and
object-oriented (OO) programming, has powerful built-in support for text
processing, and has one of the world's most impressive collections of
third-party modules.
Different definitions of Perl are given in L<perl>, L<perlfaq1> and
no doubt other places. From this we can determine that Perl is different
things to different people, but that lots of people think it's at least
worth writing about.
=head2 Running Perl programs
To run a Perl program from the Unix command line:
perl progname.pl
Alternatively, put this as the first line of your script:
#!/usr/bin/env perl
... and run the script as C</path/to/script.pl>. Of course, it'll need
to be executable first, so C<chmod 755 script.pl> (under Unix).
For more information, including instructions for other platforms such as
Windows and MacOS, read L<perlrun>.
=head2 Basic syntax overview
A Perl script or program consists of one or more statements. These
statements are simply written in the script in a straightforward
fashion. There is no need to have a C<main()> function or anything of
that kind.
Perl statements end in a semi-colon:
print "Hello, world";
Comments start with a hash symbol and run to the end of the line
# This is a comment
Whitespace is irrelevant:
print
"Hello, world"
;
... except inside quoted strings:
# this would print with a linebreak in the middle
print "Hello
world";
Double quotes or single quotes may be used around literal strings:
print "Hello, world";
print 'Hello, world';
However, only double quotes "interpolate" variables and special
characters such as newlines (C<\n>):
print "Hello, $name\n"; # works fine
print 'Hello, $name\n'; # prints $name\n literally
Numbers don't need quotes around them:
print 42;
You can use parentheses for functions' arguments or omit them
according to your personal taste. They are only required
occasionally to clarify issues of precedence.
print("Hello, world\n");
print "Hello, world\n";
More detailed information about Perl syntax can be found in L<perlsyn>.
=head2 Perl variable types
Perl has three main variable types: scalars, arrays, and hashes.
=over 4
=item Scalars
A scalar represents a single value:
my $animal = "camel";
my $answer = 42;
Scalar values can be strings, integers or floating point numbers, and Perl
will automatically convert between them as required. There is no need
to pre-declare your variable types.
Scalar values can be used in various ways:
print $animal;
print "The animal is $animal\n";
print "The square of $answer is ", $answer * $answer, "\n";
There are a number of "magic" scalars with names that look like
punctuation or line noise. These special variables are used for all
kinds of purposes, and are documented in L<perlvar>. The only one you
need to know about for now is C<$_> which is the "default variable".
It's used as the default argument to a number of functions in Perl, and
it's set implicitly by certain looping constructs.
print; # prints contents of $_ by default
=item Arrays
An array represents a list of values:
my @animals = ("camel", "llama", "owl");
my @numbers = (23, 42, 69);
my @mixed = ("camel", 42, 1.23);
Arrays are zero-indexed. Here's how you get at elements in an array:
print $animals[0]; # prints "camel"
print $animals[1]; # prints "llama"
The special variable C<$#array> tells you the index of the last element
of an array:
print $mixed[$#mixed]; # last element, prints 1.23
You might be tempted to use C<$#array + 1> to tell you how many items there
are in an array. Don't bother. As it happens, using C<@array> where Perl
expects to find a scalar value ("in scalar context") will give you the number
of elements in the array:
if (@animals < 5) { ... }
The elements we're getting from the array start with a C<$> because
we're getting just a single value out of the array -- you ask for a scalar,
you get a scalar.
To get multiple values from a array:
@animals[0,1]; # gives ("camel", "llama");
@animals[0..2]; # gives ("camel", "llama", "owl");
@animals[1..$#animals]; # gives all except the first element
This is called an "array slice".
You can do various useful things to lists:
my @sorted = sort @animals;
my @backwards = reverse @numbers;
There are a couple of special arrays too, such as C<@ARGV> (the command
line arguments to your script) and C<@_> (the arguments passed to a
subroutine). These are documented in L<perlvar>.
=item Hashes
A hash represents a set of key/value pairs:
my %fruit_color = ("apple", "red", "banana", "yellow");
You can use whitespace and the C<< => >> operator to lay them out more
nicely:
my %fruit_color = (
apple => "red",
banana => "yellow",
);
To get at hash elements:
$fruit_color{"apple"}; # gives "red"
You can get at lists of keys and values with C<keys()> and
C<values()>.
my @fruits = keys %fruit_colors;
my @colors = values %fruit_colors;
Hashes have no particular internal order, though you can sort the keys
and loop through them.
Just like special scalars and arrays, there are also special hashes.
The most well known of these is C<%ENV> which contains environment
variables. Read all about it (and other special variables) in
L<perlvar>.
=back
Scalars, arrays and hashes are documented more fully in L<perldata>.
More complex data types can be constructed using references, which allow
you to build lists and hashes within lists and hashes.
A reference is a scalar value and can refer to any other Perl data
type. So by storing a reference as the value of an array or hash
element, you can easily create lists and hashes within lists and
hashes. The following example shows a 2 level hash of hash
structure using anonymous hash references.
my $variables = {
scalar => {
description => "single item",
sigil => '$',
},
array => {
description => "ordered list of items",
sigil => '@',
},
hash => {
description => "key/value pairs",
sigil => '%',
},
};
print "Scalars begin with a $variables->{'scalar'}->{'sigil'}\n";
Exhaustive information on the topic of references can be found in
L<perlreftut>, L<perllol>, L<perlref> and L<perldsc>.
=head2 Variable scoping
Throughout the previous section all the examples have used the syntax:
my $var = "value";
The C<my> is actually not required; you could just use:
$var = "value";
However, the above usage will create global variables throughout your
program, which is bad programming practice. C<my> creates lexically
scoped variables instead. The variables are scoped to the block
(i.e. a bunch of statements surrounded by curly-braces) in which they
are defined.
my $a = "foo";
if ($some_condition) {
my $b = "bar";
print $a; # prints "foo"
print $b; # prints "bar"
}
print $a; # prints "foo"
print $b; # prints nothing; $b has fallen out of scope
Using C<my> in combination with a C<use strict;> at the top of
your Perl scripts means that the interpreter will pick up certain common
programming errors. For instance, in the example above, the final
C<print $b> would cause a compile-time error and prevent you from
running the program. Using C<strict> is highly recommended.
=head2 Conditional and looping constructs
Perl has most of the usual conditional and looping constructs except for
case/switch (but if you really want it, there is a Switch module in Perl
5.8 and newer, and on CPAN. See the section on modules, below, for more
information about modules and CPAN).
The conditions can be any Perl expression. See the list of operators in
the next section for information on comparison and boolean logic operators,
which are commonly used in conditional statements.
=over 4
=item if
if ( condition ) {
...
} elsif ( other condition ) {
...
} else {
...
}
There's also a negated version of it:
unless ( condition ) {
...
}
This is provided as a more readable version of C<if (!I<condition>)>.
Note that the braces are required in Perl, even if you've only got one
line in the block. However, there is a clever way of making your one-line
conditional blocks more English like:
# the traditional way
if ($zippy) {
print "Yow!";
}
# the Perlish post-condition way
print "Yow!" if $zippy;
print "We have no bananas" unless $bananas;
=item while
while ( condition ) {
...
}
There's also a negated version, for the same reason we have C<unless>:
until ( condition ) {
...
}
You can also use C<while> in a post-condition:
print "LA LA LA\n" while 1; # loops forever
=item for
Exactly like C:
for ($i=0; $i <= $max; $i++) {
...
}
The C style for loop is rarely needed in Perl since Perl provides
the more friendly list scanning C<foreach> loop.
=item foreach
foreach (@array) {
print "This element is $_\n";
}
# you don't have to use the default $_ either...
foreach my $key (keys %hash) {
print "The value of $key is $hash{$key}\n";
}
=back
For more detail on looping constructs (and some that weren't mentioned in
this overview) see L<perlsyn>.
=head2 Builtin operators and functions
Perl comes with a wide selection of builtin functions. Some of the ones
we've already seen include C<print>, C<sort> and C<reverse>. A list of
them is given at the start of L<perlfunc> and you can easily read
about any given function by using C<perldoc -f I<functionname>>.
Perl operators are documented in full in L<perlop>, but here are a few
of the most common ones:
=over 4
=item Arithmetic
+ addition
- subtraction
* multiplication
/ division
=item Numeric comparison
== equality
!= inequality
< less than
> greater than
<= less than or equal
>= greater than or equal
=item String comparison
eq equality
ne inequality
lt less than
gt greater than
le less than or equal
ge greater than or equal
(Why do we have separate numeric and string comparisons? Because we don't
have special variable types, and Perl needs to know whether to sort
numerically (where 99 is less than 100) or alphabetically (where 100 comes
before 99).
=item Boolean logic
&& and
|| or
! not
(C<and>, C<or> and C<not> aren't just in the above table as descriptions
of the operators -- they're also supported as operators in their own
right. They're more readable than the C-style operators, but have
different precedence to C<&&> and friends. Check L<perlop> for more
detail.)
=item Miscellaneous
= assignment
. string concatenation
x string multiplication
.. range operator (creates a list of numbers)
=back
Many operators can be combined with a C<=> as follows:
$a += 1; # same as $a = $a + 1
$a -= 1; # same as $a = $a - 1
$a .= "\n"; # same as $a = $a . "\n";
=head2 Files and I/O
You can open a file for input or output using the C<open()> function.
It's documented in extravagant detail in L<perlfunc> and L<perlopentut>,
but in short:
open(INFILE, "input.txt") or die "Can't open input.txt: $!";
open(OUTFILE, ">output.txt") or die "Can't open output.txt: $!";
open(LOGFILE, ">>my.log") or die "Can't open logfile: $!";
You can read from an open filehandle using the C<< <> >> operator. In
scalar context it reads a single line from the filehandle, and in list
context it reads the whole file in, assigning each line to an element of
the list:
my $line = <INFILE>;
my @lines = <INFILE>;
Reading in the whole file at one time is called slurping. It can
be useful but it may be a memory hog. Most text file processing
can be done a line at a time with Perl's looping constructs.
The C<< <> >> operator is most often seen in a C<while> loop:
while (<INFILE>) { # assigns each line in turn to $_
print "Just read in this line: $_";
}
We've already seen how to print to standard output using C<print()>.
However, C<print()> can also take an optional first argument specifying
which filehandle to print to:
print STDERR "This is your final warning.\n";
print OUTFILE $record;
print LOGFILE $logmessage;
When you're done with your filehandles, you should C<close()> them
(though to be honest, Perl will clean up after you if you forget):
close INFILE;
=head2 Regular expressions
Perl's regular expression support is both broad and deep, and is the
subject of lengthy documentation in L<perlrequick>, L<perlretut>, and
elsewhere. However, in short:
=over 4
=item Simple matching
if (/foo/) { ... } # true if $_ contains "foo"
if ($a =~ /foo/) { ... } # true if $a contains "foo"
The C<//> matching operator is documented in L<perlop>. It operates on
C<$_> by default, or can be bound to another variable using the C<=~>
binding operator (also documented in L<perlop>).
=item Simple substitution
s/foo/bar/; # replaces foo with bar in $_
$a =~ s/foo/bar/; # replaces foo with bar in $a
$a =~ s/foo/bar/g; # replaces ALL INSTANCES of foo with bar in $a
The C<s///> substitution operator is documented in L<perlop>.
=item More complex regular expressions
You don't just have to match on fixed strings. In fact, you can match
on just about anything you could dream of by using more complex regular
expressions. These are documented at great length in L<perlre>, but for
the meantime, here's a quick cheat sheet:
. a single character
\s a whitespace character (space, tab, newline)
\S non-whitespace character
\d a digit (0-9)
\D a non-digit
\w a word character (a-z, A-Z, 0-9, _)
\W a non-word character
[aeiou] matches a single character in the given set
[^aeiou] matches a single character outside the given set
(foo|bar|baz) matches any of the alternatives specified
^ start of string
$ end of string
Quantifiers can be used to specify how many of the previous thing you
want to match on, where "thing" means either a literal character, one
of the metacharacters listed above, or a group of characters or
metacharacters in parentheses.
* zero or more of the previous thing
+ one or more of the previous thing
? zero or one of the previous thing
{3} matches exactly 3 of the previous thing
{3,6} matches between 3 and 6 of the previous thing
{3,} matches 3 or more of the previous thing
Some brief examples:
/^\d+/ string starts with one or more digits
/^$/ nothing in the string (start and end are adjacent)
/(\d\s){3}/ a three digits, each followed by a whitespace
character (eg "3 4 5 ")
/(a.)+/ matches a string in which every odd-numbered letter
is a (eg "abacadaf")
# This loop reads from STDIN, and prints non-blank lines:
while (<>) {
next if /^$/;
print;
}
=item Parentheses for capturing
As well as grouping, parentheses serve a second purpose. They can be
used to capture the results of parts of the regexp match for later use.
The results end up in C<$1>, C<$2> and so on.
# a cheap and nasty way to break an email address up into parts
if ($email =~ /([^@])+@(.+)/) {
print "Username is $1\n";
print "Hostname is $2\n";
}
=item Other regexp features
Perl regexps also support backreferences, lookaheads, and all kinds of
other complex details. Read all about them in L<perlrequick>,
L<perlretut>, and L<perlre>.
=back
=head2 Writing subroutines
Writing subroutines is easy:
sub log {
my $logmessage = shift;
print LOGFILE $logmessage;
}
What's that C<shift>? Well, the arguments to a subroutine are available
to us as a special array called C<@_> (see L<perlvar> for more on that).
The default argument to the C<shift> function just happens to be C<@_>.
So C<my $logmessage = shift;> shifts the first item off the list of
arguments and assigns it to C<$logmessage>.
We can manipulate C<@_> in other ways too:
my ($logmessage, $priority) = @_; # common
my $logmessage = $_[0]; # uncommon, and ugly
Subroutines can also return values:
sub square {
my $num = shift;
my $result = $num * $num;
return $result;
}
For more information on writing subroutines, see L<perlsub>.
=head2 OO Perl
OO Perl is relatively simple and is implemented using references which
know what sort of object they are based on Perl's concept of packages.
However, OO Perl is largely beyond the scope of this document.
Read L<perlboot>, L<perltoot>, L<perltooc> and L<perlobj>.
As a beginning Perl programmer, your most common use of OO Perl will be
in using third-party modules, which are documented below.
=head2 Using Perl modules
Perl modules provide a range of features to help you avoid reinventing
the wheel, and can be downloaded from CPAN (http://www.cpan.org). A
number of popular modules are included with the Perl distribution
itself.
Categories of modules range from text manipulation to network protocols
to database integration to graphics. A categorized list of modules is
also available from CPAN.
To learn how to install modules you download from CPAN, read
L<perlmodinstall>
To learn how to use a particular module, use C<perldoc I<Module::Name>>.
Typically you will want to C<use I<Module::Name>>, which will then give
you access to exported functions or an OO interface to the module.
L<perlfaq> contains questions and answers related to many common
tasks, and often provides suggestions for good CPAN modules to use.
L<perlmod> describes Perl modules in general. L<perlmodlib> lists the
modules which came with your Perl installation.
If you feel the urge to write Perl modules, L<perlnewmod> will give you
good advice.
=head1 AUTHOR
Kirrily "Skud" Robert <skud@cpan.org>
|