1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
|
=head1 NAME
perlunicode - Unicode support in Perl
=head1 DESCRIPTION
=head2 Important Caveats
Unicode support is an extensive requirement. While Perl does not
implement the Unicode standard or the accompanying technical reports
from cover to cover, Perl does support many Unicode features.
=over 4
=item Input and Output Layers
Perl knows when a filehandle uses Perl's internal Unicode encodings
(UTF-8, or UTF-EBCDIC if in EBCDIC) if the filehandle is opened with
the ":utf8" layer. Other encodings can be converted to Perl's
encoding on input or from Perl's encoding on output by use of the
":encoding(...)" layer. See L<open>.
To indicate that Perl source itself is using a particular encoding,
see L<encoding>.
=item Regular Expressions
The regular expression compiler produces polymorphic opcodes. That is,
the pattern adapts to the data and automatically switches to the Unicode
character scheme when presented with Unicode data--or instead uses
a traditional byte scheme when presented with byte data.
=item C<use utf8> still needed to enable UTF-8/UTF-EBCDIC in scripts
As a compatibility measure, the C<use utf8> pragma must be explicitly
included to enable recognition of UTF-8 in the Perl scripts themselves
(in string or regular expression literals, or in identifier names) on
ASCII-based machines or to recognize UTF-EBCDIC on EBCDIC-based
machines. B<These are the only times when an explicit C<use utf8>
is needed.> See L<utf8>.
You can also use the C<encoding> pragma to change the default encoding
of the data in your script; see L<encoding>.
=back
=head2 Byte and Character Semantics
Beginning with version 5.6, Perl uses logically-wide characters to
represent strings internally.
In future, Perl-level operations will be expected to work with
characters rather than bytes.
However, as an interim compatibility measure, Perl aims to
provide a safe migration path from byte semantics to character
semantics for programs. For operations where Perl can unambiguously
decide that the input data are characters, Perl switches to
character semantics. For operations where this determination cannot
be made without additional information from the user, Perl decides in
favor of compatibility and chooses to use byte semantics.
This behavior preserves compatibility with earlier versions of Perl,
which allowed byte semantics in Perl operations only if
none of the program's inputs were marked as being as source of Unicode
character data. Such data may come from filehandles, from calls to
external programs, from information provided by the system (such as %ENV),
or from literals and constants in the source text.
The C<bytes> pragma will always, regardless of platform, force byte
semantics in a particular lexical scope. See L<bytes>.
The C<utf8> pragma is primarily a compatibility device that enables
recognition of UTF-(8|EBCDIC) in literals encountered by the parser.
Note that this pragma is only required while Perl defaults to byte
semantics; when character semantics become the default, this pragma
may become a no-op. See L<utf8>.
Unless explicitly stated, Perl operators use character semantics
for Unicode data and byte semantics for non-Unicode data.
The decision to use character semantics is made transparently. If
input data comes from a Unicode source--for example, if a character
encoding layer is added to a filehandle or a literal Unicode
string constant appears in a program--character semantics apply.
Otherwise, byte semantics are in effect. The C<bytes> pragma should
be used to force byte semantics on Unicode data.
If strings operating under byte semantics and strings with Unicode
character data are concatenated, the new string will be upgraded to
I<ISO 8859-1 (Latin-1)>, even if the old Unicode string used EBCDIC.
This translation is done without regard to the system's native 8-bit
encoding, so to change this for systems with non-Latin-1 and
non-EBCDIC native encodings use the C<encoding> pragma. See
L<encoding>.
Under character semantics, many operations that formerly operated on
bytes now operate on characters. A character in Perl is
logically just a number ranging from 0 to 2**31 or so. Larger
characters may encode into longer sequences of bytes internally, but
this internal detail is mostly hidden for Perl code.
See L<perluniintro> for more.
=head2 Effects of Character Semantics
Character semantics have the following effects:
=over 4
=item *
Strings--including hash keys--and regular expression patterns may
contain characters that have an ordinal value larger than 255.
If you use a Unicode editor to edit your program, Unicode characters
may occur directly within the literal strings in one of the various
Unicode encodings (UTF-8, UTF-EBCDIC, UCS-2, etc.), but will be recognized
as such and converted to Perl's internal representation only if the
appropriate L<encoding> is specified.
Unicode characters can also be added to a string by using the
C<\x{...}> notation. The Unicode code for the desired character, in
hexadecimal, should be placed in the braces. For instance, a smiley
face is C<\x{263A}>. This encoding scheme only works for characters
with a code of 0x100 or above.
Additionally, if you
use charnames ':full';
you can use the C<\N{...}> notation and put the official Unicode
character name within the braces, such as C<\N{WHITE SMILING FACE}>.
=item *
If an appropriate L<encoding> is specified, identifiers within the
Perl script may contain Unicode alphanumeric characters, including
ideographs. Perl does not currently attempt to canonicalize variable
names.
=item *
Regular expressions match characters instead of bytes. "." matches
a character instead of a byte. The C<\C> pattern is provided to force
a match a single byte--a C<char> in C, hence C<\C>.
=item *
Character classes in regular expressions match characters instead of
bytes and match against the character properties specified in the
Unicode properties database. C<\w> can be used to match a Japanese
ideograph, for instance.
=item *
Named Unicode properties, scripts, and block ranges may be used like
character classes via the C<\p{}> "matches property" construct and
the C<\P{}> negation, "doesn't match property".
For instance, C<\p{Lu}> matches any character with the Unicode "Lu"
(Letter, uppercase) property, while C<\p{M}> matches any character
with an "M" (mark--accents and such) property. Brackets are not
required for single letter properties, so C<\p{M}> is equivalent to
C<\pM>. Many predefined properties are available, such as
C<\p{Mirrored}> and C<\p{Tibetan}>.
The official Unicode script and block names have spaces and dashes as
separators, but for convenience you can use dashes, spaces, or
underbars, and case is unimportant. It is recommended, however, that
for consistency you use the following naming: the official Unicode
script, property, or block name (see below for the additional rules
that apply to block names) with whitespace and dashes removed, and the
words "uppercase-first-lowercase-rest". C<Latin-1 Supplement> thus
becomes C<Latin1Supplement>.
You can also use negation in both C<\p{}> and C<\P{}> by introducing a caret
(^) between the first brace and the property name: C<\p{^Tamil}> is
equal to C<\P{Tamil}>.
Here are the basic Unicode General Category properties, followed by their
long form. You can use either; C<\p{Lu}> and C<\p{UppercaseLetter}>,
for instance, are identical.
Short Long
L Letter
Lu UppercaseLetter
Ll LowercaseLetter
Lt TitlecaseLetter
Lm ModifierLetter
Lo OtherLetter
M Mark
Mn NonspacingMark
Mc SpacingMark
Me EnclosingMark
N Number
Nd DecimalNumber
Nl LetterNumber
No OtherNumber
P Punctuation
Pc ConnectorPunctuation
Pd DashPunctuation
Ps OpenPunctuation
Pe ClosePunctuation
Pi InitialPunctuation
(may behave like Ps or Pe depending on usage)
Pf FinalPunctuation
(may behave like Ps or Pe depending on usage)
Po OtherPunctuation
S Symbol
Sm MathSymbol
Sc CurrencySymbol
Sk ModifierSymbol
So OtherSymbol
Z Separator
Zs SpaceSeparator
Zl LineSeparator
Zp ParagraphSeparator
C Other
Cc Control
Cf Format
Cs Surrogate (not usable)
Co PrivateUse
Cn Unassigned
Single-letter properties match all characters in any of the
two-letter sub-properties starting with the same letter.
C<L&> is a special case, which is an alias for C<Ll>, C<Lu>, and C<Lt>.
Because Perl hides the need for the user to understand the internal
representation of Unicode characters, there is no need to implement
the somewhat messy concept of surrogates. C<Cs> is therefore not
supported.
Because scripts differ in their directionality--Hebrew is
written right to left, for example--Unicode supplies these properties:
Property Meaning
BidiL Left-to-Right
BidiLRE Left-to-Right Embedding
BidiLRO Left-to-Right Override
BidiR Right-to-Left
BidiAL Right-to-Left Arabic
BidiRLE Right-to-Left Embedding
BidiRLO Right-to-Left Override
BidiPDF Pop Directional Format
BidiEN European Number
BidiES European Number Separator
BidiET European Number Terminator
BidiAN Arabic Number
BidiCS Common Number Separator
BidiNSM Non-Spacing Mark
BidiBN Boundary Neutral
BidiB Paragraph Separator
BidiS Segment Separator
BidiWS Whitespace
BidiON Other Neutrals
For example, C<\p{BidiR}> matches characters that are normally
written right to left.
=back
=head2 Scripts
The script names which can be used by C<\p{...}> and C<\P{...}>,
such as in C<\p{Latin}> or C<\p{Cyrillic}>, are as follows:
Arabic
Armenian
Bengali
Bopomofo
Buhid
CanadianAboriginal
Cherokee
Cyrillic
Deseret
Devanagari
Ethiopic
Georgian
Gothic
Greek
Gujarati
Gurmukhi
Han
Hangul
Hanunoo
Hebrew
Hiragana
Inherited
Kannada
Katakana
Khmer
Lao
Latin
Malayalam
Mongolian
Myanmar
Ogham
OldItalic
Oriya
Runic
Sinhala
Syriac
Tagalog
Tagbanwa
Tamil
Telugu
Thaana
Thai
Tibetan
Yi
Extended property classes can supplement the basic
properties, defined by the F<PropList> Unicode database:
ASCIIHexDigit
BidiControl
Dash
Deprecated
Diacritic
Extender
GraphemeLink
HexDigit
Hyphen
Ideographic
IDSBinaryOperator
IDSTrinaryOperator
JoinControl
LogicalOrderException
NoncharacterCodePoint
OtherAlphabetic
OtherDefaultIgnorableCodePoint
OtherGraphemeExtend
OtherLowercase
OtherMath
OtherUppercase
QuotationMark
Radical
SoftDotted
TerminalPunctuation
UnifiedIdeograph
WhiteSpace
and there are further derived properties:
Alphabetic Lu + Ll + Lt + Lm + Lo + OtherAlphabetic
Lowercase Ll + OtherLowercase
Uppercase Lu + OtherUppercase
Math Sm + OtherMath
ID_Start Lu + Ll + Lt + Lm + Lo + Nl
ID_Continue ID_Start + Mn + Mc + Nd + Pc
Any Any character
Assigned Any non-Cn character (i.e. synonym for \P{Cn})
Unassigned Synonym for \p{Cn}
Common Any character (or unassigned code point)
not explicitly assigned to a script
For backward compatibility (with Perl 5.6), all properties mentioned
so far may have C<Is> prepended to their name, so C<\P{IsLu}>, for
example, is equal to C<\P{Lu}>.
=head2 Blocks
In addition to B<scripts>, Unicode also defines B<blocks> of
characters. The difference between scripts and blocks is that the
concept of scripts is closer to natural languages, while the concept
of blocks is more of an artificial grouping based on groups of 256
Unicode characters. For example, the C<Latin> script contains letters
from many blocks but does not contain all the characters from those
blocks. It does not, for example, contain digits, because digits are
shared across many scripts. Digits and similar groups, like
punctuation, are in a category called C<Common>.
For more about scripts, see the UTR #24:
http://www.unicode.org/unicode/reports/tr24/
For more about blocks, see:
http://www.unicode.org/Public/UNIDATA/Blocks.txt
Block names are given with the C<In> prefix. For example, the
Katakana block is referenced via C<\p{InKatakana}>. The C<In>
prefix may be omitted if there is no naming conflict with a script
or any other property, but it is recommended that C<In> always be used
for block tests to avoid confusion.
These block names are supported:
InAlphabeticPresentationForms
InArabic
InArabicPresentationFormsA
InArabicPresentationFormsB
InArmenian
InArrows
InBasicLatin
InBengali
InBlockElements
InBopomofo
InBopomofoExtended
InBoxDrawing
InBraillePatterns
InBuhid
InByzantineMusicalSymbols
InCJKCompatibility
InCJKCompatibilityForms
InCJKCompatibilityIdeographs
InCJKCompatibilityIdeographsSupplement
InCJKRadicalsSupplement
InCJKSymbolsAndPunctuation
InCJKUnifiedIdeographs
InCJKUnifiedIdeographsExtensionA
InCJKUnifiedIdeographsExtensionB
InCherokee
InCombiningDiacriticalMarks
InCombiningDiacriticalMarksforSymbols
InCombiningHalfMarks
InControlPictures
InCurrencySymbols
InCyrillic
InCyrillicSupplementary
InDeseret
InDevanagari
InDingbats
InEnclosedAlphanumerics
InEnclosedCJKLettersAndMonths
InEthiopic
InGeneralPunctuation
InGeometricShapes
InGeorgian
InGothic
InGreekExtended
InGreekAndCoptic
InGujarati
InGurmukhi
InHalfwidthAndFullwidthForms
InHangulCompatibilityJamo
InHangulJamo
InHangulSyllables
InHanunoo
InHebrew
InHighPrivateUseSurrogates
InHighSurrogates
InHiragana
InIPAExtensions
InIdeographicDescriptionCharacters
InKanbun
InKangxiRadicals
InKannada
InKatakana
InKatakanaPhoneticExtensions
InKhmer
InLao
InLatin1Supplement
InLatinExtendedA
InLatinExtendedAdditional
InLatinExtendedB
InLetterlikeSymbols
InLowSurrogates
InMalayalam
InMathematicalAlphanumericSymbols
InMathematicalOperators
InMiscellaneousMathematicalSymbolsA
InMiscellaneousMathematicalSymbolsB
InMiscellaneousSymbols
InMiscellaneousTechnical
InMongolian
InMusicalSymbols
InMyanmar
InNumberForms
InOgham
InOldItalic
InOpticalCharacterRecognition
InOriya
InPrivateUseArea
InRunic
InSinhala
InSmallFormVariants
InSpacingModifierLetters
InSpecials
InSuperscriptsAndSubscripts
InSupplementalArrowsA
InSupplementalArrowsB
InSupplementalMathematicalOperators
InSupplementaryPrivateUseAreaA
InSupplementaryPrivateUseAreaB
InSyriac
InTagalog
InTagbanwa
InTags
InTamil
InTelugu
InThaana
InThai
InTibetan
InUnifiedCanadianAboriginalSyllabics
InVariationSelectors
InYiRadicals
InYiSyllables
=over 4
=item *
The special pattern C<\X> matches any extended Unicode
sequence--"a combining character sequence" in Standardese--where the
first character is a base character and subsequent characters are mark
characters that apply to the base character. C<\X> is equivalent to
C<(?:\PM\pM*)>.
=item *
The C<tr///> operator translates characters instead of bytes. Note
that the C<tr///CU> functionality has been removed. For similar
functionality see pack('U0', ...) and pack('C0', ...).
=item *
Case translation operators use the Unicode case translation tables
when character input is provided. Note that C<uc()>, or C<\U> in
interpolated strings, translates to uppercase, while C<ucfirst>,
or C<\u> in interpolated strings, translates to titlecase in languages
that make the distinction.
=item *
Most operators that deal with positions or lengths in a string will
automatically switch to using character positions, including
C<chop()>, C<substr()>, C<pos()>, C<index()>, C<rindex()>,
C<sprintf()>, C<write()>, and C<length()>. Operators that
specifically do not switch include C<vec()>, C<pack()>, and
C<unpack()>. Operators that really don't care include C<chomp()>,
operators that treats strings as a bucket of bits such as C<sort()>,
and operators dealing with filenames.
=item *
The C<pack()>/C<unpack()> letters C<c> and C<C> do I<not> change,
since they are often used for byte-oriented formats. Again, think
C<char> in the C language.
There is a new C<U> specifier that converts between Unicode characters
and code points.
=item *
The C<chr()> and C<ord()> functions work on characters, similar to
C<pack("U")> and C<unpack("U")>, I<not> C<pack("C")> and
C<unpack("C")>. C<pack("C")> and C<unpack("C")> are methods for
emulating byte-oriented C<chr()> and C<ord()> on Unicode strings.
While these methods reveal the internal encoding of Unicode strings,
that is not something one normally needs to care about at all.
=item *
The bit string operators, C<& | ^ ~>, can operate on character data.
However, for backward compatibility, such as when using bit string
operations when characters are all less than 256 in ordinal value, one
should not use C<~> (the bit complement) with characters of both
values less than 256 and values greater than 256. Most importantly,
DeMorgan's laws (C<~($x|$y) eq ~$x&~$y> and C<~($x&$y) eq ~$x|~$y>)
will not hold. The reason for this mathematical I<faux pas> is that
the complement cannot return B<both> the 8-bit (byte-wide) bit
complement B<and> the full character-wide bit complement.
=item *
lc(), uc(), lcfirst(), and ucfirst() work for the following cases:
=over 8
=item *
the case mapping is from a single Unicode character to another
single Unicode character, or
=item *
the case mapping is from a single Unicode character to more
than one Unicode character.
=back
Things to do with locales (Lithuanian, Turkish, Azeri) do B<not> work
since Perl does not understand the concept of Unicode locales.
See the Unicode Technical Report #21, Case Mappings, for more details.
=back
=over 4
=item *
And finally, C<scalar reverse()> reverses by character rather than by byte.
=back
=head2 User-Defined Character Properties
You can define your own character properties by defining subroutines
whose names begin with "In" or "Is". The subroutines must be defined
in the C<main> package. The user-defined properties can be used in the
regular expression C<\p> and C<\P> constructs. Note that the effect
is compile-time and immutable once defined.
The subroutines must return a specially-formatted string, with one
or more newline-separated lines. Each line must be one of the following:
=over 4
=item *
Two hexadecimal numbers separated by horizontal whitespace (space or
tabular characters) denoting a range of Unicode code points to include.
=item *
Something to include, prefixed by "+": a built-in character
property (prefixed by "utf8::"), to represent all the characters in that
property; two hexadecimal code points for a range; or a single
hexadecimal code point.
=item *
Something to exclude, prefixed by "-": an existing character
property (prefixed by "utf8::"), for all the characters in that
property; two hexadecimal code points for a range; or a single
hexadecimal code point.
=item *
Something to negate, prefixed "!": an existing character
property (prefixed by "utf8::") for all the characters except the
characters in the property; two hexadecimal code points for a range;
or a single hexadecimal code point.
=back
For example, to define a property that covers both the Japanese
syllabaries (hiragana and katakana), you can define
sub InKana {
return <<END;
3040\t309F
30A0\t30FF
END
}
Imagine that the here-doc end marker is at the beginning of the line.
Now you can use C<\p{InKana}> and C<\P{InKana}>.
You could also have used the existing block property names:
sub InKana {
return <<'END';
+utf8::InHiragana
+utf8::InKatakana
END
}
Suppose you wanted to match only the allocated characters,
not the raw block ranges: in other words, you want to remove
the non-characters:
sub InKana {
return <<'END';
+utf8::InHiragana
+utf8::InKatakana
-utf8::IsCn
END
}
The negation is useful for defining (surprise!) negated classes.
sub InNotKana {
return <<'END';
!utf8::InHiragana
-utf8::InKatakana
+utf8::IsCn
END
}
You can also define your own mappings to be used in the lc(),
lcfirst(), uc(), and ucfirst() (or their string-inlined versions).
The principle is the same: define subroutines in the C<main> package
with names like C<ToLower> (for lc() and lcfirst()), C<ToTitle> (for
the first character in ucfirst()), and C<ToUpper> (for uc(), and the
rest of the characters in ucfirst()).
The string returned by the subroutines needs now to be three
hexadecimal numbers separated by tabulators: start of the source
range, end of the source range, and start of the destination range.
For example:
sub ToUpper {
return <<END;
0061\t0063\t0041
END
}
defines an uc() mapping that causes only the characters "a", "b", and
"c" to be mapped to "A", "B", "C", all other characters will remain
unchanged.
If there is no source range to speak of, that is, the mapping is from
a single character to another single character, leave the end of the
source range empty, but the two tabulator characters are still needed.
For example:
sub ToLower {
return <<END;
0041\t\t0061
END
}
defines a lc() mapping that causes only "A" to be mapped to "a", all
other characters will remain unchanged.
(For serious hackers only) If you want to introspect the default
mappings, you can find the data in the directory
C<$Config{privlib}>/F<unicore/To/>. The mapping data is returned as
the here-document, and the C<utf8::ToSpecFoo> are special exception
mappings derived from <$Config{privlib}>/F<unicore/SpecialCasing.txt>.
The C<Digit> and C<Fold> mappings that one can see in the directory
are not directly user-accessible, one can use either the
C<Unicode::UCD> module, or just match case-insensitively (that's when
the C<Fold> mapping is used).
A final note on the user-defined property tests and mappings: they
will be used only if the scalar has been marked as having Unicode
characters. Old byte-style strings will not be affected.
=head2 Character Encodings for Input and Output
See L<Encode>.
=head2 Unicode Regular Expression Support Level
The following list of Unicode support for regular expressions describes
all the features currently supported. The references to "Level N"
and the section numbers refer to the Unicode Technical Report 18,
"Unicode Regular Expression Guidelines".
=over 4
=item *
Level 1 - Basic Unicode Support
2.1 Hex Notation - done [1]
Named Notation - done [2]
2.2 Categories - done [3][4]
2.3 Subtraction - MISSING [5][6]
2.4 Simple Word Boundaries - done [7]
2.5 Simple Loose Matches - done [8]
2.6 End of Line - MISSING [9][10]
[ 1] \x{...}
[ 2] \N{...}
[ 3] . \p{...} \P{...}
[ 4] now scripts (see UTR#24 Script Names) in addition to blocks
[ 5] have negation
[ 6] can use regular expression look-ahead [a]
or user-defined character properties [b] to emulate subtraction
[ 7] include Letters in word characters
[ 8] note that Perl does Full case-folding in matching, not Simple:
for example U+1F88 is equivalent with U+1F00 U+03B9,
not with 1F80. This difference matters for certain Greek
capital letters with certain modifiers: the Full case-folding
decomposes the letter, while the Simple case-folding would map
it to a single character.
[ 9] see UTR #13 Unicode Newline Guidelines
[10] should do ^ and $ also on \x{85}, \x{2028} and \x{2029}
(should also affect <>, $., and script line numbers)
(the \x{85}, \x{2028} and \x{2029} do match \s)
[a] You can mimic class subtraction using lookahead.
For example, what UTR #18 might write as
[{Greek}-[{UNASSIGNED}]]
in Perl can be written as:
(?!\p{Unassigned})\p{InGreekAndCoptic}
(?=\p{Assigned})\p{InGreekAndCoptic}
But in this particular example, you probably really want
\p{GreekAndCoptic}
which will match assigned characters known to be part of the Greek script.
Also see the Unicode::Regex::Set module, it does implement the full
UTR #18 grouping, intersection, union, and removal (subtraction) syntax.
[b] See L</"User-Defined Character Properties">.
=item *
Level 2 - Extended Unicode Support
3.1 Surrogates - MISSING [11]
3.2 Canonical Equivalents - MISSING [12][13]
3.3 Locale-Independent Graphemes - MISSING [14]
3.4 Locale-Independent Words - MISSING [15]
3.5 Locale-Independent Loose Matches - MISSING [16]
[11] Surrogates are solely a UTF-16 concept and Perl's internal
representation is UTF-8. The Encode module does UTF-16, though.
[12] see UTR#15 Unicode Normalization
[13] have Unicode::Normalize but not integrated to regexes
[14] have \X but at this level . should equal that
[15] need three classes, not just \w and \W
[16] see UTR#21 Case Mappings
=item *
Level 3 - Locale-Sensitive Support
4.1 Locale-Dependent Categories - MISSING
4.2 Locale-Dependent Graphemes - MISSING [16][17]
4.3 Locale-Dependent Words - MISSING
4.4 Locale-Dependent Loose Matches - MISSING
4.5 Locale-Dependent Ranges - MISSING
[16] see UTR#10 Unicode Collation Algorithms
[17] have Unicode::Collate but not integrated to regexes
=back
=head2 Unicode Encodings
Unicode characters are assigned to I<code points>, which are abstract
numbers. To use these numbers, various encodings are needed.
=over 4
=item *
UTF-8
UTF-8 is a variable-length (1 to 6 bytes, current character allocations
require 4 bytes), byte-order independent encoding. For ASCII (and we
really do mean 7-bit ASCII, not another 8-bit encoding), UTF-8 is
transparent.
The following table is from Unicode 3.2.
Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+D800..U+DFFF ******* ill-formed *******
U+E000..U+FFFF EE..EF 80..BF 80..BF
U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
Note the C<A0..BF> in C<U+0800..U+0FFF>, the C<80..9F> in
C<U+D000...U+D7FF>, the C<90..B>F in C<U+10000..U+3FFFF>, and the
C<80...8F> in C<U+100000..U+10FFFF>. The "gaps" are caused by legal
UTF-8 avoiding non-shortest encodings: it is technically possible to
UTF-8-encode a single code point in different ways, but that is
explicitly forbidden, and the shortest possible encoding should always
be used. So that's what Perl does.
Another way to look at it is via bits:
Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte
0aaaaaaa 0aaaaaaa
00000bbbbbaaaaaa 110bbbbb 10aaaaaa
ccccbbbbbbaaaaaa 1110cccc 10bbbbbb 10aaaaaa
00000dddccccccbbbbbbaaaaaa 11110ddd 10cccccc 10bbbbbb 10aaaaaa
As you can see, the continuation bytes all begin with C<10>, and the
leading bits of the start byte tell how many bytes the are in the
encoded character.
=item *
UTF-EBCDIC
Like UTF-8 but EBCDIC-safe, in the way that UTF-8 is ASCII-safe.
=item *
UTF-16, UTF-16BE, UTF16-LE, Surrogates, and BOMs (Byte Order Marks)
The followings items are mostly for reference and general Unicode
knowledge, Perl doesn't use these constructs internally.
UTF-16 is a 2 or 4 byte encoding. The Unicode code points
C<U+0000..U+FFFF> are stored in a single 16-bit unit, and the code
points C<U+10000..U+10FFFF> in two 16-bit units. The latter case is
using I<surrogates>, the first 16-bit unit being the I<high
surrogate>, and the second being the I<low surrogate>.
Surrogates are code points set aside to encode the C<U+10000..U+10FFFF>
range of Unicode code points in pairs of 16-bit units. The I<high
surrogates> are the range C<U+D800..U+DBFF>, and the I<low surrogates>
are the range C<U+DC00..U+DFFF>. The surrogate encoding is
$hi = ($uni - 0x10000) / 0x400 + 0xD800;
$lo = ($uni - 0x10000) % 0x400 + 0xDC00;
and the decoding is
$uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);
If you try to generate surrogates (for example by using chr()), you
will get a warning if warnings are turned on, because those code
points are not valid for a Unicode character.
Because of the 16-bitness, UTF-16 is byte-order dependent. UTF-16
itself can be used for in-memory computations, but if storage or
transfer is required either UTF-16BE (big-endian) or UTF-16LE
(little-endian) encodings must be chosen.
This introduces another problem: what if you just know that your data
is UTF-16, but you don't know which endianness? Byte Order Marks, or
BOMs, are a solution to this. A special character has been reserved
in Unicode to function as a byte order marker: the character with the
code point C<U+FEFF> is the BOM.
The trick is that if you read a BOM, you will know the byte order,
since if it was written on a big-endian platform, you will read the
bytes C<0xFE 0xFF>, but if it was written on a little-endian platform,
you will read the bytes C<0xFF 0xFE>. (And if the originating platform
was writing in UTF-8, you will read the bytes C<0xEF 0xBB 0xBF>.)
The way this trick works is that the character with the code point
C<U+FFFE> is guaranteed not to be a valid Unicode character, so the
sequence of bytes C<0xFF 0xFE> is unambiguously "BOM, represented in
little-endian format" and cannot be C<U+FFFE>, represented in big-endian
format".
=item *
UTF-32, UTF-32BE, UTF32-LE
The UTF-32 family is pretty much like the UTF-16 family, expect that
the units are 32-bit, and therefore the surrogate scheme is not
needed. The BOM signatures will be C<0x00 0x00 0xFE 0xFF> for BE and
C<0xFF 0xFE 0x00 0x00> for LE.
=item *
UCS-2, UCS-4
Encodings defined by the ISO 10646 standard. UCS-2 is a 16-bit
encoding. Unlike UTF-16, UCS-2 is not extensible beyond C<U+FFFF>,
because it does not use surrogates. UCS-4 is a 32-bit encoding,
functionally identical to UTF-32.
=item *
UTF-7
A seven-bit safe (non-eight-bit) encoding, which is useful if the
transport or storage is not eight-bit safe. Defined by RFC 2152.
=back
=head2 Security Implications of Unicode
=over 4
=item *
Malformed UTF-8
Unfortunately, the specification of UTF-8 leaves some room for
interpretation of how many bytes of encoded output one should generate
from one input Unicode character. Strictly speaking, the shortest
possible sequence of UTF-8 bytes should be generated,
because otherwise there is potential for an input buffer overflow at
the receiving end of a UTF-8 connection. Perl always generates the
shortest length UTF-8, and with warnings on Perl will warn about
non-shortest length UTF-8 along with other malformations, such as the
surrogates, which are not real Unicode code points.
=item *
Regular expressions behave slightly differently between byte data and
character (Unicode) data. For example, the "word character" character
class C<\w> will work differently depending on if data is eight-bit bytes
or Unicode.
In the first case, the set of C<\w> characters is either small--the
default set of alphabetic characters, digits, and the "_"--or, if you
are using a locale (see L<perllocale>), the C<\w> might contain a few
more letters according to your language and country.
In the second case, the C<\w> set of characters is much, much larger.
Most importantly, even in the set of the first 256 characters, it will
probably match different characters: unlike most locales, which are
specific to a language and country pair, Unicode classifies all the
characters that are letters I<somewhere> as C<\w>. For example, your
locale might not think that LATIN SMALL LETTER ETH is a letter (unless
you happen to speak Icelandic), but Unicode does.
As discussed elsewhere, Perl has one foot (two hooves?) planted in
each of two worlds: the old world of bytes and the new world of
characters, upgrading from bytes to characters when necessary.
If your legacy code does not explicitly use Unicode, no automatic
switch-over to characters should happen. Characters shouldn't get
downgraded to bytes, either. It is possible to accidentally mix bytes
and characters, however (see L<perluniintro>), in which case C<\w> in
regular expressions might start behaving differently. Review your
code. Use warnings and the C<strict> pragma.
=back
=head2 Unicode in Perl on EBCDIC
The way Unicode is handled on EBCDIC platforms is still
experimental. On such platforms, references to UTF-8 encoding in this
document and elsewhere should be read as meaning the UTF-EBCDIC
specified in Unicode Technical Report 16, unless ASCII vs. EBCDIC issues
are specifically discussed. There is no C<utfebcdic> pragma or
":utfebcdic" layer; rather, "utf8" and ":utf8" are reused to mean
the platform's "natural" 8-bit encoding of Unicode. See L<perlebcdic>
for more discussion of the issues.
=head2 Locales
Usually locale settings and Unicode do not affect each other, but
there are a couple of exceptions:
=over 4
=item *
You can enable automatic UTF-8-ification of your standard file
handles, default C<open()> layer, and C<@ARGV> by using either
the C<-C> command line switch or the C<PERL_UNICODE> environment
variable, see L<perlrun> for the documentation of the C<-C> switch.
=item *
Perl tries really hard to work both with Unicode and the old
byte-oriented world. Most often this is nice, but sometimes Perl's
straddling of the proverbial fence causes problems.
=back
=head2 When Unicode Does Not Happen
While Perl does have extensive ways to input and output in Unicode,
and few other 'entry points' like the @ARGV which can be interpreted
as Unicode (UTF-8), there still are many places where Unicode (in some
encoding or another) could be given as arguments or received as
results, or both, but it is not.
The following are such interfaces. For all of these Perl currently
(as of 5.8.1) simply assumes byte strings both as arguments and results.
One reason why Perl does not attempt to resolve the role of Unicode in
this cases is that the answers are highly dependent on the operating
system and the file system(s). For example, whether filenames can be
in Unicode, and in exactly what kind of encoding, is not exactly a
portable concept. Similarly for the qx and system: how well will the
'command line interface' (and which of them?) handle Unicode?
=over 4
=item *
chmod, chmod, chown, chroot, exec, link, mkdir
rename, rmdir stat, symlink, truncate, unlink, utime
=item *
%ENV
=item *
glob (aka the <*>)
=item *
open, opendir, sysopen
=item *
qx (aka the backtick operator), system
=item *
readdir, readlink
=back
=head2 Forcing Unicode in Perl (Or Unforcing Unicode in Perl)
Sometimes (see L</"When Unicode Does Not Happen">) there are
situations where you simply need to force Perl to believe that a byte
string is UTF-8, or vice versa. The low-level calls
utf8::upgrade($bytestring) and utf8::downgrade($utf8string) are
the answers.
Do not use them without careful thought, though: Perl may easily get
very confused, angry, or even crash, if you suddenly change the 'nature'
of scalar like that. Especially careful you have to be if you use the
utf8::upgrade(): any random byte string is not valid UTF-8.
=head2 Using Unicode in XS
If you want to handle Perl Unicode in XS extensions, you may find the
following C APIs useful. See also L<perlguts/"Unicode Support"> for an
explanation about Unicode at the XS level, and L<perlapi> for the API
details.
=over 4
=item *
C<DO_UTF8(sv)> returns true if the C<UTF8> flag is on and the bytes
pragma is not in effect. C<SvUTF8(sv)> returns true is the C<UTF8>
flag is on; the bytes pragma is ignored. The C<UTF8> flag being on
does B<not> mean that there are any characters of code points greater
than 255 (or 127) in the scalar or that there are even any characters
in the scalar. What the C<UTF8> flag means is that the sequence of
octets in the representation of the scalar is the sequence of UTF-8
encoded code points of the characters of a string. The C<UTF8> flag
being off means that each octet in this representation encodes a
single character with code point 0..255 within the string. Perl's
Unicode model is not to use UTF-8 until it is absolutely necessary.
=item *
C<uvuni_to_utf8(buf, chr>) writes a Unicode character code point into
a buffer encoding the code point as UTF-8, and returns a pointer
pointing after the UTF-8 bytes.
=item *
C<utf8_to_uvuni(buf, lenp)> reads UTF-8 encoded bytes from a buffer and
returns the Unicode character code point and, optionally, the length of
the UTF-8 byte sequence.
=item *
C<utf8_length(start, end)> returns the length of the UTF-8 encoded buffer
in characters. C<sv_len_utf8(sv)> returns the length of the UTF-8 encoded
scalar.
=item *
C<sv_utf8_upgrade(sv)> converts the string of the scalar to its UTF-8
encoded form. C<sv_utf8_downgrade(sv)> does the opposite, if
possible. C<sv_utf8_encode(sv)> is like sv_utf8_upgrade except that
it does not set the C<UTF8> flag. C<sv_utf8_decode()> does the
opposite of C<sv_utf8_encode()>. Note that none of these are to be
used as general-purpose encoding or decoding interfaces: C<use Encode>
for that. C<sv_utf8_upgrade()> is affected by the encoding pragma
but C<sv_utf8_downgrade()> is not (since the encoding pragma is
designed to be a one-way street).
=item *
C<is_utf8_char(s)> returns true if the pointer points to a valid UTF-8
character.
=item *
C<is_utf8_string(buf, len)> returns true if C<len> bytes of the buffer
are valid UTF-8.
=item *
C<UTF8SKIP(buf)> will return the number of bytes in the UTF-8 encoded
character in the buffer. C<UNISKIP(chr)> will return the number of bytes
required to UTF-8-encode the Unicode character code point. C<UTF8SKIP()>
is useful for example for iterating over the characters of a UTF-8
encoded buffer; C<UNISKIP()> is useful, for example, in computing
the size required for a UTF-8 encoded buffer.
=item *
C<utf8_distance(a, b)> will tell the distance in characters between the
two pointers pointing to the same UTF-8 encoded buffer.
=item *
C<utf8_hop(s, off)> will return a pointer to an UTF-8 encoded buffer
that is C<off> (positive or negative) Unicode characters displaced
from the UTF-8 buffer C<s>. Be careful not to overstep the buffer:
C<utf8_hop()> will merrily run off the end or the beginning of the
buffer if told to do so.
=item *
C<pv_uni_display(dsv, spv, len, pvlim, flags)> and
C<sv_uni_display(dsv, ssv, pvlim, flags)> are useful for debugging the
output of Unicode strings and scalars. By default they are useful
only for debugging--they display B<all> characters as hexadecimal code
points--but with the flags C<UNI_DISPLAY_ISPRINT>,
C<UNI_DISPLAY_BACKSLASH>, and C<UNI_DISPLAY_QQ> you can make the
output more readable.
=item *
C<ibcmp_utf8(s1, pe1, u1, l1, u1, s2, pe2, l2, u2)> can be used to
compare two strings case-insensitively in Unicode. For case-sensitive
comparisons you can just use C<memEQ()> and C<memNE()> as usual.
=back
For more information, see L<perlapi>, and F<utf8.c> and F<utf8.h>
in the Perl source code distribution.
=head1 BUGS
=head2 Interaction with Locales
Use of locales with Unicode data may lead to odd results. Currently,
Perl attempts to attach 8-bit locale info to characters in the range
0..255, but this technique is demonstrably incorrect for locales that
use characters above that range when mapped into Unicode. Perl's
Unicode support will also tend to run slower. Use of locales with
Unicode is discouraged.
=head2 Interaction with Extensions
When Perl exchanges data with an extension, the extension should be
able to understand the UTF-8 flag and act accordingly. If the
extension doesn't know about the flag, it's likely that the extension
will return incorrectly-flagged data.
So if you're working with Unicode data, consult the documentation of
every module you're using if there are any issues with Unicode data
exchange. If the documentation does not talk about Unicode at all,
suspect the worst and probably look at the source to learn how the
module is implemented. Modules written completely in Perl shouldn't
cause problems. Modules that directly or indirectly access code written
in other programming languages are at risk.
For affected functions, the simple strategy to avoid data corruption is
to always make the encoding of the exchanged data explicit. Choose an
encoding that you know the extension can handle. Convert arguments passed
to the extensions to that encoding and convert results back from that
encoding. Write wrapper functions that do the conversions for you, so
you can later change the functions when the extension catches up.
To provide an example, let's say the popular Foo::Bar::escape_html
function doesn't deal with Unicode data yet. The wrapper function
would convert the argument to raw UTF-8 and convert the result back to
Perl's internal representation like so:
sub my_escape_html ($) {
my($what) = shift;
return unless defined $what;
Encode::decode_utf8(Foo::Bar::escape_html(Encode::encode_utf8($what)));
}
Sometimes, when the extension does not convert data but just stores
and retrieves them, you will be in a position to use the otherwise
dangerous Encode::_utf8_on() function. Let's say the popular
C<Foo::Bar> extension, written in C, provides a C<param> method that
lets you store and retrieve data according to these prototypes:
$self->param($name, $value); # set a scalar
$value = $self->param($name); # retrieve a scalar
If it does not yet provide support for any encoding, one could write a
derived class with such a C<param> method:
sub param {
my($self,$name,$value) = @_;
utf8::upgrade($name); # make sure it is UTF-8 encoded
if (defined $value)
utf8::upgrade($value); # make sure it is UTF-8 encoded
return $self->SUPER::param($name,$value);
} else {
my $ret = $self->SUPER::param($name);
Encode::_utf8_on($ret); # we know, it is UTF-8 encoded
return $ret;
}
}
Some extensions provide filters on data entry/exit points, such as
DB_File::filter_store_key and family. Look out for such filters in
the documentation of your extensions, they can make the transition to
Unicode data much easier.
=head2 Speed
Some functions are slower when working on UTF-8 encoded strings than
on byte encoded strings. All functions that need to hop over
characters such as length(), substr() or index(), or matching regular
expressions can work B<much> faster when the underlying data are
byte-encoded.
In Perl 5.8.0 the slowness was often quite spectacular; in Perl 5.8.1
a caching scheme was introduced which will hopefully make the slowness
somewhat less spectacular. Operations with UTF-8 encoded strings are
still slower, though.
=head2 Porting code from perl-5.6.X
Perl 5.8 has a different Unicode model from 5.6. In 5.6 the programmer
was required to use the C<utf8> pragma to declare that a given scope
expected to deal with Unicode data and had to make sure that only
Unicode data were reaching that scope. If you have code that is
working with 5.6, you will need some of the following adjustments to
your code. The examples are written such that the code will continue
to work under 5.6, so you should be safe to try them out.
=over 4
=item *
A filehandle that should read or write UTF-8
if ($] > 5.007) {
binmode $fh, ":utf8";
}
=item *
A scalar that is going to be passed to some extension
Be it Compress::Zlib, Apache::Request or any extension that has no
mention of Unicode in the manpage, you need to make sure that the
UTF-8 flag is stripped off. Note that at the time of this writing
(October 2002) the mentioned modules are not UTF-8-aware. Please
check the documentation to verify if this is still true.
if ($] > 5.007) {
require Encode;
$val = Encode::encode_utf8($val); # make octets
}
=item *
A scalar we got back from an extension
If you believe the scalar comes back as UTF-8, you will most likely
want the UTF-8 flag restored:
if ($] > 5.007) {
require Encode;
$val = Encode::decode_utf8($val);
}
=item *
Same thing, if you are really sure it is UTF-8
if ($] > 5.007) {
require Encode;
Encode::_utf8_on($val);
}
=item *
A wrapper for fetchrow_array and fetchrow_hashref
When the database contains only UTF-8, a wrapper function or method is
a convenient way to replace all your fetchrow_array and
fetchrow_hashref calls. A wrapper function will also make it easier to
adapt to future enhancements in your database driver. Note that at the
time of this writing (October 2002), the DBI has no standardized way
to deal with UTF-8 data. Please check the documentation to verify if
that is still true.
sub fetchrow {
my($self, $sth, $what) = @_; # $what is one of fetchrow_{array,hashref}
if ($] < 5.007) {
return $sth->$what;
} else {
require Encode;
if (wantarray) {
my @arr = $sth->$what;
for (@arr) {
defined && /[^\000-\177]/ && Encode::_utf8_on($_);
}
return @arr;
} else {
my $ret = $sth->$what;
if (ref $ret) {
for my $k (keys %$ret) {
defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret->{$k};
}
return $ret;
} else {
defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret;
return $ret;
}
}
}
}
=item *
A large scalar that you know can only contain ASCII
Scalars that contain only ASCII and are marked as UTF-8 are sometimes
a drag to your program. If you recognize such a situation, just remove
the UTF-8 flag:
utf8::downgrade($val) if $] > 5.007;
=back
=head1 SEE ALSO
L<perluniintro>, L<encoding>, L<Encode>, L<open>, L<utf8>, L<bytes>,
L<perlretut>, L<perlvar/"${^UNICODE}">
=cut
|