summaryrefslogtreecommitdiff
path: root/regcomp.c
blob: c5e54cc69a29b517f47181f06c50e8a34c59b9d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
/*    regcomp.c
 */

/*
 * 'A fair jaw-cracker dwarf-language must be.'            --Samwise Gamgee
 *
 *     [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
 */

/* This file contains functions for compiling a regular expression.  See
 * also regexec.c which funnily enough, contains functions for executing
 * a regular expression.
 *
 * This file is also copied at build time to ext/re/re_comp.c, where
 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
 * This causes the main functions to be compiled under new names and with
 * debugging support added, which makes "use re 'debug'" work.
 */

/* NOTE: this is derived from Henry Spencer's regexp code, and should not
 * confused with the original package (see point 3 below).  Thanks, Henry!
 */

/* Additional note: this code is very heavily munged from Henry's version
 * in places.  In some spots I've traded clarity for efficiency, so don't
 * blame Henry for some of the lack of readability.
 */

/* The names of the functions have been changed from regcomp and
 * regexec to pregcomp and pregexec in order to avoid conflicts
 * with the POSIX routines of the same names.
*/

#ifdef PERL_EXT_RE_BUILD
#include "re_top.h"
#endif

/*
 * pregcomp and pregexec -- regsub and regerror are not used in perl
 *
 *	Copyright (c) 1986 by University of Toronto.
 *	Written by Henry Spencer.  Not derived from licensed software.
 *
 *	Permission is granted to anyone to use this software for any
 *	purpose on any computer system, and to redistribute it freely,
 *	subject to the following restrictions:
 *
 *	1. The author is not responsible for the consequences of use of
 *		this software, no matter how awful, even if they arise
 *		from defects in it.
 *
 *	2. The origin of this software must not be misrepresented, either
 *		by explicit claim or by omission.
 *
 *	3. Altered versions must be plainly marked as such, and must not
 *		be misrepresented as being the original software.
 *
 *
 ****    Alterations to Henry's code are...
 ****
 ****    Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
 ****    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
 ****    by Larry Wall and others
 ****
 ****    You may distribute under the terms of either the GNU General Public
 ****    License or the Artistic License, as specified in the README file.

 *
 * Beware that some of this code is subtly aware of the way operator
 * precedence is structured in regular expressions.  Serious changes in
 * regular-expression syntax might require a total rethink.
 */

/* Note on debug output:
 *
 * This is set up so that -Dr turns on debugging like all other flags that are
 * enabled by -DDEBUGGING.  -Drv gives more verbose output.  This applies to
 * all regular expressions encountered in a program, and gives a huge amount of
 * output for all but the shortest programs.
 *
 * The ability to output pattern debugging information lexically, and with much
 * finer grained control was added, with 'use re qw(Debug ....);' available even
 * in non-DEBUGGING builds.  This is accomplished by copying the contents of
 * regcomp.c to ext/re/re_comp.c, and regexec.c is copied to ext/re/re_exec.c.
 * Those files are compiled and linked into the perl executable, and they are
 * compiled essentially as if DEBUGGING were enabled, and controlled by calls
 * to re.pm.
 *
 * That would normally mean linking errors when two functions of the same name
 * are attempted to be placed into the same executable.  That is solved in one
 * of four ways:
 *  1)  Static functions aren't known outside the file they are in, so for the
 *      many functions of that type in this file, it just isn't a problem.
 *  2)  Most externally known functions are enclosed in
 *          #ifndef PERL_IN_XSUB_RE
 *          ...
 *          #endif
 *      blocks, so there is only one defintion for them in the whole
 *      executable, the one in regcomp.c (or regexec.c).  The implication of
 *      that is any debugging info that comes from them is controlled only by
 *      -Dr.  Further, any static function they call will also be the version
 *      in regcomp.c (or regexec.c), so its debugging will also be by -Dr.
 *  3)  About a dozen external functions are re-#defined in ext/re/re_top.h, to
 *      have different names, so that what gets loaded in the executable is
 *      'Perl_foo' from regcomp.c (and regexec.c), and the identical function
 *      from re_comp.c (and re_exec.c), but with the name 'my_foo'  Debugging
 *      in the 'Perl_foo' versions is controlled by -Dr, but the 'my_foo'
 *      versions and their callees are under control of re.pm.   The catch is
 *      that references to all these go through the regexp_engine structure,
 *      which is initialized in regcomp.h to the Perl_foo versions, and
 *      substituted out in lexical scopes where 'use re' is in effect to the
 *      'my_foo' ones.   That structure is public API, so it would be a hard
 *      sell to add any additional members.
 *  4)  For functions in regcomp.c and re_comp.c that are called only from,
 *      respectively, regexec.c and re_exec.c, they can have two different
 *      names, depending on #ifdef'ing PERL_IN_XSUB_RE, in both regexec.c and
 *      embed.fnc.
 *
 * The bottom line is that if you add code to one of the public functions
 * listed in ext/re/re_top.h, debugging automagically works.  But if you write
 * a new function that needs to do debugging or there is a chain of calls from
 * it that need to do debugging, all functions in the chain should use options
 * 2) or 4) above.
 *
 * A function may have to be split so that debugging stuff is static, but it
 * calls out to some other function that only gets compiled in regcomp.c to
 * access data that we don't want to duplicate.
 */

#include "EXTERN.h"
#define PERL_IN_REGCOMP_C
#include "perl.h"

#define REG_COMP_C
#ifdef PERL_IN_XSUB_RE
#  include "re_comp.h"
EXTERN_C const struct regexp_engine my_reg_engine;
EXTERN_C const struct regexp_engine wild_reg_engine;
#else
#  include "regcomp.h"
#endif

#include "invlist_inline.h"
#include "unicode_constants.h"

#ifndef STATIC
#define	STATIC	static
#endif

/* this is a chain of data about sub patterns we are processing that
   need to be handled separately/specially in study_chunk. Its so
   we can simulate recursion without losing state.  */
struct scan_frame;
typedef struct scan_frame {
    regnode *last_regnode;      /* last node to process in this frame */
    regnode *next_regnode;      /* next node to process when last is reached */
    U32 prev_recursed_depth;
    I32 stopparen;              /* what stopparen do we use */
    bool in_gosub;              /* this or an outer frame is for GOSUB */

    struct scan_frame *this_prev_frame; /* this previous frame */
    struct scan_frame *prev_frame;      /* previous frame */
    struct scan_frame *next_frame;      /* next frame */
} scan_frame;

/* Certain characters are output as a sequence with the first being a
 * backslash. */
#define isBACKSLASHED_PUNCT(c)  memCHRs("-[]\\^", c)


struct RExC_state_t {
    U32		flags;			/* RXf_* are we folding, multilining? */
    U32		pm_flags;		/* PMf_* stuff from the calling PMOP */
    char	*precomp;		/* uncompiled string. */
    char	*precomp_end;		/* pointer to end of uncompiled string. */
    REGEXP	*rx_sv;			/* The SV that is the regexp. */
    regexp	*rx;                    /* perl core regexp structure */
    regexp_internal	*rxi;           /* internal data for regexp object
                                           pprivate field */
    char	*start;			/* Start of input for compile */
    char	*end;			/* End of input for compile */
    char	*parse;			/* Input-scan pointer. */
    char        *copy_start;            /* start of copy of input within
                                           constructed parse string */
    char        *save_copy_start;       /* Provides one level of saving
                                           and restoring 'copy_start' */
    char        *copy_start_in_input;   /* Position in input string
                                           corresponding to copy_start */
    SSize_t	whilem_seen;		/* number of WHILEM in this expr */
    regnode	*emit_start;		/* Start of emitted-code area */
    regnode_offset emit;		/* Code-emit pointer */
    I32		naughty;		/* How bad is this pattern? */
    I32		sawback;		/* Did we see \1, ...? */
    SSize_t	size;			/* Number of regnode equivalents in
                                           pattern */
    Size_t      sets_depth;              /* Counts recursion depth of already-
                                           compiled regex set patterns */
    U32		seen;

    I32      parens_buf_size;           /* #slots malloced open/close_parens */
    regnode_offset *open_parens;	/* offsets to open parens */
    regnode_offset *close_parens;	/* offsets to close parens */
    HV		*paren_names;		/* Paren names */

    /* position beyond 'precomp' of the warning message furthest away from
     * 'precomp'.  During the parse, no warnings are raised for any problems
     * earlier in the parse than this position.  This works if warnings are
     * raised the first time a given spot is parsed, and if only one
     * independent warning is raised for any given spot */
    Size_t	latest_warn_offset;

    I32         npar;                   /* Capture buffer count so far in the
                                           parse, (OPEN) plus one. ("par" 0 is
                                           the whole pattern)*/
    I32         total_par;              /* During initial parse, is either 0,
                                           or -1; the latter indicating a
                                           reparse is needed.  After that pass,
                                           it is what 'npar' became after the
                                           pass.  Hence, it being > 0 indicates
                                           we are in a reparse situation */
    I32		nestroot;		/* root parens we are in - used by
                                           accept */
    I32		seen_zerolen;
    regnode     *end_op;                /* END node in program */
    I32		utf8;		/* whether the pattern is utf8 or not */
    I32		orig_utf8;	/* whether the pattern was originally in utf8 */
                                /* XXX use this for future optimisation of case
                                 * where pattern must be upgraded to utf8. */
    I32		uni_semantics;	/* If a d charset modifier should use unicode
                                   rules, even if the pattern is not in
                                   utf8 */

    I32         recurse_count;          /* Number of recurse regops we have generated */
    regnode	**recurse;		/* Recurse regops */
    U8          *study_chunk_recursed;  /* bitmap of which subs we have moved
                                           through */
    U32         study_chunk_recursed_bytes;  /* bytes in bitmap */
    I32		in_lookaround;
    I32		contains_locale;
    I32		override_recoding;
    I32         recode_x_to_native;
    I32		in_multi_char_class;
    int		code_index;		/* next code_blocks[] slot */
    struct reg_code_blocks *code_blocks;/* positions of literal (?{})
                                            within pattern */
    SSize_t     maxlen;                        /* mininum possible number of chars in string to match */
    scan_frame *frame_head;
    scan_frame *frame_last;
    U32         frame_count;
    AV         *warn_text;
    HV         *unlexed_names;
    SV		*runtime_code_qr;	/* qr with the runtime code blocks */
#ifdef DEBUGGING
    const char  *lastparse;
    I32         lastnum;
    U32         study_chunk_recursed_count;
    AV          *paren_name_list;       /* idx -> name */
    SV          *mysv1;
    SV          *mysv2;

#define RExC_lastparse	(pRExC_state->lastparse)
#define RExC_lastnum	(pRExC_state->lastnum)
#define RExC_paren_name_list    (pRExC_state->paren_name_list)
#define RExC_study_chunk_recursed_count    (pRExC_state->study_chunk_recursed_count)
#define RExC_mysv	(pRExC_state->mysv1)
#define RExC_mysv1	(pRExC_state->mysv1)
#define RExC_mysv2	(pRExC_state->mysv2)

#endif
    bool        seen_d_op;
    bool        strict;
    bool        study_started;
    bool        in_script_run;
    bool        use_BRANCHJ;
    bool        sWARN_EXPERIMENTAL__VLB;
    bool        sWARN_EXPERIMENTAL__REGEX_SETS;
};

#define RExC_flags	(pRExC_state->flags)
#define RExC_pm_flags	(pRExC_state->pm_flags)
#define RExC_precomp	(pRExC_state->precomp)
#define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
#define RExC_copy_start_in_constructed  (pRExC_state->copy_start)
#define RExC_save_copy_start_in_constructed  (pRExC_state->save_copy_start)
#define RExC_precomp_end (pRExC_state->precomp_end)
#define RExC_rx_sv	(pRExC_state->rx_sv)
#define RExC_rx		(pRExC_state->rx)
#define RExC_rxi	(pRExC_state->rxi)
#define RExC_start	(pRExC_state->start)
#define RExC_end	(pRExC_state->end)
#define RExC_parse	(pRExC_state->parse)
#define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
#define RExC_whilem_seen	(pRExC_state->whilem_seen)
#define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
                                                   under /d from /u ? */

#ifdef RE_TRACK_PATTERN_OFFSETS
#  define RExC_offsets	(RExC_rxi->u.offsets) /* I am not like the
                                                         others */
#endif
#define RExC_emit	(pRExC_state->emit)
#define RExC_emit_start	(pRExC_state->emit_start)
#define RExC_sawback	(pRExC_state->sawback)
#define RExC_seen	(pRExC_state->seen)
#define RExC_size	(pRExC_state->size)
#define RExC_maxlen        (pRExC_state->maxlen)
#define RExC_npar	(pRExC_state->npar)
#define RExC_total_parens	(pRExC_state->total_par)
#define RExC_parens_buf_size	(pRExC_state->parens_buf_size)
#define RExC_nestroot   (pRExC_state->nestroot)
#define RExC_seen_zerolen	(pRExC_state->seen_zerolen)
#define RExC_utf8	(pRExC_state->utf8)
#define RExC_uni_semantics	(pRExC_state->uni_semantics)
#define RExC_orig_utf8	(pRExC_state->orig_utf8)
#define RExC_open_parens	(pRExC_state->open_parens)
#define RExC_close_parens	(pRExC_state->close_parens)
#define RExC_end_op	(pRExC_state->end_op)
#define RExC_paren_names	(pRExC_state->paren_names)
#define RExC_recurse	(pRExC_state->recurse)
#define RExC_recurse_count	(pRExC_state->recurse_count)
#define RExC_sets_depth         (pRExC_state->sets_depth)
#define RExC_study_chunk_recursed        (pRExC_state->study_chunk_recursed)
#define RExC_study_chunk_recursed_bytes  \
                                   (pRExC_state->study_chunk_recursed_bytes)
#define RExC_in_lookaround	(pRExC_state->in_lookaround)
#define RExC_contains_locale	(pRExC_state->contains_locale)
#define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)

#ifdef EBCDIC
#  define SET_recode_x_to_native(x)                                         \
                    STMT_START { RExC_recode_x_to_native = (x); } STMT_END
#else
#  define SET_recode_x_to_native(x) NOOP
#endif

#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
#define RExC_frame_head (pRExC_state->frame_head)
#define RExC_frame_last (pRExC_state->frame_last)
#define RExC_frame_count (pRExC_state->frame_count)
#define RExC_strict (pRExC_state->strict)
#define RExC_study_started      (pRExC_state->study_started)
#define RExC_warn_text (pRExC_state->warn_text)
#define RExC_in_script_run      (pRExC_state->in_script_run)
#define RExC_use_BRANCHJ        (pRExC_state->use_BRANCHJ)
#define RExC_warned_WARN_EXPERIMENTAL__VLB (pRExC_state->sWARN_EXPERIMENTAL__VLB)
#define RExC_warned_WARN_EXPERIMENTAL__REGEX_SETS (pRExC_state->sWARN_EXPERIMENTAL__REGEX_SETS)
#define RExC_unlexed_names (pRExC_state->unlexed_names)

/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
 * a flag to disable back-off on the fixed/floating substrings - if it's
 * a high complexity pattern we assume the benefit of avoiding a full match
 * is worth the cost of checking for the substrings even if they rarely help.
 */
#define RExC_naughty	(pRExC_state->naughty)
#define TOO_NAUGHTY (10)
#define MARK_NAUGHTY(add) \
    if (RExC_naughty < TOO_NAUGHTY) \
        RExC_naughty += (add)
#define MARK_NAUGHTY_EXP(exp, add) \
    if (RExC_naughty < TOO_NAUGHTY) \
        RExC_naughty += RExC_naughty / (exp) + (add)

#define	isNON_BRACE_QUANTIFIER(c)   ((c) == '*' || (c) == '+' || (c) == '?')
#define	isQUANTIFIER(s,e)  (   isNON_BRACE_QUANTIFIER(*s)                      \
                            || ((*s) == '{' && regcurly(s, e, NULL)))

/*
 * Flags to be passed up and down.
 */
#define	HASWIDTH	0x01	/* Known to not match null strings, could match
                                   non-null ones. */
#define	SIMPLE		0x02    /* Exactly one character wide */
                                /* (or LNBREAK as a special case) */
#define POSTPONED	0x08    /* (?1),(?&name), (??{...}) or similar */
#define TRYAGAIN	0x10	/* Weeded out a declaration. */
#define RESTART_PARSE   0x20    /* Need to redo the parse */
#define NEED_UTF8       0x40    /* In conjunction with RESTART_PARSE, need to
                                   calcuate sizes as UTF-8 */

#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)

/* whether trie related optimizations are enabled */
#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
#define TRIE_STUDY_OPT
#define FULL_TRIE_STUDY
#define TRIE_STCLASS
#endif



#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
#define PBITVAL(paren) (1 << ((paren) & 7))
#define PAREN_OFFSET(depth) \
    (RExC_study_chunk_recursed + (depth) * RExC_study_chunk_recursed_bytes)
#define PAREN_TEST(depth, paren) \
    (PBYTE(PAREN_OFFSET(depth), paren) & PBITVAL(paren))
#define PAREN_SET(depth, paren) \
    (PBYTE(PAREN_OFFSET(depth), paren) |= PBITVAL(paren))
#define PAREN_UNSET(depth, paren) \
    (PBYTE(PAREN_OFFSET(depth), paren) &= ~PBITVAL(paren))

#define REQUIRE_UTF8(flagp) STMT_START {                                   \
                                     if (!UTF) {                           \
                                         *flagp = RESTART_PARSE|NEED_UTF8; \
                                         return 0;                         \
                                     }                                     \
                             } STMT_END

/* /u is to be chosen if we are supposed to use Unicode rules, or if the
 * pattern is in UTF-8.  This latter condition is in case the outermost rules
 * are locale.  See GH #17278 */
#define toUSE_UNI_CHARSET_NOT_DEPENDS (RExC_uni_semantics || UTF)

/* Change from /d into /u rules, and restart the parse.  RExC_uni_semantics is
 * a flag that indicates we need to override /d with /u as a result of
 * something in the pattern.  It should only be used in regards to calling
 * set_regex_charset() or get_regex_charset() */
#define REQUIRE_UNI_RULES(flagp, restart_retval)                            \
    STMT_START {                                                            \
            if (DEPENDS_SEMANTICS) {                                        \
                set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);      \
                RExC_uni_semantics = 1;                                     \
                if (RExC_seen_d_op && LIKELY(! IN_PARENS_PASS)) {           \
                    /* No need to restart the parse if we haven't seen      \
                     * anything that differs between /u and /d, and no need \
                     * to restart immediately if we're going to reparse     \
                     * anyway to count parens */                            \
                    *flagp |= RESTART_PARSE;                                \
                    return restart_retval;                                  \
                }                                                           \
            }                                                               \
    } STMT_END

#define REQUIRE_BRANCHJ(flagp, restart_retval)                              \
    STMT_START {                                                            \
                RExC_use_BRANCHJ = 1;                                       \
                *flagp |= RESTART_PARSE;                                    \
                return restart_retval;                                      \
    } STMT_END

/* Until we have completed the parse, we leave RExC_total_parens at 0 or
 * less.  After that, it must always be positive, because the whole re is
 * considered to be surrounded by virtual parens.  Setting it to negative
 * indicates there is some construct that needs to know the actual number of
 * parens to be properly handled.  And that means an extra pass will be
 * required after we've counted them all */
#define ALL_PARENS_COUNTED (RExC_total_parens > 0)
#define REQUIRE_PARENS_PASS                                                 \
    STMT_START {  /* No-op if have completed a pass */                      \
                    if (! ALL_PARENS_COUNTED) RExC_total_parens = -1;       \
    } STMT_END
#define IN_PARENS_PASS (RExC_total_parens < 0)


/* This is used to return failure (zero) early from the calling function if
 * various flags in 'flags' are set.  Two flags always cause a return:
 * 'RESTART_PARSE' and 'NEED_UTF8'.   'extra' can be used to specify any
 * additional flags that should cause a return; 0 if none.  If the return will
 * be done, '*flagp' is first set to be all of the flags that caused the
 * return. */
#define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra)                  \
    STMT_START {                                                            \
            if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) {              \
                *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra));     \
                return 0;                                                   \
            }                                                               \
    } STMT_END

#define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))

#define RETURN_FAIL_ON_RESTART(flags,flagp)                                 \
                        RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
#define RETURN_FAIL_ON_RESTART_FLAGP(flagp)                                 \
                                    if (MUST_RESTART(*(flagp))) return 0

/* This converts the named class defined in regcomp.h to its equivalent class
 * number defined in handy.h. */
#define namedclass_to_classnum(class)  ((int) ((class) / 2))
#define classnum_to_namedclass(classnum)  ((classnum) * 2)

#define _invlist_union_complement_2nd(a, b, output) \
                        _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
#define _invlist_intersection_complement_2nd(a, b, output) \
                 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)

/* We add a marker if we are deferring expansion of a property that is both
 * 1) potentiallly user-defined; and
 * 2) could also be an official Unicode property.
 *
 * Without this marker, any deferred expansion can only be for a user-defined
 * one.  This marker shouldn't conflict with any that could be in a legal name,
 * and is appended to its name to indicate this.  There is a string and
 * character form */
#define DEFERRED_COULD_BE_OFFICIAL_MARKERs  "~"
#define DEFERRED_COULD_BE_OFFICIAL_MARKERc  '~'

/* What is infinity for optimization purposes */
#define OPTIMIZE_INFTY  SSize_t_MAX

/* About scan_data_t.

  During optimisation we recurse through the regexp program performing
  various inplace (keyhole style) optimisations. In addition study_chunk
  and scan_commit populate this data structure with information about
  what strings MUST appear in the pattern. We look for the longest
  string that must appear at a fixed location, and we look for the
  longest string that may appear at a floating location. So for instance
  in the pattern:

    /FOO[xX]A.*B[xX]BAR/

  Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
  strings (because they follow a .* construct). study_chunk will identify
  both FOO and BAR as being the longest fixed and floating strings respectively.

  The strings can be composites, for instance

     /(f)(o)(o)/

  will result in a composite fixed substring 'foo'.

  For each string some basic information is maintained:

  - min_offset
    This is the position the string must appear at, or not before.
    It also implicitly (when combined with minlenp) tells us how many
    characters must match before the string we are searching for.
    Likewise when combined with minlenp and the length of the string it
    tells us how many characters must appear after the string we have
    found.

  - max_offset
    Only used for floating strings. This is the rightmost point that
    the string can appear at. If set to OPTIMIZE_INFTY it indicates that the
    string can occur infinitely far to the right.
    For fixed strings, it is equal to min_offset.

  - minlenp
    A pointer to the minimum number of characters of the pattern that the
    string was found inside. This is important as in the case of positive
    lookahead or positive lookbehind we can have multiple patterns
    involved. Consider

    /(?=FOO).*F/

    The minimum length of the pattern overall is 3, the minimum length
    of the lookahead part is 3, but the minimum length of the part that
    will actually match is 1. So 'FOO's minimum length is 3, but the
    minimum length for the F is 1. This is important as the minimum length
    is used to determine offsets in front of and behind the string being
    looked for.  Since strings can be composites this is the length of the
    pattern at the time it was committed with a scan_commit. Note that
    the length is calculated by study_chunk, so that the minimum lengths
    are not known until the full pattern has been compiled, thus the
    pointer to the value.

  - lookbehind

    In the case of lookbehind the string being searched for can be
    offset past the start point of the final matching string.
    If this value was just blithely removed from the min_offset it would
    invalidate some of the calculations for how many chars must match
    before or after (as they are derived from min_offset and minlen and
    the length of the string being searched for).
    When the final pattern is compiled and the data is moved from the
    scan_data_t structure into the regexp structure the information
    about lookbehind is factored in, with the information that would
    have been lost precalculated in the end_shift field for the
    associated string.

  The fields pos_min and pos_delta are used to store the minimum offset
  and the delta to the maximum offset at the current point in the pattern.

*/

struct scan_data_substrs {
    SV      *str;       /* longest substring found in pattern */
    SSize_t min_offset; /* earliest point in string it can appear */
    SSize_t max_offset; /* latest point in string it can appear */
    SSize_t *minlenp;   /* pointer to the minlen relevant to the string */
    SSize_t lookbehind; /* is the pos of the string modified by LB */
    I32 flags;          /* per substring SF_* and SCF_* flags */
};

typedef struct scan_data_t {
    /*I32 len_min;      unused */
    /*I32 len_delta;    unused */
    SSize_t pos_min;
    SSize_t pos_delta;
    SV *last_found;
    SSize_t last_end;	    /* min value, <0 unless valid. */
    SSize_t last_start_min;
    SSize_t last_start_max;
    U8      cur_is_floating; /* whether the last_* values should be set as
                              * the next fixed (0) or floating (1)
                              * substring */

    /* [0] is longest fixed substring so far, [1] is longest float so far */
    struct scan_data_substrs  substrs[2];

    I32 flags;             /* common SF_* and SCF_* flags */
    I32 whilem_c;
    SSize_t *last_closep;
    regnode_ssc *start_class;
} scan_data_t;

/*
 * Forward declarations for pregcomp()'s friends.
 */

static const scan_data_t zero_scan_data = {
    0, 0, NULL, 0, 0, 0, 0,
    {
        { NULL, 0, 0, 0, 0, 0 },
        { NULL, 0, 0, 0, 0, 0 },
    },
    0, 0, NULL, NULL
};

/* study flags */

#define SF_BEFORE_SEOL		0x0001
#define SF_BEFORE_MEOL		0x0002
#define SF_BEFORE_EOL		(SF_BEFORE_SEOL|SF_BEFORE_MEOL)

#define SF_IS_INF		0x0040
#define SF_HAS_PAR		0x0080
#define SF_IN_PAR		0x0100
#define SF_HAS_EVAL		0x0200


/* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
 * longest substring in the pattern. When it is not set the optimiser keeps
 * track of position, but does not keep track of the actual strings seen,
 *
 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
 * /foo/i will not.
 *
 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
 * turned off because of the alternation (BRANCH). */
#define SCF_DO_SUBSTR		0x0400

#define SCF_DO_STCLASS_AND	0x0800
#define SCF_DO_STCLASS_OR	0x1000
#define SCF_DO_STCLASS		(SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
#define SCF_WHILEM_VISITED_POS	0x2000

#define SCF_TRIE_RESTUDY        0x4000 /* Do restudy? */
#define SCF_SEEN_ACCEPT         0x8000
#define SCF_TRIE_DOING_RESTUDY 0x10000
#define SCF_IN_DEFINE          0x20000




#define UTF cBOOL(RExC_utf8)

/* The enums for all these are ordered so things work out correctly */
#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags)                    \
                                                     == REGEX_DEPENDS_CHARSET)
#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags)                \
                                                     >= REGEX_UNICODE_CHARSET)
#define ASCII_RESTRICTED (get_regex_charset(RExC_flags)                      \
                                            == REGEX_ASCII_RESTRICTED_CHARSET)
#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags)             \
                                            >= REGEX_ASCII_RESTRICTED_CHARSET)
#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags)                 \
                                        == REGEX_ASCII_MORE_RESTRICTED_CHARSET)

#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)

/* For programs that want to be strictly Unicode compatible by dying if any
 * attempt is made to match a non-Unicode code point against a Unicode
 * property.  */
#define ALWAYS_WARN_SUPER  ckDEAD(packWARN(WARN_NON_UNICODE))

#define OOB_NAMEDCLASS		-1

/* There is no code point that is out-of-bounds, so this is problematic.  But
 * its only current use is to initialize a variable that is always set before
 * looked at. */
#define OOB_UNICODE		0xDEADBEEF

#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))


/* length of regex to show in messages that don't mark a position within */
#define RegexLengthToShowInErrorMessages 127

/*
 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
 * op/pragma/warn/regcomp.
 */
#define MARKER1 "<-- HERE"    /* marker as it appears in the description */
#define MARKER2 " <-- HERE "  /* marker as it appears within the regex */

#define REPORT_LOCATION " in regex; marked by " MARKER1    \
                        " in m/%" UTF8f MARKER2 "%" UTF8f "/"

/* The code in this file in places uses one level of recursion with parsing
 * rebased to an alternate string constructed by us in memory.  This can take
 * the form of something that is completely different from the input, or
 * something that uses the input as part of the alternate.  In the first case,
 * there should be no possibility of an error, as we are in complete control of
 * the alternate string.  But in the second case we don't completely control
 * the input portion, so there may be errors in that.  Here's an example:
 *      /[abc\x{DF}def]/ui
 * is handled specially because \x{df} folds to a sequence of more than one
 * character: 'ss'.  What is done is to create and parse an alternate string,
 * which looks like this:
 *      /(?:\x{DF}|[abc\x{DF}def])/ui
 * where it uses the input unchanged in the middle of something it constructs,
 * which is a branch for the DF outside the character class, and clustering
 * parens around the whole thing. (It knows enough to skip the DF inside the
 * class while in this substitute parse.) 'abc' and 'def' may have errors that
 * need to be reported.  The general situation looks like this:
 *
 *                                       |<------- identical ------>|
 *              sI                       tI               xI       eI
 * Input:       ---------------------------------------------------------------
 * Constructed:         ---------------------------------------------------
 *                      sC               tC               xC       eC     EC
 *                                       |<------- identical ------>|
 *
 * sI..eI   is the portion of the input pattern we are concerned with here.
 * sC..EC   is the constructed substitute parse string.
 *  sC..tC  is constructed by us
 *  tC..eC  is an exact duplicate of the portion of the input pattern tI..eI.
 *          In the diagram, these are vertically aligned.
 *  eC..EC  is also constructed by us.
 * xC       is the position in the substitute parse string where we found a
 *          problem.
 * xI       is the position in the original pattern corresponding to xC.
 *
 * We want to display a message showing the real input string.  Thus we need to
 * translate from xC to xI.  We know that xC >= tC, since the portion of the
 * string sC..tC has been constructed by us, and so shouldn't have errors.  We
 * get:
 *      xI = tI + (xC - tC)
 *
 * When the substitute parse is constructed, the code needs to set:
 *      RExC_start (sC)
 *      RExC_end (eC)
 *      RExC_copy_start_in_input  (tI)
 *      RExC_copy_start_in_constructed (tC)
 * and restore them when done.
 *
 * During normal processing of the input pattern, both
 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
 * sI, so that xC equals xI.
 */

#define sI              RExC_precomp
#define eI              RExC_precomp_end
#define sC              RExC_start
#define eC              RExC_end
#define tI              RExC_copy_start_in_input
#define tC              RExC_copy_start_in_constructed
#define xI(xC)          (tI + (xC - tC))
#define xI_offset(xC)   (xI(xC) - sI)

#define REPORT_LOCATION_ARGS(xC)                                            \
    UTF8fARG(UTF,                                                           \
             (xI(xC) > eI) /* Don't run off end */                          \
              ? eI - sI   /* Length before the <--HERE */                   \
              : ((xI_offset(xC) >= 0)                                       \
                 ? xI_offset(xC)                                            \
                 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %"    \
                                    IVdf " trying to output message for "   \
                                    " pattern %.*s",                        \
                                    __FILE__, __LINE__, (IV) xI_offset(xC), \
                                    ((int) (eC - sC)), sC), 0)),            \
             sI),         /* The input pattern printed up to the <--HERE */ \
    UTF8fARG(UTF,                                                           \
             (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */    \
             (xI(xC) > eI) ? eI : xI(xC))     /* pattern after <--HERE */

/* Used to point after bad bytes for an error message, but avoid skipping
 * past a nul byte. */
#define SKIP_IF_CHAR(s, e) (!*(s) ? 0 : UTF ? UTF8_SAFE_SKIP(s, e) : 1)

/* Set up to clean up after our imminent demise */
#define PREPARE_TO_DIE                                                      \
    STMT_START {					                    \
        if (RExC_rx_sv)                                                     \
            SAVEFREESV(RExC_rx_sv);                                         \
        if (RExC_open_parens)                                               \
            SAVEFREEPV(RExC_open_parens);                                   \
        if (RExC_close_parens)                                              \
            SAVEFREEPV(RExC_close_parens);                                  \
    } STMT_END

/*
 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
 * arg. Show regex, up to a maximum length. If it's too long, chop and add
 * "...".
 */
#define _FAIL(code) STMT_START {					\
    const char *ellipses = "";						\
    IV len = RExC_precomp_end - RExC_precomp;				\
                                                                        \
    PREPARE_TO_DIE;						        \
    if (len > RegexLengthToShowInErrorMessages) {			\
        /* chop 10 shorter than the max, to ensure meaning of "..." */	\
        len = RegexLengthToShowInErrorMessages - 10;			\
        ellipses = "...";						\
    }									\
    code;                                                               \
} STMT_END

#define	FAIL(msg) _FAIL(			    \
    Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/",	    \
            msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))

#define	FAIL2(msg,arg) _FAIL(			    \
    Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/",	    \
            arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))

#define	FAIL3(msg,arg1,arg2) _FAIL(			    \
    Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/",	    \
     arg1, arg2, UTF8fARG(UTF, len, RExC_precomp), ellipses))

/*
 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
 */
#define	Simple_vFAIL(m) STMT_START {					\
    Perl_croak(aTHX_ "%s" REPORT_LOCATION,				\
            m, REPORT_LOCATION_ARGS(RExC_parse));	                \
} STMT_END

/*
 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
 */
#define	vFAIL(m) STMT_START {				\
    PREPARE_TO_DIE;                                     \
    Simple_vFAIL(m);					\
} STMT_END

/*
 * Like Simple_vFAIL(), but accepts two arguments.
 */
#define	Simple_vFAIL2(m,a1) STMT_START {			\
    S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1,		\
                      REPORT_LOCATION_ARGS(RExC_parse));	\
} STMT_END

/*
 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
 */
#define	vFAIL2(m,a1) STMT_START {			\
    PREPARE_TO_DIE;                                     \
    Simple_vFAIL2(m, a1);				\
} STMT_END


/*
 * Like Simple_vFAIL(), but accepts three arguments.
 */
#define	Simple_vFAIL3(m, a1, a2) STMT_START {			\
    S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2,		\
            REPORT_LOCATION_ARGS(RExC_parse));	                \
} STMT_END

/*
 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
 */
#define	vFAIL3(m,a1,a2) STMT_START {			\
    PREPARE_TO_DIE;                                     \
    Simple_vFAIL3(m, a1, a2);				\
} STMT_END

/*
 * Like Simple_vFAIL(), but accepts four arguments.
 */
#define	Simple_vFAIL4(m, a1, a2, a3) STMT_START {		\
    S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2, a3,	\
            REPORT_LOCATION_ARGS(RExC_parse));	                \
} STMT_END

#define	vFAIL4(m,a1,a2,a3) STMT_START {			\
    PREPARE_TO_DIE;                                     \
    Simple_vFAIL4(m, a1, a2, a3);			\
} STMT_END

/* A specialized version of vFAIL2 that works with UTF8f */
#define vFAIL2utf8f(m, a1) STMT_START {             \
    PREPARE_TO_DIE;                                 \
    S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1,  \
            REPORT_LOCATION_ARGS(RExC_parse));      \
} STMT_END

#define vFAIL3utf8f(m, a1, a2) STMT_START {             \
    PREPARE_TO_DIE;                                     \
    S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2,  \
            REPORT_LOCATION_ARGS(RExC_parse));          \
} STMT_END

/* Setting this to NULL is a signal to not output warnings */
#define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE                               \
    STMT_START {                                                            \
      RExC_save_copy_start_in_constructed  = RExC_copy_start_in_constructed;\
      RExC_copy_start_in_constructed = NULL;                                \
    } STMT_END
#define RESTORE_WARNINGS                                                    \
    RExC_copy_start_in_constructed = RExC_save_copy_start_in_constructed

/* Since a warning can be generated multiple times as the input is reparsed, we
 * output it the first time we come to that point in the parse, but suppress it
 * otherwise.  'RExC_copy_start_in_constructed' being NULL is a flag to not
 * generate any warnings */
#define TO_OUTPUT_WARNINGS(loc)                                         \
  (   RExC_copy_start_in_constructed                                    \
   && ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)

/* After we've emitted a warning, we save the position in the input so we don't
 * output it again */
#define UPDATE_WARNINGS_LOC(loc)                                        \
    STMT_START {                                                        \
        if (TO_OUTPUT_WARNINGS(loc)) {                                  \
            RExC_latest_warn_offset = MAX(sI, MIN(eI, xI(loc)))         \
                                                       - RExC_precomp;  \
        }                                                               \
    } STMT_END

/* 'warns' is the output of the packWARNx macro used in 'code' */
#define _WARN_HELPER(loc, warns, code)                                  \
    STMT_START {                                                        \
        if (! RExC_copy_start_in_constructed) {                         \
            Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none"  \
                              " expected at '%s'",                      \
                              __FILE__, __LINE__, loc);                 \
        }                                                               \
        if (TO_OUTPUT_WARNINGS(loc)) {                                  \
            if (ckDEAD(warns))                                          \
                PREPARE_TO_DIE;                                         \
            code;                                                       \
            UPDATE_WARNINGS_LOC(loc);                                   \
        }                                                               \
    } STMT_END

/* m is not necessarily a "literal string", in this macro */
#define warn_non_literal_string(loc, packed_warn, m)                    \
    _WARN_HELPER(loc, packed_warn,                                      \
                      Perl_warner(aTHX_ packed_warn,                    \
                                       "%s" REPORT_LOCATION,            \
                                  m, REPORT_LOCATION_ARGS(loc)))
#define reg_warn_non_literal_string(loc, m)                             \
                warn_non_literal_string(loc, packWARN(WARN_REGEXP), m)

#define ckWARN2_non_literal_string(loc, packwarn, m, a1)                    \
    STMT_START {                                                            \
                char * format;                                              \
                Size_t format_size = strlen(m) + strlen(REPORT_LOCATION)+ 1;\
                Newx(format, format_size, char);                            \
                my_strlcpy(format, m, format_size);                         \
                my_strlcat(format, REPORT_LOCATION, format_size);           \
                SAVEFREEPV(format);                                         \
                _WARN_HELPER(loc, packwarn,                                 \
                      Perl_ck_warner(aTHX_ packwarn,                        \
                                        format,                             \
                                        a1, REPORT_LOCATION_ARGS(loc)));    \
    } STMT_END

#define	ckWARNreg(loc,m) 					        \
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
                      Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),       \
                                          m REPORT_LOCATION,	        \
                                          REPORT_LOCATION_ARGS(loc)))

#define	vWARN(loc, m)           				        \
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
                      Perl_warner(aTHX_ packWARN(WARN_REGEXP),          \
                                       m REPORT_LOCATION,               \
                                       REPORT_LOCATION_ARGS(loc)))      \

#define	vWARN_dep(loc, m)           				        \
    _WARN_HELPER(loc, packWARN(WARN_DEPRECATED),                        \
                      Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),      \
                                       m REPORT_LOCATION,               \
                                       REPORT_LOCATION_ARGS(loc)))

#define	ckWARNdep(loc,m)            				        \
    _WARN_HELPER(loc, packWARN(WARN_DEPRECATED),                        \
                      Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
                                            m REPORT_LOCATION,          \
                                            REPORT_LOCATION_ARGS(loc)))

#define	ckWARNregdep(loc,m)             				    \
    _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP),              \
                      Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED,     \
                                                      WARN_REGEXP),         \
                                             m REPORT_LOCATION,             \
                                             REPORT_LOCATION_ARGS(loc)))

#define	ckWARN2reg_d(loc,m, a1)             				    \
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
                      Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP),         \
                                            m REPORT_LOCATION,              \
                                            a1, REPORT_LOCATION_ARGS(loc)))

#define	ckWARN2reg(loc, m, a1)                                              \
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
                      Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),           \
                                          m REPORT_LOCATION,	            \
                                          a1, REPORT_LOCATION_ARGS(loc)))

#define	vWARN3(loc, m, a1, a2)          				    \
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
                      Perl_warner(aTHX_ packWARN(WARN_REGEXP),              \
                                       m REPORT_LOCATION,                   \
                                       a1, a2, REPORT_LOCATION_ARGS(loc)))

#define	ckWARN3reg(loc, m, a1, a2)          				    \
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                                \
                      Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),           \
                                          m REPORT_LOCATION,                \
                                          a1, a2,                           \
                                          REPORT_LOCATION_ARGS(loc)))

#define	vWARN4(loc, m, a1, a2, a3)          				\
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
                      Perl_warner(aTHX_ packWARN(WARN_REGEXP),          \
                                       m REPORT_LOCATION,               \
                                       a1, a2, a3,                      \
                                       REPORT_LOCATION_ARGS(loc)))

#define	ckWARN4reg(loc, m, a1, a2, a3)          			\
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
                      Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),       \
                                          m REPORT_LOCATION,            \
                                          a1, a2, a3,                   \
                                          REPORT_LOCATION_ARGS(loc)))

#define	vWARN5(loc, m, a1, a2, a3, a4)          			\
    _WARN_HELPER(loc, packWARN(WARN_REGEXP),                            \
                      Perl_warner(aTHX_ packWARN(WARN_REGEXP),          \
                                       m REPORT_LOCATION,		\
                                       a1, a2, a3, a4,                  \
                                       REPORT_LOCATION_ARGS(loc)))

#define	ckWARNexperimental(loc, class, m)                               \
    STMT_START {                                                        \
        if (! RExC_warned_ ## class) { /* warn once per compilation */  \
            RExC_warned_ ## class = 1;                                  \
            _WARN_HELPER(loc, packWARN(class),                          \
                      Perl_ck_warner_d(aTHX_ packWARN(class),           \
                                            m REPORT_LOCATION,          \
                                            REPORT_LOCATION_ARGS(loc)));\
        }                                                               \
    } STMT_END

/* Convert between a pointer to a node and its offset from the beginning of the
 * program */
#define REGNODE_p(offset)    (RExC_emit_start + (offset))
#define REGNODE_OFFSET(node) ((node) - RExC_emit_start)

/* Macros for recording node offsets.   20001227 mjd@plover.com
 * Nodes are numbered 1, 2, 3, 4.  Node #n's position is recorded in
 * element 2*n-1 of the array.  Element #2n holds the byte length node #n.
 * Element 0 holds the number n.
 * Position is 1 indexed.
 */
#ifndef RE_TRACK_PATTERN_OFFSETS
#define Set_Node_Offset_To_R(offset,byte)
#define Set_Node_Offset(node,byte)
#define Set_Cur_Node_Offset
#define Set_Node_Length_To_R(node,len)
#define Set_Node_Length(node,len)
#define Set_Node_Cur_Length(node,start)
#define Node_Offset(n)
#define Node_Length(n)
#define Set_Node_Offset_Length(node,offset,len)
#define ProgLen(ri) ri->u.proglen
#define SetProgLen(ri,x) ri->u.proglen = x
#define Track_Code(code)
#else
#define ProgLen(ri) ri->u.offsets[0]
#define SetProgLen(ri,x) ri->u.offsets[0] = x
#define Set_Node_Offset_To_R(offset,byte) STMT_START {			\
        MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n",		\
                    __LINE__, (int)(offset), (int)(byte)));		\
        if((offset) < 0) {						\
            Perl_croak(aTHX_ "value of node is %d in Offset macro",     \
                                         (int)(offset));                \
        } else {							\
            RExC_offsets[2*(offset)-1] = (byte);	                \
        }								\
} STMT_END

#define Set_Node_Offset(node,byte)                                      \
    Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)

#define Set_Node_Length_To_R(node,len) STMT_START {			\
        MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n",		\
                __LINE__, (int)(node), (int)(len)));			\
        if((node) < 0) {						\
            Perl_croak(aTHX_ "value of node is %d in Length macro",     \
                                         (int)(node));                  \
        } else {							\
            RExC_offsets[2*(node)] = (len);				\
        }								\
} STMT_END

#define Set_Node_Length(node,len) \
    Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
#define Set_Node_Cur_Length(node, start)                \
    Set_Node_Length(node, RExC_parse - start)

/* Get offsets and lengths */
#define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
#define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])

#define Set_Node_Offset_Length(node,offset,len) STMT_START {	\
    Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset));	\
    Set_Node_Length_To_R(REGNODE_OFFSET(node), (len));	\
} STMT_END

#define Track_Code(code) STMT_START { code } STMT_END
#endif

#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
#define EXPERIMENTAL_INPLACESCAN
#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/

#ifdef DEBUGGING
int
Perl_re_printf(pTHX_ const char *fmt, ...)
{
    va_list ap;
    int result;
    PerlIO *f= Perl_debug_log;
    PERL_ARGS_ASSERT_RE_PRINTF;
    va_start(ap, fmt);
    result = PerlIO_vprintf(f, fmt, ap);
    va_end(ap);
    return result;
}

int
Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
{
    va_list ap;
    int result;
    PerlIO *f= Perl_debug_log;
    PERL_ARGS_ASSERT_RE_INDENTF;
    va_start(ap, depth);
    PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
    result = PerlIO_vprintf(f, fmt, ap);
    va_end(ap);
    return result;
}
#endif /* DEBUGGING */

#define DEBUG_RExC_seen()                                                   \
        DEBUG_OPTIMISE_MORE_r({                                             \
            Perl_re_printf( aTHX_ "RExC_seen: ");                           \
                                                                            \
            if (RExC_seen & REG_ZERO_LEN_SEEN)                              \
                Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN ");                \
                                                                            \
            if (RExC_seen & REG_LOOKBEHIND_SEEN)                            \
                Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN ");              \
                                                                            \
            if (RExC_seen & REG_GPOS_SEEN)                                  \
                Perl_re_printf( aTHX_ "REG_GPOS_SEEN ");                    \
                                                                            \
            if (RExC_seen & REG_RECURSE_SEEN)                               \
                Perl_re_printf( aTHX_ "REG_RECURSE_SEEN ");                 \
                                                                            \
            if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)                    \
                Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN ");      \
                                                                            \
            if (RExC_seen & REG_VERBARG_SEEN)                               \
                Perl_re_printf( aTHX_ "REG_VERBARG_SEEN ");                 \
                                                                            \
            if (RExC_seen & REG_CUTGROUP_SEEN)                              \
                Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN ");                \
                                                                            \
            if (RExC_seen & REG_RUN_ON_COMMENT_SEEN)                        \
                Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN ");          \
                                                                            \
            if (RExC_seen & REG_UNFOLDED_MULTI_SEEN)                        \
                Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN ");          \
                                                                            \
            if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)                  \
                Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN ");    \
                                                                            \
            Perl_re_printf( aTHX_ "\n");                                    \
        });

#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
  if ((flags) & flag) Perl_re_printf( aTHX_  "%s ", #flag)


#ifdef DEBUGGING
static void
S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
                                    const char *close_str)
{
    if (!flags)
        return;

    Perl_re_printf( aTHX_  "%s", open_str);
    DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
    DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
    DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
    DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
    DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
    DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
    DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
    Perl_re_printf( aTHX_  "%s", close_str);
}


static void
S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
                    U32 depth, int is_inf)
{
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    DEBUG_OPTIMISE_MORE_r({
        if (!data)
            return;
        Perl_re_indentf(aTHX_  "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
            depth,
            where,
            (IV)data->pos_min,
            (IV)data->pos_delta,
            (UV)data->flags
        );

        S_debug_show_study_flags(aTHX_ data->flags," [","]");

        Perl_re_printf( aTHX_
            " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
            (IV)data->whilem_c,
            (IV)(data->last_closep ? *((data)->last_closep) : -1),
            is_inf ? "INF " : ""
        );

        if (data->last_found) {
            int i;
            Perl_re_printf(aTHX_
                "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
                    SvPVX_const(data->last_found),
                    (IV)data->last_end,
                    (IV)data->last_start_min,
                    (IV)data->last_start_max
            );

            for (i = 0; i < 2; i++) {
                Perl_re_printf(aTHX_
                    " %s%s: '%s' @ %" IVdf "/%" IVdf,
                    data->cur_is_floating == i ? "*" : "",
                    i ? "Float" : "Fixed",
                    SvPVX_const(data->substrs[i].str),
                    (IV)data->substrs[i].min_offset,
                    (IV)data->substrs[i].max_offset
                );
                S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
            }
        }

        Perl_re_printf( aTHX_ "\n");
    });
}


static void
S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
                regnode *scan, U32 depth, U32 flags)
{
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    DEBUG_OPTIMISE_r({
        regnode *Next;

        if (!scan)
            return;
        Next = regnext(scan);
        regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
        Perl_re_indentf( aTHX_   "%s>%3d: %s (%d)",
            depth,
            str,
            REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
            Next ? (REG_NODE_NUM(Next)) : 0 );
        S_debug_show_study_flags(aTHX_ flags," [ ","]");
        Perl_re_printf( aTHX_  "\n");
   });
}


#  define DEBUG_STUDYDATA(where, data, depth, is_inf) \
                    S_debug_studydata(aTHX_ where, data, depth, is_inf)

#  define DEBUG_PEEP(str, scan, depth, flags)   \
                    S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)

#else
#  define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
#  define DEBUG_PEEP(str, scan, depth, flags)         NOOP
#endif


/* =========================================================
 * BEGIN edit_distance stuff.
 *
 * This calculates how many single character changes of any type are needed to
 * transform a string into another one.  It is taken from version 3.1 of
 *
 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
 */

/* Our unsorted dictionary linked list.   */
/* Note we use UVs, not chars. */

struct dictionary{
  UV key;
  UV value;
  struct dictionary* next;
};
typedef struct dictionary item;


PERL_STATIC_INLINE item*
push(UV key, item* curr)
{
    item* head;
    Newx(head, 1, item);
    head->key = key;
    head->value = 0;
    head->next = curr;
    return head;
}


PERL_STATIC_INLINE item*
find(item* head, UV key)
{
    item* iterator = head;
    while (iterator){
        if (iterator->key == key){
            return iterator;
        }
        iterator = iterator->next;
    }

    return NULL;
}

PERL_STATIC_INLINE item*
uniquePush(item* head, UV key)
{
    item* iterator = head;

    while (iterator){
        if (iterator->key == key) {
            return head;
        }
        iterator = iterator->next;
    }

    return push(key, head);
}

PERL_STATIC_INLINE void
dict_free(item* head)
{
    item* iterator = head;

    while (iterator) {
        item* temp = iterator;
        iterator = iterator->next;
        Safefree(temp);
    }

    head = NULL;
}

/* End of Dictionary Stuff */

/* All calculations/work are done here */
STATIC int
S_edit_distance(const UV* src,
                const UV* tgt,
                const STRLEN x,             /* length of src[] */
                const STRLEN y,             /* length of tgt[] */
                const SSize_t maxDistance
)
{
    item *head = NULL;
    UV swapCount, swapScore, targetCharCount, i, j;
    UV *scores;
    UV score_ceil = x + y;

    PERL_ARGS_ASSERT_EDIT_DISTANCE;

    /* intialize matrix start values */
    Newx(scores, ( (x + 2) * (y + 2)), UV);
    scores[0] = score_ceil;
    scores[1 * (y + 2) + 0] = score_ceil;
    scores[0 * (y + 2) + 1] = score_ceil;
    scores[1 * (y + 2) + 1] = 0;
    head = uniquePush(uniquePush(head, src[0]), tgt[0]);

    /* work loops    */
    /* i = src index */
    /* j = tgt index */
    for (i=1;i<=x;i++) {
        if (i < x)
            head = uniquePush(head, src[i]);
        scores[(i+1) * (y + 2) + 1] = i;
        scores[(i+1) * (y + 2) + 0] = score_ceil;
        swapCount = 0;

        for (j=1;j<=y;j++) {
            if (i == 1) {
                if(j < y)
                head = uniquePush(head, tgt[j]);
                scores[1 * (y + 2) + (j + 1)] = j;
                scores[0 * (y + 2) + (j + 1)] = score_ceil;
            }

            targetCharCount = find(head, tgt[j-1])->value;
            swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;

            if (src[i-1] != tgt[j-1]){
                scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
            }
            else {
                swapCount = j;
                scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
            }
        }

        find(head, src[i-1])->value = i;
    }

    {
        IV score = scores[(x+1) * (y + 2) + (y + 1)];
        dict_free(head);
        Safefree(scores);
        return (maxDistance != 0 && maxDistance < score)?(-1):score;
    }
}

/* END of edit_distance() stuff
 * ========================================================= */

/* Mark that we cannot extend a found fixed substring at this point.
   Update the longest found anchored substring or the longest found
   floating substrings if needed. */

STATIC void
S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
                    SSize_t *minlenp, int is_inf)
{
    const STRLEN l = CHR_SVLEN(data->last_found);
    SV * const longest_sv = data->substrs[data->cur_is_floating].str;
    const STRLEN old_l = CHR_SVLEN(longest_sv);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_SCAN_COMMIT;

    if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
        const U8 i = data->cur_is_floating;
        SvSetMagicSV(longest_sv, data->last_found);
        data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;

        if (!i) /* fixed */
            data->substrs[0].max_offset = data->substrs[0].min_offset;
        else { /* float */
            data->substrs[1].max_offset =
                      (is_inf)
                       ? OPTIMIZE_INFTY
                       : (l
                          ? data->last_start_max
                          /* temporary underflow guard for 5.32 */
                          : data->pos_delta < 0 ? OPTIMIZE_INFTY
                          : (data->pos_delta > OPTIMIZE_INFTY - data->pos_min
                                         ? OPTIMIZE_INFTY
                                         : data->pos_min + data->pos_delta));
        }

        data->substrs[i].flags &= ~SF_BEFORE_EOL;
        data->substrs[i].flags |= data->flags & SF_BEFORE_EOL;
        data->substrs[i].minlenp = minlenp;
        data->substrs[i].lookbehind = 0;
    }

    SvCUR_set(data->last_found, 0);
    {
        SV * const sv = data->last_found;
        if (SvUTF8(sv) && SvMAGICAL(sv)) {
            MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
            if (mg)
                mg->mg_len = 0;
        }
    }
    data->last_end = -1;
    data->flags &= ~SF_BEFORE_EOL;
    DEBUG_STUDYDATA("commit", data, 0, is_inf);
}

/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
 * list that describes which code points it matches */

STATIC void
S_ssc_anything(pTHX_ regnode_ssc *ssc)
{
    /* Set the SSC 'ssc' to match an empty string or any code point */

    PERL_ARGS_ASSERT_SSC_ANYTHING;

    assert(is_ANYOF_SYNTHETIC(ssc));

    /* mortalize so won't leak */
    ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
    ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING;  /* Plus matches empty */
}

STATIC int
S_ssc_is_anything(const regnode_ssc *ssc)
{
    /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
     * point; FALSE otherwise.  Thus, this is used to see if using 'ssc' buys
     * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
     * in any way, so there's no point in using it */

    UV start, end;
    bool ret;

    PERL_ARGS_ASSERT_SSC_IS_ANYTHING;

    assert(is_ANYOF_SYNTHETIC(ssc));

    if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
        return FALSE;
    }

    /* See if the list consists solely of the range 0 - Infinity */
    invlist_iterinit(ssc->invlist);
    ret = invlist_iternext(ssc->invlist, &start, &end)
          && start == 0
          && end == UV_MAX;

    invlist_iterfinish(ssc->invlist);

    if (ret) {
        return TRUE;
    }

    /* If e.g., both \w and \W are set, matches everything */
    if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
        int i;
        for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
            if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
                return TRUE;
            }
        }
    }

    return FALSE;
}

STATIC void
S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
{
    /* Initializes the SSC 'ssc'.  This includes setting it to match an empty
     * string, any code point, or any posix class under locale */

    PERL_ARGS_ASSERT_SSC_INIT;

    Zero(ssc, 1, regnode_ssc);
    set_ANYOF_SYNTHETIC(ssc);
    ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
    ssc_anything(ssc);

    /* If any portion of the regex is to operate under locale rules that aren't
     * fully known at compile time, initialization includes it.  The reason
     * this isn't done for all regexes is that the optimizer was written under
     * the assumption that locale was all-or-nothing.  Given the complexity and
     * lack of documentation in the optimizer, and that there are inadequate
     * test cases for locale, many parts of it may not work properly, it is
     * safest to avoid locale unless necessary. */
    if (RExC_contains_locale) {
        ANYOF_POSIXL_SETALL(ssc);
    }
    else {
        ANYOF_POSIXL_ZERO(ssc);
    }
}

STATIC int
S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
                        const regnode_ssc *ssc)
{
    /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
     * to the list of code points matched, and locale posix classes; hence does
     * not check its flags) */

    UV start, end;
    bool ret;

    PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;

    assert(is_ANYOF_SYNTHETIC(ssc));

    invlist_iterinit(ssc->invlist);
    ret = invlist_iternext(ssc->invlist, &start, &end)
          && start == 0
          && end == UV_MAX;

    invlist_iterfinish(ssc->invlist);

    if (! ret) {
        return FALSE;
    }

    if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
        return FALSE;
    }

    return TRUE;
}

#define INVLIST_INDEX 0
#define ONLY_LOCALE_MATCHES_INDEX 1
#define DEFERRED_USER_DEFINED_INDEX 2

STATIC SV*
S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
                               const regnode_charclass* const node)
{
    /* Returns a mortal inversion list defining which code points are matched
     * by 'node', which is of type ANYOF.  Handles complementing the result if
     * appropriate.  If some code points aren't knowable at this time, the
     * returned list must, and will, contain every code point that is a
     * possibility. */

    SV* invlist = NULL;
    SV* only_utf8_locale_invlist = NULL;
    unsigned int i;
    const U32 n = ARG(node);
    bool new_node_has_latin1 = FALSE;
    const U8 flags = (inRANGE(OP(node), ANYOFH, ANYOFRb))
                      ? 0
                      : ANYOF_FLAGS(node);

    PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;

    /* Look at the data structure created by S_set_ANYOF_arg() */
    if (n != ANYOF_ONLY_HAS_BITMAP) {
        SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
        AV * const av = MUTABLE_AV(SvRV(rv));
        SV **const ary = AvARRAY(av);
        assert(RExC_rxi->data->what[n] == 's');

        if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {

            /* Here there are things that won't be known until runtime -- we
             * have to assume it could be anything */
            invlist = sv_2mortal(_new_invlist(1));
            return _add_range_to_invlist(invlist, 0, UV_MAX);
        }
        else if (ary[INVLIST_INDEX]) {

            /* Use the node's inversion list */
            invlist = sv_2mortal(invlist_clone(ary[INVLIST_INDEX], NULL));
        }

        /* Get the code points valid only under UTF-8 locales */
        if (   (flags & ANYOFL_FOLD)
            &&  av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX)
        {
            only_utf8_locale_invlist = ary[ONLY_LOCALE_MATCHES_INDEX];
        }
    }

    if (! invlist) {
        invlist = sv_2mortal(_new_invlist(0));
    }

    /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
     * code points, and an inversion list for the others, but if there are code
     * points that should match only conditionally on the target string being
     * UTF-8, those are placed in the inversion list, and not the bitmap.
     * Since there are circumstances under which they could match, they are
     * included in the SSC.  But if the ANYOF node is to be inverted, we have
     * to exclude them here, so that when we invert below, the end result
     * actually does include them.  (Think about "\xe0" =~ /[^\xc0]/di;).  We
     * have to do this here before we add the unconditionally matched code
     * points */
    if (flags & ANYOF_INVERT) {
        _invlist_intersection_complement_2nd(invlist,
                                             PL_UpperLatin1,
                                             &invlist);
    }

    /* Add in the points from the bit map */
    if (! inRANGE(OP(node), ANYOFH, ANYOFRb)) {
        for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
            if (ANYOF_BITMAP_TEST(node, i)) {
                unsigned int start = i++;

                for (;    i < NUM_ANYOF_CODE_POINTS
                       && ANYOF_BITMAP_TEST(node, i); ++i)
                {
                    /* empty */
                }
                invlist = _add_range_to_invlist(invlist, start, i-1);
                new_node_has_latin1 = TRUE;
            }
        }
    }

    /* If this can match all upper Latin1 code points, have to add them
     * as well.  But don't add them if inverting, as when that gets done below,
     * it would exclude all these characters, including the ones it shouldn't
     * that were added just above */
    if (! (flags & ANYOF_INVERT) && OP(node) == ANYOFD
        && (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
    {
        _invlist_union(invlist, PL_UpperLatin1, &invlist);
    }

    /* Similarly for these */
    if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
        _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
    }

    if (flags & ANYOF_INVERT) {
        _invlist_invert(invlist);
    }
    else if (flags & ANYOFL_FOLD) {
        if (new_node_has_latin1) {

            /* Under /li, any 0-255 could fold to any other 0-255, depending on
             * the locale.  We can skip this if there are no 0-255 at all. */
            _invlist_union(invlist, PL_Latin1, &invlist);

            invlist = add_cp_to_invlist(invlist, LATIN_SMALL_LETTER_DOTLESS_I);
            invlist = add_cp_to_invlist(invlist, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
        }
        else {
            if (_invlist_contains_cp(invlist, LATIN_SMALL_LETTER_DOTLESS_I)) {
                invlist = add_cp_to_invlist(invlist, 'I');
            }
            if (_invlist_contains_cp(invlist,
                                        LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
            {
                invlist = add_cp_to_invlist(invlist, 'i');
            }
        }
    }

    /* Similarly add the UTF-8 locale possible matches.  These have to be
     * deferred until after the non-UTF-8 locale ones are taken care of just
     * above, or it leads to wrong results under ANYOF_INVERT */
    if (only_utf8_locale_invlist) {
        _invlist_union_maybe_complement_2nd(invlist,
                                            only_utf8_locale_invlist,
                                            flags & ANYOF_INVERT,
                                            &invlist);
    }

    return invlist;
}

/* These two functions currently do the exact same thing */
#define ssc_init_zero		ssc_init

#define ssc_add_cp(ssc, cp)   ssc_add_range((ssc), (cp), (cp))
#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)

/* 'AND' a given class with another one.  Can create false positives.  'ssc'
 * should not be inverted.  'and_with->flags & ANYOF_MATCHES_POSIXL' should be
 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */

STATIC void
S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
                const regnode_charclass *and_with)
{
    /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
     * another SSC or a regular ANYOF class.  Can create false positives. */

    SV* anded_cp_list;
    U8  and_with_flags = inRANGE(OP(and_with), ANYOFH, ANYOFRb)
                          ? 0
                          : ANYOF_FLAGS(and_with);
    U8  anded_flags;

    PERL_ARGS_ASSERT_SSC_AND;

    assert(is_ANYOF_SYNTHETIC(ssc));

    /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
     * the code point inversion list and just the relevant flags */
    if (is_ANYOF_SYNTHETIC(and_with)) {
        anded_cp_list = ((regnode_ssc *)and_with)->invlist;
        anded_flags = and_with_flags;

        /* XXX This is a kludge around what appears to be deficiencies in the
         * optimizer.  If we make S_ssc_anything() add in the WARN_SUPER flag,
         * there are paths through the optimizer where it doesn't get weeded
         * out when it should.  And if we don't make some extra provision for
         * it like the code just below, it doesn't get added when it should.
         * This solution is to add it only when AND'ing, which is here, and
         * only when what is being AND'ed is the pristine, original node
         * matching anything.  Thus it is like adding it to ssc_anything() but
         * only when the result is to be AND'ed.  Probably the same solution
         * could be adopted for the same problem we have with /l matching,
         * which is solved differently in S_ssc_init(), and that would lead to
         * fewer false positives than that solution has.  But if this solution
         * creates bugs, the consequences are only that a warning isn't raised
         * that should be; while the consequences for having /l bugs is
         * incorrect matches */
        if (ssc_is_anything((regnode_ssc *)and_with)) {
            anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
        }
    }
    else {
        anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
        if (OP(and_with) == ANYOFD) {
            anded_flags = and_with_flags & ANYOF_COMMON_FLAGS;
        }
        else {
            anded_flags = and_with_flags
            &( ANYOF_COMMON_FLAGS
              |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
              |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
            if (ANYOFL_UTF8_LOCALE_REQD(and_with_flags)) {
                anded_flags &=
                    ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
            }
        }
    }

    ANYOF_FLAGS(ssc) &= anded_flags;

    /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
     * C2 is the list of code points in 'and-with'; P2, its posix classes.
     * 'and_with' may be inverted.  When not inverted, we have the situation of
     * computing:
     *  (C1 | P1) & (C2 | P2)
     *                     =  (C1 & (C2 | P2)) | (P1 & (C2 | P2))
     *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
     *                    <=  ((C1 & C2) |       P2)) | ( P1       | (P1 & P2))
     *                    <=  ((C1 & C2) | P1 | P2)
     * Alternatively, the last few steps could be:
     *                     =  ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
     *                    <=  ((C1 & C2) |  C1      ) | (      C2  | (P1 & P2))
     *                    <=  (C1 | C2 | (P1 & P2))
     * We favor the second approach if either P1 or P2 is non-empty.  This is
     * because these components are a barrier to doing optimizations, as what
     * they match cannot be known until the moment of matching as they are
     * dependent on the current locale, 'AND"ing them likely will reduce or
     * eliminate them.
     * But we can do better if we know that C1,P1 are in their initial state (a
     * frequent occurrence), each matching everything:
     *  (<everything>) & (C2 | P2) =  C2 | P2
     * Similarly, if C2,P2 are in their initial state (again a frequent
     * occurrence), the result is a no-op
     *  (C1 | P1) & (<everything>) =  C1 | P1
     *
     * Inverted, we have
     *  (C1 | P1) & ~(C2 | P2)  =  (C1 | P1) & (~C2 & ~P2)
     *                          =  (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
     *                         <=  (C1 & ~C2) | (P1 & ~P2)
     * */

    if ((and_with_flags & ANYOF_INVERT)
        && ! is_ANYOF_SYNTHETIC(and_with))
    {
        unsigned int i;

        ssc_intersection(ssc,
                         anded_cp_list,
                         FALSE /* Has already been inverted */
                         );

        /* If either P1 or P2 is empty, the intersection will be also; can skip
         * the loop */
        if (! (and_with_flags & ANYOF_MATCHES_POSIXL)) {
            ANYOF_POSIXL_ZERO(ssc);
        }
        else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {

            /* Note that the Posix class component P from 'and_with' actually
             * looks like:
             *      P = Pa | Pb | ... | Pn
             * where each component is one posix class, such as in [\w\s].
             * Thus
             *      ~P = ~(Pa | Pb | ... | Pn)
             *         = ~Pa & ~Pb & ... & ~Pn
             *        <= ~Pa | ~Pb | ... | ~Pn
             * The last is something we can easily calculate, but unfortunately
             * is likely to have many false positives.  We could do better
             * in some (but certainly not all) instances if two classes in
             * P have known relationships.  For example
             *      :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
             * So
             *      :lower: & :print: = :lower:
             * And similarly for classes that must be disjoint.  For example,
             * since \s and \w can have no elements in common based on rules in
             * the POSIX standard,
             *      \w & ^\S = nothing
             * Unfortunately, some vendor locales do not meet the Posix
             * standard, in particular almost everything by Microsoft.
             * The loop below just changes e.g., \w into \W and vice versa */

            regnode_charclass_posixl temp;
            int add = 1;    /* To calculate the index of the complement */

            Zero(&temp, 1, regnode_charclass_posixl);
            ANYOF_POSIXL_ZERO(&temp);
            for (i = 0; i < ANYOF_MAX; i++) {
                assert(i % 2 != 0
                       || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
                       || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));

                if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
                    ANYOF_POSIXL_SET(&temp, i + add);
                }
                add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
            }
            ANYOF_POSIXL_AND(&temp, ssc);

        } /* else ssc already has no posixes */
    } /* else: Not inverted.  This routine is a no-op if 'and_with' is an SSC
         in its initial state */
    else if (! is_ANYOF_SYNTHETIC(and_with)
             || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
    {
        /* But if 'ssc' is in its initial state, the result is just 'and_with';
         * copy it over 'ssc' */
        if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
            if (is_ANYOF_SYNTHETIC(and_with)) {
                StructCopy(and_with, ssc, regnode_ssc);
            }
            else {
                ssc->invlist = anded_cp_list;
                ANYOF_POSIXL_ZERO(ssc);
                if (and_with_flags & ANYOF_MATCHES_POSIXL) {
                    ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
                }
            }
        }
        else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
                 || (and_with_flags & ANYOF_MATCHES_POSIXL))
        {
            /* One or the other of P1, P2 is non-empty. */
            if (and_with_flags & ANYOF_MATCHES_POSIXL) {
                ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
            }
            ssc_union(ssc, anded_cp_list, FALSE);
        }
        else { /* P1 = P2 = empty */
            ssc_intersection(ssc, anded_cp_list, FALSE);
        }
    }
}

STATIC void
S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
               const regnode_charclass *or_with)
{
    /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
     * another SSC or a regular ANYOF class.  Can create false positives if
     * 'or_with' is to be inverted. */

    SV* ored_cp_list;
    U8 ored_flags;
    U8  or_with_flags = inRANGE(OP(or_with), ANYOFH, ANYOFRb)
                         ? 0
                         : ANYOF_FLAGS(or_with);

    PERL_ARGS_ASSERT_SSC_OR;

    assert(is_ANYOF_SYNTHETIC(ssc));

    /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
     * the code point inversion list and just the relevant flags */
    if (is_ANYOF_SYNTHETIC(or_with)) {
        ored_cp_list = ((regnode_ssc*) or_with)->invlist;
        ored_flags = or_with_flags;
    }
    else {
        ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
        ored_flags = or_with_flags & ANYOF_COMMON_FLAGS;
        if (OP(or_with) != ANYOFD) {
            ored_flags
            |= or_with_flags
             & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
                |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
            if (ANYOFL_UTF8_LOCALE_REQD(or_with_flags)) {
                ored_flags |=
                    ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
            }
        }
    }

    ANYOF_FLAGS(ssc) |= ored_flags;

    /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
     * C2 is the list of code points in 'or-with'; P2, its posix classes.
     * 'or_with' may be inverted.  When not inverted, we have the simple
     * situation of computing:
     *  (C1 | P1) | (C2 | P2)  =  (C1 | C2) | (P1 | P2)
     * If P1|P2 yields a situation with both a class and its complement are
     * set, like having both \w and \W, this matches all code points, and we
     * can delete these from the P component of the ssc going forward.  XXX We
     * might be able to delete all the P components, but I (khw) am not certain
     * about this, and it is better to be safe.
     *
     * Inverted, we have
     *  (C1 | P1) | ~(C2 | P2)  =  (C1 | P1) | (~C2 & ~P2)
     *                         <=  (C1 | P1) | ~C2
     *                         <=  (C1 | ~C2) | P1
     * (which results in actually simpler code than the non-inverted case)
     * */

    if ((or_with_flags & ANYOF_INVERT)
        && ! is_ANYOF_SYNTHETIC(or_with))
    {
        /* We ignore P2, leaving P1 going forward */
    }   /* else  Not inverted */
    else if (or_with_flags & ANYOF_MATCHES_POSIXL) {
        ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
        if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
            unsigned int i;
            for (i = 0; i < ANYOF_MAX; i += 2) {
                if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
                {
                    ssc_match_all_cp(ssc);
                    ANYOF_POSIXL_CLEAR(ssc, i);
                    ANYOF_POSIXL_CLEAR(ssc, i+1);
                }
            }
        }
    }

    ssc_union(ssc,
              ored_cp_list,
              FALSE /* Already has been inverted */
              );
}

STATIC void
S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
{
    PERL_ARGS_ASSERT_SSC_UNION;

    assert(is_ANYOF_SYNTHETIC(ssc));

    _invlist_union_maybe_complement_2nd(ssc->invlist,
                                        invlist,
                                        invert2nd,
                                        &ssc->invlist);
}

STATIC void
S_ssc_intersection(pTHX_ regnode_ssc *ssc,
                         SV* const invlist,
                         const bool invert2nd)
{
    PERL_ARGS_ASSERT_SSC_INTERSECTION;

    assert(is_ANYOF_SYNTHETIC(ssc));

    _invlist_intersection_maybe_complement_2nd(ssc->invlist,
                                               invlist,
                                               invert2nd,
                                               &ssc->invlist);
}

STATIC void
S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
{
    PERL_ARGS_ASSERT_SSC_ADD_RANGE;

    assert(is_ANYOF_SYNTHETIC(ssc));

    ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
}

STATIC void
S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
{
    /* AND just the single code point 'cp' into the SSC 'ssc' */

    SV* cp_list = _new_invlist(2);

    PERL_ARGS_ASSERT_SSC_CP_AND;

    assert(is_ANYOF_SYNTHETIC(ssc));

    cp_list = add_cp_to_invlist(cp_list, cp);
    ssc_intersection(ssc, cp_list,
                     FALSE /* Not inverted */
                     );
    SvREFCNT_dec_NN(cp_list);
}

STATIC void
S_ssc_clear_locale(regnode_ssc *ssc)
{
    /* Set the SSC 'ssc' to not match any locale things */
    PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;

    assert(is_ANYOF_SYNTHETIC(ssc));

    ANYOF_POSIXL_ZERO(ssc);
    ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
}

STATIC bool
S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
{
    /* The synthetic start class is used to hopefully quickly winnow down
     * places where a pattern could start a match in the target string.  If it
     * doesn't really narrow things down that much, there isn't much point to
     * having the overhead of using it.  This function uses some very crude
     * heuristics to decide if to use the ssc or not.
     *
     * It returns TRUE if 'ssc' rules out more than half what it considers to
     * be the "likely" possible matches, but of course it doesn't know what the
     * actual things being matched are going to be; these are only guesses
     *
     * For /l matches, it assumes that the only likely matches are going to be
     *      in the 0-255 range, uniformly distributed, so half of that is 127
     * For /a and /d matches, it assumes that the likely matches will be just
     *      the ASCII range, so half of that is 63
     * For /u and there isn't anything matching above the Latin1 range, it
     *      assumes that that is the only range likely to be matched, and uses
     *      half that as the cut-off: 127.  If anything matches above Latin1,
     *      it assumes that all of Unicode could match (uniformly), except for
     *      non-Unicode code points and things in the General Category "Other"
     *      (unassigned, private use, surrogates, controls and formats).  This
     *      is a much large number. */

    U32 count = 0;      /* Running total of number of code points matched by
                           'ssc' */
    UV start, end;      /* Start and end points of current range in inversion
                           XXX outdated.  UTF-8 locales are common, what about invert? list */
    const U32 max_code_points = (LOC)
                                ?  256
                                : ((  ! UNI_SEMANTICS
                                    ||  invlist_highest(ssc->invlist) < 256)
                                  ? 128
                                  : NON_OTHER_COUNT);
    const U32 max_match = max_code_points / 2;

    PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;

    invlist_iterinit(ssc->invlist);
    while (invlist_iternext(ssc->invlist, &start, &end)) {
        if (start >= max_code_points) {
            break;
        }
        end = MIN(end, max_code_points - 1);
        count += end - start + 1;
        if (count >= max_match) {
            invlist_iterfinish(ssc->invlist);
            return FALSE;
        }
    }

    return TRUE;
}


STATIC void
S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
{
    /* The inversion list in the SSC is marked mortal; now we need a more
     * permanent copy, which is stored the same way that is done in a regular
     * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
     * map */

    SV* invlist = invlist_clone(ssc->invlist, NULL);

    PERL_ARGS_ASSERT_SSC_FINALIZE;

    assert(is_ANYOF_SYNTHETIC(ssc));

    /* The code in this file assumes that all but these flags aren't relevant
     * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
     * by the time we reach here */
    assert(! (ANYOF_FLAGS(ssc)
        & ~( ANYOF_COMMON_FLAGS
            |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
            |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));

    populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);

    set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist, NULL, NULL);
    SvREFCNT_dec(invlist);

    /* Make sure is clone-safe */
    ssc->invlist = NULL;

    if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
        ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
        OP(ssc) = ANYOFPOSIXL;
    }
    else if (RExC_contains_locale) {
        OP(ssc) = ANYOFL;
    }

    assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
}

#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
#define TRIE_LIST_CUR(state)  ( TRIE_LIST_ITEM( state, 0 ).forid )
#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
#define TRIE_LIST_USED(idx)  ( trie->states[state].trans.list         \
                               ? (TRIE_LIST_CUR( idx ) - 1)           \
                               : 0 )


#ifdef DEBUGGING
/*
   dump_trie(trie,widecharmap,revcharmap)
   dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
   dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)

   These routines dump out a trie in a somewhat readable format.
   The _interim_ variants are used for debugging the interim
   tables that are used to generate the final compressed
   representation which is what dump_trie expects.

   Part of the reason for their existence is to provide a form
   of documentation as to how the different representations function.

*/

/*
  Dumps the final compressed table form of the trie to Perl_debug_log.
  Used for debugging make_trie().
*/

STATIC void
S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
            AV *revcharmap, U32 depth)
{
    U32 state;
    SV *sv=sv_newmortal();
    int colwidth= widecharmap ? 6 : 4;
    U16 word;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_DUMP_TRIE;

    Perl_re_indentf( aTHX_  "Char : %-6s%-6s%-4s ",
        depth+1, "Match","Base","Ofs" );

    for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
        SV ** const tmp = av_fetch( revcharmap, state, 0);
        if ( tmp ) {
            Perl_re_printf( aTHX_  "%*s",
                colwidth,
                pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
                            PL_colors[0], PL_colors[1],
                            (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
                            PERL_PV_ESCAPE_FIRSTCHAR
                )
            );
        }
    }
    Perl_re_printf( aTHX_  "\n");
    Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);

    for( state = 0 ; state < trie->uniquecharcount ; state++ )
        Perl_re_printf( aTHX_  "%.*s", colwidth, "--------");
    Perl_re_printf( aTHX_  "\n");

    for( state = 1 ; state < trie->statecount ; state++ ) {
        const U32 base = trie->states[ state ].trans.base;

        Perl_re_indentf( aTHX_  "#%4" UVXf "|", depth+1, (UV)state);

        if ( trie->states[ state ].wordnum ) {
            Perl_re_printf( aTHX_  " W%4X", trie->states[ state ].wordnum );
        } else {
            Perl_re_printf( aTHX_  "%6s", "" );
        }

        Perl_re_printf( aTHX_  " @%4" UVXf " ", (UV)base );

        if ( base ) {
            U32 ofs = 0;

            while( ( base + ofs  < trie->uniquecharcount ) ||
                   ( base + ofs - trie->uniquecharcount < trie->lasttrans
                     && trie->trans[ base + ofs - trie->uniquecharcount ].check
                                                                    != state))
                    ofs++;

            Perl_re_printf( aTHX_  "+%2" UVXf "[ ", (UV)ofs);

            for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
                if ( ( base + ofs >= trie->uniquecharcount )
                        && ( base + ofs - trie->uniquecharcount
                                                        < trie->lasttrans )
                        && trie->trans[ base + ofs
                                    - trie->uniquecharcount ].check == state )
                {
                   Perl_re_printf( aTHX_  "%*" UVXf, colwidth,
                    (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
                   );
                } else {
                    Perl_re_printf( aTHX_  "%*s", colwidth,"   ." );
                }
            }

            Perl_re_printf( aTHX_  "]");

        }
        Perl_re_printf( aTHX_  "\n" );
    }
    Perl_re_indentf( aTHX_  "word_info N:(prev,len)=",
                                depth);
    for (word=1; word <= trie->wordcount; word++) {
        Perl_re_printf( aTHX_  " %d:(%d,%d)",
            (int)word, (int)(trie->wordinfo[word].prev),
            (int)(trie->wordinfo[word].len));
    }
    Perl_re_printf( aTHX_  "\n" );
}
/*
  Dumps a fully constructed but uncompressed trie in list form.
  List tries normally only are used for construction when the number of
  possible chars (trie->uniquecharcount) is very high.
  Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
                         HV *widecharmap, AV *revcharmap, U32 next_alloc,
                         U32 depth)
{
    U32 state;
    SV *sv=sv_newmortal();
    int colwidth= widecharmap ? 6 : 4;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;

    /* print out the table precompression.  */
    Perl_re_indentf( aTHX_  "State :Word | Transition Data\n",
            depth+1 );
    Perl_re_indentf( aTHX_  "%s",
            depth+1, "------:-----+-----------------\n" );

    for( state=1 ; state < next_alloc ; state ++ ) {
        U16 charid;

        Perl_re_indentf( aTHX_  " %4" UVXf " :",
            depth+1, (UV)state  );
        if ( ! trie->states[ state ].wordnum ) {
            Perl_re_printf( aTHX_  "%5s| ","");
        } else {
            Perl_re_printf( aTHX_  "W%4x| ",
                trie->states[ state ].wordnum
            );
        }
        for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
            SV ** const tmp = av_fetch( revcharmap,
                                        TRIE_LIST_ITEM(state, charid).forid, 0);
            if ( tmp ) {
                Perl_re_printf( aTHX_  "%*s:%3X=%4" UVXf " | ",
                    colwidth,
                    pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
                              colwidth,
                              PL_colors[0], PL_colors[1],
                              (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
                              | PERL_PV_ESCAPE_FIRSTCHAR
                    ) ,
                    TRIE_LIST_ITEM(state, charid).forid,
                    (UV)TRIE_LIST_ITEM(state, charid).newstate
                );
                if (!(charid % 10))
                    Perl_re_printf( aTHX_  "\n%*s| ",
                        (int)((depth * 2) + 14), "");
            }
        }
        Perl_re_printf( aTHX_  "\n");
    }
}

/*
  Dumps a fully constructed but uncompressed trie in table form.
  This is the normal DFA style state transition table, with a few
  twists to facilitate compression later.
  Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
                          HV *widecharmap, AV *revcharmap, U32 next_alloc,
                          U32 depth)
{
    U32 state;
    U16 charid;
    SV *sv=sv_newmortal();
    int colwidth= widecharmap ? 6 : 4;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;

    /*
       print out the table precompression so that we can do a visual check
       that they are identical.
     */

    Perl_re_indentf( aTHX_  "Char : ", depth+1 );

    for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
        SV ** const tmp = av_fetch( revcharmap, charid, 0);
        if ( tmp ) {
            Perl_re_printf( aTHX_  "%*s",
                colwidth,
                pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
                            PL_colors[0], PL_colors[1],
                            (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
                            PERL_PV_ESCAPE_FIRSTCHAR
                )
            );
        }
    }

    Perl_re_printf( aTHX_ "\n");
    Perl_re_indentf( aTHX_  "State+-", depth+1 );

    for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
        Perl_re_printf( aTHX_  "%.*s", colwidth,"--------");
    }

    Perl_re_printf( aTHX_  "\n" );

    for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {

        Perl_re_indentf( aTHX_  "%4" UVXf " : ",
            depth+1,
            (UV)TRIE_NODENUM( state ) );

        for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
            UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
            if (v)
                Perl_re_printf( aTHX_  "%*" UVXf, colwidth, v );
            else
                Perl_re_printf( aTHX_  "%*s", colwidth, "." );
        }
        if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
            Perl_re_printf( aTHX_  " (%4" UVXf ")\n",
                                            (UV)trie->trans[ state ].check );
        } else {
            Perl_re_printf( aTHX_  " (%4" UVXf ") W%4X\n",
                                            (UV)trie->trans[ state ].check,
            trie->states[ TRIE_NODENUM( state ) ].wordnum );
        }
    }
}

#endif


/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
  startbranch: the first branch in the whole branch sequence
  first      : start branch of sequence of branch-exact nodes.
               May be the same as startbranch
  last       : Thing following the last branch.
               May be the same as tail.
  tail       : item following the branch sequence
  count      : words in the sequence
  flags      : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
  depth      : indent depth

Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.

A trie is an N'ary tree where the branches are determined by digital
decomposition of the key. IE, at the root node you look up the 1st character and
follow that branch repeat until you find the end of the branches. Nodes can be
marked as "accepting" meaning they represent a complete word. Eg:

  /he|she|his|hers/

would convert into the following structure. Numbers represent states, letters
following numbers represent valid transitions on the letter from that state, if
the number is in square brackets it represents an accepting state, otherwise it
will be in parenthesis.

      +-h->+-e->[3]-+-r->(8)-+-s->[9]
      |    |
      |   (2)
      |    |
     (1)   +-i->(6)-+-s->[7]
      |
      +-s->(3)-+-h->(4)-+-e->[5]

      Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)

This shows that when matching against the string 'hers' we will begin at state 1
read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
is also accepting. Thus we know that we can match both 'he' and 'hers' with a
single traverse. We store a mapping from accepting to state to which word was
matched, and then when we have multiple possibilities we try to complete the
rest of the regex in the order in which they occurred in the alternation.

The only prior NFA like behaviour that would be changed by the TRIE support is
the silent ignoring of duplicate alternations which are of the form:

 / (DUPE|DUPE) X? (?{ ... }) Y /x

Thus EVAL blocks following a trie may be called a different number of times with
and without the optimisation. With the optimisations dupes will be silently
ignored. This inconsistent behaviour of EVAL type nodes is well established as
the following demonstrates:

 'words'=~/(word|word|word)(?{ print $1 })[xyz]/

which prints out 'word' three times, but

 'words'=~/(word|word|word)(?{ print $1 })S/

which doesnt print it out at all. This is due to other optimisations kicking in.

Example of what happens on a structural level:

The regexp /(ac|ad|ab)+/ will produce the following debug output:

   1: CURLYM[1] {1,32767}(18)
   5:   BRANCH(8)
   6:     EXACT <ac>(16)
   8:   BRANCH(11)
   9:     EXACT <ad>(16)
  11:   BRANCH(14)
  12:     EXACT <ab>(16)
  16:   SUCCEED(0)
  17:   NOTHING(18)
  18: END(0)

This would be optimizable with startbranch=5, first=5, last=16, tail=16
and should turn into:

   1: CURLYM[1] {1,32767}(18)
   5:   TRIE(16)
        [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
          <ac>
          <ad>
          <ab>
  16:   SUCCEED(0)
  17:   NOTHING(18)
  18: END(0)

Cases where tail != last would be like /(?foo|bar)baz/:

   1: BRANCH(4)
   2:   EXACT <foo>(8)
   4: BRANCH(7)
   5:   EXACT <bar>(8)
   7: TAIL(8)
   8: EXACT <baz>(10)
  10: END(0)

which would be optimizable with startbranch=1, first=1, last=7, tail=8
and would end up looking like:

    1: TRIE(8)
      [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
        <foo>
        <bar>
   7: TAIL(8)
   8: EXACT <baz>(10)
  10: END(0)

    d = uvchr_to_utf8_flags(d, uv, 0);

is the recommended Unicode-aware way of saying

    *(d++) = uv;
*/

#define TRIE_STORE_REVCHAR(val)                                            \
    STMT_START {                                                           \
        if (UTF) {							   \
            SV *zlopp = newSV(UTF8_MAXBYTES);				   \
            unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp);	   \
            unsigned char *const kapow = uvchr_to_utf8(flrbbbbb, val);     \
            *kapow = '\0';                                                 \
            SvCUR_set(zlopp, kapow - flrbbbbb);				   \
            SvPOK_on(zlopp);						   \
            SvUTF8_on(zlopp);						   \
            av_push(revcharmap, zlopp);					   \
        } else {							   \
            char ooooff = (char)val;                                           \
            av_push(revcharmap, newSVpvn(&ooooff, 1));			   \
        }								   \
        } STMT_END

/* This gets the next character from the input, folding it if not already
 * folded. */
#define TRIE_READ_CHAR STMT_START {                                           \
    wordlen++;                                                                \
    if ( UTF ) {                                                              \
        /* if it is UTF then it is either already folded, or does not need    \
         * folding */                                                         \
        uvc = valid_utf8_to_uvchr( (const U8*) uc, &len);                     \
    }                                                                         \
    else if (folder == PL_fold_latin1) {                                      \
        /* This folder implies Unicode rules, which in the range expressible  \
         *  by not UTF is the lower case, with the two exceptions, one of     \
         *  which should have been taken care of before calling this */       \
        assert(*uc != LATIN_SMALL_LETTER_SHARP_S);                            \
        uvc = toLOWER_L1(*uc);                                                \
        if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU;         \
        len = 1;                                                              \
    } else {                                                                  \
        /* raw data, will be folded later if needed */                        \
        uvc = (U32)*uc;                                                       \
        len = 1;                                                              \
    }                                                                         \
} STMT_END



#define TRIE_LIST_PUSH(state,fid,ns) STMT_START {               \
    if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) {    \
        U32 ging = TRIE_LIST_LEN( state ) * 2;                  \
        Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
        TRIE_LIST_LEN( state ) = ging;                          \
    }                                                           \
    TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid;     \
    TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns;   \
    TRIE_LIST_CUR( state )++;                                   \
} STMT_END

#define TRIE_LIST_NEW(state) STMT_START {                       \
    Newx( trie->states[ state ].trans.list,                     \
        4, reg_trie_trans_le );                                 \
     TRIE_LIST_CUR( state ) = 1;                                \
     TRIE_LIST_LEN( state ) = 4;                                \
} STMT_END

#define TRIE_HANDLE_WORD(state) STMT_START {                    \
    U16 dupe= trie->states[ state ].wordnum;                    \
    regnode * const noper_next = regnext( noper );              \
                                                                \
    DEBUG_r({                                                   \
        /* store the word for dumping */                        \
        SV* tmp;                                                \
        if (OP(noper) != NOTHING)                               \
            tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF);	\
        else                                                    \
            tmp = newSVpvn_utf8( "", 0, UTF );			\
        av_push( trie_words, tmp );                             \
    });                                                         \
                                                                \
    curword++;                                                  \
    trie->wordinfo[curword].prev   = 0;                         \
    trie->wordinfo[curword].len    = wordlen;                   \
    trie->wordinfo[curword].accept = state;                     \
                                                                \
    if ( noper_next < tail ) {                                  \
        if (!trie->jump)                                        \
            trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
                                                 sizeof(U16) ); \
        trie->jump[curword] = (U16)(noper_next - convert);      \
        if (!jumper)                                            \
            jumper = noper_next;                                \
        if (!nextbranch)                                        \
            nextbranch= regnext(cur);                           \
    }                                                           \
                                                                \
    if ( dupe ) {                                               \
        /* It's a dupe. Pre-insert into the wordinfo[].prev   */\
        /* chain, so that when the bits of chain are later    */\
        /* linked together, the dups appear in the chain      */\
        trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
        trie->wordinfo[dupe].prev = curword;                    \
    } else {                                                    \
        /* we haven't inserted this word yet.                */ \
        trie->states[ state ].wordnum = curword;                \
    }                                                           \
} STMT_END


#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special)		\
     ( ( base + charid >=  ucharcount					\
         && base + charid < ubound					\
         && state == trie->trans[ base - ucharcount + charid ].check	\
         && trie->trans[ base - ucharcount + charid ].next )		\
           ? trie->trans[ base - ucharcount + charid ].next		\
           : ( state==1 ? special : 0 )					\
      )

#define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder)           \
STMT_START {                                                \
    TRIE_BITMAP_SET(trie, uvc);                             \
    /* store the folded codepoint */                        \
    if ( folder )                                           \
        TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);           \
                                                            \
    if ( !UTF ) {                                           \
        /* store first byte of utf8 representation of */    \
        /* variant codepoints */                            \
        if (! UVCHR_IS_INVARIANT(uvc)) {                    \
            TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));   \
        }                                                   \
    }                                                       \
} STMT_END
#define MADE_TRIE       1
#define MADE_JUMP_TRIE  2
#define MADE_EXACT_TRIE 4

STATIC I32
S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
                  regnode *first, regnode *last, regnode *tail,
                  U32 word_count, U32 flags, U32 depth)
{
    /* first pass, loop through and scan words */
    reg_trie_data *trie;
    HV *widecharmap = NULL;
    AV *revcharmap = newAV();
    regnode *cur;
    STRLEN len = 0;
    UV uvc = 0;
    U16 curword = 0;
    U32 next_alloc = 0;
    regnode *jumper = NULL;
    regnode *nextbranch = NULL;
    regnode *convert = NULL;
    U32 *prev_states; /* temp array mapping each state to previous one */
    /* we just use folder as a flag in utf8 */
    const U8 * folder = NULL;

    /* in the below add_data call we are storing either 'tu' or 'tuaa'
     * which stands for one trie structure, one hash, optionally followed
     * by two arrays */
#ifdef DEBUGGING
    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
    AV *trie_words = NULL;
    /* along with revcharmap, this only used during construction but both are
     * useful during debugging so we store them in the struct when debugging.
     */
#else
    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
    STRLEN trie_charcount=0;
#endif
    SV *re_trie_maxbuff;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_MAKE_TRIE;
#ifndef DEBUGGING
    PERL_UNUSED_ARG(depth);
#endif

    switch (flags) {
        case EXACT: case EXACT_REQ8: case EXACTL: break;
        case EXACTFAA:
        case EXACTFUP:
        case EXACTFU:
        case EXACTFLU8: folder = PL_fold_latin1; break;
        case EXACTF:  folder = PL_fold; break;
        default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
    }

    trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
    trie->refcount = 1;
    trie->startstate = 1;
    trie->wordcount = word_count;
    RExC_rxi->data->data[ data_slot ] = (void*)trie;
    trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
    if (flags == EXACT || flags == EXACT_REQ8 || flags == EXACTL)
        trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
    trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
                       trie->wordcount+1, sizeof(reg_trie_wordinfo));

    DEBUG_r({
        trie_words = newAV();
    });

    re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, GV_ADD);
    assert(re_trie_maxbuff);
    if (!SvIOK(re_trie_maxbuff)) {
        sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
    }
    DEBUG_TRIE_COMPILE_r({
        Perl_re_indentf( aTHX_
          "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
          depth+1,
          REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
          REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
    });

   /* Find the node we are going to overwrite */
    if ( first == startbranch && OP( last ) != BRANCH ) {
        /* whole branch chain */
        convert = first;
    } else {
        /* branch sub-chain */
        convert = NEXTOPER( first );
    }

    /*  -- First loop and Setup --

       We first traverse the branches and scan each word to determine if it
       contains widechars, and how many unique chars there are, this is
       important as we have to build a table with at least as many columns as we
       have unique chars.

       We use an array of integers to represent the character codes 0..255
       (trie->charmap) and we use a an HV* to store Unicode characters. We use
       the native representation of the character value as the key and IV's for
       the coded index.

       *TODO* If we keep track of how many times each character is used we can
       remap the columns so that the table compression later on is more
       efficient in terms of memory by ensuring the most common value is in the
       middle and the least common are on the outside.  IMO this would be better
       than a most to least common mapping as theres a decent chance the most
       common letter will share a node with the least common, meaning the node
       will not be compressible. With a middle is most common approach the worst
       case is when we have the least common nodes twice.

     */

    for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
        regnode *noper = NEXTOPER( cur );
        const U8 *uc;
        const U8 *e;
        int foldlen = 0;
        U32 wordlen      = 0;         /* required init */
        STRLEN minchars = 0;
        STRLEN maxchars = 0;
        bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
                                               bitmap?*/

        if (OP(noper) == NOTHING) {
            /* skip past a NOTHING at the start of an alternation
             * eg, /(?:)a|(?:b)/ should be the same as /a|b/
             *
             * If the next node is not something we are supposed to process
             * we will just ignore it due to the condition guarding the
             * next block.
             */

            regnode *noper_next= regnext(noper);
            if (noper_next < tail)
                noper= noper_next;
        }

        if (    noper < tail
            && (    OP(noper) == flags
                || (flags == EXACT && OP(noper) == EXACT_REQ8)
                || (flags == EXACTFU && (   OP(noper) == EXACTFU_REQ8
                                         || OP(noper) == EXACTFUP))))
        {
            uc= (U8*)STRING(noper);
            e= uc + STR_LEN(noper);
        } else {
            trie->minlen= 0;
            continue;
        }


        if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
            TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
                                          regardless of encoding */
            if (OP( noper ) == EXACTFUP) {
                /* false positives are ok, so just set this */
                TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
            }
        }

        for ( ; uc < e ; uc += len ) {  /* Look at each char in the current
                                           branch */
            TRIE_CHARCOUNT(trie)++;
            TRIE_READ_CHAR;

            /* TRIE_READ_CHAR returns the current character, or its fold if /i
             * is in effect.  Under /i, this character can match itself, or
             * anything that folds to it.  If not under /i, it can match just
             * itself.  Most folds are 1-1, for example k, K, and KELVIN SIGN
             * all fold to k, and all are single characters.   But some folds
             * expand to more than one character, so for example LATIN SMALL
             * LIGATURE FFI folds to the three character sequence 'ffi'.  If
             * the string beginning at 'uc' is 'ffi', it could be matched by
             * three characters, or just by the one ligature character. (It
             * could also be matched by two characters: LATIN SMALL LIGATURE FF
             * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
             * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
             * match.)  The trie needs to know the minimum and maximum number
             * of characters that could match so that it can use size alone to
             * quickly reject many match attempts.  The max is simple: it is
             * the number of folded characters in this branch (since a fold is
             * never shorter than what folds to it. */

            maxchars++;

            /* And the min is equal to the max if not under /i (indicated by
             * 'folder' being NULL), or there are no multi-character folds.  If
             * there is a multi-character fold, the min is incremented just
             * once, for the character that folds to the sequence.  Each
             * character in the sequence needs to be added to the list below of
             * characters in the trie, but we count only the first towards the
             * min number of characters needed.  This is done through the
             * variable 'foldlen', which is returned by the macros that look
             * for these sequences as the number of bytes the sequence
             * occupies.  Each time through the loop, we decrement 'foldlen' by
             * how many bytes the current char occupies.  Only when it reaches
             * 0 do we increment 'minchars' or look for another multi-character
             * sequence. */
            if (folder == NULL) {
                minchars++;
            }
            else if (foldlen > 0) {
                foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
            }
            else {
                minchars++;

                /* See if *uc is the beginning of a multi-character fold.  If
                 * so, we decrement the length remaining to look at, to account
                 * for the current character this iteration.  (We can use 'uc'
                 * instead of the fold returned by TRIE_READ_CHAR because the
                 * macro is smart enough to account for any unfolded
                 * characters. */
                if (UTF) {
                    if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
                        foldlen -= UTF8SKIP(uc);
                    }
                }
                else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
                    foldlen--;
                }
            }

            /* The current character (and any potential folds) should be added
             * to the possible matching characters for this position in this
             * branch */
            if ( uvc < 256 ) {
                if ( folder ) {
                    U8 folded= folder[ (U8) uvc ];
                    if ( !trie->charmap[ folded ] ) {
                        trie->charmap[ folded ]=( ++trie->uniquecharcount );
                        TRIE_STORE_REVCHAR( folded );
                    }
                }
                if ( !trie->charmap[ uvc ] ) {
                    trie->charmap[ uvc ]=( ++trie->uniquecharcount );
                    TRIE_STORE_REVCHAR( uvc );
                }
                if ( set_bit ) {
                    /* store the codepoint in the bitmap, and its folded
                     * equivalent. */
                    TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
                    set_bit = 0; /* We've done our bit :-) */
                }
            } else {

                /* XXX We could come up with the list of code points that fold
                 * to this using PL_utf8_foldclosures, except not for
                 * multi-char folds, as there may be multiple combinations
                 * there that could work, which needs to wait until runtime to
                 * resolve (The comment about LIGATURE FFI above is such an
                 * example */

                SV** svpp;
                if ( !widecharmap )
                    widecharmap = newHV();

                svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );

                if ( !svpp )
                    Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );

                if ( !SvTRUE( *svpp ) ) {
                    sv_setiv( *svpp, ++trie->uniquecharcount );
                    TRIE_STORE_REVCHAR(uvc);
                }
            }
        } /* end loop through characters in this branch of the trie */

        /* We take the min and max for this branch and combine to find the min
         * and max for all branches processed so far */
        if( cur == first ) {
            trie->minlen = minchars;
            trie->maxlen = maxchars;
        } else if (minchars < trie->minlen) {
            trie->minlen = minchars;
        } else if (maxchars > trie->maxlen) {
            trie->maxlen = maxchars;
        }
    } /* end first pass */
    DEBUG_TRIE_COMPILE_r(
        Perl_re_indentf( aTHX_
                "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
                depth+1,
                ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
                (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
                (int)trie->minlen, (int)trie->maxlen )
    );

    /*
        We now know what we are dealing with in terms of unique chars and
        string sizes so we can calculate how much memory a naive
        representation using a flat table  will take. If it's over a reasonable
        limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
        conservative but potentially much slower representation using an array
        of lists.

        At the end we convert both representations into the same compressed
        form that will be used in regexec.c for matching with. The latter
        is a form that cannot be used to construct with but has memory
        properties similar to the list form and access properties similar
        to the table form making it both suitable for fast searches and
        small enough that its feasable to store for the duration of a program.

        See the comment in the code where the compressed table is produced
        inplace from the flat tabe representation for an explanation of how
        the compression works.

    */


    Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
    prev_states[1] = 0;

    if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
                                                    > SvIV(re_trie_maxbuff) )
    {
        /*
            Second Pass -- Array Of Lists Representation

            Each state will be represented by a list of charid:state records
            (reg_trie_trans_le) the first such element holds the CUR and LEN
            points of the allocated array. (See defines above).

            We build the initial structure using the lists, and then convert
            it into the compressed table form which allows faster lookups
            (but cant be modified once converted).
        */

        STRLEN transcount = 1;

        DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_  "Compiling trie using list compiler\n",
            depth+1));

        trie->states = (reg_trie_state *)
            PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
                                  sizeof(reg_trie_state) );
        TRIE_LIST_NEW(1);
        next_alloc = 2;

        for ( cur = first ; cur < last ; cur = regnext( cur ) ) {

            regnode *noper   = NEXTOPER( cur );
            U32 state        = 1;         /* required init */
            U16 charid       = 0;         /* sanity init */
            U32 wordlen      = 0;         /* required init */

            if (OP(noper) == NOTHING) {
                regnode *noper_next= regnext(noper);
                if (noper_next < tail)
                    noper= noper_next;
                /* we will undo this assignment if noper does not
                 * point at a trieable type in the else clause of
                 * the following statement. */
            }

            if (    noper < tail
                && (    OP(noper) == flags
                    || (flags == EXACT && OP(noper) == EXACT_REQ8)
                    || (flags == EXACTFU && (   OP(noper) == EXACTFU_REQ8
                                             || OP(noper) == EXACTFUP))))
            {
                const U8 *uc= (U8*)STRING(noper);
                const U8 *e= uc + STR_LEN(noper);

                for ( ; uc < e ; uc += len ) {

                    TRIE_READ_CHAR;

                    if ( uvc < 256 ) {
                        charid = trie->charmap[ uvc ];
                    } else {
                        SV** const svpp = hv_fetch( widecharmap,
                                                    (char*)&uvc,
                                                    sizeof( UV ),
                                                    0);
                        if ( !svpp ) {
                            charid = 0;
                        } else {
                            charid=(U16)SvIV( *svpp );
                        }
                    }
                    /* charid is now 0 if we dont know the char read, or
                     * nonzero if we do */
                    if ( charid ) {

                        U16 check;
                        U32 newstate = 0;

                        charid--;
                        if ( !trie->states[ state ].trans.list ) {
                            TRIE_LIST_NEW( state );
                        }
                        for ( check = 1;
                              check <= TRIE_LIST_USED( state );
                              check++ )
                        {
                            if ( TRIE_LIST_ITEM( state, check ).forid
                                                                    == charid )
                            {
                                newstate = TRIE_LIST_ITEM( state, check ).newstate;
                                break;
                            }
                        }
                        if ( ! newstate ) {
                            newstate = next_alloc++;
                            prev_states[newstate] = state;
                            TRIE_LIST_PUSH( state, charid, newstate );
                            transcount++;
                        }
                        state = newstate;
                    } else {
                        Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
                    }
                }
            } else {
                /* If we end up here it is because we skipped past a NOTHING, but did not end up
                 * on a trieable type. So we need to reset noper back to point at the first regop
                 * in the branch before we call TRIE_HANDLE_WORD()
                */
                noper= NEXTOPER(cur);
            }
            TRIE_HANDLE_WORD(state);

        } /* end second pass */

        /* next alloc is the NEXT state to be allocated */
        trie->statecount = next_alloc;
        trie->states = (reg_trie_state *)
            PerlMemShared_realloc( trie->states,
                                   next_alloc
                                   * sizeof(reg_trie_state) );

        /* and now dump it out before we compress it */
        DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
                                                         revcharmap, next_alloc,
                                                         depth+1)
        );

        trie->trans = (reg_trie_trans *)
            PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
        {
            U32 state;
            U32 tp = 0;
            U32 zp = 0;


            for( state=1 ; state < next_alloc ; state ++ ) {
                U32 base=0;

                /*
                DEBUG_TRIE_COMPILE_MORE_r(
                    Perl_re_printf( aTHX_  "tp: %d zp: %d ",tp,zp)
                );
                */

                if (trie->states[state].trans.list) {
                    U16 minid=TRIE_LIST_ITEM( state, 1).forid;
                    U16 maxid=minid;
                    U16 idx;

                    for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
                        const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
                        if ( forid < minid ) {
                            minid=forid;
                        } else if ( forid > maxid ) {
                            maxid=forid;
                        }
                    }
                    if ( transcount < tp + maxid - minid + 1) {
                        transcount *= 2;
                        trie->trans = (reg_trie_trans *)
                            PerlMemShared_realloc( trie->trans,
                                                     transcount
                                                     * sizeof(reg_trie_trans) );
                        Zero( trie->trans + (transcount / 2),
                              transcount / 2,
                              reg_trie_trans );
                    }
                    base = trie->uniquecharcount + tp - minid;
                    if ( maxid == minid ) {
                        U32 set = 0;
                        for ( ; zp < tp ; zp++ ) {
                            if ( ! trie->trans[ zp ].next ) {
                                base = trie->uniquecharcount + zp - minid;
                                trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
                                                                   1).newstate;
                                trie->trans[ zp ].check = state;
                                set = 1;
                                break;
                            }
                        }
                        if ( !set ) {
                            trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
                                                                   1).newstate;
                            trie->trans[ tp ].check = state;
                            tp++;
                            zp = tp;
                        }
                    } else {
                        for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
                            const U32 tid = base
                                           - trie->uniquecharcount
                                           + TRIE_LIST_ITEM( state, idx ).forid;
                            trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
                                                                idx ).newstate;
                            trie->trans[ tid ].check = state;
                        }
                        tp += ( maxid - minid + 1 );
                    }
                    Safefree(trie->states[ state ].trans.list);
                }
                /*
                DEBUG_TRIE_COMPILE_MORE_r(
                    Perl_re_printf( aTHX_  " base: %d\n",base);
                );
                */
                trie->states[ state ].trans.base=base;
            }
            trie->lasttrans = tp + 1;
        }
    } else {
        /*
           Second Pass -- Flat Table Representation.

           we dont use the 0 slot of either trans[] or states[] so we add 1 to
           each.  We know that we will need Charcount+1 trans at most to store
           the data (one row per char at worst case) So we preallocate both
           structures assuming worst case.

           We then construct the trie using only the .next slots of the entry
           structs.

           We use the .check field of the first entry of the node temporarily
           to make compression both faster and easier by keeping track of how
           many non zero fields are in the node.

           Since trans are numbered from 1 any 0 pointer in the table is a FAIL
           transition.

           There are two terms at use here: state as a TRIE_NODEIDX() which is
           a number representing the first entry of the node, and state as a
           TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
           and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
           if there are 2 entrys per node. eg:

             A B       A B
          1. 2 4    1. 3 7
          2. 0 3    3. 0 5
          3. 0 0    5. 0 0
          4. 0 0    7. 0 0

           The table is internally in the right hand, idx form. However as we
           also have to deal with the states array which is indexed by nodenum
           we have to use TRIE_NODENUM() to convert.

        */
        DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_  "Compiling trie using table compiler\n",
            depth+1));

        trie->trans = (reg_trie_trans *)
            PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
                                  * trie->uniquecharcount + 1,
                                  sizeof(reg_trie_trans) );
        trie->states = (reg_trie_state *)
            PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
                                  sizeof(reg_trie_state) );
        next_alloc = trie->uniquecharcount + 1;


        for ( cur = first ; cur < last ; cur = regnext( cur ) ) {

            regnode *noper   = NEXTOPER( cur );

            U32 state        = 1;         /* required init */

            U16 charid       = 0;         /* sanity init */
            U32 accept_state = 0;         /* sanity init */

            U32 wordlen      = 0;         /* required init */

            if (OP(noper) == NOTHING) {
                regnode *noper_next= regnext(noper);
                if (noper_next < tail)
                    noper= noper_next;
                /* we will undo this assignment if noper does not
                 * point at a trieable type in the else clause of
                 * the following statement. */
            }

            if (    noper < tail
                && (    OP(noper) == flags
                    || (flags == EXACT && OP(noper) == EXACT_REQ8)
                    || (flags == EXACTFU && (   OP(noper) == EXACTFU_REQ8
                                             || OP(noper) == EXACTFUP))))
            {
                const U8 *uc= (U8*)STRING(noper);
                const U8 *e= uc + STR_LEN(noper);

                for ( ; uc < e ; uc += len ) {

                    TRIE_READ_CHAR;

                    if ( uvc < 256 ) {
                        charid = trie->charmap[ uvc ];
                    } else {
                        SV* const * const svpp = hv_fetch( widecharmap,
                                                           (char*)&uvc,
                                                           sizeof( UV ),
                                                           0);
                        charid = svpp ? (U16)SvIV(*svpp) : 0;
                    }
                    if ( charid ) {
                        charid--;
                        if ( !trie->trans[ state + charid ].next ) {
                            trie->trans[ state + charid ].next = next_alloc;
                            trie->trans[ state ].check++;
                            prev_states[TRIE_NODENUM(next_alloc)]
                                    = TRIE_NODENUM(state);
                            next_alloc += trie->uniquecharcount;
                        }
                        state = trie->trans[ state + charid ].next;
                    } else {
                        Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
                    }
                    /* charid is now 0 if we dont know the char read, or
                     * nonzero if we do */
                }
            } else {
                /* If we end up here it is because we skipped past a NOTHING, but did not end up
                 * on a trieable type. So we need to reset noper back to point at the first regop
                 * in the branch before we call TRIE_HANDLE_WORD().
                */
                noper= NEXTOPER(cur);
            }
            accept_state = TRIE_NODENUM( state );
            TRIE_HANDLE_WORD(accept_state);

        } /* end second pass */

        /* and now dump it out before we compress it */
        DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
                                                          revcharmap,
                                                          next_alloc, depth+1));

        {
        /*
           * Inplace compress the table.*

           For sparse data sets the table constructed by the trie algorithm will
           be mostly 0/FAIL transitions or to put it another way mostly empty.
           (Note that leaf nodes will not contain any transitions.)

           This algorithm compresses the tables by eliminating most such
           transitions, at the cost of a modest bit of extra work during lookup:

           - Each states[] entry contains a .base field which indicates the
           index in the state[] array wheres its transition data is stored.

           - If .base is 0 there are no valid transitions from that node.

           - If .base is nonzero then charid is added to it to find an entry in
           the trans array.

           -If trans[states[state].base+charid].check!=state then the
           transition is taken to be a 0/Fail transition. Thus if there are fail
           transitions at the front of the node then the .base offset will point
           somewhere inside the previous nodes data (or maybe even into a node
           even earlier), but the .check field determines if the transition is
           valid.

           XXX - wrong maybe?
           The following process inplace converts the table to the compressed
           table: We first do not compress the root node 1,and mark all its
           .check pointers as 1 and set its .base pointer as 1 as well. This
           allows us to do a DFA construction from the compressed table later,
           and ensures that any .base pointers we calculate later are greater
           than 0.

           - We set 'pos' to indicate the first entry of the second node.

           - We then iterate over the columns of the node, finding the first and
           last used entry at l and m. We then copy l..m into pos..(pos+m-l),
           and set the .check pointers accordingly, and advance pos
           appropriately and repreat for the next node. Note that when we copy
           the next pointers we have to convert them from the original
           NODEIDX form to NODENUM form as the former is not valid post
           compression.

           - If a node has no transitions used we mark its base as 0 and do not
           advance the pos pointer.

           - If a node only has one transition we use a second pointer into the
           structure to fill in allocated fail transitions from other states.
           This pointer is independent of the main pointer and scans forward
           looking for null transitions that are allocated to a state. When it
           finds one it writes the single transition into the "hole".  If the
           pointer doesnt find one the single transition is appended as normal.

           - Once compressed we can Renew/realloc the structures to release the
           excess space.

           See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
           specifically Fig 3.47 and the associated pseudocode.

           demq
        */
        const U32 laststate = TRIE_NODENUM( next_alloc );
        U32 state, charid;
        U32 pos = 0, zp=0;
        trie->statecount = laststate;

        for ( state = 1 ; state < laststate ; state++ ) {
            U8 flag = 0;
            const U32 stateidx = TRIE_NODEIDX( state );
            const U32 o_used = trie->trans[ stateidx ].check;
            U32 used = trie->trans[ stateidx ].check;
            trie->trans[ stateidx ].check = 0;

            for ( charid = 0;
                  used && charid < trie->uniquecharcount;
                  charid++ )
            {
                if ( flag || trie->trans[ stateidx + charid ].next ) {
                    if ( trie->trans[ stateidx + charid ].next ) {
                        if (o_used == 1) {
                            for ( ; zp < pos ; zp++ ) {
                                if ( ! trie->trans[ zp ].next ) {
                                    break;
                                }
                            }
                            trie->states[ state ].trans.base
                                                    = zp
                                                      + trie->uniquecharcount
                                                      - charid ;
                            trie->trans[ zp ].next
                                = SAFE_TRIE_NODENUM( trie->trans[ stateidx
                                                             + charid ].next );
                            trie->trans[ zp ].check = state;
                            if ( ++zp > pos ) pos = zp;
                            break;
                        }
                        used--;
                    }
                    if ( !flag ) {
                        flag = 1;
                        trie->states[ state ].trans.base
                                       = pos + trie->uniquecharcount - charid ;
                    }
                    trie->trans[ pos ].next
                        = SAFE_TRIE_NODENUM(
                                       trie->trans[ stateidx + charid ].next );
                    trie->trans[ pos ].check = state;
                    pos++;
                }
            }
        }
        trie->lasttrans = pos + 1;
        trie->states = (reg_trie_state *)
            PerlMemShared_realloc( trie->states, laststate
                                   * sizeof(reg_trie_state) );
        DEBUG_TRIE_COMPILE_MORE_r(
            Perl_re_indentf( aTHX_  "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
                depth+1,
                (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
                       + 1 ),
                (IV)next_alloc,
                (IV)pos,
                ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
            );

        } /* end table compress */
    }
    DEBUG_TRIE_COMPILE_MORE_r(
            Perl_re_indentf( aTHX_  "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
                depth+1,
                (UV)trie->statecount,
                (UV)trie->lasttrans)
    );
    /* resize the trans array to remove unused space */
    trie->trans = (reg_trie_trans *)
        PerlMemShared_realloc( trie->trans, trie->lasttrans
                               * sizeof(reg_trie_trans) );

    {   /* Modify the program and insert the new TRIE node */
        U8 nodetype =(U8)(flags & 0xFF);
        char *str=NULL;

#ifdef DEBUGGING
        regnode *optimize = NULL;
#ifdef RE_TRACK_PATTERN_OFFSETS

        U32 mjd_offset = 0;
        U32 mjd_nodelen = 0;
#endif /* RE_TRACK_PATTERN_OFFSETS */
#endif /* DEBUGGING */
        /*
           This means we convert either the first branch or the first Exact,
           depending on whether the thing following (in 'last') is a branch
           or not and whther first is the startbranch (ie is it a sub part of
           the alternation or is it the whole thing.)
           Assuming its a sub part we convert the EXACT otherwise we convert
           the whole branch sequence, including the first.
         */
        /* Find the node we are going to overwrite */
        if ( first != startbranch || OP( last ) == BRANCH ) {
            /* branch sub-chain */
            NEXT_OFF( first ) = (U16)(last - first);
#ifdef RE_TRACK_PATTERN_OFFSETS
            DEBUG_r({
                mjd_offset= Node_Offset((convert));
                mjd_nodelen= Node_Length((convert));
            });
#endif
            /* whole branch chain */
        }
#ifdef RE_TRACK_PATTERN_OFFSETS
        else {
            DEBUG_r({
                const  regnode *nop = NEXTOPER( convert );
                mjd_offset= Node_Offset((nop));
                mjd_nodelen= Node_Length((nop));
            });
        }
        DEBUG_OPTIMISE_r(
            Perl_re_indentf( aTHX_  "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
                depth+1,
                (UV)mjd_offset, (UV)mjd_nodelen)
        );
#endif
        /* But first we check to see if there is a common prefix we can
           split out as an EXACT and put in front of the TRIE node.  */
        trie->startstate= 1;
        if ( trie->bitmap && !widecharmap && !trie->jump  ) {
            /* we want to find the first state that has more than
             * one transition, if that state is not the first state
             * then we have a common prefix which we can remove.
             */
            U32 state;
            for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
                U32 ofs = 0;
                I32 first_ofs = -1; /* keeps track of the ofs of the first
                                       transition, -1 means none */
                U32 count = 0;
                const U32 base = trie->states[ state ].trans.base;

                /* does this state terminate an alternation? */
                if ( trie->states[state].wordnum )
                        count = 1;

                for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
                    if ( ( base + ofs >= trie->uniquecharcount ) &&
                         ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
                         trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
                    {
                        if ( ++count > 1 ) {
                            /* we have more than one transition */
                            SV **tmp;
                            U8 *ch;
                            /* if this is the first state there is no common prefix
                             * to extract, so we can exit */
                            if ( state == 1 ) break;
                            tmp = av_fetch( revcharmap, ofs, 0);
                            ch = (U8*)SvPV_nolen_const( *tmp );

                            /* if we are on count 2 then we need to initialize the
                             * bitmap, and store the previous char if there was one
                             * in it*/
                            if ( count == 2 ) {
                                /* clear the bitmap */
                                Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
                                DEBUG_OPTIMISE_r(
                                    Perl_re_indentf( aTHX_  "New Start State=%" UVuf " Class: [",
                                        depth+1,
                                        (UV)state));
                                if (first_ofs >= 0) {
                                    SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
                                    const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );

                                    TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
                                    DEBUG_OPTIMISE_r(
                                        Perl_re_printf( aTHX_  "%s", (char*)ch)
                                    );
                                }
                            }
                            /* store the current firstchar in the bitmap */
                            TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
                            DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
                        }
                        first_ofs = ofs;
                    }
                }
                if ( count == 1 ) {
                    /* This state has only one transition, its transition is part
                     * of a common prefix - we need to concatenate the char it
                     * represents to what we have so far. */
                    SV **tmp = av_fetch( revcharmap, first_ofs, 0);
                    STRLEN len;
                    char *ch = SvPV( *tmp, len );
                    DEBUG_OPTIMISE_r({
                        SV *sv=sv_newmortal();
                        Perl_re_indentf( aTHX_  "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
                            depth+1,
                            (UV)state, (UV)first_ofs,
                            pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
                                PL_colors[0], PL_colors[1],
                                (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
                                PERL_PV_ESCAPE_FIRSTCHAR
                            )
                        );
                    });
                    if ( state==1 ) {
                        OP( convert ) = nodetype;
                        str=STRING(convert);
                        setSTR_LEN(convert, 0);
                    }
                    assert( ( STR_LEN(convert) + len ) < 256 );
                    setSTR_LEN(convert, (U8)(STR_LEN(convert) + len));
                    while (len--)
                        *str++ = *ch++;
                } else {
#ifdef DEBUGGING
                    if (state>1)
                        DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
#endif
                    break;
                }
            }
            trie->prefixlen = (state-1);
            if (str) {
                regnode *n = convert+NODE_SZ_STR(convert);
                assert( NODE_SZ_STR(convert) <= U16_MAX );
                NEXT_OFF(convert) = (U16)(NODE_SZ_STR(convert));
                trie->startstate = state;
                trie->minlen -= (state - 1);
                trie->maxlen -= (state - 1);
#ifdef DEBUGGING
               /* At least the UNICOS C compiler choked on this
                * being argument to DEBUG_r(), so let's just have
                * it right here. */
               if (
#ifdef PERL_EXT_RE_BUILD
                   1
#else
                   DEBUG_r_TEST
#endif
                   ) {
                   regnode *fix = convert;
                   U32 word = trie->wordcount;
#ifdef RE_TRACK_PATTERN_OFFSETS
                   mjd_nodelen++;
#endif
                   Set_Node_Offset_Length(convert, mjd_offset, state - 1);
                   while( ++fix < n ) {
                       Set_Node_Offset_Length(fix, 0, 0);
                   }
                   while (word--) {
                       SV ** const tmp = av_fetch( trie_words, word, 0 );
                       if (tmp) {
                           if ( STR_LEN(convert) <= SvCUR(*tmp) )
                               sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
                           else
                               sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
                       }
                   }
               }
#endif
                if (trie->maxlen) {
                    convert = n;
                } else {
                    NEXT_OFF(convert) = (U16)(tail - convert);
                    DEBUG_r(optimize= n);
                }
            }
        }
        if (!jumper)
            jumper = last;
        if ( trie->maxlen ) {
            NEXT_OFF( convert ) = (U16)(tail - convert);
            ARG_SET( convert, data_slot );
            /* Store the offset to the first unabsorbed branch in
               jump[0], which is otherwise unused by the jump logic.
               We use this when dumping a trie and during optimisation. */
            if (trie->jump)
                trie->jump[0] = (U16)(nextbranch - convert);

            /* If the start state is not accepting (meaning there is no empty string/NOTHING)
             *   and there is a bitmap
             *   and the first "jump target" node we found leaves enough room
             * then convert the TRIE node into a TRIEC node, with the bitmap
             * embedded inline in the opcode - this is hypothetically faster.
             */
            if ( !trie->states[trie->startstate].wordnum
                 && trie->bitmap
                 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
            {
                OP( convert ) = TRIEC;
                Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
                PerlMemShared_free(trie->bitmap);
                trie->bitmap= NULL;
            } else
                OP( convert ) = TRIE;

            /* store the type in the flags */
            convert->flags = nodetype;
            DEBUG_r({
            optimize = convert
                      + NODE_STEP_REGNODE
                      + regarglen[ OP( convert ) ];
            });
            /* XXX We really should free up the resource in trie now,
                   as we won't use them - (which resources?) dmq */
        }
        /* needed for dumping*/
        DEBUG_r(if (optimize) {
            regnode *opt = convert;

            while ( ++opt < optimize) {
                Set_Node_Offset_Length(opt, 0, 0);
            }
            /*
                Try to clean up some of the debris left after the
                optimisation.
             */
            while( optimize < jumper ) {
                Track_Code( mjd_nodelen += Node_Length((optimize)); );
                OP( optimize ) = OPTIMIZED;
                Set_Node_Offset_Length(optimize, 0, 0);
                optimize++;
            }
            Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
        });
    } /* end node insert */

    /*  Finish populating the prev field of the wordinfo array.  Walk back
     *  from each accept state until we find another accept state, and if
     *  so, point the first word's .prev field at the second word. If the
     *  second already has a .prev field set, stop now. This will be the
     *  case either if we've already processed that word's accept state,
     *  or that state had multiple words, and the overspill words were
     *  already linked up earlier.
     */
    {
        U16 word;
        U32 state;
        U16 prev;

        for (word=1; word <= trie->wordcount; word++) {
            prev = 0;
            if (trie->wordinfo[word].prev)
                continue;
            state = trie->wordinfo[word].accept;
            while (state) {
                state = prev_states[state];
                if (!state)
                    break;
                prev = trie->states[state].wordnum;
                if (prev)
                    break;
            }
            trie->wordinfo[word].prev = prev;
        }
        Safefree(prev_states);
    }


    /* and now dump out the compressed format */
    DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));

    RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
#ifdef DEBUGGING
    RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
    RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
#else
    SvREFCNT_dec_NN(revcharmap);
#endif
    return trie->jump
           ? MADE_JUMP_TRIE
           : trie->startstate>1
             ? MADE_EXACT_TRIE
             : MADE_TRIE;
}

STATIC regnode *
S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
{
/* The Trie is constructed and compressed now so we can build a fail array if
 * it's needed

   This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
   3.32 in the
   "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
   Ullman 1985/88
   ISBN 0-201-10088-6

   We find the fail state for each state in the trie, this state is the longest
   proper suffix of the current state's 'word' that is also a proper prefix of
   another word in our trie. State 1 represents the word '' and is thus the
   default fail state. This allows the DFA not to have to restart after its
   tried and failed a word at a given point, it simply continues as though it
   had been matching the other word in the first place.
   Consider
      'abcdgu'=~/abcdefg|cdgu/
   When we get to 'd' we are still matching the first word, we would encounter
   'g' which would fail, which would bring us to the state representing 'd' in
   the second word where we would try 'g' and succeed, proceeding to match
   'cdgu'.
 */
 /* add a fail transition */
    const U32 trie_offset = ARG(source);
    reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
    U32 *q;
    const U32 ucharcount = trie->uniquecharcount;
    const U32 numstates = trie->statecount;
    const U32 ubound = trie->lasttrans + ucharcount;
    U32 q_read = 0;
    U32 q_write = 0;
    U32 charid;
    U32 base = trie->states[ 1 ].trans.base;
    U32 *fail;
    reg_ac_data *aho;
    const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
    regnode *stclass;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
    PERL_UNUSED_CONTEXT;
#ifndef DEBUGGING
    PERL_UNUSED_ARG(depth);
#endif

    if ( OP(source) == TRIE ) {
        struct regnode_1 *op = (struct regnode_1 *)
            PerlMemShared_calloc(1, sizeof(struct regnode_1));
        StructCopy(source, op, struct regnode_1);
        stclass = (regnode *)op;
    } else {
        struct regnode_charclass *op = (struct regnode_charclass *)
            PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
        StructCopy(source, op, struct regnode_charclass);
        stclass = (regnode *)op;
    }
    OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */

    ARG_SET( stclass, data_slot );
    aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
    RExC_rxi->data->data[ data_slot ] = (void*)aho;
    aho->trie=trie_offset;
    aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
    Copy( trie->states, aho->states, numstates, reg_trie_state );
    Newx( q, numstates, U32);
    aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
    aho->refcount = 1;
    fail = aho->fail;
    /* initialize fail[0..1] to be 1 so that we always have
       a valid final fail state */
    fail[ 0 ] = fail[ 1 ] = 1;

    for ( charid = 0; charid < ucharcount ; charid++ ) {
        const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
        if ( newstate ) {
            q[ q_write ] = newstate;
            /* set to point at the root */
            fail[ q[ q_write++ ] ]=1;
        }
    }
    while ( q_read < q_write) {
        const U32 cur = q[ q_read++ % numstates ];
        base = trie->states[ cur ].trans.base;

        for ( charid = 0 ; charid < ucharcount ; charid++ ) {
            const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
            if (ch_state) {
                U32 fail_state = cur;
                U32 fail_base;
                do {
                    fail_state = fail[ fail_state ];
                    fail_base = aho->states[ fail_state ].trans.base;
                } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );

                fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
                fail[ ch_state ] = fail_state;
                if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
                {
                        aho->states[ ch_state ].wordnum =  aho->states[ fail_state ].wordnum;
                }
                q[ q_write++ % numstates] = ch_state;
            }
        }
    }
    /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
       when we fail in state 1, this allows us to use the
       charclass scan to find a valid start char. This is based on the principle
       that theres a good chance the string being searched contains lots of stuff
       that cant be a start char.
     */
    fail[ 0 ] = fail[ 1 ] = 0;
    DEBUG_TRIE_COMPILE_r({
        Perl_re_indentf( aTHX_  "Stclass Failtable (%" UVuf " states): 0",
                      depth, (UV)numstates
        );
        for( q_read=1; q_read<numstates; q_read++ ) {
            Perl_re_printf( aTHX_  ", %" UVuf, (UV)fail[q_read]);
        }
        Perl_re_printf( aTHX_  "\n");
    });
    Safefree(q);
    /*RExC_seen |= REG_TRIEDFA_SEEN;*/
    return stclass;
}


/* The below joins as many adjacent EXACTish nodes as possible into a single
 * one.  The regop may be changed if the node(s) contain certain sequences that
 * require special handling.  The joining is only done if:
 * 1) there is room in the current conglomerated node to entirely contain the
 *    next one.
 * 2) they are compatible node types
 *
 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
 * these get optimized out
 *
 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
 * as possible, even if that means splitting an existing node so that its first
 * part is moved to the preceding node.  This would maximise the efficiency of
 * memEQ during matching.
 *
 * If a node is to match under /i (folded), the number of characters it matches
 * can be different than its character length if it contains a multi-character
 * fold.  *min_subtract is set to the total delta number of characters of the
 * input nodes.
 *
 * And *unfolded_multi_char is set to indicate whether or not the node contains
 * an unfolded multi-char fold.  This happens when it won't be known until
 * runtime whether the fold is valid or not; namely
 *  1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
 *      target string being matched against turns out to be UTF-8 is that fold
 *      valid; or
 *  2) for EXACTFL nodes whose folding rules depend on the locale in force at
 *      runtime.
 * (Multi-char folds whose components are all above the Latin1 range are not
 * run-time locale dependent, and have already been folded by the time this
 * function is called.)
 *
 * This is as good a place as any to discuss the design of handling these
 * multi-character fold sequences.  It's been wrong in Perl for a very long
 * time.  There are three code points in Unicode whose multi-character folds
 * were long ago discovered to mess things up.  The previous designs for
 * dealing with these involved assigning a special node for them.  This
 * approach doesn't always work, as evidenced by this example:
 *      "\xDFs" =~ /s\xDF/ui    # Used to fail before these patches
 * Both sides fold to "sss", but if the pattern is parsed to create a node that
 * would match just the \xDF, it won't be able to handle the case where a
 * successful match would have to cross the node's boundary.  The new approach
 * that hopefully generally solves the problem generates an EXACTFUP node
 * that is "sss" in this case.
 *
 * It turns out that there are problems with all multi-character folds, and not
 * just these three.  Now the code is general, for all such cases.  The
 * approach taken is:
 * 1)   This routine examines each EXACTFish node that could contain multi-
 *      character folded sequences.  Since a single character can fold into
 *      such a sequence, the minimum match length for this node is less than
 *      the number of characters in the node.  This routine returns in
 *      *min_subtract how many characters to subtract from the actual
 *      length of the string to get a real minimum match length; it is 0 if
 *      there are no multi-char foldeds.  This delta is used by the caller to
 *      adjust the min length of the match, and the delta between min and max,
 *      so that the optimizer doesn't reject these possibilities based on size
 *      constraints.
 *
 * 2)   For the sequence involving the LATIN SMALL LETTER SHARP S (U+00DF)
 *      under /u, we fold it to 'ss' in regatom(), and in this routine, after
 *      joining, we scan for occurrences of the sequence 'ss' in non-UTF-8
 *      EXACTFU nodes.  The node type of such nodes is then changed to
 *      EXACTFUP, indicating it is problematic, and needs careful handling.
 *      (The procedures in step 1) above are sufficient to handle this case in
 *      UTF-8 encoded nodes.)  The reason this is problematic is that this is
 *      the only case where there is a possible fold length change in non-UTF-8
 *      patterns.  By reserving a special node type for problematic cases, the
 *      far more common regular EXACTFU nodes can be processed faster.
 *      regexec.c takes advantage of this.
 *
 *      EXACTFUP has been created as a grab-bag for (hopefully uncommon)
 *      problematic cases.   These all only occur when the pattern is not
 *      UTF-8.  In addition to the 'ss' sequence where there is a possible fold
 *      length change, it handles the situation where the string cannot be
 *      entirely folded.  The strings in an EXACTFish node are folded as much
 *      as possible during compilation in regcomp.c.  This saves effort in
 *      regex matching.  By using an EXACTFUP node when it is not possible to
 *      fully fold at compile time, regexec.c can know that everything in an
 *      EXACTFU node is folded, so folding can be skipped at runtime.  The only
 *      case where folding in EXACTFU nodes can't be done at compile time is
 *      the presumably uncommon MICRO SIGN, when the pattern isn't UTF-8.  This
 *      is because its fold requires UTF-8 to represent.  Thus EXACTFUP nodes
 *      handle two very different cases.  Alternatively, there could have been
 *      a node type where there are length changes, one for unfolded, and one
 *      for both.  If yet another special case needed to be created, the number
 *      of required node types would have to go to 7.  khw figures that even
 *      though there are plenty of node types to spare, that the maintenance
 *      cost wasn't worth the small speedup of doing it that way, especially
 *      since he thinks the MICRO SIGN is rarely encountered in practice.
 *
 *      There are other cases where folding isn't done at compile time, but
 *      none of them are under /u, and hence not for EXACTFU nodes.  The folds
 *      in EXACTFL nodes aren't known until runtime, and vary as the locale
 *      changes.  Some folds in EXACTF depend on if the runtime target string
 *      is UTF-8 or not.  (regatom() will create an EXACTFU node even under /di
 *      when no fold in it depends on the UTF-8ness of the target string.)
 *
 * 3)   A problem remains for unfolded multi-char folds. (These occur when the
 *      validity of the fold won't be known until runtime, and so must remain
 *      unfolded for now.  This happens for the sharp s in EXACTF and EXACTFAA
 *      nodes when the pattern isn't in UTF-8.  (Note, BTW, that there cannot
 *      be an EXACTF node with a UTF-8 pattern.)  They also occur for various
 *      folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
 *      The reason this is a problem is that the optimizer part of regexec.c
 *      (probably unwittingly, in Perl_regexec_flags()) makes an assumption
 *      that a character in the pattern corresponds to at most a single
 *      character in the target string.  (And I do mean character, and not byte
 *      here, unlike other parts of the documentation that have never been
 *      updated to account for multibyte Unicode.)  Sharp s in EXACTF and
 *      EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
 *      nodes it can match "\x{17F}\x{17F}".  These, along with other ones in
 *      EXACTFL nodes, violate the assumption, and they are the only instances
 *      where it is violated.  I'm reluctant to try to change the assumption,
 *      as the code involved is impenetrable to me (khw), so instead the code
 *      here punts.  This routine examines EXACTFL nodes, and (when the pattern
 *      isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
 *      boolean indicating whether or not the node contains such a fold.  When
 *      it is true, the caller sets a flag that later causes the optimizer in
 *      this file to not set values for the floating and fixed string lengths,
 *      and thus avoids the optimizer code in regexec.c that makes the invalid
 *      assumption.  Thus, there is no optimization based on string lengths for
 *      EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
 *      EXACTF and EXACTFAA nodes that contain the sharp s.  (The reason the
 *      assumption is wrong only in these cases is that all other non-UTF-8
 *      folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
 *      their expanded versions.  (Again, we can't prefold sharp s to 'ss' in
 *      EXACTF nodes because we don't know at compile time if it actually
 *      matches 'ss' or not.  For EXACTF nodes it will match iff the target
 *      string is in UTF-8.  This is in contrast to EXACTFU nodes, where it
 *      always matches; and EXACTFAA where it never does.  In an EXACTFAA node
 *      in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
 *      problem; but in a non-UTF8 pattern, folding it to that above-Latin1
 *      string would require the pattern to be forced into UTF-8, the overhead
 *      of which we want to avoid.  Similarly the unfolded multi-char folds in
 *      EXACTFL nodes will match iff the locale at the time of match is a UTF-8
 *      locale.)
 *
 *      Similarly, the code that generates tries doesn't currently handle
 *      not-already-folded multi-char folds, and it looks like a pain to change
 *      that.  Therefore, trie generation of EXACTFAA nodes with the sharp s
 *      doesn't work.  Instead, such an EXACTFAA is turned into a new regnode,
 *      EXACTFAA_NO_TRIE, which the trie code knows not to handle.  Most people
 *      using /iaa matching will be doing so almost entirely with ASCII
 *      strings, so this should rarely be encountered in practice */

STATIC U32
S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
                   UV *min_subtract, bool *unfolded_multi_char,
                   U32 flags, regnode *val, U32 depth)
{
    /* Merge several consecutive EXACTish nodes into one. */

    regnode *n = regnext(scan);
    U32 stringok = 1;
    regnode *next = scan + NODE_SZ_STR(scan);
    U32 merged = 0;
    U32 stopnow = 0;
#ifdef DEBUGGING
    regnode *stop = scan;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;
#else
    PERL_UNUSED_ARG(depth);
#endif

    PERL_ARGS_ASSERT_JOIN_EXACT;
#ifndef EXPERIMENTAL_INPLACESCAN
    PERL_UNUSED_ARG(flags);
    PERL_UNUSED_ARG(val);
#endif
    DEBUG_PEEP("join", scan, depth, 0);

    assert(PL_regkind[OP(scan)] == EXACT);

    /* Look through the subsequent nodes in the chain.  Skip NOTHING, merge
     * EXACT ones that are mergeable to the current one. */
    while (    n
           && (    PL_regkind[OP(n)] == NOTHING
               || (stringok && PL_regkind[OP(n)] == EXACT))
           && NEXT_OFF(n)
           && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
    {

        if (OP(n) == TAIL || n > next)
            stringok = 0;
        if (PL_regkind[OP(n)] == NOTHING) {
            DEBUG_PEEP("skip:", n, depth, 0);
            NEXT_OFF(scan) += NEXT_OFF(n);
            next = n + NODE_STEP_REGNODE;
#ifdef DEBUGGING
            if (stringok)
                stop = n;
#endif
            n = regnext(n);
        }
        else if (stringok) {
            const unsigned int oldl = STR_LEN(scan);
            regnode * const nnext = regnext(n);

            /* XXX I (khw) kind of doubt that this works on platforms (should
             * Perl ever run on one) where U8_MAX is above 255 because of lots
             * of other assumptions */
            /* Don't join if the sum can't fit into a single node */
            if (oldl + STR_LEN(n) > U8_MAX)
                break;

            /* Joining something that requires UTF-8 with something that
             * doesn't, means the result requires UTF-8. */
            if (OP(scan) == EXACT && (OP(n) == EXACT_REQ8)) {
                OP(scan) = EXACT_REQ8;
            }
            else if (OP(scan) == EXACT_REQ8 && (OP(n) == EXACT)) {
                ;   /* join is compatible, no need to change OP */
            }
            else if ((OP(scan) == EXACTFU) && (OP(n) == EXACTFU_REQ8)) {
                OP(scan) = EXACTFU_REQ8;
            }
            else if ((OP(scan) == EXACTFU_REQ8) && (OP(n) == EXACTFU)) {
                ;   /* join is compatible, no need to change OP */
            }
            else if (OP(scan) == EXACTFU && OP(n) == EXACTFU) {
                ;   /* join is compatible, no need to change OP */
            }
            else if (OP(scan) == EXACTFU && OP(n) == EXACTFU_S_EDGE) {

                 /* Under /di, temporary EXACTFU_S_EDGE nodes are generated,
                  * which can join with EXACTFU ones.  We check for this case
                  * here.  These need to be resolved to either EXACTFU or
                  * EXACTF at joining time.  They have nothing in them that
                  * would forbid them from being the more desirable EXACTFU
                  * nodes except that they begin and/or end with a single [Ss].
                  * The reason this is problematic is because they could be
                  * joined in this loop with an adjacent node that ends and/or
                  * begins with [Ss] which would then form the sequence 'ss',
                  * which matches differently under /di than /ui, in which case
                  * EXACTFU can't be used.  If the 'ss' sequence doesn't get
                  * formed, the nodes get absorbed into any adjacent EXACTFU
                  * node.  And if the only adjacent node is EXACTF, they get
                  * absorbed into that, under the theory that a longer node is
                  * better than two shorter ones, even if one is EXACTFU.  Note
                  * that EXACTFU_REQ8 is generated only for UTF-8 patterns,
                  * and the EXACTFU_S_EDGE ones only for non-UTF-8.  */

                if (STRING(n)[STR_LEN(n)-1] == 's') {

                    /* Here the joined node would end with 's'.  If the node
                     * following the combination is an EXACTF one, it's better to
                     * join this trailing edge 's' node with that one, leaving the
                     * current one in 'scan' be the more desirable EXACTFU */
                    if (OP(nnext) == EXACTF) {
                        break;
                    }

                    OP(scan) = EXACTFU_S_EDGE;

                }   /* Otherwise, the beginning 's' of the 2nd node just
                       becomes an interior 's' in 'scan' */
            }
            else if (OP(scan) == EXACTF && OP(n) == EXACTF) {
                ;   /* join is compatible, no need to change OP */
            }
            else if (OP(scan) == EXACTF && OP(n) == EXACTFU_S_EDGE) {

                /* EXACTF nodes are compatible for joining with EXACTFU_S_EDGE
                 * nodes.  But the latter nodes can be also joined with EXACTFU
                 * ones, and that is a better outcome, so if the node following
                 * 'n' is EXACTFU, quit now so that those two can be joined
                 * later */
                if (OP(nnext) == EXACTFU) {
                    break;
                }

                /* The join is compatible, and the combined node will be
                 * EXACTF.  (These don't care if they begin or end with 's' */
            }
            else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTFU_S_EDGE) {
                if (   STRING(scan)[STR_LEN(scan)-1] == 's'
                    && STRING(n)[0] == 's')
                {
                    /* When combined, we have the sequence 'ss', which means we
                     * have to remain /di */
                    OP(scan) = EXACTF;
                }
            }
            else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTFU) {
                if (STRING(n)[0] == 's') {
                    ;   /* Here the join is compatible and the combined node
                           starts with 's', no need to change OP */
                }
                else {  /* Now the trailing 's' is in the interior */
                    OP(scan) = EXACTFU;
                }
            }
            else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTF) {

                /* The join is compatible, and the combined node will be
                 * EXACTF.  (These don't care if they begin or end with 's' */
                OP(scan) = EXACTF;
            }
            else if (OP(scan) != OP(n)) {

                /* The only other compatible joinings are the same node type */
                break;
            }

            DEBUG_PEEP("merg", n, depth, 0);
            merged++;

            NEXT_OFF(scan) += NEXT_OFF(n);
            assert( ( STR_LEN(scan) + STR_LEN(n) ) < 256 );
            setSTR_LEN(scan, (U8)(STR_LEN(scan) + STR_LEN(n)));
            next = n + NODE_SZ_STR(n);
            /* Now we can overwrite *n : */
            Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
#ifdef DEBUGGING
            stop = next - 1;
#endif
            n = nnext;
            if (stopnow) break;
        }

#ifdef EXPERIMENTAL_INPLACESCAN
        if (flags && !NEXT_OFF(n)) {
            DEBUG_PEEP("atch", val, depth, 0);
            if (reg_off_by_arg[OP(n)]) {
                ARG_SET(n, val - n);
            }
            else {
                NEXT_OFF(n) = val - n;
            }
            stopnow = 1;
        }
#endif
    }

    /* This temporary node can now be turned into EXACTFU, and must, as
     * regexec.c doesn't handle it */
    if (OP(scan) == EXACTFU_S_EDGE) {
        OP(scan) = EXACTFU;
    }

    *min_subtract = 0;
    *unfolded_multi_char = FALSE;

    /* Here, all the adjacent mergeable EXACTish nodes have been merged.  We
     * can now analyze for sequences of problematic code points.  (Prior to
     * this final joining, sequences could have been split over boundaries, and
     * hence missed).  The sequences only happen in folding, hence for any
     * non-EXACT EXACTish node */
    if (OP(scan) != EXACT && OP(scan) != EXACT_REQ8 && OP(scan) != EXACTL) {
        U8* s0 = (U8*) STRING(scan);
        U8* s = s0;
        U8* s_end = s0 + STR_LEN(scan);

        int total_count_delta = 0;  /* Total delta number of characters that
                                       multi-char folds expand to */

        /* One pass is made over the node's string looking for all the
         * possibilities.  To avoid some tests in the loop, there are two main
         * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
         * non-UTF-8 */
        if (UTF) {
            U8* folded = NULL;

            if (OP(scan) == EXACTFL) {
                U8 *d;

                /* An EXACTFL node would already have been changed to another
                 * node type unless there is at least one character in it that
                 * is problematic; likely a character whose fold definition
                 * won't be known until runtime, and so has yet to be folded.
                 * For all but the UTF-8 locale, folds are 1-1 in length, but
                 * to handle the UTF-8 case, we need to create a temporary
                 * folded copy using UTF-8 locale rules in order to analyze it.
                 * This is because our macros that look to see if a sequence is
                 * a multi-char fold assume everything is folded (otherwise the
                 * tests in those macros would be too complicated and slow).
                 * Note that here, the non-problematic folds will have already
                 * been done, so we can just copy such characters.  We actually
                 * don't completely fold the EXACTFL string.  We skip the
                 * unfolded multi-char folds, as that would just create work
                 * below to figure out the size they already are */

                Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
                d = folded;
                while (s < s_end) {
                    STRLEN s_len = UTF8SKIP(s);
                    if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
                        Copy(s, d, s_len, U8);
                        d += s_len;
                    }
                    else if (is_FOLDS_TO_MULTI_utf8(s)) {
                        *unfolded_multi_char = TRUE;
                        Copy(s, d, s_len, U8);
                        d += s_len;
                    }
                    else if (isASCII(*s)) {
                        *(d++) = toFOLD(*s);
                    }
                    else {
                        STRLEN len;
                        _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
                        d += len;
                    }
                    s += s_len;
                }

                /* Point the remainder of the routine to look at our temporary
                 * folded copy */
                s = folded;
                s_end = d;
            } /* End of creating folded copy of EXACTFL string */

            /* Examine the string for a multi-character fold sequence.  UTF-8
             * patterns have all characters pre-folded by the time this code is
             * executed */
            while (s < s_end - 1) /* Can stop 1 before the end, as minimum
                                     length sequence we are looking for is 2 */
            {
                int count = 0;  /* How many characters in a multi-char fold */
                int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
                if (! len) {    /* Not a multi-char fold: get next char */
                    s += UTF8SKIP(s);
                    continue;
                }

                { /* Here is a generic multi-char fold. */
                    U8* multi_end  = s + len;

                    /* Count how many characters are in it.  In the case of
                     * /aa, no folds which contain ASCII code points are
                     * allowed, so check for those, and skip if found. */
                    if (OP(scan) != EXACTFAA && OP(scan) != EXACTFAA_NO_TRIE) {
                        count = utf8_length(s, multi_end);
                        s = multi_end;
                    }
                    else {
                        while (s < multi_end) {
                            if (isASCII(*s)) {
                                s++;
                                goto next_iteration;
                            }
                            else {
                                s += UTF8SKIP(s);
                            }
                            count++;
                        }
                    }
                }

                /* The delta is how long the sequence is minus 1 (1 is how long
                 * the character that folds to the sequence is) */
                total_count_delta += count - 1;
              next_iteration: ;
            }

            /* We created a temporary folded copy of the string in EXACTFL
             * nodes.  Therefore we need to be sure it doesn't go below zero,
             * as the real string could be shorter */
            if (OP(scan) == EXACTFL) {
                int total_chars = utf8_length((U8*) STRING(scan),
                                           (U8*) STRING(scan) + STR_LEN(scan));
                if (total_count_delta > total_chars) {
                    total_count_delta = total_chars;
                }
            }

            *min_subtract += total_count_delta;
            Safefree(folded);
        }
        else if (OP(scan) == EXACTFAA) {

            /* Non-UTF-8 pattern, EXACTFAA node.  There can't be a multi-char
             * fold to the ASCII range (and there are no existing ones in the
             * upper latin1 range).  But, as outlined in the comments preceding
             * this function, we need to flag any occurrences of the sharp s.
             * This character forbids trie formation (because of added
             * complexity) */
#if    UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */   \
   || (UNICODE_MAJOR_VERSION == 3 && (   UNICODE_DOT_VERSION > 0)       \
                                      || UNICODE_DOT_DOT_VERSION > 0)
            while (s < s_end) {
                if (*s == LATIN_SMALL_LETTER_SHARP_S) {
                    OP(scan) = EXACTFAA_NO_TRIE;
                    *unfolded_multi_char = TRUE;
                    break;
                }
                s++;
            }
        }
        else if (OP(scan) != EXACTFAA_NO_TRIE) {

            /* Non-UTF-8 pattern, not EXACTFAA node.  Look for the multi-char
             * folds that are all Latin1.  As explained in the comments
             * preceding this function, we look also for the sharp s in EXACTF
             * and EXACTFL nodes; it can be in the final position.  Otherwise
             * we can stop looking 1 byte earlier because have to find at least
             * two characters for a multi-fold */
            const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
                              ? s_end
                              : s_end -1;

            while (s < upper) {
                int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
                if (! len) {    /* Not a multi-char fold. */
                    if (*s == LATIN_SMALL_LETTER_SHARP_S
                        && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
                    {
                        *unfolded_multi_char = TRUE;
                    }
                    s++;
                    continue;
                }

                if (len == 2
                    && isALPHA_FOLD_EQ(*s, 's')
                    && isALPHA_FOLD_EQ(*(s+1), 's'))
                {

                    /* EXACTF nodes need to know that the minimum length
                     * changed so that a sharp s in the string can match this
                     * ss in the pattern, but they remain EXACTF nodes, as they
                     * won't match this unless the target string is in UTF-8,
                     * which we don't know until runtime.  EXACTFL nodes can't
                     * transform into EXACTFU nodes */
                    if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
                        OP(scan) = EXACTFUP;
                    }
                }

                *min_subtract += len - 1;
                s += len;
            }
#endif
        }
    }

#ifdef DEBUGGING
    /* Allow dumping but overwriting the collection of skipped
     * ops and/or strings with fake optimized ops */
    n = scan + NODE_SZ_STR(scan);
    while (n <= stop) {
        OP(n) = OPTIMIZED;
        FLAGS(n) = 0;
        NEXT_OFF(n) = 0;
        n++;
    }
#endif
    DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl", scan, depth, 0);});
    return stopnow;
}

/* REx optimizer.  Converts nodes into quicker variants "in place".
   Finds fixed substrings.  */

/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
   to the position after last scanned or to NULL. */

#define INIT_AND_WITHP \
    assert(!and_withp); \
    Newx(and_withp, 1, regnode_ssc); \
    SAVEFREEPV(and_withp)


static void
S_unwind_scan_frames(pTHX_ const void *p)
{
    scan_frame *f= (scan_frame *)p;
    do {
        scan_frame *n= f->next_frame;
        Safefree(f);
        f= n;
    } while (f);
}

/* Follow the next-chain of the current node and optimize away
   all the NOTHINGs from it.
 */
STATIC void
S_rck_elide_nothing(pTHX_ regnode *node)
{
    PERL_ARGS_ASSERT_RCK_ELIDE_NOTHING;

    if (OP(node) != CURLYX) {
        const int max = (reg_off_by_arg[OP(node)]
                        ? I32_MAX
                          /* I32 may be smaller than U16 on CRAYs! */
                        : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
        int off = (reg_off_by_arg[OP(node)] ? ARG(node) : NEXT_OFF(node));
        int noff;
        regnode *n = node;

        /* Skip NOTHING and LONGJMP. */
        while (
            (n = regnext(n))
            && (
                (PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
                || ((OP(n) == LONGJMP) && (noff = ARG(n)))
            )
            && off + noff < max
        ) {
            off += noff;
        }
        if (reg_off_by_arg[OP(node)])
            ARG(node) = off;
        else
            NEXT_OFF(node) = off;
    }
    return;
}

/* the return from this sub is the minimum length that could possibly match */
STATIC SSize_t
S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
                        SSize_t *minlenp, SSize_t *deltap,
                        regnode *last,
                        scan_data_t *data,
                        I32 stopparen,
                        U32 recursed_depth,
                        regnode_ssc *and_withp,
                        U32 flags, U32 depth, bool was_mutate_ok)
                        /* scanp: Start here (read-write). */
                        /* deltap: Write maxlen-minlen here. */
                        /* last: Stop before this one. */
                        /* data: string data about the pattern */
                        /* stopparen: treat close N as END */
                        /* recursed: which subroutines have we recursed into */
                        /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
{
    SSize_t final_minlen;
    /* There must be at least this number of characters to match */
    SSize_t min = 0;
    I32 pars = 0, code;
    regnode *scan = *scanp, *next;
    SSize_t delta = 0;
    int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
    int is_inf_internal = 0;		/* The studied chunk is infinite */
    I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
    scan_data_t data_fake;
    SV *re_trie_maxbuff = NULL;
    regnode *first_non_open = scan;
    SSize_t stopmin = OPTIMIZE_INFTY;
    scan_frame *frame = NULL;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_STUDY_CHUNK;
    RExC_study_started= 1;

    Zero(&data_fake, 1, scan_data_t);

    if ( depth == 0 ) {
        while (first_non_open && OP(first_non_open) == OPEN)
            first_non_open=regnext(first_non_open);
    }


  fake_study_recurse:
    DEBUG_r(
        RExC_study_chunk_recursed_count++;
    );
    DEBUG_OPTIMISE_MORE_r(
    {
        Perl_re_indentf( aTHX_  "study_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
            depth, (long)stopparen,
            (unsigned long)RExC_study_chunk_recursed_count,
            (unsigned long)depth, (unsigned long)recursed_depth,
            scan,
            last);
        if (recursed_depth) {
            U32 i;
            U32 j;
            for ( j = 0 ; j < recursed_depth ; j++ ) {
                for ( i = 0 ; i < (U32)RExC_total_parens ; i++ ) {
                    if (PAREN_TEST(j, i) && (!j || !PAREN_TEST(j - 1, i))) {
                        Perl_re_printf( aTHX_ " %d",(int)i);
                        break;
                    }
                }
                if ( j + 1 < recursed_depth ) {
                    Perl_re_printf( aTHX_  ",");
                }
            }
        }
        Perl_re_printf( aTHX_ "\n");
    }
    );
    while ( scan && OP(scan) != END && scan < last ){
        UV min_subtract = 0;    /* How mmany chars to subtract from the minimum
                                   node length to get a real minimum (because
                                   the folded version may be shorter) */
        bool unfolded_multi_char = FALSE;
        /* avoid mutating ops if we are anywhere within the recursed or
         * enframed handling for a GOSUB: the outermost level will handle it.
         */
        bool mutate_ok = was_mutate_ok && !(frame && frame->in_gosub);
        /* Peephole optimizer: */
        DEBUG_STUDYDATA("Peep", data, depth, is_inf);
        DEBUG_PEEP("Peep", scan, depth, flags);


        /* The reason we do this here is that we need to deal with things like
         * /(?:f)(?:o)(?:o)/ which cant be dealt with by the normal EXACT
         * parsing code, as each (?:..) is handled by a different invocation of
         * reg() -- Yves
         */
        if (PL_regkind[OP(scan)] == EXACT
            && OP(scan) != LEXACT
            && OP(scan) != LEXACT_REQ8
            && mutate_ok
        ) {
            join_exact(pRExC_state, scan, &min_subtract, &unfolded_multi_char,
                    0, NULL, depth + 1);
        }

        /* Follow the next-chain of the current node and optimize
           away all the NOTHINGs from it.
         */
        rck_elide_nothing(scan);

        /* The principal pseudo-switch.  Cannot be a switch, since we look into
         * several different things.  */
        if ( OP(scan) == DEFINEP ) {
            SSize_t minlen = 0;
            SSize_t deltanext = 0;
            SSize_t fake_last_close = 0;
            I32 f = SCF_IN_DEFINE;

            StructCopy(&zero_scan_data, &data_fake, scan_data_t);
            scan = regnext(scan);
            assert( OP(scan) == IFTHEN );
            DEBUG_PEEP("expect IFTHEN", scan, depth, flags);

            data_fake.last_closep= &fake_last_close;
            minlen = *minlenp;
            next = regnext(scan);
            scan = NEXTOPER(NEXTOPER(scan));
            DEBUG_PEEP("scan", scan, depth, flags);
            DEBUG_PEEP("next", next, depth, flags);

            /* we suppose the run is continuous, last=next...
             * NOTE we dont use the return here! */
            /* DEFINEP study_chunk() recursion */
            (void)study_chunk(pRExC_state, &scan, &minlen,
                              &deltanext, next, &data_fake, stopparen,
                              recursed_depth, NULL, f, depth+1, mutate_ok);

            scan = next;
        } else
        if (
            OP(scan) == BRANCH  ||
            OP(scan) == BRANCHJ ||
            OP(scan) == IFTHEN
        ) {
            next = regnext(scan);
            code = OP(scan);

            /* The op(next)==code check below is to see if we
             * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
             * IFTHEN is special as it might not appear in pairs.
             * Not sure whether BRANCH-BRANCHJ is possible, regardless
             * we dont handle it cleanly. */
            if (OP(next) == code || code == IFTHEN) {
                /* NOTE - There is similar code to this block below for
                 * handling TRIE nodes on a re-study.  If you change stuff here
                 * check there too. */
                SSize_t max1 = 0, min1 = OPTIMIZE_INFTY, num = 0;
                regnode_ssc accum;
                regnode * const startbranch=scan;

                if (flags & SCF_DO_SUBSTR) {
                    /* Cannot merge strings after this. */
                    scan_commit(pRExC_state, data, minlenp, is_inf);
                }

                if (flags & SCF_DO_STCLASS)
                    ssc_init_zero(pRExC_state, &accum);

                while (OP(scan) == code) {
                    SSize_t deltanext, minnext, fake;
                    I32 f = 0;
                    regnode_ssc this_class;

                    DEBUG_PEEP("Branch", scan, depth, flags);

                    num++;
                    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
                    if (data) {
                        data_fake.whilem_c = data->whilem_c;
                        data_fake.last_closep = data->last_closep;
                    }
                    else
                        data_fake.last_closep = &fake;

                    data_fake.pos_delta = delta;
                    next = regnext(scan);

                    scan = NEXTOPER(scan); /* everything */
                    if (code != BRANCH)    /* everything but BRANCH */
                        scan = NEXTOPER(scan);

                    if (flags & SCF_DO_STCLASS) {
                        ssc_init(pRExC_state, &this_class);
                        data_fake.start_class = &this_class;
                        f = SCF_DO_STCLASS_AND;
                    }
                    if (flags & SCF_WHILEM_VISITED_POS)
                        f |= SCF_WHILEM_VISITED_POS;

                    /* we suppose the run is continuous, last=next...*/
                    /* recurse study_chunk() for each BRANCH in an alternation */
                    minnext = study_chunk(pRExC_state, &scan, minlenp,
                                      &deltanext, next, &data_fake, stopparen,
                                      recursed_depth, NULL, f, depth+1,
                                      mutate_ok);

                    if (min1 > minnext)
                        min1 = minnext;
                    if (deltanext == OPTIMIZE_INFTY) {
                        is_inf = is_inf_internal = 1;
                        max1 = OPTIMIZE_INFTY;
                    } else if (max1 < minnext + deltanext)
                        max1 = minnext + deltanext;
                    scan = next;
                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
                        pars++;
                    if (data_fake.flags & SCF_SEEN_ACCEPT) {
                        if ( stopmin > minnext)
                            stopmin = min + min1;
                        flags &= ~SCF_DO_SUBSTR;
                        if (data)
                            data->flags |= SCF_SEEN_ACCEPT;
                    }
                    if (data) {
                        if (data_fake.flags & SF_HAS_EVAL)
                            data->flags |= SF_HAS_EVAL;
                        data->whilem_c = data_fake.whilem_c;
                    }
                    if (flags & SCF_DO_STCLASS)
                        ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
                }
                if (code == IFTHEN && num < 2) /* Empty ELSE branch */
                    min1 = 0;
                if (flags & SCF_DO_SUBSTR) {
                    data->pos_min += min1;
                    if (data->pos_delta >= OPTIMIZE_INFTY - (max1 - min1))
                        data->pos_delta = OPTIMIZE_INFTY;
                    else
                        data->pos_delta += max1 - min1;
                    if (max1 != min1 || is_inf)
                        data->cur_is_floating = 1;
                }
                min += min1;
                if (delta == OPTIMIZE_INFTY
                 || OPTIMIZE_INFTY - delta - (max1 - min1) < 0)
                    delta = OPTIMIZE_INFTY;
                else
                    delta += max1 - min1;
                if (flags & SCF_DO_STCLASS_OR) {
                    ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
                    if (min1) {
                        ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
                        flags &= ~SCF_DO_STCLASS;
                    }
                }
                else if (flags & SCF_DO_STCLASS_AND) {
                    if (min1) {
                        ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
                        flags &= ~SCF_DO_STCLASS;
                    }
                    else {
                        /* Switch to OR mode: cache the old value of
                         * data->start_class */
                        INIT_AND_WITHP;
                        StructCopy(data->start_class, and_withp, regnode_ssc);
                        flags &= ~SCF_DO_STCLASS_AND;
                        StructCopy(&accum, data->start_class, regnode_ssc);
                        flags |= SCF_DO_STCLASS_OR;
                    }
                }

                if (PERL_ENABLE_TRIE_OPTIMISATION
                    && OP(startbranch) == BRANCH
                    && mutate_ok
                ) {
                /* demq.

                   Assuming this was/is a branch we are dealing with: 'scan'
                   now points at the item that follows the branch sequence,
                   whatever it is. We now start at the beginning of the
                   sequence and look for subsequences of

                   BRANCH->EXACT=>x1
                   BRANCH->EXACT=>x2
                   tail

                   which would be constructed from a pattern like
                   /A|LIST|OF|WORDS/

                   If we can find such a subsequence we need to turn the first
                   element into a trie and then add the subsequent branch exact
                   strings to the trie.

                   We have two cases

                     1. patterns where the whole set of branches can be
                        converted.

                     2. patterns where only a subset can be converted.

                   In case 1 we can replace the whole set with a single regop
                   for the trie. In case 2 we need to keep the start and end
                   branches so

                     'BRANCH EXACT; BRANCH EXACT; BRANCH X'
                     becomes BRANCH TRIE; BRANCH X;

                  There is an additional case, that being where there is a
                  common prefix, which gets split out into an EXACT like node
                  preceding the TRIE node.

                  If x(1..n)==tail then we can do a simple trie, if not we make
                  a "jump" trie, such that when we match the appropriate word
                  we "jump" to the appropriate tail node. Essentially we turn
                  a nested if into a case structure of sorts.

                */

                    int made=0;
                    if (!re_trie_maxbuff) {
                        re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
                        if (!SvIOK(re_trie_maxbuff))
                            sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
                    }
                    if ( SvIV(re_trie_maxbuff)>=0  ) {
                        regnode *cur;
                        regnode *first = (regnode *)NULL;
                        regnode *prev = (regnode *)NULL;
                        regnode *tail = scan;
                        U8 trietype = 0;
                        U32 count=0;

                        /* var tail is used because there may be a TAIL
                           regop in the way. Ie, the exacts will point to the
                           thing following the TAIL, but the last branch will
                           point at the TAIL. So we advance tail. If we
                           have nested (?:) we may have to move through several
                           tails.
                         */

                        while ( OP( tail ) == TAIL ) {
                            /* this is the TAIL generated by (?:) */
                            tail = regnext( tail );
                        }


                        DEBUG_TRIE_COMPILE_r({
                            regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
                            Perl_re_indentf( aTHX_  "%s %" UVuf ":%s\n",
                              depth+1,
                              "Looking for TRIE'able sequences. Tail node is ",
                              (UV) REGNODE_OFFSET(tail),
                              SvPV_nolen_const( RExC_mysv )
                            );
                        });

                        /*

                            Step through the branches
                                cur represents each branch,
                                noper is the first thing to be matched as part
                                      of that branch
                                noper_next is the regnext() of that node.

                            We normally handle a case like this
                            /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
                            support building with NOJUMPTRIE, which restricts
                            the trie logic to structures like /FOO|BAR/.

                            If noper is a trieable nodetype then the branch is
                            a possible optimization target. If we are building
                            under NOJUMPTRIE then we require that noper_next is
                            the same as scan (our current position in the regex
                            program).

                            Once we have two or more consecutive such branches
                            we can create a trie of the EXACT's contents and
                            stitch it in place into the program.

                            If the sequence represents all of the branches in
                            the alternation we replace the entire thing with a
                            single TRIE node.

                            Otherwise when it is a subsequence we need to
                            stitch it in place and replace only the relevant
                            branches. This means the first branch has to remain
                            as it is used by the alternation logic, and its
                            next pointer, and needs to be repointed at the item
                            on the branch chain following the last branch we
                            have optimized away.

                            This could be either a BRANCH, in which case the
                            subsequence is internal, or it could be the item
                            following the branch sequence in which case the
                            subsequence is at the end (which does not
                            necessarily mean the first node is the start of the
                            alternation).

                            TRIE_TYPE(X) is a define which maps the optype to a
                            trietype.

                                optype          |  trietype
                                ----------------+-----------
                                NOTHING         | NOTHING
                                EXACT           | EXACT
                                EXACT_REQ8     | EXACT
                                EXACTFU         | EXACTFU
                                EXACTFU_REQ8   | EXACTFU
                                EXACTFUP        | EXACTFU
                                EXACTFAA        | EXACTFAA
                                EXACTL          | EXACTL
                                EXACTFLU8       | EXACTFLU8


                        */
#define TRIE_TYPE(X) ( ( NOTHING == (X) )                                   \
                       ? NOTHING                                            \
                       : ( EXACT == (X) || EXACT_REQ8 == (X) )             \
                         ? EXACT                                            \
                         : (     EXACTFU == (X)                             \
                              || EXACTFU_REQ8 == (X)                       \
                              || EXACTFUP == (X) )                          \
                           ? EXACTFU                                        \
                           : ( EXACTFAA == (X) )                            \
                             ? EXACTFAA                                     \
                             : ( EXACTL == (X) )                            \
                               ? EXACTL                                     \
                               : ( EXACTFLU8 == (X) )                       \
                                 ? EXACTFLU8                                \
                                 : 0 )

                        /* dont use tail as the end marker for this traverse */
                        for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
                            regnode * const noper = NEXTOPER( cur );
                            U8 noper_type = OP( noper );
                            U8 noper_trietype = TRIE_TYPE( noper_type );
#if defined(DEBUGGING) || defined(NOJUMPTRIE)
                            regnode * const noper_next = regnext( noper );
                            U8 noper_next_type = (noper_next && noper_next < tail) ? OP(noper_next) : 0;
                            U8 noper_next_trietype = (noper_next && noper_next < tail) ? TRIE_TYPE( noper_next_type ) :0;
#endif

                            DEBUG_TRIE_COMPILE_r({
                                regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
                                Perl_re_indentf( aTHX_  "- %d:%s (%d)",
                                   depth+1,
                                   REG_NODE_NUM(cur), SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );

                                regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
                                Perl_re_printf( aTHX_  " -> %d:%s",
                                    REG_NODE_NUM(noper), SvPV_nolen_const(RExC_mysv));

                                if ( noper_next ) {
                                  regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
                                  Perl_re_printf( aTHX_ "\t=> %d:%s\t",
                                    REG_NODE_NUM(noper_next), SvPV_nolen_const(RExC_mysv));
                                }
                                Perl_re_printf( aTHX_  "(First==%d,Last==%d,Cur==%d,tt==%s,ntt==%s,nntt==%s)\n",
                                   REG_NODE_NUM(first), REG_NODE_NUM(prev), REG_NODE_NUM(cur),
                                   PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
                                );
                            });

                            /* Is noper a trieable nodetype that can be merged
                             * with the current trie (if there is one)? */
                            if ( noper_trietype
                                  &&
                                  (
                                        ( noper_trietype == NOTHING )
                                        || ( trietype == NOTHING )
                                        || ( trietype == noper_trietype )
                                  )
#ifdef NOJUMPTRIE
                                  && noper_next >= tail
#endif
                                  && count < U16_MAX)
                            {
                                /* Handle mergable triable node Either we are
                                 * the first node in a new trieable sequence,
                                 * in which case we do some bookkeeping,
                                 * otherwise we update the end pointer. */
                                if ( !first ) {
                                    first = cur;
                                    if ( noper_trietype == NOTHING ) {
#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
                                        regnode * const noper_next = regnext( noper );
                                        U8 noper_next_type = (noper_next && noper_next < tail) ? OP(noper_next) : 0;
                                        U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
#endif

                                        if ( noper_next_trietype ) {
                                            trietype = noper_next_trietype;
                                        } else if (noper_next_type)  {
                                            /* a NOTHING regop is 1 regop wide.
                                             * We need at least two for a trie
                                             * so we can't merge this in */
                                            first = NULL;
                                        }
                                    } else {
                                        trietype = noper_trietype;
                                    }
                                } else {
                                    if ( trietype == NOTHING )
                                        trietype = noper_trietype;
                                    prev = cur;
                                }
                                if (first)
                                    count++;
                            } /* end handle mergable triable node */
                            else {
                                /* handle unmergable node -
                                 * noper may either be a triable node which can
                                 * not be tried together with the current trie,
                                 * or a non triable node */
                                if ( prev ) {
                                    /* If last is set and trietype is not
                                     * NOTHING then we have found at least two
                                     * triable branch sequences in a row of a
                                     * similar trietype so we can turn them
                                     * into a trie. If/when we allow NOTHING to
                                     * start a trie sequence this condition
                                     * will be required, and it isn't expensive
                                     * so we leave it in for now. */
                                    if ( trietype && trietype != NOTHING )
                                        make_trie( pRExC_state,
                                                startbranch, first, cur, tail,
                                                count, trietype, depth+1 );
                                    prev = NULL; /* note: we clear/update
                                                    first, trietype etc below,
                                                    so we dont do it here */
                                }
                                if ( noper_trietype
#ifdef NOJUMPTRIE
                                     && noper_next >= tail
#endif
                                ){
                                    /* noper is triable, so we can start a new
                                     * trie sequence */
                                    count = 1;
                                    first = cur;
                                    trietype = noper_trietype;
                                } else if (first) {
                                    /* if we already saw a first but the
                                     * current node is not triable then we have
                                     * to reset the first information. */
                                    count = 0;
                                    first = NULL;
                                    trietype = 0;
                                }
                            } /* end handle unmergable node */
                        } /* loop over branches */
                        DEBUG_TRIE_COMPILE_r({
                            regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
                            Perl_re_indentf( aTHX_  "- %s (%d) <SCAN FINISHED> ",
                              depth+1, SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur));
                            Perl_re_printf( aTHX_  "(First==%d, Last==%d, Cur==%d, tt==%s)\n",
                               REG_NODE_NUM(first), REG_NODE_NUM(prev), REG_NODE_NUM(cur),
                               PL_reg_name[trietype]
                            );

                        });
                        if ( prev && trietype ) {
                            if ( trietype != NOTHING ) {
                                /* the last branch of the sequence was part of
                                 * a trie, so we have to construct it here
                                 * outside of the loop */
                                made= make_trie( pRExC_state, startbranch,
                                                 first, scan, tail, count,
                                                 trietype, depth+1 );
#ifdef TRIE_STUDY_OPT
                                if ( ((made == MADE_EXACT_TRIE &&
                                     startbranch == first)
                                     || ( first_non_open == first )) &&
                                     depth==0 ) {
                                    flags |= SCF_TRIE_RESTUDY;
                                    if ( startbranch == first
                                         && scan >= tail )
                                    {
                                        RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
                                    }
                                }
#endif
                            } else {
                                /* at this point we know whatever we have is a
                                 * NOTHING sequence/branch AND if 'startbranch'
                                 * is 'first' then we can turn the whole thing
                                 * into a NOTHING
                                 */
                                if ( startbranch == first ) {
                                    regnode *opt;
                                    /* the entire thing is a NOTHING sequence,
                                     * something like this: (?:|) So we can
                                     * turn it into a plain NOTHING op. */
                                    DEBUG_TRIE_COMPILE_r({
                                        regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
                                        Perl_re_indentf( aTHX_  "- %s (%d) <NOTHING BRANCH SEQUENCE>\n",
                                          depth+1,
                                          SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur));

                                    });
                                    OP(startbranch)= NOTHING;
                                    NEXT_OFF(startbranch)= tail - startbranch;
                                    for ( opt= startbranch + 1; opt < tail ; opt++ )
                                        OP(opt)= OPTIMIZED;
                                }
                            }
                        } /* end if ( prev) */
                    } /* TRIE_MAXBUF is non zero */
                } /* do trie */

            }
            else if ( code == BRANCHJ ) {  /* single branch is optimized. */
                scan = NEXTOPER(NEXTOPER(scan));
            } else			/* single branch is optimized. */
                scan = NEXTOPER(scan);
            continue;
        } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB) {
            I32 paren = 0;
            regnode *start = NULL;
            regnode *end = NULL;
            U32 my_recursed_depth= recursed_depth;

            if (OP(scan) != SUSPEND) { /* GOSUB */
                /* Do setup, note this code has side effects beyond
                 * the rest of this block. Specifically setting
                 * RExC_recurse[] must happen at least once during
                 * study_chunk(). */
                paren = ARG(scan);
                RExC_recurse[ARG2L(scan)] = scan;
                start = REGNODE_p(RExC_open_parens[paren]);
                end   = REGNODE_p(RExC_close_parens[paren]);

                /* NOTE we MUST always execute the above code, even
                 * if we do nothing with a GOSUB */
                if (
                    ( flags & SCF_IN_DEFINE )
                    ||
                    (
                        (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
                        &&
                        ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
                    )
                ) {
                    /* no need to do anything here if we are in a define. */
                    /* or we are after some kind of infinite construct
                     * so we can skip recursing into this item.
                     * Since it is infinite we will not change the maxlen
                     * or delta, and if we miss something that might raise
                     * the minlen it will merely pessimise a little.
                     *
                     * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
                     * might result in a minlen of 1 and not of 4,
                     * but this doesn't make us mismatch, just try a bit
                     * harder than we should.
                     *
                     * However we must assume this GOSUB is infinite, to
                     * avoid wrongly applying other optimizations in the
                     * enclosing scope - see GH 18096, for example.
                     */
                    is_inf = is_inf_internal = 1;
                    scan= regnext(scan);
                    continue;
                }

                if (
                    !recursed_depth
                    || !PAREN_TEST(recursed_depth - 1, paren)
                ) {
                    /* it is quite possible that there are more efficient ways
                     * to do this. We maintain a bitmap per level of recursion
                     * of which patterns we have entered so we can detect if a
                     * pattern creates a possible infinite loop. When we
                     * recurse down a level we copy the previous levels bitmap
                     * down. When we are at recursion level 0 we zero the top
                     * level bitmap. It would be nice to implement a different
                     * more efficient way of doing this. In particular the top
                     * level bitmap may be unnecessary.
                     */
                    if (!recursed_depth) {
                        Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
                    } else {
                        Copy(PAREN_OFFSET(recursed_depth - 1),
                             PAREN_OFFSET(recursed_depth),
                             RExC_study_chunk_recursed_bytes, U8);
                    }
                    /* we havent recursed into this paren yet, so recurse into it */
                    DEBUG_STUDYDATA("gosub-set", data, depth, is_inf);
                    PAREN_SET(recursed_depth, paren);
                    my_recursed_depth= recursed_depth + 1;
                } else {
                    DEBUG_STUDYDATA("gosub-inf", data, depth, is_inf);
                    /* some form of infinite recursion, assume infinite length
                     * */
                    if (flags & SCF_DO_SUBSTR) {
                        scan_commit(pRExC_state, data, minlenp, is_inf);
                        data->cur_is_floating = 1;
                    }
                    is_inf = is_inf_internal = 1;
                    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
                        ssc_anything(data->start_class);
                    flags &= ~SCF_DO_STCLASS;

                    start= NULL; /* reset start so we dont recurse later on. */
                }
            } else {
                paren = stopparen;
                start = scan + 2;
                end = regnext(scan);
            }
            if (start) {
                scan_frame *newframe;
                assert(end);
                if (!RExC_frame_last) {
                    Newxz(newframe, 1, scan_frame);
                    SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
                    RExC_frame_head= newframe;
                    RExC_frame_count++;
                } else if (!RExC_frame_last->next_frame) {
                    Newxz(newframe, 1, scan_frame);
                    RExC_frame_last->next_frame= newframe;
                    newframe->prev_frame= RExC_frame_last;
                    RExC_frame_count++;
                } else {
                    newframe= RExC_frame_last->next_frame;
                }
                RExC_frame_last= newframe;

                newframe->next_regnode = regnext(scan);
                newframe->last_regnode = last;
                newframe->stopparen = stopparen;
                newframe->prev_recursed_depth = recursed_depth;
                newframe->this_prev_frame= frame;
                newframe->in_gosub = (
                    (frame && frame->in_gosub) || OP(scan) == GOSUB
                );

                DEBUG_STUDYDATA("frame-new", data, depth, is_inf);
                DEBUG_PEEP("fnew", scan, depth, flags);

                frame = newframe;
                scan =  start;
                stopparen = paren;
                last = end;
                depth = depth + 1;
                recursed_depth= my_recursed_depth;

                continue;
            }
        }
        else if (PL_regkind[OP(scan)] == EXACT && ! isEXACTFish(OP(scan))) {
            SSize_t bytelen = STR_LEN(scan), charlen;
            UV uc;
            assert(bytelen);
            if (UTF) {
                const U8 * const s = (U8*)STRING(scan);
                uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
                charlen = utf8_length(s, s + bytelen);
            } else {
                uc = *((U8*)STRING(scan));
                charlen = bytelen;
            }
            min += charlen;
            if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
                /* The code below prefers earlier match for fixed
                   offset, later match for variable offset.  */
                if (data->last_end == -1) { /* Update the start info. */
                    data->last_start_min = data->pos_min;
                    data->last_start_max =
                        is_inf ? OPTIMIZE_INFTY
                        : (data->pos_delta > OPTIMIZE_INFTY - data->pos_min)
                            ? OPTIMIZE_INFTY : data->pos_min + data->pos_delta;
                }
                sv_catpvn(data->last_found, STRING(scan), bytelen);
                if (UTF)
                    SvUTF8_on(data->last_found);
                {
                    SV * const sv = data->last_found;
                    MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
                        mg_find(sv, PERL_MAGIC_utf8) : NULL;
                    if (mg && mg->mg_len >= 0)
                        mg->mg_len += charlen;
                }
                data->last_end = data->pos_min + charlen;
                data->pos_min += charlen; /* As in the first entry. */
                data->flags &= ~SF_BEFORE_EOL;
            }

            /* ANDing the code point leaves at most it, and not in locale, and
             * can't match null string */
            if (flags & SCF_DO_STCLASS_AND) {
                ssc_cp_and(data->start_class, uc);
                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
                ssc_clear_locale(data->start_class);
            }
            else if (flags & SCF_DO_STCLASS_OR) {
                ssc_add_cp(data->start_class, uc);
                ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);

                /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
            }
            flags &= ~SCF_DO_STCLASS;
        }
        else if (PL_regkind[OP(scan)] == EXACT) {
            /* But OP != EXACT!, so is EXACTFish */
            SSize_t bytelen = STR_LEN(scan), charlen;
            const U8 * s = (U8*)STRING(scan);

            /* Replace a length 1 ASCII fold pair node with an ANYOFM node,
             * with the mask set to the complement of the bit that differs
             * between upper and lower case, and the lowest code point of the
             * pair (which the '&' forces) */
            if (     bytelen == 1
                &&   isALPHA_A(*s)
                &&  (         OP(scan) == EXACTFAA
                     || (     OP(scan) == EXACTFU
                         && ! HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(*s)))
                &&   mutate_ok
            ) {
                U8 mask = ~ ('A' ^ 'a'); /* These differ in just one bit */

                OP(scan) = ANYOFM;
                ARG_SET(scan, *s & mask);
                FLAGS(scan) = mask;
                /* we're not EXACTFish any more, so restudy */
                continue;
            }

            /* Search for fixed substrings supports EXACT only. */
            if (flags & SCF_DO_SUBSTR) {
                assert(data);
                scan_commit(pRExC_state, data, minlenp, is_inf);
            }
            charlen = UTF ? (SSize_t) utf8_length(s, s + bytelen) : bytelen;
            if (unfolded_multi_char) {
                RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
            }
            min += charlen - min_subtract;
            assert (min >= 0);
            if ((SSize_t)min_subtract < OPTIMIZE_INFTY
                && delta < OPTIMIZE_INFTY - (SSize_t)min_subtract
            ) {
                delta += min_subtract;
            } else {
                delta = OPTIMIZE_INFTY;
            }
            if (flags & SCF_DO_SUBSTR) {
                data->pos_min += charlen - min_subtract;
                if (data->pos_min < 0) {
                    data->pos_min = 0;
                }
                if ((SSize_t)min_subtract < OPTIMIZE_INFTY
                    && data->pos_delta < OPTIMIZE_INFTY - (SSize_t)min_subtract
                ) {
                    data->pos_delta += min_subtract;
                } else {
                    data->pos_delta = OPTIMIZE_INFTY;
                }
                if (min_subtract) {
                    data->cur_is_floating = 1; /* float */
                }
            }

            if (flags & SCF_DO_STCLASS) {
                SV* EXACTF_invlist = make_exactf_invlist(pRExC_state, scan);

                assert(EXACTF_invlist);
                if (flags & SCF_DO_STCLASS_AND) {
                    if (OP(scan) != EXACTFL)
                        ssc_clear_locale(data->start_class);
                    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
                    ANYOF_POSIXL_ZERO(data->start_class);
                    ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
                }
                else {  /* SCF_DO_STCLASS_OR */
                    ssc_union(data->start_class, EXACTF_invlist, FALSE);
                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);

                    /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
                    ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
                }
                flags &= ~SCF_DO_STCLASS;
                SvREFCNT_dec(EXACTF_invlist);
            }
        }
        else if (REGNODE_VARIES(OP(scan))) {
            SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
            I32 fl = 0, f = flags;
            regnode * const oscan = scan;
            regnode_ssc this_class;
            regnode_ssc *oclass = NULL;
            I32 next_is_eval = 0;

            switch (PL_regkind[OP(scan)]) {
            case WHILEM:		/* End of (?:...)* . */
                scan = NEXTOPER(scan);
                goto finish;
            case PLUS:
                if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
                    next = NEXTOPER(scan);
                    if (   (     PL_regkind[OP(next)] == EXACT
                            && ! isEXACTFish(OP(next)))
                        || (flags & SCF_DO_STCLASS))
                    {
                        mincount = 1;
                        maxcount = REG_INFTY;
                        next = regnext(scan);
                        scan = NEXTOPER(scan);
                        goto do_curly;
                    }
                }
                if (flags & SCF_DO_SUBSTR)
                    data->pos_min++;
                /* This will bypass the formal 'min += minnext * mincount'
                 * calculation in the do_curly path, so assumes min width
                 * of the PLUS payload is exactly one. */
                min++;
                /* FALLTHROUGH */
            case STAR:
                next = NEXTOPER(scan);

                /* This temporary node can now be turned into EXACTFU, and
                 * must, as regexec.c doesn't handle it */
                if (OP(next) == EXACTFU_S_EDGE && mutate_ok) {
                    OP(next) = EXACTFU;
                }

                if (     STR_LEN(next) == 1
                    &&   isALPHA_A(* STRING(next))
                    && (         OP(next) == EXACTFAA
                        || (     OP(next) == EXACTFU
                            && ! HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(* STRING(next))))
                    &&   mutate_ok
                ) {
                    /* These differ in just one bit */
                    U8 mask = ~ ('A' ^ 'a');

                    assert(isALPHA_A(* STRING(next)));

                    /* Then replace it by an ANYOFM node, with
                    * the mask set to the complement of the
                    * bit that differs between upper and lower
                    * case, and the lowest code point of the
                    * pair (which the '&' forces) */
                    OP(next) = ANYOFM;
                    ARG_SET(next, *STRING(next) & mask);
                    FLAGS(next) = mask;
                }

                if (flags & SCF_DO_STCLASS) {
                    mincount = 0;
                    maxcount = REG_INFTY;
                    next = regnext(scan);
                    scan = NEXTOPER(scan);
                    goto do_curly;
                }
                if (flags & SCF_DO_SUBSTR) {
                    scan_commit(pRExC_state, data, minlenp, is_inf);
                    /* Cannot extend fixed substrings */
                    data->cur_is_floating = 1; /* float */
                }
                is_inf = is_inf_internal = 1;
                scan = regnext(scan);
                goto optimize_curly_tail;
            case CURLY:
                if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
                    && (scan->flags == stopparen))
                {
                    mincount = 1;
                    maxcount = 1;
                } else {
                    mincount = ARG1(scan);
                    maxcount = ARG2(scan);
                }
                next = regnext(scan);
                if (OP(scan) == CURLYX) {
                    I32 lp = (data ? *(data->last_closep) : 0);
                    scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
                }
                scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
                next_is_eval = (OP(scan) == EVAL);
              do_curly:
                if (flags & SCF_DO_SUBSTR) {
                    if (mincount == 0)
                        scan_commit(pRExC_state, data, minlenp, is_inf);
                    /* Cannot extend fixed substrings */
                    pos_before = data->pos_min;
                }
                if (data) {
                    fl = data->flags;
                    data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
                    if (is_inf)
                        data->flags |= SF_IS_INF;
                }
                if (flags & SCF_DO_STCLASS) {
                    ssc_init(pRExC_state, &this_class);
                    oclass = data->start_class;
                    data->start_class = &this_class;
                    f |= SCF_DO_STCLASS_AND;
                    f &= ~SCF_DO_STCLASS_OR;
                }
                /* Exclude from super-linear cache processing any {n,m}
                   regops for which the combination of input pos and regex
                   pos is not enough information to determine if a match
                   will be possible.

                   For example, in the regex /foo(bar\s*){4,8}baz/ with the
                   regex pos at the \s*, the prospects for a match depend not
                   only on the input position but also on how many (bar\s*)
                   repeats into the {4,8} we are. */
               if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
                    f &= ~SCF_WHILEM_VISITED_POS;

                /* This will finish on WHILEM, setting scan, or on NULL: */
                /* recurse study_chunk() on loop bodies */
                minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
                                  last, data, stopparen, recursed_depth, NULL,
                                  (mincount == 0
                                   ? (f & ~SCF_DO_SUBSTR)
                                   : f)
                                  , depth+1, mutate_ok);

                if (flags & SCF_DO_STCLASS)
                    data->start_class = oclass;
                if (mincount == 0 || minnext == 0) {
                    if (flags & SCF_DO_STCLASS_OR) {
                        ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
                    }
                    else if (flags & SCF_DO_STCLASS_AND) {
                        /* Switch to OR mode: cache the old value of
                         * data->start_class */
                        INIT_AND_WITHP;
                        StructCopy(data->start_class, and_withp, regnode_ssc);
                        flags &= ~SCF_DO_STCLASS_AND;
                        StructCopy(&this_class, data->start_class, regnode_ssc);
                        flags |= SCF_DO_STCLASS_OR;
                        ANYOF_FLAGS(data->start_class)
                                                |= SSC_MATCHES_EMPTY_STRING;
                    }
                } else {		/* Non-zero len */
                    if (flags & SCF_DO_STCLASS_OR) {
                        ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
                        ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
                    }
                    else if (flags & SCF_DO_STCLASS_AND)
                        ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
                    flags &= ~SCF_DO_STCLASS;
                }
                if (!scan) 		/* It was not CURLYX, but CURLY. */
                    scan = next;
                if (((flags & (SCF_TRIE_DOING_RESTUDY|SCF_DO_SUBSTR))==SCF_DO_SUBSTR)
                    /* ? quantifier ok, except for (?{ ... }) */
                    && (next_is_eval || !(mincount == 0 && maxcount == 1))
                    && (minnext == 0) && (deltanext == 0)
                    && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
                    && maxcount <= REG_INFTY/3) /* Complement check for big
                                                   count */
                {
                    _WARN_HELPER(RExC_precomp_end, packWARN(WARN_REGEXP),
                        Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
                            "Quantifier unexpected on zero-length expression "
                            "in regex m/%" UTF8f "/",
                             UTF8fARG(UTF, RExC_precomp_end - RExC_precomp,
                                  RExC_precomp)));
                }

                if ( ( minnext > 0 && mincount >= SSize_t_MAX / minnext )
                    || min >= SSize_t_MAX - minnext * mincount )
                {
                    FAIL("Regexp out of space");
                }

                min += minnext * mincount;
                is_inf_internal |= deltanext == OPTIMIZE_INFTY
                         || (maxcount == REG_INFTY && minnext + deltanext > 0);
                is_inf |= is_inf_internal;
                if (is_inf) {
                    delta = OPTIMIZE_INFTY;
                } else {
                    delta += (minnext + deltanext) * maxcount
                             - minnext * mincount;
                }
                /* Try powerful optimization CURLYX => CURLYN. */
                if (  OP(oscan) == CURLYX && data
                      && data->flags & SF_IN_PAR
                      && !(data->flags & SF_HAS_EVAL)
                      && !deltanext && minnext == 1
                      && mutate_ok
                ) {
                    /* Try to optimize to CURLYN.  */
                    regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
                    regnode * const nxt1 = nxt;
#ifdef DEBUGGING
                    regnode *nxt2;
#endif

                    /* Skip open. */
                    nxt = regnext(nxt);
                    if (!REGNODE_SIMPLE(OP(nxt))
                        && !(PL_regkind[OP(nxt)] == EXACT
                             && STR_LEN(nxt) == 1))
                        goto nogo;
#ifdef DEBUGGING
                    nxt2 = nxt;
#endif
                    nxt = regnext(nxt);
                    if (OP(nxt) != CLOSE)
                        goto nogo;
                    if (RExC_open_parens) {

                        /*open->CURLYM*/
                        RExC_open_parens[ARG(nxt1)] = REGNODE_OFFSET(oscan);

                        /*close->while*/
                        RExC_close_parens[ARG(nxt1)] = REGNODE_OFFSET(nxt) + 2;
                    }
                    /* Now we know that nxt2 is the only contents: */
                    oscan->flags = (U8)ARG(nxt);
                    OP(oscan) = CURLYN;
                    OP(nxt1) = NOTHING;	/* was OPEN. */

#ifdef DEBUGGING
                    OP(nxt1 + 1) = OPTIMIZED; /* was count. */
                    NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
                    NEXT_OFF(nxt2) = 0;	/* just for consistency with CURLY. */
                    OP(nxt) = OPTIMIZED;	/* was CLOSE. */
                    OP(nxt + 1) = OPTIMIZED; /* was count. */
                    NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
#endif
                }
              nogo:

                /* Try optimization CURLYX => CURLYM. */
                if (  OP(oscan) == CURLYX && data
                      && !(data->flags & SF_HAS_PAR)
                      && !(data->flags & SF_HAS_EVAL)
                      && !deltanext	/* atom is fixed width */
                      && minnext != 0	/* CURLYM can't handle zero width */
                         /* Nor characters whose fold at run-time may be
                          * multi-character */
                      && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
                      && mutate_ok
                ) {
                    /* XXXX How to optimize if data == 0? */
                    /* Optimize to a simpler form.  */
                    regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
                    regnode *nxt2;

                    OP(oscan) = CURLYM;
                    while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
                            && (OP(nxt2) != WHILEM))
                        nxt = nxt2;
                    OP(nxt2)  = SUCCEED; /* Whas WHILEM */
                    /* Need to optimize away parenths. */
                    if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
                        /* Set the parenth number.  */
                        regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/

                        oscan->flags = (U8)ARG(nxt);
                        if (RExC_open_parens) {
                             /*open->CURLYM*/
                            RExC_open_parens[ARG(nxt1)] = REGNODE_OFFSET(oscan);

                            /*close->NOTHING*/
                            RExC_close_parens[ARG(nxt1)] = REGNODE_OFFSET(nxt2)
                                                         + 1;
                        }
                        OP(nxt1) = OPTIMIZED;	/* was OPEN. */
                        OP(nxt) = OPTIMIZED;	/* was CLOSE. */

#ifdef DEBUGGING
                        OP(nxt1 + 1) = OPTIMIZED; /* was count. */
                        OP(nxt + 1) = OPTIMIZED; /* was count. */
                        NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
                        NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
#endif
#if 0
                        while ( nxt1 && (OP(nxt1) != WHILEM)) {
                            regnode *nnxt = regnext(nxt1);
                            if (nnxt == nxt) {
                                if (reg_off_by_arg[OP(nxt1)])
                                    ARG_SET(nxt1, nxt2 - nxt1);
                                else if (nxt2 - nxt1 < U16_MAX)
                                    NEXT_OFF(nxt1) = nxt2 - nxt1;
                                else
                                    OP(nxt) = NOTHING;	/* Cannot beautify */
                            }
                            nxt1 = nnxt;
                        }
#endif
                        /* Optimize again: */
                        /* recurse study_chunk() on optimised CURLYX => CURLYM */
                        study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
                                    NULL, stopparen, recursed_depth, NULL, 0,
                                    depth+1, mutate_ok);
                    }
                    else
                        oscan->flags = 0;
                }
                else if ((OP(oscan) == CURLYX)
                         && (flags & SCF_WHILEM_VISITED_POS)
                         /* See the comment on a similar expression above.
                            However, this time it's not a subexpression
                            we care about, but the expression itself. */
                         && (maxcount == REG_INFTY)
                         && data) {
                    /* This stays as CURLYX, we can put the count/of pair. */
                    /* Find WHILEM (as in regexec.c) */
                    regnode *nxt = oscan + NEXT_OFF(oscan);

                    if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
                        nxt += ARG(nxt);
                    nxt = PREVOPER(nxt);
                    if (nxt->flags & 0xf) {
                        /* we've already set whilem count on this node */
                    } else if (++data->whilem_c < 16) {
                        assert(data->whilem_c <= RExC_whilem_seen);
                        nxt->flags = (U8)(data->whilem_c
                            | (RExC_whilem_seen << 4)); /* On WHILEM */
                    }
                }
                if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
                    pars++;
                if (flags & SCF_DO_SUBSTR) {
                    SV *last_str = NULL;
                    STRLEN last_chrs = 0;
                    int counted = mincount != 0;

                    if (data->last_end > 0 && mincount != 0) { /* Ends with a
                                                                  string. */
                        SSize_t b = pos_before >= data->last_start_min
                            ? pos_before : data->last_start_min;
                        STRLEN l;
                        const char * const s = SvPV_const(data->last_found, l);
                        SSize_t old = b - data->last_start_min;
                        assert(old >= 0);

                        if (UTF)
                            old = utf8_hop_forward((U8*)s, old,
                                               (U8 *) SvEND(data->last_found))
                                - (U8*)s;
                        l -= old;
                        /* Get the added string: */
                        last_str = newSVpvn_utf8(s  + old, l, UTF);
                        last_chrs = UTF ? utf8_length((U8*)(s + old),
                                            (U8*)(s + old + l)) : l;
                        if (deltanext == 0 && pos_before == b) {
                            /* What was added is a constant string */
                            if (mincount > 1) {

                                SvGROW(last_str, (mincount * l) + 1);
                                repeatcpy(SvPVX(last_str) + l,
                                          SvPVX_const(last_str), l,
                                          mincount - 1);
                                SvCUR_set(last_str, SvCUR(last_str) * mincount);
                                /* Add additional parts. */
                                SvCUR_set(data->last_found,
                                          SvCUR(data->last_found) - l);
                                sv_catsv(data->last_found, last_str);
                                {
                                    SV * sv = data->last_found;
                                    MAGIC *mg =
                                        SvUTF8(sv) && SvMAGICAL(sv) ?
                                        mg_find(sv, PERL_MAGIC_utf8) : NULL;
                                    if (mg && mg->mg_len >= 0)
                                        mg->mg_len += last_chrs * (mincount-1);
                                }
                                last_chrs *= mincount;
                                data->last_end += l * (mincount - 1);
                            }
                        } else {
                            /* start offset must point into the last copy */
                            data->last_start_min += minnext * (mincount - 1);
                            data->last_start_max =
                              is_inf
                               ? OPTIMIZE_INFTY
                               : data->last_start_max +
                                 (maxcount - 1) * (minnext + data->pos_delta);
                        }
                    }
                    /* It is counted once already... */
                    data->pos_min += minnext * (mincount - counted);
#if 0
Perl_re_printf( aTHX_  "counted=%" UVuf " deltanext=%" UVuf
                              " OPTIMIZE_INFTY=%" UVuf " minnext=%" UVuf
                              " maxcount=%" UVuf " mincount=%" UVuf
                              " data->pos_delta=%" UVuf "\n",
    (UV)counted, (UV)deltanext, (UV)OPTIMIZE_INFTY, (UV)minnext, (UV)maxcount,
    (UV)mincount, (UV)data->pos_delta);
if (deltanext != OPTIMIZE_INFTY)
Perl_re_printf( aTHX_  "LHS=%" UVuf " RHS=%" UVuf "\n",
    (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
          - minnext * mincount), (UV)(OPTIMIZE_INFTY - data->pos_delta));
#endif
                    if (deltanext == OPTIMIZE_INFTY
                        || data->pos_delta == OPTIMIZE_INFTY
                        || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= OPTIMIZE_INFTY - data->pos_delta)
                        data->pos_delta = OPTIMIZE_INFTY;
                    else
                        data->pos_delta += - counted * deltanext +
                        (minnext + deltanext) * maxcount - minnext * mincount;
                    if (mincount != maxcount) {
                         /* Cannot extend fixed substrings found inside
                            the group.  */
                        scan_commit(pRExC_state, data, minlenp, is_inf);
                        if (mincount && last_str) {
                            SV * const sv = data->last_found;
                            MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
                                mg_find(sv, PERL_MAGIC_utf8) : NULL;

                            if (mg)
                                mg->mg_len = -1;
                            sv_setsv(sv, last_str);
                            data->last_end = data->pos_min;
                            data->last_start_min = data->pos_min - last_chrs;
                            data->last_start_max = is_inf
                                ? OPTIMIZE_INFTY
                                : data->pos_min + data->pos_delta - last_chrs;
                        }
                        data->cur_is_floating = 1; /* float */
                    }
                    SvREFCNT_dec(last_str);
                }
                if (data && (fl & SF_HAS_EVAL))
                    data->flags |= SF_HAS_EVAL;
              optimize_curly_tail:
                rck_elide_nothing(oscan);
                continue;

            default:
                Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
                                                                    OP(scan));
            case REF:
            case CLUMP:
                if (flags & SCF_DO_SUBSTR) {
                    /* Cannot expect anything... */
                    scan_commit(pRExC_state, data, minlenp, is_inf);
                    data->cur_is_floating = 1; /* float */
                }
                is_inf = is_inf_internal = 1;
                if (flags & SCF_DO_STCLASS_OR) {
                    if (OP(scan) == CLUMP) {
                        /* Actually is any start char, but very few code points
                         * aren't start characters */
                        ssc_match_all_cp(data->start_class);
                    }
                    else {
                        ssc_anything(data->start_class);
                    }
                }
                flags &= ~SCF_DO_STCLASS;
                break;
            }
        }
        else if (OP(scan) == LNBREAK) {
            if (flags & SCF_DO_STCLASS) {
                if (flags & SCF_DO_STCLASS_AND) {
                    ssc_intersection(data->start_class,
                                    PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
                    ssc_clear_locale(data->start_class);
                    ANYOF_FLAGS(data->start_class)
                                                &= ~SSC_MATCHES_EMPTY_STRING;
                }
                else if (flags & SCF_DO_STCLASS_OR) {
                    ssc_union(data->start_class,
                              PL_XPosix_ptrs[_CC_VERTSPACE],
                              FALSE);
                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);

                    /* See commit msg for
                     * 749e076fceedeb708a624933726e7989f2302f6a */
                    ANYOF_FLAGS(data->start_class)
                                                &= ~SSC_MATCHES_EMPTY_STRING;
                }
                flags &= ~SCF_DO_STCLASS;
            }
            min++;
            if (delta != OPTIMIZE_INFTY)
                delta++;    /* Because of the 2 char string cr-lf */
            if (flags & SCF_DO_SUBSTR) {
                /* Cannot expect anything... */
                scan_commit(pRExC_state, data, minlenp, is_inf);
                data->pos_min += 1;
                if (data->pos_delta != OPTIMIZE_INFTY) {
                    data->pos_delta += 1;
                }
                data->cur_is_floating = 1; /* float */
            }
        }
        else if (REGNODE_SIMPLE(OP(scan))) {

            if (flags & SCF_DO_SUBSTR) {
                scan_commit(pRExC_state, data, minlenp, is_inf);
                data->pos_min++;
            }
            min++;
            if (flags & SCF_DO_STCLASS) {
                bool invert = 0;
                SV* my_invlist = NULL;
                U8 namedclass;

                /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
                ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;

                /* Some of the logic below assumes that switching
                   locale on will only add false positives. */
                switch (OP(scan)) {

                default:
#ifdef DEBUGGING
                   Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
                                                                     OP(scan));
#endif
                case SANY:
                    if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
                        ssc_match_all_cp(data->start_class);
                    break;

                case REG_ANY:
                    {
                        SV* REG_ANY_invlist = _new_invlist(2);
                        REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
                                                            '\n');
                        if (flags & SCF_DO_STCLASS_OR) {
                            ssc_union(data->start_class,
                                      REG_ANY_invlist,
                                      TRUE /* TRUE => invert, hence all but \n
                                            */
                                      );
                        }
                        else if (flags & SCF_DO_STCLASS_AND) {
                            ssc_intersection(data->start_class,
                                             REG_ANY_invlist,
                                             TRUE  /* TRUE => invert */
                                             );
                            ssc_clear_locale(data->start_class);
                        }
                        SvREFCNT_dec_NN(REG_ANY_invlist);
                    }
                    break;

                case ANYOFD:
                case ANYOFL:
                case ANYOFPOSIXL:
                case ANYOFH:
                case ANYOFHb:
                case ANYOFHr:
                case ANYOFHs:
                case ANYOF:
                    if (flags & SCF_DO_STCLASS_AND)
                        ssc_and(pRExC_state, data->start_class,
                                (regnode_charclass *) scan);
                    else
                        ssc_or(pRExC_state, data->start_class,
                                                          (regnode_charclass *) scan);
                    break;

                case NANYOFM: /* NANYOFM already contains the inversion of the
                                 input ANYOF data, so, unlike things like
                                 NPOSIXA, don't change 'invert' to TRUE */
                    /* FALLTHROUGH */
                case ANYOFM:
                  {
                    SV* cp_list = get_ANYOFM_contents(scan);

                    if (flags & SCF_DO_STCLASS_OR) {
                        ssc_union(data->start_class, cp_list, invert);
                    }
                    else if (flags & SCF_DO_STCLASS_AND) {
                        ssc_intersection(data->start_class, cp_list, invert);
                    }

                    SvREFCNT_dec_NN(cp_list);
                    break;
                  }

                case ANYOFR:
                case ANYOFRb:
                  {
                    SV* cp_list = NULL;

                    cp_list = _add_range_to_invlist(cp_list,
                                        ANYOFRbase(scan),
                                        ANYOFRbase(scan) + ANYOFRdelta(scan));

                    if (flags & SCF_DO_STCLASS_OR) {
                        ssc_union(data->start_class, cp_list, invert);
                    }
                    else if (flags & SCF_DO_STCLASS_AND) {
                        ssc_intersection(data->start_class, cp_list, invert);
                    }

                    SvREFCNT_dec_NN(cp_list);
                    break;
                  }

                case NPOSIXL:
                    invert = 1;
                    /* FALLTHROUGH */

                case POSIXL:
                    namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
                    if (flags & SCF_DO_STCLASS_AND) {
                        bool was_there = cBOOL(
                                          ANYOF_POSIXL_TEST(data->start_class,
                                                                 namedclass));
                        ANYOF_POSIXL_ZERO(data->start_class);
                        if (was_there) {    /* Do an AND */
                            ANYOF_POSIXL_SET(data->start_class, namedclass);
                        }
                        /* No individual code points can now match */
                        data->start_class->invlist
                                                = sv_2mortal(_new_invlist(0));
                    }
                    else {
                        int complement = namedclass + ((invert) ? -1 : 1);

                        assert(flags & SCF_DO_STCLASS_OR);

                        /* If the complement of this class was already there,
                         * the result is that they match all code points,
                         * (\d + \D == everything).  Remove the classes from
                         * future consideration.  Locale is not relevant in
                         * this case */
                        if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
                            ssc_match_all_cp(data->start_class);
                            ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
                            ANYOF_POSIXL_CLEAR(data->start_class, complement);
                        }
                        else {  /* The usual case; just add this class to the
                                   existing set */
                            ANYOF_POSIXL_SET(data->start_class, namedclass);
                        }
                    }
                    break;

                case NPOSIXA:   /* For these, we always know the exact set of
                                   what's matched */
                    invert = 1;
                    /* FALLTHROUGH */
                case POSIXA:
                    my_invlist = invlist_clone(PL_Posix_ptrs[FLAGS(scan)], NULL);
                    goto join_posix_and_ascii;

                case NPOSIXD:
                case NPOSIXU:
                    invert = 1;
                    /* FALLTHROUGH */
                case POSIXD:
                case POSIXU:
                    my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)], NULL);

                    /* NPOSIXD matches all upper Latin1 code points unless the
                     * target string being matched is UTF-8, which is
                     * unknowable until match time.  Since we are going to
                     * invert, we want to get rid of all of them so that the
                     * inversion will match all */
                    if (OP(scan) == NPOSIXD) {
                        _invlist_subtract(my_invlist, PL_UpperLatin1,
                                          &my_invlist);
                    }

                  join_posix_and_ascii:

                    if (flags & SCF_DO_STCLASS_AND) {
                        ssc_intersection(data->start_class, my_invlist, invert);
                        ssc_clear_locale(data->start_class);
                    }
                    else {
                        assert(flags & SCF_DO_STCLASS_OR);
                        ssc_union(data->start_class, my_invlist, invert);
                    }
                    SvREFCNT_dec(my_invlist);
                }
                if (flags & SCF_DO_STCLASS_OR)
                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
                flags &= ~SCF_DO_STCLASS;
            }
        }
        else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
            data->flags |= (OP(scan) == MEOL
                            ? SF_BEFORE_MEOL
                            : SF_BEFORE_SEOL);
            scan_commit(pRExC_state, data, minlenp, is_inf);

        }
        else if (  PL_regkind[OP(scan)] == BRANCHJ
                 /* Lookbehind, or need to calculate parens/evals/stclass: */
                   && (scan->flags || data || (flags & SCF_DO_STCLASS))
                   && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
        {
            if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
                || OP(scan) == UNLESSM )
            {
                /* Negative Lookahead/lookbehind
                   In this case we can't do fixed string optimisation.
                */

                SSize_t deltanext, minnext, fake = 0;
                regnode *nscan;
                regnode_ssc intrnl;
                int f = 0;

                StructCopy(&zero_scan_data, &data_fake, scan_data_t);
                if (data) {
                    data_fake.whilem_c = data->whilem_c;
                    data_fake.last_closep = data->last_closep;
                }
                else
                    data_fake.last_closep = &fake;
                data_fake.pos_delta = delta;
                if ( flags & SCF_DO_STCLASS && !scan->flags
                     && OP(scan) == IFMATCH ) { /* Lookahead */
                    ssc_init(pRExC_state, &intrnl);
                    data_fake.start_class = &intrnl;
                    f |= SCF_DO_STCLASS_AND;
                }
                if (flags & SCF_WHILEM_VISITED_POS)
                    f |= SCF_WHILEM_VISITED_POS;
                next = regnext(scan);
                nscan = NEXTOPER(NEXTOPER(scan));

                /* recurse study_chunk() for lookahead body */
                minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
                                      last, &data_fake, stopparen,
                                      recursed_depth, NULL, f, depth+1,
                                      mutate_ok);
                if (scan->flags) {
                    if (   deltanext < 0
                        || deltanext > (I32) U8_MAX
                        || minnext > (I32)U8_MAX
                        || minnext + deltanext > (I32)U8_MAX)
                    {
                        FAIL2("Lookbehind longer than %" UVuf " not implemented",
                              (UV)U8_MAX);
                    }

                    /* The 'next_off' field has been repurposed to count the
                     * additional starting positions to try beyond the initial
                     * one.  (This leaves it at 0 for non-variable length
                     * matches to avoid breakage for those not using this
                     * extension) */
                    if (deltanext) {
                        scan->next_off = deltanext;
                        ckWARNexperimental(RExC_parse,
                            WARN_EXPERIMENTAL__VLB,
                            "Variable length lookbehind is experimental");
                    }
                    scan->flags = (U8)minnext + deltanext;
                }
                if (data) {
                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
                        pars++;
                    if (data_fake.flags & SF_HAS_EVAL)
                        data->flags |= SF_HAS_EVAL;
                    data->whilem_c = data_fake.whilem_c;
                }
                if (f & SCF_DO_STCLASS_AND) {
                    if (flags & SCF_DO_STCLASS_OR) {
                        /* OR before, AND after: ideally we would recurse with
                         * data_fake to get the AND applied by study of the
                         * remainder of the pattern, and then derecurse;
                         * *** HACK *** for now just treat as "no information".
                         * See [perl #56690].
                         */
                        ssc_init(pRExC_state, data->start_class);
                    }  else {
                        /* AND before and after: combine and continue.  These
                         * assertions are zero-length, so can match an EMPTY
                         * string */
                        ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
                        ANYOF_FLAGS(data->start_class)
                                                   |= SSC_MATCHES_EMPTY_STRING;
                    }
                }
            }
#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
            else {
                /* Positive Lookahead/lookbehind
                   In this case we can do fixed string optimisation,
                   but we must be careful about it. Note in the case of
                   lookbehind the positions will be offset by the minimum
                   length of the pattern, something we won't know about
                   until after the recurse.
                */
                SSize_t deltanext, fake = 0;
                regnode *nscan;
                regnode_ssc intrnl;
                int f = 0;
                /* We use SAVEFREEPV so that when the full compile
                    is finished perl will clean up the allocated
                    minlens when it's all done. This way we don't
                    have to worry about freeing them when we know
                    they wont be used, which would be a pain.
                 */
                SSize_t *minnextp;
                Newx( minnextp, 1, SSize_t );
                SAVEFREEPV(minnextp);

                if (data) {
                    StructCopy(data, &data_fake, scan_data_t);
                    if ((flags & SCF_DO_SUBSTR) && data->last_found) {
                        f |= SCF_DO_SUBSTR;
                        if (scan->flags)
                            scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
                        data_fake.last_found=newSVsv(data->last_found);
                    }
                }
                else
                    data_fake.last_closep = &fake;
                data_fake.flags = 0;
                data_fake.substrs[0].flags = 0;
                data_fake.substrs[1].flags = 0;
                data_fake.pos_delta = delta;
                if (is_inf)
                    data_fake.flags |= SF_IS_INF;
                if ( flags & SCF_DO_STCLASS && !scan->flags
                     && OP(scan) == IFMATCH ) { /* Lookahead */
                    ssc_init(pRExC_state, &intrnl);
                    data_fake.start_class = &intrnl;
                    f |= SCF_DO_STCLASS_AND;
                }
                if (flags & SCF_WHILEM_VISITED_POS)
                    f |= SCF_WHILEM_VISITED_POS;
                next = regnext(scan);
                nscan = NEXTOPER(NEXTOPER(scan));

                /* positive lookahead study_chunk() recursion */
                *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
                                        &deltanext, last, &data_fake,
                                        stopparen, recursed_depth, NULL,
                                        f, depth+1, mutate_ok);
                if (scan->flags) {
                    assert(0);  /* This code has never been tested since this
                                   is normally not compiled */
                    if (   deltanext < 0
                        || deltanext > (I32) U8_MAX
                        || *minnextp > (I32)U8_MAX
                        || *minnextp + deltanext > (I32)U8_MAX)
                    {
                        FAIL2("Lookbehind longer than %" UVuf " not implemented",
                              (UV)U8_MAX);
                    }

                    if (deltanext) {
                        scan->next_off = deltanext;
                    }
                    scan->flags = (U8)*minnextp + deltanext;
                }

                *minnextp += min;

                if (f & SCF_DO_STCLASS_AND) {
                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
                    ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
                }
                if (data) {
                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
                        pars++;
                    if (data_fake.flags & SF_HAS_EVAL)
                        data->flags |= SF_HAS_EVAL;
                    data->whilem_c = data_fake.whilem_c;
                    if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
                        int i;
                        if (RExC_rx->minlen<*minnextp)
                            RExC_rx->minlen=*minnextp;
                        scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
                        SvREFCNT_dec_NN(data_fake.last_found);

                        for (i = 0; i < 2; i++) {
                            if (data_fake.substrs[i].minlenp != minlenp) {
                                data->substrs[i].min_offset =
                                            data_fake.substrs[i].min_offset;
                                data->substrs[i].max_offset =
                                            data_fake.substrs[i].max_offset;
                                data->substrs[i].minlenp =
                                            data_fake.substrs[i].minlenp;
                                data->substrs[i].lookbehind += scan->flags;
                            }
                        }
                    }
                }
            }
#endif
        }
        else if (OP(scan) == OPEN) {
            if (stopparen != (I32)ARG(scan))
                pars++;
        }
        else if (OP(scan) == CLOSE) {
            if (stopparen == (I32)ARG(scan)) {
                break;
            }
            if ((I32)ARG(scan) == is_par) {
                next = regnext(scan);

                if ( next && (OP(next) != WHILEM) && next < last)
                    is_par = 0;		/* Disable optimization */
            }
            if (data)
                *(data->last_closep) = ARG(scan);
        }
        else if (OP(scan) == EVAL) {
            if (data)
                data->flags |= SF_HAS_EVAL;
        }
        else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
            if (flags & SCF_DO_SUBSTR) {
                scan_commit(pRExC_state, data, minlenp, is_inf);
                flags &= ~SCF_DO_SUBSTR;
            }
            if (OP(scan)==ACCEPT) {
                /* m{(*ACCEPT)x} does not have to start with 'x' */
                flags &= ~SCF_DO_STCLASS;
                if (data) {
                    data->flags |= SCF_SEEN_ACCEPT;
                    if (stopmin > min)
                        stopmin = min;
                }
            }
        }
        else if (OP(scan) == COMMIT) {
            /* gh18770: m{abc(*COMMIT)xyz} must fail on "abc abcxyz", so we
             * must not end up with "abcxyz" as a fixed substring else we'll
             * skip straight to attempting to match at offset 4.
             */
            if (flags & SCF_DO_SUBSTR) {
                scan_commit(pRExC_state, data, minlenp, is_inf);
                flags &= ~SCF_DO_SUBSTR;
            }
        }
        else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
        {
                if (flags & SCF_DO_SUBSTR) {
                    scan_commit(pRExC_state, data, minlenp, is_inf);
                    data->cur_is_floating = 1; /* float */
                }
                is_inf = is_inf_internal = 1;
                if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
                    ssc_anything(data->start_class);
                flags &= ~SCF_DO_STCLASS;
        }
        else if (OP(scan) == GPOS) {
            if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
                !(delta || is_inf || (data && data->pos_delta)))
            {
                if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
                    RExC_rx->intflags |= PREGf_ANCH_GPOS;
                if (RExC_rx->gofs < (STRLEN)min)
                    RExC_rx->gofs = min;
            } else {
                RExC_rx->intflags |= PREGf_GPOS_FLOAT;
                RExC_rx->gofs = 0;
            }
        }
#ifdef TRIE_STUDY_OPT
#ifdef FULL_TRIE_STUDY
        else if (PL_regkind[OP(scan)] == TRIE) {
            /* NOTE - There is similar code to this block above for handling
               BRANCH nodes on the initial study.  If you change stuff here
               check there too. */
            regnode *trie_node= scan;
            regnode *tail= regnext(scan);
            reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
            SSize_t max1 = 0, min1 = OPTIMIZE_INFTY;
            regnode_ssc accum;

            if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
                /* Cannot merge strings after this. */
                scan_commit(pRExC_state, data, minlenp, is_inf);
            }
            if (flags & SCF_DO_STCLASS)
                ssc_init_zero(pRExC_state, &accum);

            if (!trie->jump) {
                min1= trie->minlen;
                max1= trie->maxlen;
            } else {
                const regnode *nextbranch= NULL;
                U32 word;

                for ( word=1 ; word <= trie->wordcount ; word++)
                {
                    SSize_t deltanext=0, minnext=0, f = 0, fake;
                    regnode_ssc this_class;

                    StructCopy(&zero_scan_data, &data_fake, scan_data_t);
                    if (data) {
                        data_fake.whilem_c = data->whilem_c;
                        data_fake.last_closep = data->last_closep;
                    }
                    else
                        data_fake.last_closep = &fake;
                    data_fake.pos_delta = delta;
                    if (flags & SCF_DO_STCLASS) {
                        ssc_init(pRExC_state, &this_class);
                        data_fake.start_class = &this_class;
                        f = SCF_DO_STCLASS_AND;
                    }
                    if (flags & SCF_WHILEM_VISITED_POS)
                        f |= SCF_WHILEM_VISITED_POS;

                    if (trie->jump[word]) {
                        if (!nextbranch)
                            nextbranch = trie_node + trie->jump[0];
                        scan= trie_node + trie->jump[word];
                        /* We go from the jump point to the branch that follows
                           it. Note this means we need the vestigal unused
                           branches even though they arent otherwise used. */
                        /* optimise study_chunk() for TRIE */
                        minnext = study_chunk(pRExC_state, &scan, minlenp,
                            &deltanext, (regnode *)nextbranch, &data_fake,
                            stopparen, recursed_depth, NULL, f, depth+1,
                            mutate_ok);
                    }
                    if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
                        nextbranch= regnext((regnode*)nextbranch);

                    if (min1 > (SSize_t)(minnext + trie->minlen))
                        min1 = minnext + trie->minlen;
                    if (deltanext == OPTIMIZE_INFTY) {
                        is_inf = is_inf_internal = 1;
                        max1 = OPTIMIZE_INFTY;
                    } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
                        max1 = minnext + deltanext + trie->maxlen;

                    if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
                        pars++;
                    if (data_fake.flags & SCF_SEEN_ACCEPT) {
                        if ( stopmin > min + min1)
                            stopmin = min + min1;
                        flags &= ~SCF_DO_SUBSTR;
                        if (data)
                            data->flags |= SCF_SEEN_ACCEPT;
                    }
                    if (data) {
                        if (data_fake.flags & SF_HAS_EVAL)
                            data->flags |= SF_HAS_EVAL;
                        data->whilem_c = data_fake.whilem_c;
                    }
                    if (flags & SCF_DO_STCLASS)
                        ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
                }
            }
            if (flags & SCF_DO_SUBSTR) {
                data->pos_min += min1;
                data->pos_delta += max1 - min1;
                if (max1 != min1 || is_inf)
                    data->cur_is_floating = 1; /* float */
            }
            min += min1;
            if (delta != OPTIMIZE_INFTY) {
                if (OPTIMIZE_INFTY - (max1 - min1) >= delta)
                    delta += max1 - min1;
                else
                    delta = OPTIMIZE_INFTY;
            }
            if (flags & SCF_DO_STCLASS_OR) {
                ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
                if (min1) {
                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
                    flags &= ~SCF_DO_STCLASS;
                }
            }
            else if (flags & SCF_DO_STCLASS_AND) {
                if (min1) {
                    ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
                    flags &= ~SCF_DO_STCLASS;
                }
                else {
                    /* Switch to OR mode: cache the old value of
                     * data->start_class */
                    INIT_AND_WITHP;
                    StructCopy(data->start_class, and_withp, regnode_ssc);
                    flags &= ~SCF_DO_STCLASS_AND;
                    StructCopy(&accum, data->start_class, regnode_ssc);
                    flags |= SCF_DO_STCLASS_OR;
                }
            }
            scan= tail;
            continue;
        }
#else
        else if (PL_regkind[OP(scan)] == TRIE) {
            reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
            U8*bang=NULL;

            min += trie->minlen;
            delta += (trie->maxlen - trie->minlen);
            flags &= ~SCF_DO_STCLASS; /* xxx */
            if (flags & SCF_DO_SUBSTR) {
                /* Cannot expect anything... */
                scan_commit(pRExC_state, data, minlenp, is_inf);
                data->pos_min += trie->minlen;
                data->pos_delta += (trie->maxlen - trie->minlen);
                if (trie->maxlen != trie->minlen)
                    data->cur_is_floating = 1; /* float */
            }
            if (trie->jump) /* no more substrings -- for now /grr*/
               flags &= ~SCF_DO_SUBSTR;
        }
        else if (OP(scan) == REGEX_SET) {
            Perl_croak(aTHX_ "panic: %s regnode should be resolved"
                             " before optimization", reg_name[REGEX_SET]);
        }

#endif /* old or new */
#endif /* TRIE_STUDY_OPT */

        /* Else: zero-length, ignore. */
        scan = regnext(scan);
    }

  finish:
    if (frame) {
        /* we need to unwind recursion. */
        depth = depth - 1;

        DEBUG_STUDYDATA("frame-end", data, depth, is_inf);
        DEBUG_PEEP("fend", scan, depth, flags);

        /* restore previous context */
        last = frame->last_regnode;
        scan = frame->next_regnode;
        stopparen = frame->stopparen;
        recursed_depth = frame->prev_recursed_depth;

        RExC_frame_last = frame->prev_frame;
        frame = frame->this_prev_frame;
        goto fake_study_recurse;
    }

    assert(!frame);
    DEBUG_STUDYDATA("pre-fin", data, depth, is_inf);

    *scanp = scan;
    *deltap = is_inf_internal ? OPTIMIZE_INFTY : delta;

    if (flags & SCF_DO_SUBSTR && is_inf)
        data->pos_delta = OPTIMIZE_INFTY - data->pos_min;
    if (is_par > (I32)U8_MAX)
        is_par = 0;
    if (is_par && pars==1 && data) {
        data->flags |= SF_IN_PAR;
        data->flags &= ~SF_HAS_PAR;
    }
    else if (pars && data) {
        data->flags |= SF_HAS_PAR;
        data->flags &= ~SF_IN_PAR;
    }
    if (flags & SCF_DO_STCLASS_OR)
        ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
    if (flags & SCF_TRIE_RESTUDY)
        data->flags |= 	SCF_TRIE_RESTUDY;

    DEBUG_STUDYDATA("post-fin", data, depth, is_inf);

    final_minlen = min < stopmin
            ? min : stopmin;

    if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
        if (final_minlen > OPTIMIZE_INFTY - delta)
            RExC_maxlen = OPTIMIZE_INFTY;
        else if (RExC_maxlen < final_minlen + delta)
            RExC_maxlen = final_minlen + delta;
    }
    return final_minlen;
}

STATIC U32
S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
{
    U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;

    PERL_ARGS_ASSERT_ADD_DATA;

    Renewc(RExC_rxi->data,
           sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
           char, struct reg_data);
    if(count)
        Renew(RExC_rxi->data->what, count + n, U8);
    else
        Newx(RExC_rxi->data->what, n, U8);
    RExC_rxi->data->count = count + n;
    Copy(s, RExC_rxi->data->what + count, n, U8);
    return count;
}

/*XXX: todo make this not included in a non debugging perl, but appears to be
 * used anyway there, in 'use re' */
#ifndef PERL_IN_XSUB_RE
void
Perl_reginitcolors(pTHX)
{
    const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
    if (s) {
        char *t = savepv(s);
        int i = 0;
        PL_colors[0] = t;
        while (++i < 6) {
            t = strchr(t, '\t');
            if (t) {
                *t = '\0';
                PL_colors[i] = ++t;
            }
            else
                PL_colors[i] = t = (char *)"";
        }
    } else {
        int i = 0;
        while (i < 6)
            PL_colors[i++] = (char *)"";
    }
    PL_colorset = 1;
}
#endif


#ifdef TRIE_STUDY_OPT
#define CHECK_RESTUDY_GOTO_butfirst(dOsomething)            \
    STMT_START {                                            \
        if (                                                \
              (data.flags & SCF_TRIE_RESTUDY)               \
              && ! restudied++                              \
        ) {                                                 \
            dOsomething;                                    \
            goto reStudy;                                   \
        }                                                   \
    } STMT_END
#else
#define CHECK_RESTUDY_GOTO_butfirst
#endif

/*
 * pregcomp - compile a regular expression into internal code
 *
 * Decides which engine's compiler to call based on the hint currently in
 * scope
 */

#ifndef PERL_IN_XSUB_RE

/* return the currently in-scope regex engine (or the default if none)  */

regexp_engine const *
Perl_current_re_engine(pTHX)
{
    if (IN_PERL_COMPILETIME) {
        HV * const table = GvHV(PL_hintgv);
        SV **ptr;

        if (!table || !(PL_hints & HINT_LOCALIZE_HH))
            return &PL_core_reg_engine;
        ptr = hv_fetchs(table, "regcomp", FALSE);
        if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
            return &PL_core_reg_engine;
        return INT2PTR(regexp_engine*, SvIV(*ptr));
    }
    else {
        SV *ptr;
        if (!PL_curcop->cop_hints_hash)
            return &PL_core_reg_engine;
        ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
        if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
            return &PL_core_reg_engine;
        return INT2PTR(regexp_engine*, SvIV(ptr));
    }
}


REGEXP *
Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
{
    regexp_engine const *eng = current_re_engine();
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_PREGCOMP;

    /* Dispatch a request to compile a regexp to correct regexp engine. */
    DEBUG_COMPILE_r({
        Perl_re_printf( aTHX_  "Using engine %" UVxf "\n",
                        PTR2UV(eng));
    });
    return CALLREGCOMP_ENG(eng, pattern, flags);
}
#endif

/* public(ish) entry point for the perl core's own regex compiling code.
 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
 * pattern rather than a list of OPs, and uses the internal engine rather
 * than the current one */

REGEXP *
Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
{
    SV *pat = pattern; /* defeat constness! */

    PERL_ARGS_ASSERT_RE_COMPILE;

    return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
#ifdef PERL_IN_XSUB_RE
                                &my_reg_engine,
#else
                                &PL_core_reg_engine,
#endif
                                NULL, NULL, rx_flags, 0);
}

static void
S_free_codeblocks(pTHX_ struct reg_code_blocks *cbs)
{
    int n;

    if (--cbs->refcnt > 0)
        return;
    for (n = 0; n < cbs->count; n++) {
        REGEXP *rx = cbs->cb[n].src_regex;
        if (rx) {
            cbs->cb[n].src_regex = NULL;
            SvREFCNT_dec_NN(rx);
        }
    }
    Safefree(cbs->cb);
    Safefree(cbs);
}


static struct reg_code_blocks *
S_alloc_code_blocks(pTHX_  int ncode)
{
     struct reg_code_blocks *cbs;
    Newx(cbs, 1, struct reg_code_blocks);
    cbs->count = ncode;
    cbs->refcnt = 1;
    SAVEDESTRUCTOR_X(S_free_codeblocks, cbs);
    if (ncode)
        Newx(cbs->cb, ncode, struct reg_code_block);
    else
        cbs->cb = NULL;
    return cbs;
}


/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
 * blocks, recalculate the indices. Update pat_p and plen_p in-place to
 * point to the realloced string and length.
 *
 * This is essentially a copy of Perl_bytes_to_utf8() with the code index
 * stuff added */

static void
S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
                    char **pat_p, STRLEN *plen_p, int num_code_blocks)
{
    U8 *const src = (U8*)*pat_p;
    U8 *dst, *d;
    int n=0;
    STRLEN s = 0;
    bool do_end = 0;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    DEBUG_PARSE_r(Perl_re_printf( aTHX_
        "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));

    /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
    Newx(dst, *plen_p + variant_under_utf8_count(src, src + *plen_p) + 1, U8);
    d = dst;

    while (s < *plen_p) {
        append_utf8_from_native_byte(src[s], &d);

        if (n < num_code_blocks) {
            assert(pRExC_state->code_blocks);
            if (!do_end && pRExC_state->code_blocks->cb[n].start == s) {
                pRExC_state->code_blocks->cb[n].start = d - dst - 1;
                assert(*(d - 1) == '(');
                do_end = 1;
            }
            else if (do_end && pRExC_state->code_blocks->cb[n].end == s) {
                pRExC_state->code_blocks->cb[n].end = d - dst - 1;
                assert(*(d - 1) == ')');
                do_end = 0;
                n++;
            }
        }
        s++;
    }
    *d = '\0';
    *plen_p = d - dst;
    *pat_p = (char*) dst;
    SAVEFREEPV(*pat_p);
    RExC_orig_utf8 = RExC_utf8 = 1;
}



/* S_concat_pat(): concatenate a list of args to the pattern string pat,
 * while recording any code block indices, and handling overloading,
 * nested qr// objects etc.  If pat is null, it will allocate a new
 * string, or just return the first arg, if there's only one.
 *
 * Returns the malloced/updated pat.
 * patternp and pat_count is the array of SVs to be concatted;
 * oplist is the optional list of ops that generated the SVs;
 * recompile_p is a pointer to a boolean that will be set if
 *   the regex will need to be recompiled.
 * delim, if non-null is an SV that will be inserted between each element
 */

static SV*
S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
                SV *pat, SV ** const patternp, int pat_count,
                OP *oplist, bool *recompile_p, SV *delim)
{
    SV **svp;
    int n = 0;
    bool use_delim = FALSE;
    bool alloced = FALSE;

    /* if we know we have at least two args, create an empty string,
     * then concatenate args to that. For no args, return an empty string */
    if (!pat && pat_count != 1) {
        pat = newSVpvs("");
        SAVEFREESV(pat);
        alloced = TRUE;
    }

    for (svp = patternp; svp < patternp + pat_count; svp++) {
        SV *sv;
        SV *rx  = NULL;
        STRLEN orig_patlen = 0;
        bool code = 0;
        SV *msv = use_delim ? delim : *svp;
        if (!msv) msv = &PL_sv_undef;

        /* if we've got a delimiter, we go round the loop twice for each
         * svp slot (except the last), using the delimiter the second
         * time round */
        if (use_delim) {
            svp--;
            use_delim = FALSE;
        }
        else if (delim)
            use_delim = TRUE;

        if (SvTYPE(msv) == SVt_PVAV) {
            /* we've encountered an interpolated array within
             * the pattern, e.g. /...@a..../. Expand the list of elements,
             * then recursively append elements.
             * The code in this block is based on S_pushav() */

            AV *const av = (AV*)msv;
            const SSize_t maxarg = AvFILL(av) + 1;
            SV **array;

            if (oplist) {
                assert(oplist->op_type == OP_PADAV
                    || oplist->op_type == OP_RV2AV);
                oplist = OpSIBLING(oplist);
            }

            if (SvRMAGICAL(av)) {
                SSize_t i;

                Newx(array, maxarg, SV*);
                SAVEFREEPV(array);
                for (i=0; i < maxarg; i++) {
                    SV ** const svp = av_fetch(av, i, FALSE);
                    array[i] = svp ? *svp : &PL_sv_undef;
                }
            }
            else
                array = AvARRAY(av);

            pat = S_concat_pat(aTHX_ pRExC_state, pat,
                                array, maxarg, NULL, recompile_p,
                                /* $" */
                                GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));

            continue;
        }


        /* we make the assumption here that each op in the list of
         * op_siblings maps to one SV pushed onto the stack,
         * except for code blocks, with have both an OP_NULL and
         * an OP_CONST.
         * This allows us to match up the list of SVs against the
         * list of OPs to find the next code block.
         *
         * Note that       PUSHMARK PADSV PADSV ..
         * is optimised to
         *                 PADRANGE PADSV  PADSV  ..
         * so the alignment still works. */

        if (oplist) {
            if (oplist->op_type == OP_NULL
                && (oplist->op_flags & OPf_SPECIAL))
            {
                assert(n < pRExC_state->code_blocks->count);
                pRExC_state->code_blocks->cb[n].start = pat ? SvCUR(pat) : 0;
                pRExC_state->code_blocks->cb[n].block = oplist;
                pRExC_state->code_blocks->cb[n].src_regex = NULL;
                n++;
                code = 1;
                oplist = OpSIBLING(oplist); /* skip CONST */
                assert(oplist);
            }
            oplist = OpSIBLING(oplist);;
        }

        /* apply magic and QR overloading to arg */

        SvGETMAGIC(msv);
        if (SvROK(msv) && SvAMAGIC(msv)) {
            SV *sv = AMG_CALLunary(msv, regexp_amg);
            if (sv) {
                if (SvROK(sv))
                    sv = SvRV(sv);
                if (SvTYPE(sv) != SVt_REGEXP)
                    Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
                msv = sv;
            }
        }

        /* try concatenation overload ... */
        if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
                (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
        {
            sv_setsv(pat, sv);
            /* overloading involved: all bets are off over literal
             * code. Pretend we haven't seen it */
            if (n)
                pRExC_state->code_blocks->count -= n;
            n = 0;
        }
        else {
            /* ... or failing that, try "" overload */
            while (SvAMAGIC(msv)
                    && (sv = AMG_CALLunary(msv, string_amg))
                    && sv != msv
                    &&  !(   SvROK(msv)
                          && SvROK(sv)
                          && SvRV(msv) == SvRV(sv))
            ) {
                msv = sv;
                SvGETMAGIC(msv);
            }
            if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
                msv = SvRV(msv);

            if (pat) {
                /* this is a partially unrolled
                 *     sv_catsv_nomg(pat, msv);
                 * that allows us to adjust code block indices if
                 * needed */
                STRLEN dlen;
                char *dst = SvPV_force_nomg(pat, dlen);
                orig_patlen = dlen;
                if (SvUTF8(msv) && !SvUTF8(pat)) {
                    S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
                    sv_setpvn(pat, dst, dlen);
                    SvUTF8_on(pat);
                }
                sv_catsv_nomg(pat, msv);
                rx = msv;
            }
            else {
                /* We have only one SV to process, but we need to verify
                 * it is properly null terminated or we will fail asserts
                 * later. In theory we probably shouldn't get such SV's,
                 * but if we do we should handle it gracefully. */
                if ( SvTYPE(msv) != SVt_PV || (SvLEN(msv) > SvCUR(msv) && *(SvEND(msv)) == 0) || SvIsCOW_shared_hash(msv) ) {
                    /* not a string, or a string with a trailing null */
                    pat = msv;
                } else {
                    /* a string with no trailing null, we need to copy it
                     * so it has a trailing null */
                    pat = sv_2mortal(newSVsv(msv));
                }
            }

            if (code)
                pRExC_state->code_blocks->cb[n-1].end = SvCUR(pat)-1;
        }

        /* extract any code blocks within any embedded qr//'s */
        if (rx && SvTYPE(rx) == SVt_REGEXP
            && RX_ENGINE((REGEXP*)rx)->op_comp)
        {

            RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
            if (ri->code_blocks && ri->code_blocks->count) {
                int i;
                /* the presence of an embedded qr// with code means
                 * we should always recompile: the text of the
                 * qr// may not have changed, but it may be a
                 * different closure than last time */
                *recompile_p = 1;
                if (pRExC_state->code_blocks) {
                    int new_count = pRExC_state->code_blocks->count
                            + ri->code_blocks->count;
                    Renew(pRExC_state->code_blocks->cb,
                            new_count, struct reg_code_block);
                    pRExC_state->code_blocks->count = new_count;
                }
                else
                    pRExC_state->code_blocks = S_alloc_code_blocks(aTHX_
                                                    ri->code_blocks->count);

                for (i=0; i < ri->code_blocks->count; i++) {
                    struct reg_code_block *src, *dst;
                    STRLEN offset =  orig_patlen
                        + ReANY((REGEXP *)rx)->pre_prefix;
                    assert(n < pRExC_state->code_blocks->count);
                    src = &ri->code_blocks->cb[i];
                    dst = &pRExC_state->code_blocks->cb[n];
                    dst->start	    = src->start + offset;
                    dst->end	    = src->end   + offset;
                    dst->block	    = src->block;
                    dst->src_regex  = (REGEXP*) SvREFCNT_inc( (SV*)
                                            src->src_regex
                                                ? src->src_regex
                                                : (REGEXP*)rx);
                    n++;
                }
            }
        }
    }
    /* avoid calling magic multiple times on a single element e.g. =~ $qr */
    if (alloced)
        SvSETMAGIC(pat);

    return pat;
}



/* see if there are any run-time code blocks in the pattern.
 * False positives are allowed */

static bool
S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
                    char *pat, STRLEN plen)
{
    int n = 0;
    STRLEN s;

    PERL_UNUSED_CONTEXT;

    for (s = 0; s < plen; s++) {
        if (   pRExC_state->code_blocks
            && n < pRExC_state->code_blocks->count
            && s == pRExC_state->code_blocks->cb[n].start)
        {
            s = pRExC_state->code_blocks->cb[n].end;
            n++;
            continue;
        }
        /* TODO ideally should handle [..], (#..), /#.../x to reduce false
         * positives here */
        if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
            (pat[s+2] == '{'
                || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
        )
            return 1;
    }
    return 0;
}

/* Handle run-time code blocks. We will already have compiled any direct
 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
 * copy of it, but with any literal code blocks blanked out and
 * appropriate chars escaped; then feed it into
 *
 *    eval "qr'modified_pattern'"
 *
 * For example,
 *
 *       a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
 *
 * becomes
 *
 *    qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
 *
 * After eval_sv()-ing that, grab any new code blocks from the returned qr
 * and merge them with any code blocks of the original regexp.
 *
 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
 * instead, just save the qr and return FALSE; this tells our caller that
 * the original pattern needs upgrading to utf8.
 */

static bool
S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
    char *pat, STRLEN plen)
{
    SV *qr;

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    if (pRExC_state->runtime_code_qr) {
        /* this is the second time we've been called; this should
         * only happen if the main pattern got upgraded to utf8
         * during compilation; re-use the qr we compiled first time
         * round (which should be utf8 too)
         */
        qr = pRExC_state->runtime_code_qr;
        pRExC_state->runtime_code_qr = NULL;
        assert(RExC_utf8 && SvUTF8(qr));
    }
    else {
        int n = 0;
        STRLEN s;
        char *p, *newpat;
        int newlen = plen + 7; /* allow for "qr''xx\0" extra chars */
        SV *sv, *qr_ref;
        dSP;

        /* determine how many extra chars we need for ' and \ escaping */
        for (s = 0; s < plen; s++) {
            if (pat[s] == '\'' || pat[s] == '\\')
                newlen++;
        }

        Newx(newpat, newlen, char);
        p = newpat;
        *p++ = 'q'; *p++ = 'r'; *p++ = '\'';

        for (s = 0; s < plen; s++) {
            if (   pRExC_state->code_blocks
                && n < pRExC_state->code_blocks->count
                && s == pRExC_state->code_blocks->cb[n].start)
            {
                /* blank out literal code block so that they aren't
                 * recompiled: eg change from/to:
                 *     /(?{xyz})/
                 *     /(?=====)/
                 * and
                 *     /(??{xyz})/
                 *     /(?======)/
                 * and
                 *     /(?(?{xyz}))/
                 *     /(?(?=====))/
                */
                assert(pat[s]   == '(');
                assert(pat[s+1] == '?');
                *p++ = '(';
                *p++ = '?';
                s += 2;
                while (s < pRExC_state->code_blocks->cb[n].end) {
                    *p++ = '=';
                    s++;
                }
                *p++ = ')';
                n++;
                continue;
            }
            if (pat[s] == '\'' || pat[s] == '\\')
                *p++ = '\\';
            *p++ = pat[s];
        }
        *p++ = '\'';
        if (pRExC_state->pm_flags & RXf_PMf_EXTENDED) {
            *p++ = 'x';
            if (pRExC_state->pm_flags & RXf_PMf_EXTENDED_MORE) {
                *p++ = 'x';
            }
        }
        *p++ = '\0';
        DEBUG_COMPILE_r({
            Perl_re_printf( aTHX_
                "%sre-parsing pattern for runtime code:%s %s\n",
                PL_colors[4], PL_colors[5], newpat);
        });

        sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
        Safefree(newpat);

        ENTER;
        SAVETMPS;
        save_re_context();
        PUSHSTACKi(PERLSI_REQUIRE);
        /* G_RE_REPARSING causes the toker to collapse \\ into \ when
         * parsing qr''; normally only q'' does this. It also alters
         * hints handling */
        eval_sv(sv, G_SCALAR|G_RE_REPARSING);
        SvREFCNT_dec_NN(sv);
        SPAGAIN;
        qr_ref = POPs;
        PUTBACK;
        {
            SV * const errsv = ERRSV;
            if (SvTRUE_NN(errsv))
                /* use croak_sv ? */
                Perl_croak_nocontext("%" SVf, SVfARG(errsv));
        }
        assert(SvROK(qr_ref));
        qr = SvRV(qr_ref);
        assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
        /* the leaving below frees the tmp qr_ref.
         * Give qr a life of its own */
        SvREFCNT_inc(qr);
        POPSTACK;
        FREETMPS;
        LEAVE;

    }

    if (!RExC_utf8 && SvUTF8(qr)) {
        /* first time through; the pattern got upgraded; save the
         * qr for the next time through */
        assert(!pRExC_state->runtime_code_qr);
        pRExC_state->runtime_code_qr = qr;
        return 0;
    }


    /* extract any code blocks within the returned qr//  */


    /* merge the main (r1) and run-time (r2) code blocks into one */
    {
        RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
        struct reg_code_block *new_block, *dst;
        RExC_state_t * const r1 = pRExC_state; /* convenient alias */
        int i1 = 0, i2 = 0;
        int r1c, r2c;

        if (!r2->code_blocks || !r2->code_blocks->count) /* we guessed wrong */
        {
            SvREFCNT_dec_NN(qr);
            return 1;
        }

        if (!r1->code_blocks)
            r1->code_blocks = S_alloc_code_blocks(aTHX_ 0);

        r1c = r1->code_blocks->count;
        r2c = r2->code_blocks->count;

        Newx(new_block, r1c + r2c, struct reg_code_block);

        dst = new_block;

        while (i1 < r1c || i2 < r2c) {
            struct reg_code_block *src;
            bool is_qr = 0;

            if (i1 == r1c) {
                src = &r2->code_blocks->cb[i2++];
                is_qr = 1;
            }
            else if (i2 == r2c)
                src = &r1->code_blocks->cb[i1++];
            else if (  r1->code_blocks->cb[i1].start
                     < r2->code_blocks->cb[i2].start)
            {
                src = &r1->code_blocks->cb[i1++];
                assert(src->end < r2->code_blocks->cb[i2].start);
            }
            else {
                assert(  r1->code_blocks->cb[i1].start
                       > r2->code_blocks->cb[i2].start);
                src = &r2->code_blocks->cb[i2++];
                is_qr = 1;
                assert(src->end < r1->code_blocks->cb[i1].start);
            }

            assert(pat[src->start] == '(');
            assert(pat[src->end]   == ')');
            dst->start	    = src->start;
            dst->end	    = src->end;
            dst->block	    = src->block;
            dst->src_regex  = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
                                    : src->src_regex;
            dst++;
        }
        r1->code_blocks->count += r2c;
        Safefree(r1->code_blocks->cb);
        r1->code_blocks->cb = new_block;
    }

    SvREFCNT_dec_NN(qr);
    return 1;
}


STATIC bool
S_setup_longest(pTHX_ RExC_state_t *pRExC_state,
                      struct reg_substr_datum  *rsd,
                      struct scan_data_substrs *sub,
                      STRLEN longest_length)
{
    /* This is the common code for setting up the floating and fixed length
     * string data extracted from Perl_re_op_compile() below.  Returns a boolean
     * as to whether succeeded or not */

    I32 t;
    SSize_t ml;
    bool eol  = cBOOL(sub->flags & SF_BEFORE_EOL);
    bool meol = cBOOL(sub->flags & SF_BEFORE_MEOL);

    if (! (longest_length
           || (eol /* Can't have SEOL and MULTI */
               && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
          )
            /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
        || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
    {
        return FALSE;
    }

    /* copy the information about the longest from the reg_scan_data
        over to the program. */
    if (SvUTF8(sub->str)) {
        rsd->substr      = NULL;
        rsd->utf8_substr = sub->str;
    } else {
        rsd->substr      = sub->str;
        rsd->utf8_substr = NULL;
    }
    /* end_shift is how many chars that must be matched that
        follow this item. We calculate it ahead of time as once the
        lookbehind offset is added in we lose the ability to correctly
        calculate it.*/
    ml = sub->minlenp ? *(sub->minlenp) : (SSize_t)longest_length;
    rsd->end_shift = ml - sub->min_offset
        - longest_length
            /* XXX SvTAIL is always false here - did you mean FBMcf_TAIL
             * intead? - DAPM
            + (SvTAIL(sub->str) != 0)
            */
        + sub->lookbehind;

    t = (eol/* Can't have SEOL and MULTI */
         && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
    fbm_compile(sub->str, t ? FBMcf_TAIL : 0);

    return TRUE;
}

STATIC void
S_set_regex_pv(pTHX_ RExC_state_t *pRExC_state, REGEXP *Rx)
{
    /* Calculates and sets in the compiled pattern 'Rx' the string to compile,
     * properly wrapped with the right modifiers */

    bool has_p     = ((RExC_rx->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
    bool has_charset = RExC_utf8 || (get_regex_charset(RExC_rx->extflags)
                                                != REGEX_DEPENDS_CHARSET);

    /* The caret is output if there are any defaults: if not all the STD
        * flags are set, or if no character set specifier is needed */
    bool has_default =
                (((RExC_rx->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
                || ! has_charset);
    bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
                                                == REG_RUN_ON_COMMENT_SEEN);
    U8 reganch = (U8)((RExC_rx->extflags & RXf_PMf_STD_PMMOD)
                        >> RXf_PMf_STD_PMMOD_SHIFT);
    const char *fptr = STD_PAT_MODS;        /*"msixxn"*/
    char *p;
    STRLEN pat_len = RExC_precomp_end - RExC_precomp;

    /* We output all the necessary flags; we never output a minus, as all
        * those are defaults, so are
        * covered by the caret */
    const STRLEN wraplen = pat_len + has_p + has_runon
        + has_default       /* If needs a caret */
        + PL_bitcount[reganch] /* 1 char for each set standard flag */

            /* If needs a character set specifier */
        + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
        + (sizeof("(?:)") - 1);

    PERL_ARGS_ASSERT_SET_REGEX_PV;

    /* make sure PL_bitcount bounds not exceeded */
    STATIC_ASSERT_STMT(sizeof(STD_PAT_MODS) <= 8);

    p = sv_grow(MUTABLE_SV(Rx), wraplen + 1); /* +1 for the ending NUL */
    SvPOK_on(Rx);
    if (RExC_utf8)
        SvFLAGS(Rx) |= SVf_UTF8;
    *p++='('; *p++='?';

    /* If a default, cover it using the caret */
    if (has_default) {
        *p++= DEFAULT_PAT_MOD;
    }
    if (has_charset) {
        STRLEN len;
        const char* name;

        name = get_regex_charset_name(RExC_rx->extflags, &len);
        if (strEQ(name, DEPENDS_PAT_MODS)) {  /* /d under UTF-8 => /u */
            assert(RExC_utf8);
            name = UNICODE_PAT_MODS;
            len = sizeof(UNICODE_PAT_MODS) - 1;
        }
        Copy(name, p, len, char);
        p += len;
    }
    if (has_p)
        *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
    {
        char ch;
        while((ch = *fptr++)) {
            if(reganch & 1)
                *p++ = ch;
            reganch >>= 1;
        }
    }

    *p++ = ':';
    Copy(RExC_precomp, p, pat_len, char);
    assert ((RX_WRAPPED(Rx) - p) < 16);
    RExC_rx->pre_prefix = p - RX_WRAPPED(Rx);
    p += pat_len;

    /* Adding a trailing \n causes this to compile properly:
            my $R = qr / A B C # D E/x; /($R)/
        Otherwise the parens are considered part of the comment */
    if (has_runon)
        *p++ = '\n';
    *p++ = ')';
    *p = 0;
    SvCUR_set(Rx, p - RX_WRAPPED(Rx));
}

/*
 * Perl_re_op_compile - the perl internal RE engine's function to compile a
 * regular expression into internal code.
 * The pattern may be passed either as:
 *    a list of SVs (patternp plus pat_count)
 *    a list of OPs (expr)
 * If both are passed, the SV list is used, but the OP list indicates
 * which SVs are actually pre-compiled code blocks
 *
 * The SVs in the list have magic and qr overloading applied to them (and
 * the list may be modified in-place with replacement SVs in the latter
 * case).
 *
 * If the pattern hasn't changed from old_re, then old_re will be
 * returned.
 *
 * eng is the current engine. If that engine has an op_comp method, then
 * handle directly (i.e. we assume that op_comp was us); otherwise, just
 * do the initial concatenation of arguments and pass on to the external
 * engine.
 *
 * If is_bare_re is not null, set it to a boolean indicating whether the
 * arg list reduced (after overloading) to a single bare regex which has
 * been returned (i.e. /$qr/).
 *
 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
 *
 * pm_flags contains the PMf_* flags, typically based on those from the
 * pm_flags field of the related PMOP. Currently we're only interested in
 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL, PMf_WILDCARD.
 *
 * For many years this code had an initial sizing pass that calculated
 * (sometimes incorrectly, leading to security holes) the size needed for the
 * compiled pattern.  That was changed by commit
 * 7c932d07cab18751bfc7515b4320436273a459e2 in 5.29, which reallocs the size, a
 * node at a time, as parsing goes along.  Patches welcome to fix any obsolete
 * references to this sizing pass.
 *
 * Now, an initial crude guess as to the size needed is made, based on the
 * length of the pattern.  Patches welcome to improve that guess.  That amount
 * of space is malloc'd and then immediately freed, and then clawed back node
 * by node.  This design is to minimze, to the extent possible, memory churn
 * when doing the reallocs.
 *
 * A separate parentheses counting pass may be needed in some cases.
 * (Previously the sizing pass did this.)  Patches welcome to reduce the number
 * of these cases.
 *
 * The existence of a sizing pass necessitated design decisions that are no
 * longer needed.  There are potential areas of simplification.
 *
 * Beware that the optimization-preparation code in here knows about some
 * of the structure of the compiled regexp.  [I'll say.]
 */

REGEXP *
Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
                    OP *expr, const regexp_engine* eng, REGEXP *old_re,
                     bool *is_bare_re, const U32 orig_rx_flags, const U32 pm_flags)
{
    REGEXP *Rx;         /* Capital 'R' means points to a REGEXP */
    STRLEN plen;
    char *exp;
    regnode *scan;
    I32 flags;
    SSize_t minlen = 0;
    U32 rx_flags;
    SV *pat;
    SV** new_patternp = patternp;

    /* these are all flags - maybe they should be turned
     * into a single int with different bit masks */
    I32 sawlookahead = 0;
    I32 sawplus = 0;
    I32 sawopen = 0;
    I32 sawminmod = 0;

    regex_charset initial_charset = get_regex_charset(orig_rx_flags);
    bool recompile = 0;
    bool runtime_code = 0;
    scan_data_t data;
    RExC_state_t RExC_state;
    RExC_state_t * const pRExC_state = &RExC_state;
#ifdef TRIE_STUDY_OPT
    int restudied = 0;
    RExC_state_t copyRExC_state;
#endif
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_RE_OP_COMPILE;

    DEBUG_r(if (!PL_colorset) reginitcolors());


    pRExC_state->warn_text = NULL;
    pRExC_state->unlexed_names = NULL;
    pRExC_state->code_blocks = NULL;

    if (is_bare_re)
        *is_bare_re = FALSE;

    if (expr && (expr->op_type == OP_LIST ||
                (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
        /* allocate code_blocks if needed */
        OP *o;
        int ncode = 0;

        for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
            if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
                ncode++; /* count of DO blocks */

        if (ncode)
            pRExC_state->code_blocks = S_alloc_code_blocks(aTHX_ ncode);
    }

    if (!pat_count) {
        /* compile-time pattern with just OP_CONSTs and DO blocks */

        int n;
        OP *o;

        /* find how many CONSTs there are */
        assert(expr);
        n = 0;
        if (expr->op_type == OP_CONST)
            n = 1;
        else
            for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
                if (o->op_type == OP_CONST)
                    n++;
            }

        /* fake up an SV array */

        assert(!new_patternp);
        Newx(new_patternp, n, SV*);
        SAVEFREEPV(new_patternp);
        pat_count = n;

        n = 0;
        if (expr->op_type == OP_CONST)
            new_patternp[n] = cSVOPx_sv(expr);
        else
            for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
                if (o->op_type == OP_CONST)
                    new_patternp[n++] = cSVOPo_sv;
            }

    }

    DEBUG_PARSE_r(Perl_re_printf( aTHX_
        "Assembling pattern from %d elements%s\n", pat_count,
            orig_rx_flags & RXf_SPLIT ? " for split" : ""));

    /* set expr to the first arg op */

    if (pRExC_state->code_blocks && pRExC_state->code_blocks->count
         && expr->op_type != OP_CONST)
    {
            expr = cLISTOPx(expr)->op_first;
            assert(   expr->op_type == OP_PUSHMARK
                   || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
                   || expr->op_type == OP_PADRANGE);
            expr = OpSIBLING(expr);
    }

    pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
                        expr, &recompile, NULL);

    /* handle bare (possibly after overloading) regex: foo =~ $re */
    {
        SV *re = pat;
        if (SvROK(re))
            re = SvRV(re);
        if (SvTYPE(re) == SVt_REGEXP) {
            if (is_bare_re)
                *is_bare_re = TRUE;
            SvREFCNT_inc(re);
            DEBUG_PARSE_r(Perl_re_printf( aTHX_
                "Precompiled pattern%s\n",
                    orig_rx_flags & RXf_SPLIT ? " for split" : ""));

            return (REGEXP*)re;
        }
    }

    exp = SvPV_nomg(pat, plen);

    if (!eng->op_comp) {
        if ((SvUTF8(pat) && IN_BYTES)
                || SvGMAGICAL(pat) || SvAMAGIC(pat))
        {
            /* make a temporary copy; either to convert to bytes,
             * or to avoid repeating get-magic / overloaded stringify */
            pat = newSVpvn_flags(exp, plen, SVs_TEMP |
                                        (IN_BYTES ? 0 : SvUTF8(pat)));
        }
        return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
    }

    /* ignore the utf8ness if the pattern is 0 length */
    RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
    RExC_uni_semantics = 0;
    RExC_contains_locale = 0;
    RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
    RExC_in_script_run = 0;
    RExC_study_started = 0;
    pRExC_state->runtime_code_qr = NULL;
    RExC_frame_head= NULL;
    RExC_frame_last= NULL;
    RExC_frame_count= 0;
    RExC_latest_warn_offset = 0;
    RExC_use_BRANCHJ = 0;
    RExC_warned_WARN_EXPERIMENTAL__VLB = 0;
    RExC_warned_WARN_EXPERIMENTAL__REGEX_SETS = 0;
    RExC_total_parens = 0;
    RExC_open_parens = NULL;
    RExC_close_parens = NULL;
    RExC_paren_names = NULL;
    RExC_size = 0;
    RExC_seen_d_op = FALSE;
#ifdef DEBUGGING
    RExC_paren_name_list = NULL;
#endif

    DEBUG_r({
        RExC_mysv1= sv_newmortal();
        RExC_mysv2= sv_newmortal();
    });

    DEBUG_COMPILE_r({
            SV *dsv= sv_newmortal();
            RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, PL_dump_re_max_len);
            Perl_re_printf( aTHX_  "%sCompiling REx%s %s\n",
                          PL_colors[4], PL_colors[5], s);
        });

    /* we jump here if we have to recompile, e.g., from upgrading the pattern
     * to utf8 */

    if ((pm_flags & PMf_USE_RE_EVAL)
                /* this second condition covers the non-regex literal case,
                 * i.e.  $foo =~ '(?{})'. */
                || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
    )
        runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);

  redo_parse:
    /* return old regex if pattern hasn't changed */
    /* XXX: note in the below we have to check the flags as well as the
     * pattern.
     *
     * Things get a touch tricky as we have to compare the utf8 flag
     * independently from the compile flags.  */

    if (   old_re
        && !recompile
        && !!RX_UTF8(old_re) == !!RExC_utf8
        && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
        && RX_PRECOMP(old_re)
        && RX_PRELEN(old_re) == plen
        && memEQ(RX_PRECOMP(old_re), exp, plen)
        && !runtime_code /* with runtime code, always recompile */ )
    {
        DEBUG_COMPILE_r({
            SV *dsv= sv_newmortal();
            RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, PL_dump_re_max_len);
            Perl_re_printf( aTHX_  "%sSkipping recompilation of unchanged REx%s %s\n",
                          PL_colors[4], PL_colors[5], s);
        });
        return old_re;
    }

    /* Allocate the pattern's SV */
    RExC_rx_sv = Rx = (REGEXP*) newSV_type(SVt_REGEXP);
    RExC_rx = ReANY(Rx);
    if ( RExC_rx == NULL )
        FAIL("Regexp out of space");

    rx_flags = orig_rx_flags;

    if (   toUSE_UNI_CHARSET_NOT_DEPENDS
        && initial_charset == REGEX_DEPENDS_CHARSET)
    {

        /* Set to use unicode semantics if the pattern is in utf8 and has the
         * 'depends' charset specified, as it means unicode when utf8  */
        set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
        RExC_uni_semantics = 1;
    }

    RExC_pm_flags = pm_flags;

    if (runtime_code) {
        assert(TAINTING_get || !TAINT_get);
        if (TAINT_get)
            Perl_croak(aTHX_ "Eval-group in insecure regular expression");

        if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
            /* whoops, we have a non-utf8 pattern, whilst run-time code
             * got compiled as utf8. Try again with a utf8 pattern */
            S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
                pRExC_state->code_blocks ? pRExC_state->code_blocks->count : 0);
            goto redo_parse;
        }
    }
    assert(!pRExC_state->runtime_code_qr);

    RExC_sawback = 0;

    RExC_seen = 0;
    RExC_maxlen = 0;
    RExC_in_lookaround = 0;
    RExC_seen_zerolen = *exp == '^' ? -1 : 0;
    RExC_recode_x_to_native = 0;
    RExC_in_multi_char_class = 0;

    RExC_start = RExC_copy_start_in_constructed = RExC_copy_start_in_input = RExC_precomp = exp;
    RExC_precomp_end = RExC_end = exp + plen;
    RExC_nestroot = 0;
    RExC_whilem_seen = 0;
    RExC_end_op = NULL;
    RExC_recurse = NULL;
    RExC_study_chunk_recursed = NULL;
    RExC_study_chunk_recursed_bytes= 0;
    RExC_recurse_count = 0;
    RExC_sets_depth = 0;
    pRExC_state->code_index = 0;

    /* Initialize the string in the compiled pattern.  This is so that there is
     * something to output if necessary */
    set_regex_pv(pRExC_state, Rx);

    DEBUG_PARSE_r({
        Perl_re_printf( aTHX_
            "Starting parse and generation\n");
        RExC_lastnum=0;
        RExC_lastparse=NULL;
    });

    /* Allocate space and zero-initialize. Note, the two step process
       of zeroing when in debug mode, thus anything assigned has to
       happen after that */
    if (!  RExC_size) {

        /* On the first pass of the parse, we guess how big this will be.  Then
         * we grow in one operation to that amount and then give it back.  As
         * we go along, we re-allocate what we need.
         *
         * XXX Currently the guess is essentially that the pattern will be an
         * EXACT node with one byte input, one byte output.  This is crude, and
         * better heuristics are welcome.
         *
         * On any subsequent passes, we guess what we actually computed in the
         * latest earlier pass.  Such a pass probably didn't complete so is
         * missing stuff.  We could improve those guesses by knowing where the
         * parse stopped, and use the length so far plus apply the above
         * assumption to what's left. */
        RExC_size = STR_SZ(RExC_end - RExC_start);
    }

    Newxc(RExC_rxi, sizeof(regexp_internal) + RExC_size, char, regexp_internal);
    if ( RExC_rxi == NULL )
        FAIL("Regexp out of space");

    Zero(RExC_rxi, sizeof(regexp_internal) + RExC_size, char);
    RXi_SET( RExC_rx, RExC_rxi );

    /* We start from 0 (over from 0 in the case this is a reparse.  The first
     * node parsed will give back any excess memory we have allocated so far).
     * */
    RExC_size = 0;

    /* non-zero initialization begins here */
    RExC_rx->engine= eng;
    RExC_rx->extflags = rx_flags;
    RXp_COMPFLAGS(RExC_rx) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;

    if (pm_flags & PMf_IS_QR) {
        RExC_rxi->code_blocks = pRExC_state->code_blocks;
        if (RExC_rxi->code_blocks) {
            RExC_rxi->code_blocks->refcnt++;
        }
    }

    RExC_rx->intflags = 0;

    RExC_flags = rx_flags;	/* don't let top level (?i) bleed */
    RExC_parse = exp;

    /* This NUL is guaranteed because the pattern comes from an SV*, and the sv
     * code makes sure the final byte is an uncounted NUL.  But should this
     * ever not be the case, lots of things could read beyond the end of the
     * buffer: loops like
     *      while(isFOO(*RExC_parse)) RExC_parse++;
     *      strchr(RExC_parse, "foo");
     * etc.  So it is worth noting. */
    assert(*RExC_end == '\0');

    RExC_naughty = 0;
    RExC_npar = 1;
    RExC_parens_buf_size = 0;
    RExC_emit_start = RExC_rxi->program;
    pRExC_state->code_index = 0;

    *((char*) RExC_emit_start) = (char) REG_MAGIC;
    RExC_emit = 1;

    /* Do the parse */
    if (reg(pRExC_state, 0, &flags, 1)) {

        /* Success!, But we may need to redo the parse knowing how many parens
         * there actually are */
        if (IN_PARENS_PASS) {
            flags |= RESTART_PARSE;
        }

        /* We have that number in RExC_npar */
        RExC_total_parens = RExC_npar;
    }
    else if (! MUST_RESTART(flags)) {
        ReREFCNT_dec(Rx);
        Perl_croak(aTHX_ "panic: reg returned failure to re_op_compile, flags=%#" UVxf, (UV) flags);
    }

    /* Here, we either have success, or we have to redo the parse for some reason */
    if (MUST_RESTART(flags)) {

        /* It's possible to write a regexp in ascii that represents Unicode
        codepoints outside of the byte range, such as via \x{100}. If we
        detect such a sequence we have to convert the entire pattern to utf8
        and then recompile, as our sizing calculation will have been based
        on 1 byte == 1 character, but we will need to use utf8 to encode
        at least some part of the pattern, and therefore must convert the whole
        thing.
        -- dmq */
        if (flags & NEED_UTF8) {

            /* We have stored the offset of the final warning output so far.
             * That must be adjusted.  Any variant characters between the start
             * of the pattern and this warning count for 2 bytes in the final,
             * so just add them again */
            if (UNLIKELY(RExC_latest_warn_offset > 0)) {
                RExC_latest_warn_offset +=
                            variant_under_utf8_count((U8 *) exp, (U8 *) exp
                                                + RExC_latest_warn_offset);
            }
            S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
            pRExC_state->code_blocks ? pRExC_state->code_blocks->count : 0);
            DEBUG_PARSE_r(Perl_re_printf( aTHX_ "Need to redo parse after upgrade\n"));
        }
        else {
            DEBUG_PARSE_r(Perl_re_printf( aTHX_ "Need to redo parse\n"));
        }

        if (ALL_PARENS_COUNTED) {
            /* Make enough room for all the known parens, and zero it */
            Renew(RExC_open_parens, RExC_total_parens, regnode_offset);
            Zero(RExC_open_parens, RExC_total_parens, regnode_offset);
            RExC_open_parens[0] = 1;    /* +1 for REG_MAGIC */

            Renew(RExC_close_parens, RExC_total_parens, regnode_offset);
            Zero(RExC_close_parens, RExC_total_parens, regnode_offset);
        }
        else { /* Parse did not complete.  Reinitialize the parentheses
                  structures */
            RExC_total_parens = 0;
            if (RExC_open_parens) {
                Safefree(RExC_open_parens);
                RExC_open_parens = NULL;
            }
            if (RExC_close_parens) {
                Safefree(RExC_close_parens);
                RExC_close_parens = NULL;
            }
        }

        /* Clean up what we did in this parse */
        SvREFCNT_dec_NN(RExC_rx_sv);

        goto redo_parse;
    }

    /* Here, we have successfully parsed and generated the pattern's program
     * for the regex engine.  We are ready to finish things up and look for
     * optimizations. */

    /* Update the string to compile, with correct modifiers, etc */
    set_regex_pv(pRExC_state, Rx);

    RExC_rx->nparens = RExC_total_parens - 1;

    /* Uses the upper 4 bits of the FLAGS field, so keep within that size */
    if (RExC_whilem_seen > 15)
        RExC_whilem_seen = 15;

    DEBUG_PARSE_r({
        Perl_re_printf( aTHX_
            "Required size %" IVdf " nodes\n", (IV)RExC_size);
        RExC_lastnum=0;
        RExC_lastparse=NULL;
    });

#ifdef RE_TRACK_PATTERN_OFFSETS
    DEBUG_OFFSETS_r(Perl_re_printf( aTHX_
                          "%s %" UVuf " bytes for offset annotations.\n",
                          RExC_offsets ? "Got" : "Couldn't get",
                          (UV)((RExC_offsets[0] * 2 + 1))));
    DEBUG_OFFSETS_r(if (RExC_offsets) {
        const STRLEN len = RExC_offsets[0];
        STRLEN i;
        DECLARE_AND_GET_RE_DEBUG_FLAGS;
        Perl_re_printf( aTHX_
                      "Offsets: [%" UVuf "]\n\t", (UV)RExC_offsets[0]);
        for (i = 1; i <= len; i++) {
            if (RExC_offsets[i*2-1] || RExC_offsets[i*2])
                Perl_re_printf( aTHX_  "%" UVuf ":%" UVuf "[%" UVuf "] ",
                (UV)i, (UV)RExC_offsets[i*2-1], (UV)RExC_offsets[i*2]);
        }
        Perl_re_printf( aTHX_  "\n");
    });

#else
    SetProgLen(RExC_rxi,RExC_size);
#endif

    DEBUG_DUMP_PRE_OPTIMIZE_r({
        SV * const sv = sv_newmortal();
        RXi_GET_DECL(RExC_rx, ri);
        DEBUG_RExC_seen();
        Perl_re_printf( aTHX_ "Program before optimization:\n");

        (void)dumpuntil(RExC_rx, ri->program, ri->program + 1, NULL, NULL,
                        sv, 0, 0);
    });

    DEBUG_OPTIMISE_r(
        Perl_re_printf( aTHX_  "Starting post parse optimization\n");
    );

    /* XXXX To minimize changes to RE engine we always allocate
       3-units-long substrs field. */
    Newx(RExC_rx->substrs, 1, struct reg_substr_data);
    if (RExC_recurse_count) {
        Newx(RExC_recurse, RExC_recurse_count, regnode *);
        SAVEFREEPV(RExC_recurse);
    }

    if (RExC_seen & REG_RECURSE_SEEN) {
        /* Note, RExC_total_parens is 1 + the number of parens in a pattern.
         * So its 1 if there are no parens. */
        RExC_study_chunk_recursed_bytes= (RExC_total_parens >> 3) +
                                         ((RExC_total_parens & 0x07) != 0);
        Newx(RExC_study_chunk_recursed,
             RExC_study_chunk_recursed_bytes * RExC_total_parens, U8);
        SAVEFREEPV(RExC_study_chunk_recursed);
    }

  reStudy:
    RExC_rx->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
    DEBUG_r(
        RExC_study_chunk_recursed_count= 0;
    );
    Zero(RExC_rx->substrs, 1, struct reg_substr_data);
    if (RExC_study_chunk_recursed) {
        Zero(RExC_study_chunk_recursed,
             RExC_study_chunk_recursed_bytes * RExC_total_parens, U8);
    }


#ifdef TRIE_STUDY_OPT
    if (!restudied) {
        StructCopy(&zero_scan_data, &data, scan_data_t);
        copyRExC_state = RExC_state;
    } else {
        U32 seen=RExC_seen;
        DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "Restudying\n"));

        RExC_state = copyRExC_state;
        if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
            RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
        else
            RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
        StructCopy(&zero_scan_data, &data, scan_data_t);
    }
#else
    StructCopy(&zero_scan_data, &data, scan_data_t);
#endif

    /* Dig out information for optimizations. */
    RExC_rx->extflags = RExC_flags; /* was pm_op */
    /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */

    if (UTF)
        SvUTF8_on(Rx);	/* Unicode in it? */
    RExC_rxi->regstclass = NULL;
    if (RExC_naughty >= TOO_NAUGHTY)	/* Probably an expensive pattern. */
        RExC_rx->intflags |= PREGf_NAUGHTY;
    scan = RExC_rxi->program + 1;		/* First BRANCH. */

    /* testing for BRANCH here tells us whether there is "must appear"
       data in the pattern. If there is then we can use it for optimisations */
    if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /*  Only one top-level choice.
                                                  */
        SSize_t fake;
        STRLEN longest_length[2];
        regnode_ssc ch_class; /* pointed to by data */
        int stclass_flag;
        SSize_t last_close = 0; /* pointed to by data */
        regnode *first= scan;
        regnode *first_next= regnext(first);
        int i;

        /*
         * Skip introductions and multiplicators >= 1
         * so that we can extract the 'meat' of the pattern that must
         * match in the large if() sequence following.
         * NOTE that EXACT is NOT covered here, as it is normally
         * picked up by the optimiser separately.
         *
         * This is unfortunate as the optimiser isnt handling lookahead
         * properly currently.
         *
         */
        while ((OP(first) == OPEN && (sawopen = 1)) ||
               /* An OR of *one* alternative - should not happen now. */
            (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
            /* for now we can't handle lookbehind IFMATCH*/
            (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
            (OP(first) == PLUS) ||
            (OP(first) == MINMOD) ||
               /* An {n,m} with n>0 */
            (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
            (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
        {
                /*
                 * the only op that could be a regnode is PLUS, all the rest
                 * will be regnode_1 or regnode_2.
                 *
                 * (yves doesn't think this is true)
                 */
                if (OP(first) == PLUS)
                    sawplus = 1;
                else {
                    if (OP(first) == MINMOD)
                        sawminmod = 1;
                    first += regarglen[OP(first)];
                }
                first = NEXTOPER(first);
                first_next= regnext(first);
        }

        /* Starting-point info. */
      again:
        DEBUG_PEEP("first:", first, 0, 0);
        /* Ignore EXACT as we deal with it later. */
        if (PL_regkind[OP(first)] == EXACT) {
            if (! isEXACTFish(OP(first))) {
                NOOP;	/* Empty, get anchored substr later. */
            }
            else
                RExC_rxi->regstclass = first;
        }
#ifdef TRIE_STCLASS
        else if (PL_regkind[OP(first)] == TRIE &&
                ((reg_trie_data *)RExC_rxi->data->data[ ARG(first) ])->minlen>0)
        {
            /* this can happen only on restudy */
            RExC_rxi->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
        }
#endif
        else if (REGNODE_SIMPLE(OP(first)))
            RExC_rxi->regstclass = first;
        else if (PL_regkind[OP(first)] == BOUND ||
                 PL_regkind[OP(first)] == NBOUND)
            RExC_rxi->regstclass = first;
        else if (PL_regkind[OP(first)] == BOL) {
            RExC_rx->intflags |= (OP(first) == MBOL
                           ? PREGf_ANCH_MBOL
                           : PREGf_ANCH_SBOL);
            first = NEXTOPER(first);
            goto again;
        }
        else if (OP(first) == GPOS) {
            RExC_rx->intflags |= PREGf_ANCH_GPOS;
            first = NEXTOPER(first);
            goto again;
        }
        else if ((!sawopen || !RExC_sawback) &&
            !sawlookahead &&
            (OP(first) == STAR &&
            PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
            !(RExC_rx->intflags & PREGf_ANCH) && !pRExC_state->code_blocks)
        {
            /* turn .* into ^.* with an implied $*=1 */
            const int type =
                (OP(NEXTOPER(first)) == REG_ANY)
                    ? PREGf_ANCH_MBOL
                    : PREGf_ANCH_SBOL;
            RExC_rx->intflags |= (type | PREGf_IMPLICIT);
            first = NEXTOPER(first);
            goto again;
        }
        if (sawplus && !sawminmod && !sawlookahead
            && (!sawopen || !RExC_sawback)
            && !pRExC_state->code_blocks) /* May examine pos and $& */
            /* x+ must match at the 1st pos of run of x's */
            RExC_rx->intflags |= PREGf_SKIP;

        /* Scan is after the zeroth branch, first is atomic matcher. */
#ifdef TRIE_STUDY_OPT
        DEBUG_PARSE_r(
            if (!restudied)
                Perl_re_printf( aTHX_  "first at %" IVdf "\n",
                              (IV)(first - scan + 1))
        );
#else
        DEBUG_PARSE_r(
            Perl_re_printf( aTHX_  "first at %" IVdf "\n",
                (IV)(first - scan + 1))
        );
#endif


        /*
        * If there's something expensive in the r.e., find the
        * longest literal string that must appear and make it the
        * regmust.  Resolve ties in favor of later strings, since
        * the regstart check works with the beginning of the r.e.
        * and avoiding duplication strengthens checking.  Not a
        * strong reason, but sufficient in the absence of others.
        * [Now we resolve ties in favor of the earlier string if
        * it happens that c_offset_min has been invalidated, since the
        * earlier string may buy us something the later one won't.]
        */

        data.substrs[0].str = newSVpvs("");
        data.substrs[1].str = newSVpvs("");
        data.last_found = newSVpvs("");
        data.cur_is_floating = 0; /* initially any found substring is fixed */
        ENTER_with_name("study_chunk");
        SAVEFREESV(data.substrs[0].str);
        SAVEFREESV(data.substrs[1].str);
        SAVEFREESV(data.last_found);
        first = scan;
        if (!RExC_rxi->regstclass) {
            ssc_init(pRExC_state, &ch_class);
            data.start_class = &ch_class;
            stclass_flag = SCF_DO_STCLASS_AND;
        } else				/* XXXX Check for BOUND? */
            stclass_flag = 0;
        data.last_closep = &last_close;

        DEBUG_RExC_seen();
        /*
         * MAIN ENTRY FOR study_chunk() FOR m/PATTERN/
         * (NO top level branches)
         */
        minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
                             scan + RExC_size, /* Up to end */
            &data, -1, 0, NULL,
            SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
                          | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
            0, TRUE);


        CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));


        if ( RExC_total_parens == 1 && !data.cur_is_floating
             && data.last_start_min == 0 && data.last_end > 0
             && !RExC_seen_zerolen
             && !(RExC_seen & REG_VERBARG_SEEN)
             && !(RExC_seen & REG_GPOS_SEEN)
        ){
            RExC_rx->extflags |= RXf_CHECK_ALL;
        }
        scan_commit(pRExC_state, &data,&minlen, 0);


        /* XXX this is done in reverse order because that's the way the
         * code was before it was parameterised. Don't know whether it
         * actually needs doing in reverse order. DAPM */
        for (i = 1; i >= 0; i--) {
            longest_length[i] = CHR_SVLEN(data.substrs[i].str);

            if (   !(   i
                     && SvCUR(data.substrs[0].str)  /* ok to leave SvCUR */
                     &&    data.substrs[0].min_offset
                        == data.substrs[1].min_offset
                     &&    SvCUR(data.substrs[0].str)
                        == SvCUR(data.substrs[1].str)
                    )
                && S_setup_longest (aTHX_ pRExC_state,
                                        &(RExC_rx->substrs->data[i]),
                                        &(data.substrs[i]),
                                        longest_length[i]))
            {
                RExC_rx->substrs->data[i].min_offset =
                        data.substrs[i].min_offset - data.substrs[i].lookbehind;

                RExC_rx->substrs->data[i].max_offset = data.substrs[i].max_offset;
                /* Don't offset infinity */
                if (data.substrs[i].max_offset < OPTIMIZE_INFTY)
                    RExC_rx->substrs->data[i].max_offset -= data.substrs[i].lookbehind;
                SvREFCNT_inc_simple_void_NN(data.substrs[i].str);
            }
            else {
                RExC_rx->substrs->data[i].substr      = NULL;
                RExC_rx->substrs->data[i].utf8_substr = NULL;
                longest_length[i] = 0;
            }
        }

        LEAVE_with_name("study_chunk");

        if (RExC_rxi->regstclass
            && (OP(RExC_rxi->regstclass) == REG_ANY || OP(RExC_rxi->regstclass) == SANY))
            RExC_rxi->regstclass = NULL;

        if ((!(RExC_rx->substrs->data[0].substr || RExC_rx->substrs->data[0].utf8_substr)
              || RExC_rx->substrs->data[0].min_offset)
            && stclass_flag
            && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
            && is_ssc_worth_it(pRExC_state, data.start_class))
        {
            const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));

            ssc_finalize(pRExC_state, data.start_class);

            Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
            StructCopy(data.start_class,
                       (regnode_ssc*)RExC_rxi->data->data[n],
                       regnode_ssc);
            RExC_rxi->regstclass = (regnode*)RExC_rxi->data->data[n];
            RExC_rx->intflags &= ~PREGf_SKIP;	/* Used in find_byclass(). */
            DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
                      regprop(RExC_rx, sv, (regnode*)data.start_class, NULL, pRExC_state);
                      Perl_re_printf( aTHX_
                                    "synthetic stclass \"%s\".\n",
                                    SvPVX_const(sv));});
            data.start_class = NULL;
        }

        /* A temporary algorithm prefers floated substr to fixed one of
         * same length to dig more info. */
        i = (longest_length[0] <= longest_length[1]);
        RExC_rx->substrs->check_ix = i;
        RExC_rx->check_end_shift  = RExC_rx->substrs->data[i].end_shift;
        RExC_rx->check_substr     = RExC_rx->substrs->data[i].substr;
        RExC_rx->check_utf8       = RExC_rx->substrs->data[i].utf8_substr;
        RExC_rx->check_offset_min = RExC_rx->substrs->data[i].min_offset;
        RExC_rx->check_offset_max = RExC_rx->substrs->data[i].max_offset;
        if (!i && (RExC_rx->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS)))
            RExC_rx->intflags |= PREGf_NOSCAN;

        if ((RExC_rx->check_substr || RExC_rx->check_utf8) ) {
            RExC_rx->extflags |= RXf_USE_INTUIT;
            if (SvTAIL(RExC_rx->check_substr ? RExC_rx->check_substr : RExC_rx->check_utf8))
                RExC_rx->extflags |= RXf_INTUIT_TAIL;
        }

        /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
        if ( (STRLEN)minlen < longest_length[1] )
            minlen= longest_length[1];
        if ( (STRLEN)minlen < longest_length[0] )
            minlen= longest_length[0];
        */
    }
    else {
        /* Several toplevels. Best we can is to set minlen. */
        SSize_t fake;
        regnode_ssc ch_class;
        SSize_t last_close = 0;

        DEBUG_PARSE_r(Perl_re_printf( aTHX_  "\nMulti Top Level\n"));

        scan = RExC_rxi->program + 1;
        ssc_init(pRExC_state, &ch_class);
        data.start_class = &ch_class;
        data.last_closep = &last_close;

        DEBUG_RExC_seen();
        /*
         * MAIN ENTRY FOR study_chunk() FOR m/P1|P2|.../
         * (patterns WITH top level branches)
         */
        minlen = study_chunk(pRExC_state,
            &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
            SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
                                                      ? SCF_TRIE_DOING_RESTUDY
                                                      : 0),
            0, TRUE);

        CHECK_RESTUDY_GOTO_butfirst(NOOP);

        RExC_rx->check_substr = NULL;
        RExC_rx->check_utf8 = NULL;
        RExC_rx->substrs->data[0].substr      = NULL;
        RExC_rx->substrs->data[0].utf8_substr = NULL;
        RExC_rx->substrs->data[1].substr      = NULL;
        RExC_rx->substrs->data[1].utf8_substr = NULL;

        if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
            && is_ssc_worth_it(pRExC_state, data.start_class))
        {
            const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));

            ssc_finalize(pRExC_state, data.start_class);

            Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
            StructCopy(data.start_class,
                       (regnode_ssc*)RExC_rxi->data->data[n],
                       regnode_ssc);
            RExC_rxi->regstclass = (regnode*)RExC_rxi->data->data[n];
            RExC_rx->intflags &= ~PREGf_SKIP;	/* Used in find_byclass(). */
            DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
                      regprop(RExC_rx, sv, (regnode*)data.start_class, NULL, pRExC_state);
                      Perl_re_printf( aTHX_
                                    "synthetic stclass \"%s\".\n",
                                    SvPVX_const(sv));});
            data.start_class = NULL;
        }
    }

    if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
        RExC_rx->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
        RExC_rx->maxlen = REG_INFTY;
    }
    else {
        RExC_rx->maxlen = RExC_maxlen;
    }

    /* Guard against an embedded (?=) or (?<=) with a longer minlen than
       the "real" pattern. */
    DEBUG_OPTIMISE_r({
        Perl_re_printf( aTHX_ "minlen: %" IVdf " RExC_rx->minlen:%" IVdf " maxlen:%" IVdf "\n",
                      (IV)minlen, (IV)RExC_rx->minlen, (IV)RExC_maxlen);
    });
    RExC_rx->minlenret = minlen;
    if (RExC_rx->minlen < minlen)
        RExC_rx->minlen = minlen;

    if (RExC_seen & REG_RECURSE_SEEN ) {
        RExC_rx->intflags |= PREGf_RECURSE_SEEN;
        Newx(RExC_rx->recurse_locinput, RExC_rx->nparens + 1, char *);
    }
    if (RExC_seen & REG_GPOS_SEEN)
        RExC_rx->intflags |= PREGf_GPOS_SEEN;
    if (RExC_seen & REG_LOOKBEHIND_SEEN)
        RExC_rx->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
                                                lookbehind */
    if (pRExC_state->code_blocks)
        RExC_rx->extflags |= RXf_EVAL_SEEN;
    if (RExC_seen & REG_VERBARG_SEEN)
    {
        RExC_rx->intflags |= PREGf_VERBARG_SEEN;
        RExC_rx->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
    }
    if (RExC_seen & REG_CUTGROUP_SEEN)
        RExC_rx->intflags |= PREGf_CUTGROUP_SEEN;
    if (pm_flags & PMf_USE_RE_EVAL)
        RExC_rx->intflags |= PREGf_USE_RE_EVAL;
    if (RExC_paren_names)
        RXp_PAREN_NAMES(RExC_rx) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
    else
        RXp_PAREN_NAMES(RExC_rx) = NULL;

    /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
     * so it can be used in pp.c */
    if (RExC_rx->intflags & PREGf_ANCH)
        RExC_rx->extflags |= RXf_IS_ANCHORED;


    {
        /* this is used to identify "special" patterns that might result
         * in Perl NOT calling the regex engine and instead doing the match "itself",
         * particularly special cases in split//. By having the regex compiler
         * do this pattern matching at a regop level (instead of by inspecting the pattern)
         * we avoid weird issues with equivalent patterns resulting in different behavior,
         * AND we allow non Perl engines to get the same optimizations by the setting the
         * flags appropriately - Yves */
        regnode *first = RExC_rxi->program + 1;
        U8 fop = OP(first);
        regnode *next = NEXTOPER(first);
        /* It's safe to read through *next only if OP(first) is a regop of
         * the right type (not EXACT, for example).
         */
        U8 nop = (fop == NOTHING || fop == MBOL || fop == SBOL || fop == PLUS)
                ? OP(next) : 0;

        if (PL_regkind[fop] == NOTHING && nop == END)
            RExC_rx->extflags |= RXf_NULL;
        else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
            /* when fop is SBOL first->flags will be true only when it was
             * produced by parsing /\A/, and not when parsing /^/. This is
             * very important for the split code as there we want to
             * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
             * See rt #122761 for more details. -- Yves */
            RExC_rx->extflags |= RXf_START_ONLY;
        else if (fop == PLUS
                 && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
                 && OP(regnext(first)) == END)
            RExC_rx->extflags |= RXf_WHITE;
        else if ( RExC_rx->extflags & RXf_SPLIT
                  && (PL_regkind[fop] == EXACT && ! isEXACTFish(fop))
                  && STR_LEN(first) == 1
                  && *(STRING(first)) == ' '
                  && OP(regnext(first)) == END )
            RExC_rx->extflags |= (RXf_SKIPWHITE|RXf_WHITE);

    }

    if (RExC_contains_locale) {
        RXp_EXTFLAGS(RExC_rx) |= RXf_TAINTED;
    }

#ifdef DEBUGGING
    if (RExC_paren_names) {
        RExC_rxi->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
        RExC_rxi->data->data[RExC_rxi->name_list_idx]
                                   = (void*)SvREFCNT_inc(RExC_paren_name_list);
    } else
#endif
    RExC_rxi->name_list_idx = 0;

    while ( RExC_recurse_count > 0 ) {
        const regnode *scan = RExC_recurse[ --RExC_recurse_count ];
        /*
         * This data structure is set up in study_chunk() and is used
         * to calculate the distance between a GOSUB regopcode and
         * the OPEN/CURLYM (CURLYM's are special and can act like OPEN's)
         * it refers to.
         *
         * If for some reason someone writes code that optimises
         * away a GOSUB opcode then the assert should be changed to
         * an if(scan) to guard the ARG2L_SET() - Yves
         *
         */
        assert(scan && OP(scan) == GOSUB);
        ARG2L_SET( scan, RExC_open_parens[ARG(scan)] - REGNODE_OFFSET(scan));
    }

    Newxz(RExC_rx->offs, RExC_total_parens, regexp_paren_pair);
    /* assume we don't need to swap parens around before we match */
    DEBUG_TEST_r({
        Perl_re_printf( aTHX_ "study_chunk_recursed_count: %lu\n",
            (unsigned long)RExC_study_chunk_recursed_count);
    });
    DEBUG_DUMP_r({
        DEBUG_RExC_seen();
        Perl_re_printf( aTHX_ "Final program:\n");
        regdump(RExC_rx);
    });

    if (RExC_open_parens) {
        Safefree(RExC_open_parens);
        RExC_open_parens = NULL;
    }
    if (RExC_close_parens) {
        Safefree(RExC_close_parens);
        RExC_close_parens = NULL;
    }

#ifdef USE_ITHREADS
    /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
     * by setting the regexp SV to readonly-only instead. If the
     * pattern's been recompiled, the USEDness should remain. */
    if (old_re && SvREADONLY(old_re))
        SvREADONLY_on(Rx);
#endif
    return Rx;
}


SV*
Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
                    const U32 flags)
{
    PERL_ARGS_ASSERT_REG_NAMED_BUFF;

    PERL_UNUSED_ARG(value);

    if (flags & RXapif_FETCH) {
        return reg_named_buff_fetch(rx, key, flags);
    } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
        Perl_croak_no_modify();
        return NULL;
    } else if (flags & RXapif_EXISTS) {
        return reg_named_buff_exists(rx, key, flags)
            ? &PL_sv_yes
            : &PL_sv_no;
    } else if (flags & RXapif_REGNAMES) {
        return reg_named_buff_all(rx, flags);
    } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
        return reg_named_buff_scalar(rx, flags);
    } else {
        Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
        return NULL;
    }
}

SV*
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
                         const U32 flags)
{
    PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
    PERL_UNUSED_ARG(lastkey);

    if (flags & RXapif_FIRSTKEY)
        return reg_named_buff_firstkey(rx, flags);
    else if (flags & RXapif_NEXTKEY)
        return reg_named_buff_nextkey(rx, flags);
    else {
        Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
                                            (int)flags);
        return NULL;
    }
}

SV*
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
                          const U32 flags)
{
    SV *ret;
    struct regexp *const rx = ReANY(r);

    PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;

    if (rx && RXp_PAREN_NAMES(rx)) {
        HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
        if (he_str) {
            IV i;
            SV* sv_dat=HeVAL(he_str);
            I32 *nums=(I32*)SvPVX(sv_dat);
            AV * const retarray = (flags & RXapif_ALL) ? newAV() : NULL;
            for ( i=0; i<SvIVX(sv_dat); i++ ) {
                if ((I32)(rx->nparens) >= nums[i]
                    && rx->offs[nums[i]].start != -1
                    && rx->offs[nums[i]].end != -1)
                {
                    ret = newSVpvs("");
                    CALLREG_NUMBUF_FETCH(r, nums[i], ret);
                    if (!retarray)
                        return ret;
                } else {
                    if (retarray)
                        ret = newSVsv(&PL_sv_undef);
                }
                if (retarray)
                    av_push(retarray, ret);
            }
            if (retarray)
                return newRV_noinc(MUTABLE_SV(retarray));
        }
    }
    return NULL;
}

bool
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
                           const U32 flags)
{
    struct regexp *const rx = ReANY(r);

    PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;

    if (rx && RXp_PAREN_NAMES(rx)) {
        if (flags & RXapif_ALL) {
            return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
        } else {
            SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
            if (sv) {
                SvREFCNT_dec_NN(sv);
                return TRUE;
            } else {
                return FALSE;
            }
        }
    } else {
        return FALSE;
    }
}

SV*
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
{
    struct regexp *const rx = ReANY(r);

    PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;

    if ( rx && RXp_PAREN_NAMES(rx) ) {
        (void)hv_iterinit(RXp_PAREN_NAMES(rx));

        return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
    } else {
        return FALSE;
    }
}

SV*
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
{
    struct regexp *const rx = ReANY(r);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;

    if (rx && RXp_PAREN_NAMES(rx)) {
        HV *hv = RXp_PAREN_NAMES(rx);
        HE *temphe;
        while ( (temphe = hv_iternext_flags(hv, 0)) ) {
            IV i;
            IV parno = 0;
            SV* sv_dat = HeVAL(temphe);
            I32 *nums = (I32*)SvPVX(sv_dat);
            for ( i = 0; i < SvIVX(sv_dat); i++ ) {
                if ((I32)(rx->lastparen) >= nums[i] &&
                    rx->offs[nums[i]].start != -1 &&
                    rx->offs[nums[i]].end != -1)
                {
                    parno = nums[i];
                    break;
                }
            }
            if (parno || flags & RXapif_ALL) {
                return newSVhek(HeKEY_hek(temphe));
            }
        }
    }
    return NULL;
}

SV*
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
{
    SV *ret;
    AV *av;
    SSize_t length;
    struct regexp *const rx = ReANY(r);

    PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;

    if (rx && RXp_PAREN_NAMES(rx)) {
        if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
            return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
        } else if (flags & RXapif_ONE) {
            ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
            av = MUTABLE_AV(SvRV(ret));
            length = av_count(av);
            SvREFCNT_dec_NN(ret);
            return newSViv(length);
        } else {
            Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
                                                (int)flags);
            return NULL;
        }
    }
    return &PL_sv_undef;
}

SV*
Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
{
    struct regexp *const rx = ReANY(r);
    AV *av = newAV();

    PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;

    if (rx && RXp_PAREN_NAMES(rx)) {
        HV *hv= RXp_PAREN_NAMES(rx);
        HE *temphe;
        (void)hv_iterinit(hv);
        while ( (temphe = hv_iternext_flags(hv, 0)) ) {
            IV i;
            IV parno = 0;
            SV* sv_dat = HeVAL(temphe);
            I32 *nums = (I32*)SvPVX(sv_dat);
            for ( i = 0; i < SvIVX(sv_dat); i++ ) {
                if ((I32)(rx->lastparen) >= nums[i] &&
                    rx->offs[nums[i]].start != -1 &&
                    rx->offs[nums[i]].end != -1)
                {
                    parno = nums[i];
                    break;
                }
            }
            if (parno || flags & RXapif_ALL) {
                av_push(av, newSVhek(HeKEY_hek(temphe)));
            }
        }
    }

    return newRV_noinc(MUTABLE_SV(av));
}

void
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
                             SV * const sv)
{
    struct regexp *const rx = ReANY(r);
    char *s = NULL;
    SSize_t i = 0;
    SSize_t s1, t1;
    I32 n = paren;

    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;

    if (      n == RX_BUFF_IDX_CARET_PREMATCH
           || n == RX_BUFF_IDX_CARET_FULLMATCH
           || n == RX_BUFF_IDX_CARET_POSTMATCH
       )
    {
        bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
        if (!keepcopy) {
            /* on something like
             *    $r = qr/.../;
             *    /$qr/p;
             * the KEEPCOPY is set on the PMOP rather than the regex */
            if (PL_curpm && r == PM_GETRE(PL_curpm))
                 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
        }
        if (!keepcopy)
            goto ret_undef;
    }

    if (!rx->subbeg)
        goto ret_undef;

    if (n == RX_BUFF_IDX_CARET_FULLMATCH)
        /* no need to distinguish between them any more */
        n = RX_BUFF_IDX_FULLMATCH;

    if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
        && rx->offs[0].start != -1)
    {
        /* $`, ${^PREMATCH} */
        i = rx->offs[0].start;
        s = rx->subbeg;
    }
    else
    if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
        && rx->offs[0].end != -1)
    {
        /* $', ${^POSTMATCH} */
        s = rx->subbeg - rx->suboffset + rx->offs[0].end;
        i = rx->sublen + rx->suboffset - rx->offs[0].end;
    }
    else
    if (inRANGE(n, 0, (I32)rx->nparens) &&
        (s1 = rx->offs[n].start) != -1  &&
        (t1 = rx->offs[n].end) != -1)
    {
        /* $&, ${^MATCH},  $1 ... */
        i = t1 - s1;
        s = rx->subbeg + s1 - rx->suboffset;
    } else {
        goto ret_undef;
    }

    assert(s >= rx->subbeg);
    assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
    if (i >= 0) {
#ifdef NO_TAINT_SUPPORT
        sv_setpvn(sv, s, i);
#else
        const int oldtainted = TAINT_get;
        TAINT_NOT;
        sv_setpvn(sv, s, i);
        TAINT_set(oldtainted);
#endif
        if (RXp_MATCH_UTF8(rx))
            SvUTF8_on(sv);
        else
            SvUTF8_off(sv);
        if (TAINTING_get) {
            if (RXp_MATCH_TAINTED(rx)) {
                if (SvTYPE(sv) >= SVt_PVMG) {
                    MAGIC* const mg = SvMAGIC(sv);
                    MAGIC* mgt;
                    TAINT;
                    SvMAGIC_set(sv, mg->mg_moremagic);
                    SvTAINT(sv);
                    if ((mgt = SvMAGIC(sv))) {
                        mg->mg_moremagic = mgt;
                        SvMAGIC_set(sv, mg);
                    }
                } else {
                    TAINT;
                    SvTAINT(sv);
                }
            } else
                SvTAINTED_off(sv);
        }
    } else {
      ret_undef:
        sv_set_undef(sv);
        return;
    }
}

void
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
                                                         SV const * const value)
{
    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;

    PERL_UNUSED_ARG(rx);
    PERL_UNUSED_ARG(paren);
    PERL_UNUSED_ARG(value);

    if (!PL_localizing)
        Perl_croak_no_modify();
}

I32
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
                              const I32 paren)
{
    struct regexp *const rx = ReANY(r);
    I32 i;
    I32 s1, t1;

    PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;

    if (   paren == RX_BUFF_IDX_CARET_PREMATCH
        || paren == RX_BUFF_IDX_CARET_FULLMATCH
        || paren == RX_BUFF_IDX_CARET_POSTMATCH
    )
    {
        bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
        if (!keepcopy) {
            /* on something like
             *    $r = qr/.../;
             *    /$qr/p;
             * the KEEPCOPY is set on the PMOP rather than the regex */
            if (PL_curpm && r == PM_GETRE(PL_curpm))
                 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
        }
        if (!keepcopy)
            goto warn_undef;
    }

    /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
    switch (paren) {
      case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
      case RX_BUFF_IDX_PREMATCH:       /* $` */
        if (rx->offs[0].start != -1) {
                        i = rx->offs[0].start;
                        if (i > 0) {
                                s1 = 0;
                                t1 = i;
                                goto getlen;
                        }
            }
        return 0;

      case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
      case RX_BUFF_IDX_POSTMATCH:       /* $' */
            if (rx->offs[0].end != -1) {
                        i = rx->sublen - rx->offs[0].end;
                        if (i > 0) {
                                s1 = rx->offs[0].end;
                                t1 = rx->sublen;
                                goto getlen;
                        }
            }
        return 0;

      default: /* $& / ${^MATCH}, $1, $2, ... */
            if (paren <= (I32)rx->nparens &&
            (s1 = rx->offs[paren].start) != -1 &&
            (t1 = rx->offs[paren].end) != -1)
            {
            i = t1 - s1;
            goto getlen;
        } else {
          warn_undef:
            if (ckWARN(WARN_UNINITIALIZED))
                report_uninit((const SV *)sv);
            return 0;
        }
    }
  getlen:
    if (i > 0 && RXp_MATCH_UTF8(rx)) {
        const char * const s = rx->subbeg - rx->suboffset + s1;
        const U8 *ep;
        STRLEN el;

        i = t1 - s1;
        if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
            i = el;
    }
    return i;
}

SV*
Perl_reg_qr_package(pTHX_ REGEXP * const rx)
{
    PERL_ARGS_ASSERT_REG_QR_PACKAGE;
        PERL_UNUSED_ARG(rx);
        if (0)
            return NULL;
        else
            return newSVpvs("Regexp");
}

/* Scans the name of a named buffer from the pattern.
 * If flags is REG_RSN_RETURN_NULL returns null.
 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
 * to the parsed name as looked up in the RExC_paren_names hash.
 * If there is an error throws a vFAIL().. type exception.
 */

#define REG_RSN_RETURN_NULL    0
#define REG_RSN_RETURN_NAME    1
#define REG_RSN_RETURN_DATA    2

STATIC SV*
S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
{
    char *name_start = RExC_parse;
    SV* sv_name;

    PERL_ARGS_ASSERT_REG_SCAN_NAME;

    assert (RExC_parse <= RExC_end);
    if (RExC_parse == RExC_end) NOOP;
    else if (isIDFIRST_lazy_if_safe(RExC_parse, RExC_end, UTF)) {
         /* Note that the code here assumes well-formed UTF-8.  Skip IDFIRST by
          * using do...while */
        if (UTF)
            do {
                RExC_parse += UTF8SKIP(RExC_parse);
            } while (   RExC_parse < RExC_end
                     && isWORDCHAR_utf8_safe((U8*)RExC_parse, (U8*) RExC_end));
        else
            do {
                RExC_parse++;
            } while (RExC_parse < RExC_end && isWORDCHAR(*RExC_parse));
    } else {
        RExC_parse++; /* so the <- from the vFAIL is after the offending
                         character */
        vFAIL("Group name must start with a non-digit word character");
    }
    sv_name = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
                             SVs_TEMP | (UTF ? SVf_UTF8 : 0));
    if ( flags == REG_RSN_RETURN_NAME)
        return sv_name;
    else if (flags==REG_RSN_RETURN_DATA) {
        HE *he_str = NULL;
        SV *sv_dat = NULL;
        if ( ! sv_name )      /* should not happen*/
            Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
        if (RExC_paren_names)
            he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
        if ( he_str )
            sv_dat = HeVAL(he_str);
        if ( ! sv_dat ) {   /* Didn't find group */

            /* It might be a forward reference; we can't fail until we
                * know, by completing the parse to get all the groups, and
                * then reparsing */
            if (ALL_PARENS_COUNTED)  {
                vFAIL("Reference to nonexistent named group");
            }
            else {
                REQUIRE_PARENS_PASS;
            }
        }
        return sv_dat;
    }

    Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
                     (unsigned long) flags);
}

#define DEBUG_PARSE_MSG(funcname)     DEBUG_PARSE_r({           \
    if (RExC_lastparse!=RExC_parse) {                           \
        Perl_re_printf( aTHX_  "%s",                            \
            Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse,        \
                RExC_end - RExC_parse, 16,                      \
                "", "",                                         \
                PERL_PV_ESCAPE_UNI_DETECT |                     \
                PERL_PV_PRETTY_ELLIPSES   |                     \
                PERL_PV_PRETTY_LTGT       |                     \
                PERL_PV_ESCAPE_RE         |                     \
                PERL_PV_PRETTY_EXACTSIZE                        \
            )                                                   \
        );                                                      \
    } else                                                      \
        Perl_re_printf( aTHX_ "%16s","");                       \
                                                                \
    if (RExC_lastnum!=RExC_emit)                                \
       Perl_re_printf( aTHX_ "|%4zu", RExC_emit);                \
    else                                                        \
       Perl_re_printf( aTHX_ "|%4s","");                        \
    Perl_re_printf( aTHX_ "|%*s%-4s",                           \
        (int)((depth*2)), "",                                   \
        (funcname)                                              \
    );                                                          \
    RExC_lastnum=RExC_emit;                                     \
    RExC_lastparse=RExC_parse;                                  \
})



#define DEBUG_PARSE(funcname)     DEBUG_PARSE_r({           \
    DEBUG_PARSE_MSG((funcname));                            \
    Perl_re_printf( aTHX_ "%4s","\n");                                  \
})
#define DEBUG_PARSE_FMT(funcname,fmt,args)     DEBUG_PARSE_r({\
    DEBUG_PARSE_MSG((funcname));                            \
    Perl_re_printf( aTHX_ fmt "\n",args);                               \
})

/* This section of code defines the inversion list object and its methods.  The
 * interfaces are highly subject to change, so as much as possible is static to
 * this file.  An inversion list is here implemented as a malloc'd C UV array
 * as an SVt_INVLIST scalar.
 *
 * An inversion list for Unicode is an array of code points, sorted by ordinal
 * number.  Each element gives the code point that begins a range that extends
 * up-to but not including the code point given by the next element.  The final
 * element gives the first code point of a range that extends to the platform's
 * infinity.  The even-numbered elements (invlist[0], invlist[2], invlist[4],
 * ...) give ranges whose code points are all in the inversion list.  We say
 * that those ranges are in the set.  The odd-numbered elements give ranges
 * whose code points are not in the inversion list, and hence not in the set.
 * Thus, element [0] is the first code point in the list.  Element [1]
 * is the first code point beyond that not in the list; and element [2] is the
 * first code point beyond that that is in the list.  In other words, the first
 * range is invlist[0]..(invlist[1]-1), and all code points in that range are
 * in the inversion list.  The second range is invlist[1]..(invlist[2]-1), and
 * all code points in that range are not in the inversion list.  The third
 * range invlist[2]..(invlist[3]-1) gives code points that are in the inversion
 * list, and so forth.  Thus every element whose index is divisible by two
 * gives the beginning of a range that is in the list, and every element whose
 * index is not divisible by two gives the beginning of a range not in the
 * list.  If the final element's index is divisible by two, the inversion list
 * extends to the platform's infinity; otherwise the highest code point in the
 * inversion list is the contents of that element minus 1.
 *
 * A range that contains just a single code point N will look like
 *  invlist[i]   == N
 *  invlist[i+1] == N+1
 *
 * If N is UV_MAX (the highest representable code point on the machine), N+1 is
 * impossible to represent, so element [i+1] is omitted.  The single element
 * inversion list
 *  invlist[0] == UV_MAX
 * contains just UV_MAX, but is interpreted as matching to infinity.
 *
 * Taking the complement (inverting) an inversion list is quite simple, if the
 * first element is 0, remove it; otherwise add a 0 element at the beginning.
 * This implementation reserves an element at the beginning of each inversion
 * list to always contain 0; there is an additional flag in the header which
 * indicates if the list begins at the 0, or is offset to begin at the next
 * element.  This means that the inversion list can be inverted without any
 * copying; just flip the flag.
 *
 * More about inversion lists can be found in "Unicode Demystified"
 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
 *
 * The inversion list data structure is currently implemented as an SV pointing
 * to an array of UVs that the SV thinks are bytes.  This allows us to have an
 * array of UV whose memory management is automatically handled by the existing
 * facilities for SV's.
 *
 * Some of the methods should always be private to the implementation, and some
 * should eventually be made public */

/* The header definitions are in F<invlist_inline.h> */

#ifndef PERL_IN_XSUB_RE

PERL_STATIC_INLINE UV*
S__invlist_array_init(SV* const invlist, const bool will_have_0)
{
    /* Returns a pointer to the first element in the inversion list's array.
     * This is called upon initialization of an inversion list.  Where the
     * array begins depends on whether the list has the code point U+0000 in it
     * or not.  The other parameter tells it whether the code that follows this
     * call is about to put a 0 in the inversion list or not.  The first
     * element is either the element reserved for 0, if TRUE, or the element
     * after it, if FALSE */

    bool* offset = get_invlist_offset_addr(invlist);
    UV* zero_addr = (UV *) SvPVX(invlist);

    PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;

    /* Must be empty */
    assert(! _invlist_len(invlist));

    *zero_addr = 0;

    /* 1^1 = 0; 1^0 = 1 */
    *offset = 1 ^ will_have_0;
    return zero_addr + *offset;
}

STATIC void
S_invlist_replace_list_destroys_src(pTHX_ SV * dest, SV * src)
{
    /* Replaces the inversion list in 'dest' with the one from 'src'.  It
     * steals the list from 'src', so 'src' is made to have a NULL list.  This
     * is similar to what SvSetMagicSV() would do, if it were implemented on
     * inversion lists, though this routine avoids a copy */

    const UV src_len          = _invlist_len(src);
    const bool src_offset     = *get_invlist_offset_addr(src);
    const STRLEN src_byte_len = SvLEN(src);
    char * array              = SvPVX(src);

    const int oldtainted = TAINT_get;

    PERL_ARGS_ASSERT_INVLIST_REPLACE_LIST_DESTROYS_SRC;

    assert(is_invlist(src));
    assert(is_invlist(dest));
    assert(! invlist_is_iterating(src));
    assert(SvCUR(src) == 0 || SvCUR(src) < SvLEN(src));

    /* Make sure it ends in the right place with a NUL, as our inversion list
     * manipulations aren't careful to keep this true, but sv_usepvn_flags()
     * asserts it */
    array[src_byte_len - 1] = '\0';

    TAINT_NOT;      /* Otherwise it breaks */
    sv_usepvn_flags(dest,
                    (char *) array,
                    src_byte_len - 1,

                    /* This flag is documented to cause a copy to be avoided */
                    SV_HAS_TRAILING_NUL);
    TAINT_set(oldtainted);
    SvPV_set(src, 0);
    SvLEN_set(src, 0);
    SvCUR_set(src, 0);

    /* Finish up copying over the other fields in an inversion list */
    *get_invlist_offset_addr(dest) = src_offset;
    invlist_set_len(dest, src_len, src_offset);
    *get_invlist_previous_index_addr(dest) = 0;
    invlist_iterfinish(dest);
}

PERL_STATIC_INLINE IV*
S_get_invlist_previous_index_addr(SV* invlist)
{
    /* Return the address of the IV that is reserved to hold the cached index
     * */
    PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;

    assert(is_invlist(invlist));

    return &(((XINVLIST*) SvANY(invlist))->prev_index);
}

PERL_STATIC_INLINE IV
S_invlist_previous_index(SV* const invlist)
{
    /* Returns cached index of previous search */

    PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;

    return *get_invlist_previous_index_addr(invlist);
}

PERL_STATIC_INLINE void
S_invlist_set_previous_index(SV* const invlist, const IV index)
{
    /* Caches <index> for later retrieval */

    PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;

    assert(index == 0 || index < (int) _invlist_len(invlist));

    *get_invlist_previous_index_addr(invlist) = index;
}

PERL_STATIC_INLINE void
S_invlist_trim(SV* invlist)
{
    /* Free the not currently-being-used space in an inversion list */

    /* But don't free up the space needed for the 0 UV that is always at the
     * beginning of the list, nor the trailing NUL */
    const UV min_size = TO_INTERNAL_SIZE(1) + 1;

    PERL_ARGS_ASSERT_INVLIST_TRIM;

    assert(is_invlist(invlist));

    SvPV_renew(invlist, MAX(min_size, SvCUR(invlist) + 1));
}

PERL_STATIC_INLINE void
S_invlist_clear(pTHX_ SV* invlist)    /* Empty the inversion list */
{
    PERL_ARGS_ASSERT_INVLIST_CLEAR;

    assert(is_invlist(invlist));

    invlist_set_len(invlist, 0, 0);
    invlist_trim(invlist);
}

#endif /* ifndef PERL_IN_XSUB_RE */

PERL_STATIC_INLINE bool
S_invlist_is_iterating(SV* const invlist)
{
    PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;

    return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
}

#ifndef PERL_IN_XSUB_RE

PERL_STATIC_INLINE UV
S_invlist_max(SV* const invlist)
{
    /* Returns the maximum number of elements storable in the inversion list's
     * array, without having to realloc() */

    PERL_ARGS_ASSERT_INVLIST_MAX;

    assert(is_invlist(invlist));

    /* Assumes worst case, in which the 0 element is not counted in the
     * inversion list, so subtracts 1 for that */
    return SvLEN(invlist) == 0  /* This happens under _new_invlist_C_array */
           ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
           : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
}

STATIC void
S_initialize_invlist_guts(pTHX_ SV* invlist, const Size_t initial_size)
{
    PERL_ARGS_ASSERT_INITIALIZE_INVLIST_GUTS;

    /* First 1 is in case the zero element isn't in the list; second 1 is for
     * trailing NUL */
    SvGROW(invlist, TO_INTERNAL_SIZE(initial_size + 1) + 1);
    invlist_set_len(invlist, 0, 0);

    /* Force iterinit() to be used to get iteration to work */
    invlist_iterfinish(invlist);

    *get_invlist_previous_index_addr(invlist) = 0;
    SvPOK_on(invlist);  /* This allows B to extract the PV */
}

SV*
Perl__new_invlist(pTHX_ IV initial_size)
{

    /* Return a pointer to a newly constructed inversion list, with enough
     * space to store 'initial_size' elements.  If that number is negative, a
     * system default is used instead */

    SV* new_list;

    if (initial_size < 0) {
        initial_size = 10;
    }

    new_list = newSV_type(SVt_INVLIST);
    initialize_invlist_guts(new_list, initial_size);

    return new_list;
}

SV*
Perl__new_invlist_C_array(pTHX_ const UV* const list)
{
    /* Return a pointer to a newly constructed inversion list, initialized to
     * point to <list>, which has to be in the exact correct inversion list
     * form, including internal fields.  Thus this is a dangerous routine that
     * should not be used in the wrong hands.  The passed in 'list' contains
     * several header fields at the beginning that are not part of the
     * inversion list body proper */

    const STRLEN length = (STRLEN) list[0];
    const UV version_id =          list[1];
    const bool offset   =    cBOOL(list[2]);
#define HEADER_LENGTH 3
    /* If any of the above changes in any way, you must change HEADER_LENGTH
     * (if appropriate) and regenerate INVLIST_VERSION_ID by running
     *      perl -E 'say int(rand 2**31-1)'
     */
#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
                                        data structure type, so that one being
                                        passed in can be validated to be an
                                        inversion list of the correct vintage.
                                       */

    SV* invlist = newSV_type(SVt_INVLIST);

    PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;

    if (version_id != INVLIST_VERSION_ID) {
        Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
    }

    /* The generated array passed in includes header elements that aren't part
     * of the list proper, so start it just after them */
    SvPV_set(invlist, (char *) (list + HEADER_LENGTH));

    SvLEN_set(invlist, 0);  /* Means we own the contents, and the system
                               shouldn't touch it */

    *(get_invlist_offset_addr(invlist)) = offset;

    /* The 'length' passed to us is the physical number of elements in the
     * inversion list.  But if there is an offset the logical number is one
     * less than that */
    invlist_set_len(invlist, length  - offset, offset);

    invlist_set_previous_index(invlist, 0);

    /* Initialize the iteration pointer. */
    invlist_iterfinish(invlist);

    SvREADONLY_on(invlist);
    SvPOK_on(invlist);

    return invlist;
}

STATIC void
S__append_range_to_invlist(pTHX_ SV* const invlist,
                                 const UV start, const UV end)
{
   /* Subject to change or removal.  Append the range from 'start' to 'end' at
    * the end of the inversion list.  The range must be above any existing
    * ones. */

    UV* array;
    UV max = invlist_max(invlist);
    UV len = _invlist_len(invlist);
    bool offset;

    PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;

    if (len == 0) { /* Empty lists must be initialized */
        offset = start != 0;
        array = _invlist_array_init(invlist, ! offset);
    }
    else {
        /* Here, the existing list is non-empty. The current max entry in the
         * list is generally the first value not in the set, except when the
         * set extends to the end of permissible values, in which case it is
         * the first entry in that final set, and so this call is an attempt to
         * append out-of-order */

        UV final_element = len - 1;
        array = invlist_array(invlist);
        if (   array[final_element] > start
            || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
        {
            Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%" UVuf ", start=%" UVuf ", match=%c",
                     array[final_element], start,
                     ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
        }

        /* Here, it is a legal append.  If the new range begins 1 above the end
         * of the range below it, it is extending the range below it, so the
         * new first value not in the set is one greater than the newly
         * extended range.  */
        offset = *get_invlist_offset_addr(invlist);
        if (array[final_element] == start) {
            if (end != UV_MAX) {
                array[final_element] = end + 1;
            }
            else {
                /* But if the end is the maximum representable on the machine,
                 * assume that infinity was actually what was meant.  Just let
                 * the range that this would extend to have no end */
                invlist_set_len(invlist, len - 1, offset);
            }
            return;
        }
    }

    /* Here the new range doesn't extend any existing set.  Add it */

    len += 2;	/* Includes an element each for the start and end of range */

    /* If wll overflow the existing space, extend, which may cause the array to
     * be moved */
    if (max < len) {
        invlist_extend(invlist, len);

        /* Have to set len here to avoid assert failure in invlist_array() */
        invlist_set_len(invlist, len, offset);

        array = invlist_array(invlist);
    }
    else {
        invlist_set_len(invlist, len, offset);
    }

    /* The next item on the list starts the range, the one after that is
     * one past the new range.  */
    array[len - 2] = start;
    if (end != UV_MAX) {
        array[len - 1] = end + 1;
    }
    else {
        /* But if the end is the maximum representable on the machine, just let
         * the range have no end */
        invlist_set_len(invlist, len - 1, offset);
    }
}

SSize_t
Perl__invlist_search(SV* const invlist, const UV cp)
{
    /* Searches the inversion list for the entry that contains the input code
     * point <cp>.  If <cp> is not in the list, -1 is returned.  Otherwise, the
     * return value is the index into the list's array of the range that
     * contains <cp>, that is, 'i' such that
     *	array[i] <= cp < array[i+1]
     */

    IV low = 0;
    IV mid;
    IV high = _invlist_len(invlist);
    const IV highest_element = high - 1;
    const UV* array;

    PERL_ARGS_ASSERT__INVLIST_SEARCH;

    /* If list is empty, return failure. */
    if (high == 0) {
        return -1;
    }

    /* (We can't get the array unless we know the list is non-empty) */
    array = invlist_array(invlist);

    mid = invlist_previous_index(invlist);
    assert(mid >=0);
    if (mid > highest_element) {
        mid = highest_element;
    }

    /* <mid> contains the cache of the result of the previous call to this
     * function (0 the first time).  See if this call is for the same result,
     * or if it is for mid-1.  This is under the theory that calls to this
     * function will often be for related code points that are near each other.
     * And benchmarks show that caching gives better results.  We also test
     * here if the code point is within the bounds of the list.  These tests
     * replace others that would have had to be made anyway to make sure that
     * the array bounds were not exceeded, and these give us extra information
     * at the same time */
    if (cp >= array[mid]) {
        if (cp >= array[highest_element]) {
            return highest_element;
        }

        /* Here, array[mid] <= cp < array[highest_element].  This means that
         * the final element is not the answer, so can exclude it; it also
         * means that <mid> is not the final element, so can refer to 'mid + 1'
         * safely */
        if (cp < array[mid + 1]) {
            return mid;
        }
        high--;
        low = mid + 1;
    }
    else { /* cp < aray[mid] */
        if (cp < array[0]) { /* Fail if outside the array */
            return -1;
        }
        high = mid;
        if (cp >= array[mid - 1]) {
            goto found_entry;
        }
    }

    /* Binary search.  What we are looking for is <i> such that
     *	array[i] <= cp < array[i+1]
     * The loop below converges on the i+1.  Note that there may not be an
     * (i+1)th element in the array, and things work nonetheless */
    while (low < high) {
        mid = (low + high) / 2;
        assert(mid <= highest_element);
        if (array[mid] <= cp) { /* cp >= array[mid] */
            low = mid + 1;

            /* We could do this extra test to exit the loop early.
            if (cp < array[low]) {
                return mid;
            }
            */
        }
        else { /* cp < array[mid] */
            high = mid;
        }
    }

  found_entry:
    high--;
    invlist_set_previous_index(invlist, high);
    return high;
}

void
Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
                                         const bool complement_b, SV** output)
{
    /* Take the union of two inversion lists and point '*output' to it.  On
     * input, '*output' MUST POINT TO NULL OR TO AN SV* INVERSION LIST (possibly
     * even 'a' or 'b').  If to an inversion list, the contents of the original
     * list will be replaced by the union.  The first list, 'a', may be
     * NULL, in which case a copy of the second list is placed in '*output'.
     * If 'complement_b' is TRUE, the union is taken of the complement
     * (inversion) of 'b' instead of b itself.
     *
     * The basis for this comes from "Unicode Demystified" Chapter 13 by
     * Richard Gillam, published by Addison-Wesley, and explained at some
     * length there.  The preface says to incorporate its examples into your
     * code at your own risk.
     *
     * The algorithm is like a merge sort. */

    const UV* array_a;    /* a's array */
    const UV* array_b;
    UV len_a;	    /* length of a's array */
    UV len_b;

    SV* u;			/* the resulting union */
    UV* array_u;
    UV len_u = 0;

    UV i_a = 0;		    /* current index into a's array */
    UV i_b = 0;
    UV i_u = 0;

    /* running count, as explained in the algorithm source book; items are
     * stopped accumulating and are output when the count changes to/from 0.
     * The count is incremented when we start a range that's in an input's set,
     * and decremented when we start a range that's not in a set.  So this
     * variable can be 0, 1, or 2.  When it is 0 neither input is in their set,
     * and hence nothing goes into the union; 1, just one of the inputs is in
     * its set (and its current range gets added to the union); and 2 when both
     * inputs are in their sets.  */
    UV count = 0;

    PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
    assert(a != b);
    assert(*output == NULL || is_invlist(*output));

    len_b = _invlist_len(b);
    if (len_b == 0) {

        /* Here, 'b' is empty, hence it's complement is all possible code
         * points.  So if the union includes the complement of 'b', it includes
         * everything, and we need not even look at 'a'.  It's easiest to
         * create a new inversion list that matches everything.  */
        if (complement_b) {
            SV* everything = _add_range_to_invlist(NULL, 0, UV_MAX);

            if (*output == NULL) { /* If the output didn't exist, just point it
                                      at the new list */
                *output = everything;
            }
            else { /* Otherwise, replace its contents with the new list */
                invlist_replace_list_destroys_src(*output, everything);
                SvREFCNT_dec_NN(everything);
            }

            return;
        }

        /* Here, we don't want the complement of 'b', and since 'b' is empty,
         * the union will come entirely from 'a'.  If 'a' is NULL or empty, the
         * output will be empty */

        if (a == NULL || _invlist_len(a) == 0) {
            if (*output == NULL) {
                *output = _new_invlist(0);
            }
            else {
                invlist_clear(*output);
            }
            return;
        }

        /* Here, 'a' is not empty, but 'b' is, so 'a' entirely determines the
         * union.  We can just return a copy of 'a' if '*output' doesn't point
         * to an existing list */
        if (*output == NULL) {
            *output = invlist_clone(a, NULL);
            return;
        }

        /* If the output is to overwrite 'a', we have a no-op, as it's
         * already in 'a' */
        if (*output == a) {
            return;
        }

        /* Here, '*output' is to be overwritten by 'a' */
        u = invlist_clone(a, NULL);
        invlist_replace_list_destroys_src(*output, u);
        SvREFCNT_dec_NN(u);

        return;
    }

    /* Here 'b' is not empty.  See about 'a' */

    if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {

        /* Here, 'a' is empty (and b is not).  That means the union will come
         * entirely from 'b'.  If '*output' is NULL, we can directly return a
         * clone of 'b'.  Otherwise, we replace the contents of '*output' with
         * the clone */

        SV ** dest = (*output == NULL) ? output : &u;
        *dest = invlist_clone(b, NULL);
        if (complement_b) {
            _invlist_invert(*dest);
        }

        if (dest == &u) {
            invlist_replace_list_destroys_src(*output, u);
            SvREFCNT_dec_NN(u);
        }

        return;
    }

    /* Here both lists exist and are non-empty */
    array_a = invlist_array(a);
    array_b = invlist_array(b);

    /* If are to take the union of 'a' with the complement of b, set it
     * up so are looking at b's complement. */
    if (complement_b) {

        /* To complement, we invert: if the first element is 0, remove it.  To
         * do this, we just pretend the array starts one later */
        if (array_b[0] == 0) {
            array_b++;
            len_b--;
        }
        else {

            /* But if the first element is not zero, we pretend the list starts
             * at the 0 that is always stored immediately before the array. */
            array_b--;
            len_b++;
        }
    }

    /* Size the union for the worst case: that the sets are completely
     * disjoint */
    u = _new_invlist(len_a + len_b);

    /* Will contain U+0000 if either component does */
    array_u = _invlist_array_init(u, (    len_a > 0 && array_a[0] == 0)
                                      || (len_b > 0 && array_b[0] == 0));

    /* Go through each input list item by item, stopping when have exhausted
     * one of them */
    while (i_a < len_a && i_b < len_b) {
        UV cp;	    /* The element to potentially add to the union's array */
        bool cp_in_set;   /* is it in the input list's set or not */

        /* We need to take one or the other of the two inputs for the union.
         * Since we are merging two sorted lists, we take the smaller of the
         * next items.  In case of a tie, we take first the one that is in its
         * set.  If we first took the one not in its set, it would decrement
         * the count, possibly to 0 which would cause it to be output as ending
         * the range, and the next time through we would take the same number,
         * and output it again as beginning the next range.  By doing it the
         * opposite way, there is no possibility that the count will be
         * momentarily decremented to 0, and thus the two adjoining ranges will
         * be seamlessly merged.  (In a tie and both are in the set or both not
         * in the set, it doesn't matter which we take first.) */
        if (       array_a[i_a] < array_b[i_b]
            || (   array_a[i_a] == array_b[i_b]
                && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
        {
            cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
            cp = array_a[i_a++];
        }
        else {
            cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
            cp = array_b[i_b++];
        }

        /* Here, have chosen which of the two inputs to look at.  Only output
         * if the running count changes to/from 0, which marks the
         * beginning/end of a range that's in the set */
        if (cp_in_set) {
            if (count == 0) {
                array_u[i_u++] = cp;
            }
            count++;
        }
        else {
            count--;
            if (count == 0) {
                array_u[i_u++] = cp;
            }
        }
    }


    /* The loop above increments the index into exactly one of the input lists
     * each iteration, and ends when either index gets to its list end.  That
     * means the other index is lower than its end, and so something is
     * remaining in that one.  We decrement 'count', as explained below, if
     * that list is in its set.  (i_a and i_b each currently index the element
     * beyond the one we care about.) */
    if (   (i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
        || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
    {
        count--;
    }

    /* Above we decremented 'count' if the list that had unexamined elements in
     * it was in its set.  This has made it so that 'count' being non-zero
     * means there isn't anything left to output; and 'count' equal to 0 means
     * that what is left to output is precisely that which is left in the
     * non-exhausted input list.
     *
     * To see why, note first that the exhausted input obviously has nothing
     * left to add to the union.  If it was in its set at its end, that means
     * the set extends from here to the platform's infinity, and hence so does
     * the union and the non-exhausted set is irrelevant.  The exhausted set
     * also contributed 1 to 'count'.  If 'count' was 2, it got decremented to
     * 1, but if it was 1, the non-exhausted set wasn't in its set, and so
     * 'count' remains at 1.  This is consistent with the decremented 'count'
     * != 0 meaning there's nothing left to add to the union.
     *
     * But if the exhausted input wasn't in its set, it contributed 0 to
     * 'count', and the rest of the union will be whatever the other input is.
     * If 'count' was 0, neither list was in its set, and 'count' remains 0;
     * otherwise it gets decremented to 0.  This is consistent with 'count'
     * == 0 meaning the remainder of the union is whatever is left in the
     * non-exhausted list. */
    if (count != 0) {
        len_u = i_u;
    }
    else {
        IV copy_count = len_a - i_a;
        if (copy_count > 0) {   /* The non-exhausted input is 'a' */
            Copy(array_a + i_a, array_u + i_u, copy_count, UV);
        }
        else { /* The non-exhausted input is b */
            copy_count = len_b - i_b;
            Copy(array_b + i_b, array_u + i_u, copy_count, UV);
        }
        len_u = i_u + copy_count;
    }

    /* Set the result to the final length, which can change the pointer to
     * array_u, so re-find it.  (Note that it is unlikely that this will
     * change, as we are shrinking the space, not enlarging it) */
    if (len_u != _invlist_len(u)) {
        invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
        invlist_trim(u);
        array_u = invlist_array(u);
    }

    if (*output == NULL) {  /* Simply return the new inversion list */
        *output = u;
    }
    else {
        /* Otherwise, overwrite the inversion list that was in '*output'.  We
         * could instead free '*output', and then set it to 'u', but experience
         * has shown [perl #127392] that if the input is a mortal, we can get a
         * huge build-up of these during regex compilation before they get
         * freed. */
        invlist_replace_list_destroys_src(*output, u);
        SvREFCNT_dec_NN(u);
    }

    return;
}

void
Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
                                               const bool complement_b, SV** i)
{
    /* Take the intersection of two inversion lists and point '*i' to it.  On
     * input, '*i' MUST POINT TO NULL OR TO AN SV* INVERSION LIST (possibly
     * even 'a' or 'b').  If to an inversion list, the contents of the original
     * list will be replaced by the intersection.  The first list, 'a', may be
     * NULL, in which case '*i' will be an empty list.  If 'complement_b' is
     * TRUE, the result will be the intersection of 'a' and the complement (or
     * inversion) of 'b' instead of 'b' directly.
     *
     * The basis for this comes from "Unicode Demystified" Chapter 13 by
     * Richard Gillam, published by Addison-Wesley, and explained at some
     * length there.  The preface says to incorporate its examples into your
     * code at your own risk.  In fact, it had bugs
     *
     * The algorithm is like a merge sort, and is essentially the same as the
     * union above
     */

    const UV* array_a;		/* a's array */
    const UV* array_b;
    UV len_a;	/* length of a's array */
    UV len_b;

    SV* r;		     /* the resulting intersection */
    UV* array_r;
    UV len_r = 0;

    UV i_a = 0;		    /* current index into a's array */
    UV i_b = 0;
    UV i_r = 0;

    /* running count of how many of the two inputs are postitioned at ranges
     * that are in their sets.  As explained in the algorithm source book,
     * items are stopped accumulating and are output when the count changes
     * to/from 2.  The count is incremented when we start a range that's in an
     * input's set, and decremented when we start a range that's not in a set.
     * Only when it is 2 are we in the intersection. */
    UV count = 0;

    PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
    assert(a != b);
    assert(*i == NULL || is_invlist(*i));

    /* Special case if either one is empty */
    len_a = (a == NULL) ? 0 : _invlist_len(a);
    if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
        if (len_a != 0 && complement_b) {

            /* Here, 'a' is not empty, therefore from the enclosing 'if', 'b'
             * must be empty.  Here, also we are using 'b's complement, which
             * hence must be every possible code point.  Thus the intersection
             * is simply 'a'. */

            if (*i == a) {  /* No-op */
                return;
            }

            if (*i == NULL) {
                *i = invlist_clone(a, NULL);
                return;
            }

            r = invlist_clone(a, NULL);
            invlist_replace_list_destroys_src(*i, r);
            SvREFCNT_dec_NN(r);
            return;
        }

        /* Here, 'a' or 'b' is empty and not using the complement of 'b'.  The
         * intersection must be empty */
        if (*i == NULL) {
            *i = _new_invlist(0);
            return;
        }

        invlist_clear(*i);
        return;
    }

    /* Here both lists exist and are non-empty */
    array_a = invlist_array(a);
    array_b = invlist_array(b);

    /* If are to take the intersection of 'a' with the complement of b, set it
     * up so are looking at b's complement. */
    if (complement_b) {

        /* To complement, we invert: if the first element is 0, remove it.  To
         * do this, we just pretend the array starts one later */
        if (array_b[0] == 0) {
            array_b++;
            len_b--;
        }
        else {

            /* But if the first element is not zero, we pretend the list starts
             * at the 0 that is always stored immediately before the array. */
            array_b--;
            len_b++;
        }
    }

    /* Size the intersection for the worst case: that the intersection ends up
     * fragmenting everything to be completely disjoint */
    r= _new_invlist(len_a + len_b);

    /* Will contain U+0000 iff both components do */
    array_r = _invlist_array_init(r,    len_a > 0 && array_a[0] == 0
                                     && len_b > 0 && array_b[0] == 0);

    /* Go through each list item by item, stopping when have exhausted one of
     * them */
    while (i_a < len_a && i_b < len_b) {
        UV cp;	    /* The element to potentially add to the intersection's
                       array */
        bool cp_in_set;	/* Is it in the input list's set or not */

        /* We need to take one or the other of the two inputs for the
         * intersection.  Since we are merging two sorted lists, we take the
         * smaller of the next items.  In case of a tie, we take first the one
         * that is not in its set (a difference from the union algorithm).  If
         * we first took the one in its set, it would increment the count,
         * possibly to 2 which would cause it to be output as starting a range
         * in the intersection, and the next time through we would take that
         * same number, and output it again as ending the set.  By doing the
         * opposite of this, there is no possibility that the count will be
         * momentarily incremented to 2.  (In a tie and both are in the set or
         * both not in the set, it doesn't matter which we take first.) */
        if (       array_a[i_a] < array_b[i_b]
            || (   array_a[i_a] == array_b[i_b]
                && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
        {
            cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
            cp = array_a[i_a++];
        }
        else {
            cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
            cp= array_b[i_b++];
        }

        /* Here, have chosen which of the two inputs to look at.  Only output
         * if the running count changes to/from 2, which marks the
         * beginning/end of a range that's in the intersection */
        if (cp_in_set) {
            count++;
            if (count == 2) {
                array_r[i_r++] = cp;
            }
        }
        else {
            if (count == 2) {
                array_r[i_r++] = cp;
            }
            count--;
        }

    }

    /* The loop above increments the index into exactly one of the input lists
     * each iteration, and ends when either index gets to its list end.  That
     * means the other index is lower than its end, and so something is
     * remaining in that one.  We increment 'count', as explained below, if the
     * exhausted list was in its set.  (i_a and i_b each currently index the
     * element beyond the one we care about.) */
    if (   (i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
        || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
    {
        count++;
    }

    /* Above we incremented 'count' if the exhausted list was in its set.  This
     * has made it so that 'count' being below 2 means there is nothing left to
     * output; otheriwse what's left to add to the intersection is precisely
     * that which is left in the non-exhausted input list.
     *
     * To see why, note first that the exhausted input obviously has nothing
     * left to affect the intersection.  If it was in its set at its end, that
     * means the set extends from here to the platform's infinity, and hence
     * anything in the non-exhausted's list will be in the intersection, and
     * anything not in it won't be.  Hence, the rest of the intersection is
     * precisely what's in the non-exhausted list  The exhausted set also
     * contributed 1 to 'count', meaning 'count' was at least 1.  Incrementing
     * it means 'count' is now at least 2.  This is consistent with the
     * incremented 'count' being >= 2 means to add the non-exhausted list to
     * the intersection.
     *
     * But if the exhausted input wasn't in its set, it contributed 0 to
     * 'count', and the intersection can't include anything further; the
     * non-exhausted set is irrelevant.  'count' was at most 1, and doesn't get
     * incremented.  This is consistent with 'count' being < 2 meaning nothing
     * further to add to the intersection. */
    if (count < 2) { /* Nothing left to put in the intersection. */
        len_r = i_r;
    }
    else { /* copy the non-exhausted list, unchanged. */
        IV copy_count = len_a - i_a;
        if (copy_count > 0) {   /* a is the one with stuff left */
            Copy(array_a + i_a, array_r + i_r, copy_count, UV);
        }
        else {  /* b is the one with stuff left */
            copy_count = len_b - i_b;
            Copy(array_b + i_b, array_r + i_r, copy_count, UV);
        }
        len_r = i_r + copy_count;
    }

    /* Set the result to the final length, which can change the pointer to
     * array_r, so re-find it.  (Note that it is unlikely that this will
     * change, as we are shrinking the space, not enlarging it) */
    if (len_r != _invlist_len(r)) {
        invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
        invlist_trim(r);
        array_r = invlist_array(r);
    }

    if (*i == NULL) { /* Simply return the calculated intersection */
        *i = r;
    }
    else { /* Otherwise, replace the existing inversion list in '*i'.  We could
              instead free '*i', and then set it to 'r', but experience has
              shown [perl #127392] that if the input is a mortal, we can get a
              huge build-up of these during regex compilation before they get
              freed. */
        if (len_r) {
            invlist_replace_list_destroys_src(*i, r);
        }
        else {
            invlist_clear(*i);
        }
        SvREFCNT_dec_NN(r);
    }

    return;
}

SV*
Perl__add_range_to_invlist(pTHX_ SV* invlist, UV start, UV end)
{
    /* Add the range from 'start' to 'end' inclusive to the inversion list's
     * set.  A pointer to the inversion list is returned.  This may actually be
     * a new list, in which case the passed in one has been destroyed.  The
     * passed-in inversion list can be NULL, in which case a new one is created
     * with just the one range in it.  The new list is not necessarily
     * NUL-terminated.  Space is not freed if the inversion list shrinks as a
     * result of this function.  The gain would not be large, and in many
     * cases, this is called multiple times on a single inversion list, so
     * anything freed may almost immediately be needed again.
     *
     * This used to mostly call the 'union' routine, but that is much more
     * heavyweight than really needed for a single range addition */

    UV* array;              /* The array implementing the inversion list */
    UV len;                 /* How many elements in 'array' */
    SSize_t i_s;            /* index into the invlist array where 'start'
                               should go */
    SSize_t i_e = 0;        /* And the index where 'end' should go */
    UV cur_highest;         /* The highest code point in the inversion list
                               upon entry to this function */

    /* This range becomes the whole inversion list if none already existed */
    if (invlist == NULL) {
        invlist = _new_invlist(2);
        _append_range_to_invlist(invlist, start, end);
        return invlist;
    }

    /* Likewise, if the inversion list is currently empty */
    len = _invlist_len(invlist);
    if (len == 0) {
        _append_range_to_invlist(invlist, start, end);
        return invlist;
    }

    /* Starting here, we have to know the internals of the list */
    array = invlist_array(invlist);

    /* If the new range ends higher than the current highest ... */
    cur_highest = invlist_highest(invlist);
    if (end > cur_highest) {

        /* If the whole range is higher, we can just append it */
        if (start > cur_highest) {
            _append_range_to_invlist(invlist, start, end);
            return invlist;
        }

        /* Otherwise, add the portion that is higher ... */
        _append_range_to_invlist(invlist, cur_highest + 1, end);

        /* ... and continue on below to handle the rest.  As a result of the
         * above append, we know that the index of the end of the range is the
         * final even numbered one of the array.  Recall that the final element
         * always starts a range that extends to infinity.  If that range is in
         * the set (meaning the set goes from here to infinity), it will be an
         * even index, but if it isn't in the set, it's odd, and the final
         * range in the set is one less, which is even. */
        if (end == UV_MAX) {
            i_e = len;
        }
        else {
            i_e = len - 2;
        }
    }

    /* We have dealt with appending, now see about prepending.  If the new
     * range starts lower than the current lowest ... */
    if (start < array[0]) {

        /* Adding something which has 0 in it is somewhat tricky, and uncommon.
         * Let the union code handle it, rather than having to know the
         * trickiness in two code places.  */
        if (UNLIKELY(start == 0)) {
            SV* range_invlist;

            range_invlist = _new_invlist(2);
            _append_range_to_invlist(range_invlist, start, end);

            _invlist_union(invlist, range_invlist, &invlist);

            SvREFCNT_dec_NN(range_invlist);

            return invlist;
        }

        /* If the whole new range comes before the first entry, and doesn't
         * extend it, we have to insert it as an additional range */
        if (end < array[0] - 1) {
            i_s = i_e = -1;
            goto splice_in_new_range;
        }

        /* Here the new range adjoins the existing first range, extending it
         * downwards. */
        array[0] = start;

        /* And continue on below to handle the rest.  We know that the index of
         * the beginning of the range is the first one of the array */
        i_s = 0;
    }
    else { /* Not prepending any part of the new range to the existing list.
            * Find where in the list it should go.  This finds i_s, such that:
            *     invlist[i_s] <= start < array[i_s+1]
            */
        i_s = _invlist_search(invlist, start);
    }

    /* At this point, any extending before the beginning of the inversion list
     * and/or after the end has been done.  This has made it so that, in the
     * code below, each endpoint of the new range is either in a range that is
     * in the set, or is in a gap between two ranges that are.  This means we
     * don't have to worry about exceeding the array bounds.
     *
     * Find where in the list the new range ends (but we can skip this if we
     * have already determined what it is, or if it will be the same as i_s,
     * which we already have computed) */
    if (i_e == 0) {
        i_e = (start == end)
              ? i_s
              : _invlist_search(invlist, end);
    }

    /* Here generally invlist[i_e] <= end < array[i_e+1].  But if invlist[i_e]
     * is a range that goes to infinity there is no element at invlist[i_e+1],
     * so only the first relation holds. */

    if ( ! ELEMENT_RANGE_MATCHES_INVLIST(i_s)) {

        /* Here, the ranges on either side of the beginning of the new range
         * are in the set, and this range starts in the gap between them.
         *
         * The new range extends the range above it downwards if the new range
         * ends at or above that range's start */
        const bool extends_the_range_above = (   end == UV_MAX
                                              || end + 1 >= array[i_s+1]);

        /* The new range extends the range below it upwards if it begins just
         * after where that range ends */
        if (start == array[i_s]) {

            /* If the new range fills the entire gap between the other ranges,
             * they will get merged together.  Other ranges may also get
             * merged, depending on how many of them the new range spans.  In
             * the general case, we do the merge later, just once, after we
             * figure out how many to merge.  But in the case where the new
             * range exactly spans just this one gap (possibly extending into
             * the one above), we do the merge here, and an early exit.  This
             * is done here to avoid having to special case later. */
            if (i_e - i_s <= 1) {

                /* If i_e - i_s == 1, it means that the new range terminates
                 * within the range above, and hence 'extends_the_range_above'
                 * must be true.  (If the range above it extends to infinity,
                 * 'i_s+2' will be above the array's limit, but 'len-i_s-2'
                 * will be 0, so no harm done.) */
                if (extends_the_range_above) {
                    Move(array + i_s + 2, array + i_s, len - i_s - 2, UV);
                    invlist_set_len(invlist,
                                    len - 2,
                                    *(get_invlist_offset_addr(invlist)));
                    return invlist;
                }

                /* Here, i_e must == i_s.  We keep them in sync, as they apply
                 * to the same range, and below we are about to decrement i_s
                 * */
                i_e--;
            }

            /* Here, the new range is adjacent to the one below.  (It may also
             * span beyond the range above, but that will get resolved later.)
             * Extend the range below to include this one. */
            array[i_s] = (end == UV_MAX) ? UV_MAX : end + 1;
            i_s--;
            start = array[i_s];
        }
        else if (extends_the_range_above) {

            /* Here the new range only extends the range above it, but not the
             * one below.  It merges with the one above.  Again, we keep i_e
             * and i_s in sync if they point to the same range */
            if (i_e == i_s) {
                i_e++;
            }
            i_s++;
            array[i_s] = start;
        }
    }

    /* Here, we've dealt with the new range start extending any adjoining
     * existing ranges.
     *
     * If the new range extends to infinity, it is now the final one,
     * regardless of what was there before */
    if (UNLIKELY(end == UV_MAX)) {
        invlist_set_len(invlist, i_s + 1, *(get_invlist_offset_addr(invlist)));
        return invlist;
    }

    /* If i_e started as == i_s, it has also been dealt with,
     * and been updated to the new i_s, which will fail the following if */
    if (! ELEMENT_RANGE_MATCHES_INVLIST(i_e)) {

        /* Here, the ranges on either side of the end of the new range are in
         * the set, and this range ends in the gap between them.
         *
         * If this range is adjacent to (hence extends) the range above it, it
         * becomes part of that range; likewise if it extends the range below,
         * it becomes part of that range */
        if (end + 1 == array[i_e+1]) {
            i_e++;
            array[i_e] = start;
        }
        else if (start <= array[i_e]) {
            array[i_e] = end + 1;
            i_e--;
        }
    }

    if (i_s == i_e) {

        /* If the range fits entirely in an existing range (as possibly already
         * extended above), it doesn't add anything new */
        if (ELEMENT_RANGE_MATCHES_INVLIST(i_s)) {
            return invlist;
        }

        /* Here, no part of the range is in the list.  Must add it.  It will
         * occupy 2 more slots */
      splice_in_new_range:

        invlist_extend(invlist, len + 2);
        array = invlist_array(invlist);
        /* Move the rest of the array down two slots. Don't include any
         * trailing NUL */
        Move(array + i_e + 1, array + i_e + 3, len - i_e - 1, UV);

        /* Do the actual splice */
        array[i_e+1] = start;
        array[i_e+2] = end + 1;
        invlist_set_len(invlist, len + 2, *(get_invlist_offset_addr(invlist)));
        return invlist;
    }

    /* Here the new range crossed the boundaries of a pre-existing range.  The
     * code above has adjusted things so that both ends are in ranges that are
     * in the set.  This means everything in between must also be in the set.
     * Just squash things together */
    Move(array + i_e + 1, array + i_s + 1, len - i_e - 1, UV);
    invlist_set_len(invlist,
                    len - i_e + i_s,
                    *(get_invlist_offset_addr(invlist)));

    return invlist;
}

SV*
Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
                                 UV** other_elements_ptr)
{
    /* Create and return an inversion list whose contents are to be populated
     * by the caller.  The caller gives the number of elements (in 'size') and
     * the very first element ('element0').  This function will set
     * '*other_elements_ptr' to an array of UVs, where the remaining elements
     * are to be placed.
     *
     * Obviously there is some trust involved that the caller will properly
     * fill in the other elements of the array.
     *
     * (The first element needs to be passed in, as the underlying code does
     * things differently depending on whether it is zero or non-zero) */

    SV* invlist = _new_invlist(size);
    bool offset;

    PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;

    invlist = add_cp_to_invlist(invlist, element0);
    offset = *get_invlist_offset_addr(invlist);

    invlist_set_len(invlist, size, offset);
    *other_elements_ptr = invlist_array(invlist) + 1;
    return invlist;
}

#endif

#ifndef PERL_IN_XSUB_RE
void
Perl__invlist_invert(pTHX_ SV* const invlist)
{
    /* Complement the input inversion list.  This adds a 0 if the list didn't
     * have a zero; removes it otherwise.  As described above, the data
     * structure is set up so that this is very efficient */

    PERL_ARGS_ASSERT__INVLIST_INVERT;

    assert(! invlist_is_iterating(invlist));

    /* The inverse of matching nothing is matching everything */
    if (_invlist_len(invlist) == 0) {
        _append_range_to_invlist(invlist, 0, UV_MAX);
        return;
    }

    *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
}

SV*
Perl_invlist_clone(pTHX_ SV* const invlist, SV* new_invlist)
{
    /* Return a new inversion list that is a copy of the input one, which is
     * unchanged.  The new list will not be mortal even if the old one was. */

    const STRLEN nominal_length = _invlist_len(invlist);
    const STRLEN physical_length = SvCUR(invlist);
    const bool offset = *(get_invlist_offset_addr(invlist));

    PERL_ARGS_ASSERT_INVLIST_CLONE;

    if (new_invlist == NULL) {
        new_invlist = _new_invlist(nominal_length);
    }
    else {
        sv_upgrade(new_invlist, SVt_INVLIST);
        initialize_invlist_guts(new_invlist, nominal_length);
    }

    *(get_invlist_offset_addr(new_invlist)) = offset;
    invlist_set_len(new_invlist, nominal_length, offset);
    Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);

    return new_invlist;
}

#endif

PERL_STATIC_INLINE UV
S_invlist_lowest(SV* const invlist)
{
    /* Returns the lowest code point that matches an inversion list.  This API
     * has an ambiguity, as it returns 0 under either the lowest is actually
     * 0, or if the list is empty.  If this distinction matters to you, check
     * for emptiness before calling this function */

    UV len = _invlist_len(invlist);
    UV *array;

    PERL_ARGS_ASSERT_INVLIST_LOWEST;

    if (len == 0) {
        return 0;
    }

    array = invlist_array(invlist);

    return array[0];
}

STATIC SV *
S_invlist_contents(pTHX_ SV* const invlist, const bool traditional_style)
{
    /* Get the contents of an inversion list into a string SV so that they can
     * be printed out.  If 'traditional_style' is TRUE, it uses the format
     * traditionally done for debug tracing; otherwise it uses a format
     * suitable for just copying to the output, with blanks between ranges and
     * a dash between range components */

    UV start, end;
    SV* output;
    const char intra_range_delimiter = (traditional_style ? '\t' : '-');
    const char inter_range_delimiter = (traditional_style ? '\n' : ' ');

    if (traditional_style) {
        output = newSVpvs("\n");
    }
    else {
        output = newSVpvs("");
    }

    PERL_ARGS_ASSERT_INVLIST_CONTENTS;

    assert(! invlist_is_iterating(invlist));

    invlist_iterinit(invlist);
    while (invlist_iternext(invlist, &start, &end)) {
        if (end == UV_MAX) {
            Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%cINFTY%c",
                                          start, intra_range_delimiter,
                                                 inter_range_delimiter);
        }
        else if (end != start) {
            Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%c%04" UVXf "%c",
                                          start,
                                                   intra_range_delimiter,
                                                  end, inter_range_delimiter);
        }
        else {
            Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%c",
                                          start, inter_range_delimiter);
        }
    }

    if (SvCUR(output) && ! traditional_style) {/* Get rid of trailing blank */
        SvCUR_set(output, SvCUR(output) - 1);
    }

    return output;
}

#ifndef PERL_IN_XSUB_RE
void
Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
                         const char * const indent, SV* const invlist)
{
    /* Designed to be called only by do_sv_dump().  Dumps out the ranges of the
     * inversion list 'invlist' to 'file' at 'level'  Each line is prefixed by
     * the string 'indent'.  The output looks like this:
         [0] 0x000A .. 0x000D
         [2] 0x0085
         [4] 0x2028 .. 0x2029
         [6] 0x3104 .. INFTY
     * This means that the first range of code points matched by the list are
     * 0xA through 0xD; the second range contains only the single code point
     * 0x85, etc.  An inversion list is an array of UVs.  Two array elements
     * are used to define each range (except if the final range extends to
     * infinity, only a single element is needed).  The array index of the
     * first element for the corresponding range is given in brackets. */

    UV start, end;
    STRLEN count = 0;

    PERL_ARGS_ASSERT__INVLIST_DUMP;

    if (invlist_is_iterating(invlist)) {
        Perl_dump_indent(aTHX_ level, file,
             "%sCan't dump inversion list because is in middle of iterating\n",
             indent);
        return;
    }

    invlist_iterinit(invlist);
    while (invlist_iternext(invlist, &start, &end)) {
        if (end == UV_MAX) {
            Perl_dump_indent(aTHX_ level, file,
                                       "%s[%" UVuf "] 0x%04" UVXf " .. INFTY\n",
                                   indent, (UV)count, start);
        }
        else if (end != start) {
            Perl_dump_indent(aTHX_ level, file,
                                    "%s[%" UVuf "] 0x%04" UVXf " .. 0x%04" UVXf "\n",
                                indent, (UV)count, start,         end);
        }
        else {
            Perl_dump_indent(aTHX_ level, file, "%s[%" UVuf "] 0x%04" UVXf "\n",
                                            indent, (UV)count, start);
        }
        count += 2;
    }
}

#endif

#if defined(PERL_ARGS_ASSERT__INVLISTEQ) && !defined(PERL_IN_XSUB_RE)
bool
Perl__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
{
    /* Return a boolean as to if the two passed in inversion lists are
     * identical.  The final argument, if TRUE, says to take the complement of
     * the second inversion list before doing the comparison */

    const UV len_a = _invlist_len(a);
    UV len_b = _invlist_len(b);

    const UV* array_a = NULL;
    const UV* array_b = NULL;

    PERL_ARGS_ASSERT__INVLISTEQ;

    /* This code avoids accessing the arrays unless it knows the length is
     * non-zero */

    if (len_a == 0) {
        if (len_b == 0) {
            return ! complement_b;
        }
    }
    else {
        array_a = invlist_array(a);
    }

    if (len_b != 0) {
        array_b = invlist_array(b);
    }

    /* If are to compare 'a' with the complement of b, set it
     * up so are looking at b's complement. */
    if (complement_b) {

        /* The complement of nothing is everything, so <a> would have to have
         * just one element, starting at zero (ending at infinity) */
        if (len_b == 0) {
            return (len_a == 1 && array_a[0] == 0);
        }
        if (array_b[0] == 0) {

            /* Otherwise, to complement, we invert.  Here, the first element is
             * 0, just remove it.  To do this, we just pretend the array starts
             * one later */

            array_b++;
            len_b--;
        }
        else {

            /* But if the first element is not zero, we pretend the list starts
             * at the 0 that is always stored immediately before the array. */
            array_b--;
            len_b++;
        }
    }

    return    len_a == len_b
           && memEQ(array_a, array_b, len_a * sizeof(array_a[0]));

}
#endif

/*
 * As best we can, determine the characters that can match the start of
 * the given EXACTF-ish node.  This is for use in creating ssc nodes, so there
 * can be false positive matches
 *
 * Returns the invlist as a new SV*; it is the caller's responsibility to
 * call SvREFCNT_dec() when done with it.
 */
STATIC SV*
S_make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
{
    const U8 * s = (U8*)STRING(node);
    SSize_t bytelen = STR_LEN(node);
    UV uc;
    /* Start out big enough for 2 separate code points */
    SV* invlist = _new_invlist(4);

    PERL_ARGS_ASSERT_MAKE_EXACTF_INVLIST;

    if (! UTF) {
        uc = *s;

        /* We punt and assume can match anything if the node begins
         * with a multi-character fold.  Things are complicated.  For
         * example, /ffi/i could match any of:
         *  "\N{LATIN SMALL LIGATURE FFI}"
         *  "\N{LATIN SMALL LIGATURE FF}I"
         *  "F\N{LATIN SMALL LIGATURE FI}"
         *  plus several other things; and making sure we have all the
         *  possibilities is hard. */
        if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
            invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
        }
        else {
            /* Any Latin1 range character can potentially match any
             * other depending on the locale, and in Turkic locales, U+130 and
             * U+131 */
            if (OP(node) == EXACTFL) {
                _invlist_union(invlist, PL_Latin1, &invlist);
                invlist = add_cp_to_invlist(invlist,
                                                LATIN_SMALL_LETTER_DOTLESS_I);
                invlist = add_cp_to_invlist(invlist,
                                        LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
            }
            else {
                /* But otherwise, it matches at least itself.  We can
                 * quickly tell if it has a distinct fold, and if so,
                 * it matches that as well */
                invlist = add_cp_to_invlist(invlist, uc);
                if (IS_IN_SOME_FOLD_L1(uc))
                    invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
            }

            /* Some characters match above-Latin1 ones under /i.  This
             * is true of EXACTFL ones when the locale is UTF-8 */
            if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
                && (! isASCII(uc) || ! inRANGE(OP(node), EXACTFAA,
                                                         EXACTFAA_NO_TRIE)))
            {
                add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
            }
        }
    }
    else {  /* Pattern is UTF-8 */
        U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
        const U8* e = s + bytelen;
        IV fc;

        fc = uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);

        /* The only code points that aren't folded in a UTF EXACTFish
         * node are the problematic ones in EXACTFL nodes */
        if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
            /* We need to check for the possibility that this EXACTFL
             * node begins with a multi-char fold.  Therefore we fold
             * the first few characters of it so that we can make that
             * check */
            U8 *d = folded;
            int i;

            fc = -1;
            for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
                if (isASCII(*s)) {
                    *(d++) = (U8) toFOLD(*s);
                    if (fc < 0) {       /* Save the first fold */
                        fc = *(d-1);
                    }
                    s++;
                }
                else {
                    STRLEN len;
                    UV fold = toFOLD_utf8_safe(s, e, d, &len);
                    if (fc < 0) {       /* Save the first fold */
                        fc = fold;
                    }
                    d += len;
                    s += UTF8SKIP(s);
                }
            }

            /* And set up so the code below that looks in this folded
             * buffer instead of the node's string */
            e = d;
            s = folded;
        }

        /* When we reach here 's' points to the fold of the first
         * character(s) of the node; and 'e' points to far enough along
         * the folded string to be just past any possible multi-char
         * fold.
         *
         * Like the non-UTF case above, we punt if the node begins with a
         * multi-char fold  */

        if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
            invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
        }
        else {  /* Single char fold */
            unsigned int k;
            U32 first_fold;
            const U32 * remaining_folds;
            Size_t folds_count;

            /* It matches itself */
            invlist = add_cp_to_invlist(invlist, fc);

            /* ... plus all the things that fold to it, which are found in
             * PL_utf8_foldclosures */
            folds_count = _inverse_folds(fc, &first_fold,
                                                &remaining_folds);
            for (k = 0; k < folds_count; k++) {
                UV c = (k == 0) ? first_fold : remaining_folds[k-1];

                /* /aa doesn't allow folds between ASCII and non- */
                if (   inRANGE(OP(node), EXACTFAA, EXACTFAA_NO_TRIE)
                    && isASCII(c) != isASCII(fc))
                {
                    continue;
                }

                invlist = add_cp_to_invlist(invlist, c);
            }

            if (OP(node) == EXACTFL) {

                /* If either [iI] are present in an EXACTFL node the above code
                 * should have added its normal case pair, but under a Turkish
                 * locale they could match instead the case pairs from it.  Add
                 * those as potential matches as well */
                if (isALPHA_FOLD_EQ(fc, 'I')) {
                    invlist = add_cp_to_invlist(invlist,
                                                LATIN_SMALL_LETTER_DOTLESS_I);
                    invlist = add_cp_to_invlist(invlist,
                                        LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
                }
                else if (fc == LATIN_SMALL_LETTER_DOTLESS_I) {
                    invlist = add_cp_to_invlist(invlist, 'I');
                }
                else if (fc == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
                    invlist = add_cp_to_invlist(invlist, 'i');
                }
            }
        }
    }

    return invlist;
}

#undef HEADER_LENGTH
#undef TO_INTERNAL_SIZE
#undef FROM_INTERNAL_SIZE
#undef INVLIST_VERSION_ID

/* End of inversion list object */

STATIC void
S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
{
    /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
     * constructs, and updates RExC_flags with them.  On input, RExC_parse
     * should point to the first flag; it is updated on output to point to the
     * final ')' or ':'.  There needs to be at least one flag, or this will
     * abort */

    /* for (?g), (?gc), and (?o) warnings; warning
       about (?c) will warn about (?g) -- japhy    */

#define WASTED_O  0x01
#define WASTED_G  0x02
#define WASTED_C  0x04
#define WASTED_GC (WASTED_G|WASTED_C)
    I32 wastedflags = 0x00;
    U32 posflags = 0, negflags = 0;
    U32 *flagsp = &posflags;
    char has_charset_modifier = '\0';
    regex_charset cs;
    bool has_use_defaults = FALSE;
    const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
    int x_mod_count = 0;

    PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;

    /* '^' as an initial flag sets certain defaults */
    if (UCHARAT(RExC_parse) == '^') {
        RExC_parse++;
        has_use_defaults = TRUE;
        STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
        cs = (toUSE_UNI_CHARSET_NOT_DEPENDS)
             ? REGEX_UNICODE_CHARSET
             : REGEX_DEPENDS_CHARSET;
        set_regex_charset(&RExC_flags, cs);
    }
    else {
        cs = get_regex_charset(RExC_flags);
        if (   cs == REGEX_DEPENDS_CHARSET
            && (toUSE_UNI_CHARSET_NOT_DEPENDS))
        {
            cs = REGEX_UNICODE_CHARSET;
        }
    }

    while (RExC_parse < RExC_end) {
        /* && memCHRs("iogcmsx", *RExC_parse) */
        /* (?g), (?gc) and (?o) are useless here
           and must be globally applied -- japhy */
        if ((RExC_pm_flags & PMf_WILDCARD)) {
            if (flagsp == & negflags) {
                if (*RExC_parse == 'm') {
                    RExC_parse++;
                    /* diag_listed_as: Use of %s is not allowed in Unicode
                       property wildcard subpatterns in regex; marked by <--
                       HERE in m/%s/ */
                    vFAIL("Use of modifier '-m' is not allowed in Unicode"
                          " property wildcard subpatterns");
                }
            }
            else {
                if (*RExC_parse == 's') {
                    goto modifier_illegal_in_wildcard;
                }
            }
        }

        switch (*RExC_parse) {

            /* Code for the imsxn flags */
            CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);

            case LOCALE_PAT_MOD:
                if (has_charset_modifier) {
                    goto excess_modifier;
                }
                else if (flagsp == &negflags) {
                    goto neg_modifier;
                }
                cs = REGEX_LOCALE_CHARSET;
                has_charset_modifier = LOCALE_PAT_MOD;
                break;
            case UNICODE_PAT_MOD:
                if (has_charset_modifier) {
                    goto excess_modifier;
                }
                else if (flagsp == &negflags) {
                    goto neg_modifier;
                }
                cs = REGEX_UNICODE_CHARSET;
                has_charset_modifier = UNICODE_PAT_MOD;
                break;
            case ASCII_RESTRICT_PAT_MOD:
                if (flagsp == &negflags) {
                    goto neg_modifier;
                }
                if (has_charset_modifier) {
                    if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
                        goto excess_modifier;
                    }
                    /* Doubled modifier implies more restricted */
                    cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
                }
                else {
                    cs = REGEX_ASCII_RESTRICTED_CHARSET;
                }
                has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
                break;
            case DEPENDS_PAT_MOD:
                if (has_use_defaults) {
                    goto fail_modifiers;
                }
                else if (flagsp == &negflags) {
                    goto neg_modifier;
                }
                else if (has_charset_modifier) {
                    goto excess_modifier;
                }

                /* The dual charset means unicode semantics if the
                 * pattern (or target, not known until runtime) are
                 * utf8, or something in the pattern indicates unicode
                 * semantics */
                cs = (toUSE_UNI_CHARSET_NOT_DEPENDS)
                     ? REGEX_UNICODE_CHARSET
                     : REGEX_DEPENDS_CHARSET;
                has_charset_modifier = DEPENDS_PAT_MOD;
                break;
              excess_modifier:
                RExC_parse++;
                if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
                    vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
                }
                else if (has_charset_modifier == *(RExC_parse - 1)) {
                    vFAIL2("Regexp modifier \"%c\" may not appear twice",
                                        *(RExC_parse - 1));
                }
                else {
                    vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
                }
                NOT_REACHED; /*NOTREACHED*/
              neg_modifier:
                RExC_parse++;
                vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
                                    *(RExC_parse - 1));
                NOT_REACHED; /*NOTREACHED*/
            case GLOBAL_PAT_MOD: /* 'g' */
                if (RExC_pm_flags & PMf_WILDCARD) {
                    goto modifier_illegal_in_wildcard;
                }
                /*FALLTHROUGH*/
            case ONCE_PAT_MOD: /* 'o' */
                if (ckWARN(WARN_REGEXP)) {
                    const I32 wflagbit = *RExC_parse == 'o'
                                         ? WASTED_O
                                         : WASTED_G;
                    if (! (wastedflags & wflagbit) ) {
                        wastedflags |= wflagbit;
                        /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
                        vWARN5(
                            RExC_parse + 1,
                            "Useless (%s%c) - %suse /%c modifier",
                            flagsp == &negflags ? "?-" : "?",
                            *RExC_parse,
                            flagsp == &negflags ? "don't " : "",
                            *RExC_parse
                        );
                    }
                }
                break;

            case CONTINUE_PAT_MOD: /* 'c' */
                if (RExC_pm_flags & PMf_WILDCARD) {
                    goto modifier_illegal_in_wildcard;
                }
                if (ckWARN(WARN_REGEXP)) {
                    if (! (wastedflags & WASTED_C) ) {
                        wastedflags |= WASTED_GC;
                        /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
                        vWARN3(
                            RExC_parse + 1,
                            "Useless (%sc) - %suse /gc modifier",
                            flagsp == &negflags ? "?-" : "?",
                            flagsp == &negflags ? "don't " : ""
                        );
                    }
                }
                break;
            case KEEPCOPY_PAT_MOD: /* 'p' */
                if (RExC_pm_flags & PMf_WILDCARD) {
                    goto modifier_illegal_in_wildcard;
                }
                if (flagsp == &negflags) {
                    ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
                } else {
                    *flagsp |= RXf_PMf_KEEPCOPY;
                }
                break;
            case '-':
                /* A flag is a default iff it is following a minus, so
                 * if there is a minus, it means will be trying to
                 * re-specify a default which is an error */
                if (has_use_defaults || flagsp == &negflags) {
                    goto fail_modifiers;
                }
                flagsp = &negflags;
                wastedflags = 0;  /* reset so (?g-c) warns twice */
                x_mod_count = 0;
                break;
            case ':':
            case ')':

                if (  (RExC_pm_flags & PMf_WILDCARD)
                    && cs != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
                {
                    RExC_parse++;
                    /* diag_listed_as: Use of %s is not allowed in Unicode
                       property wildcard subpatterns in regex; marked by <--
                       HERE in m/%s/ */
                    vFAIL2("Use of modifier '%c' is not allowed in Unicode"
                           " property wildcard subpatterns",
                           has_charset_modifier);
                }

                if ((posflags & (RXf_PMf_EXTENDED|RXf_PMf_EXTENDED_MORE)) == RXf_PMf_EXTENDED) {
                    negflags |= RXf_PMf_EXTENDED_MORE;
                }
                RExC_flags |= posflags;

                if (negflags & RXf_PMf_EXTENDED) {
                    negflags |= RXf_PMf_EXTENDED_MORE;
                }
                RExC_flags &= ~negflags;
                set_regex_charset(&RExC_flags, cs);

                return;
            default:
              fail_modifiers:
                RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
                /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
                vFAIL2utf8f("Sequence (%" UTF8f "...) not recognized",
                      UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
                NOT_REACHED; /*NOTREACHED*/
        }

        RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
    }

    vFAIL("Sequence (?... not terminated");

  modifier_illegal_in_wildcard:
    RExC_parse++;
    /* diag_listed_as: Use of %s is not allowed in Unicode property wildcard
       subpatterns in regex; marked by <-- HERE in m/%s/ */
    vFAIL2("Use of modifier '%c' is not allowed in Unicode property wildcard"
           " subpatterns", *(RExC_parse - 1));
}

/*
 - reg - regular expression, i.e. main body or parenthesized thing
 *
 * Caller must absorb opening parenthesis.
 *
 * Combining parenthesis handling with the base level of regular expression
 * is a trifle forced, but the need to tie the tails of the branches to what
 * follows makes it hard to avoid.
 */
#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
#ifdef DEBUGGING
#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
#else
#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
#endif

STATIC regnode_offset
S_handle_named_backref(pTHX_ RExC_state_t *pRExC_state,
                             I32 *flagp,
                             char * parse_start,
                             char ch
                      )
{
    regnode_offset ret;
    char* name_start = RExC_parse;
    U32 num = 0;
    SV *sv_dat = reg_scan_name(pRExC_state, REG_RSN_RETURN_DATA);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_HANDLE_NAMED_BACKREF;

    if (RExC_parse != name_start && ch == '}') {
        while (isBLANK(*RExC_parse)) {
            RExC_parse++;
        }
    }
    if (RExC_parse == name_start || *RExC_parse != ch) {
        /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
        vFAIL2("Sequence %.3s... not terminated", parse_start);
    }

    if (sv_dat) {
        num = add_data( pRExC_state, STR_WITH_LEN("S"));
        RExC_rxi->data->data[num]=(void*)sv_dat;
        SvREFCNT_inc_simple_void_NN(sv_dat);
    }
    RExC_sawback = 1;
    ret = reganode(pRExC_state,
                   ((! FOLD)
                     ? REFN
                     : (ASCII_FOLD_RESTRICTED)
                       ? REFFAN
                       : (AT_LEAST_UNI_SEMANTICS)
                         ? REFFUN
                         : (LOC)
                           ? REFFLN
                           : REFFN),
                    num);
    *flagp |= HASWIDTH;

    Set_Node_Offset(REGNODE_p(ret), parse_start+1);
    Set_Node_Cur_Length(REGNODE_p(ret), parse_start);

    nextchar(pRExC_state);
    return ret;
}

/* On success, returns the offset at which any next node should be placed into
 * the regex engine program being compiled.
 *
 * Returns 0 otherwise, with *flagp set to indicate why:
 *  TRYAGAIN        at the end of (?) that only sets flags.
 *  RESTART_PARSE   if the parse needs to be restarted, or'd with
 *                  NEED_UTF8 if the pattern needs to be upgraded to UTF-8.
 *  Otherwise would only return 0 if regbranch() returns 0, which cannot
 *  happen.  */
STATIC regnode_offset
S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp, U32 depth)
    /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
     * 2 is like 1, but indicates that nextchar() has been called to advance
     * RExC_parse beyond the '('.  Things like '(?' are indivisible tokens, and
     * this flag alerts us to the need to check for that */
{
    regnode_offset ret = 0;    /* Will be the head of the group. */
    regnode_offset br;
    regnode_offset lastbr;
    regnode_offset ender = 0;
    I32 parno = 0;
    I32 flags;
    U32 oregflags = RExC_flags;
    bool have_branch = 0;
    bool is_open = 0;
    I32 freeze_paren = 0;
    I32 after_freeze = 0;
    I32 num; /* numeric backreferences */
    SV * max_open;  /* Max number of unclosed parens */
    I32 was_in_lookaround = RExC_in_lookaround;

    char * parse_start = RExC_parse; /* MJD */
    char * const oregcomp_parse = RExC_parse;

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REG;
    DEBUG_PARSE("reg ");

    max_open = get_sv(RE_COMPILE_RECURSION_LIMIT, GV_ADD);
    assert(max_open);
    if (!SvIOK(max_open)) {
        sv_setiv(max_open, RE_COMPILE_RECURSION_INIT);
    }
    if (depth > 4 * (UV) SvIV(max_open)) { /* We increase depth by 4 for each
                                              open paren */
        vFAIL("Too many nested open parens");
    }

    *flagp = 0;				/* Initialize. */

    /* Having this true makes it feasible to have a lot fewer tests for the
     * parse pointer being in scope.  For example, we can write
     *      while(isFOO(*RExC_parse)) RExC_parse++;
     * instead of
     *      while(RExC_parse < RExC_end && isFOO(*RExC_parse)) RExC_parse++;
     */
    assert(*RExC_end == '\0');

    /* Make an OPEN node, if parenthesized. */
    if (paren) {

        /* Under /x, space and comments can be gobbled up between the '(' and
         * here (if paren ==2).  The forms '(*VERB' and '(?...' disallow such
         * intervening space, as the sequence is a token, and a token should be
         * indivisible */
        bool has_intervening_patws = (paren == 2)
                                  && *(RExC_parse - 1) != '(';

        if (RExC_parse >= RExC_end) {
            vFAIL("Unmatched (");
        }

        if (paren == 'r') {     /* Atomic script run */
            paren = '>';
            goto parse_rest;
        }
        else if ( *RExC_parse == '*') { /* (*VERB:ARG), (*construct:...) */
            char *start_verb = RExC_parse + 1;
            STRLEN verb_len;
            char *start_arg = NULL;
            unsigned char op = 0;
            int arg_required = 0;
            int internal_argval = -1; /* if >-1 we are not allowed an argument*/
            bool has_upper = FALSE;

            if (has_intervening_patws) {
                RExC_parse++;   /* past the '*' */

                /* For strict backwards compatibility, don't change the message
                 * now that we also have lowercase operands */
                if (isUPPER(*RExC_parse)) {
                    vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
                }
                else {
                    vFAIL("In '(*...)', the '(' and '*' must be adjacent");
                }
            }
            while (RExC_parse < RExC_end && *RExC_parse != ')' ) {
                if ( *RExC_parse == ':' ) {
                    start_arg = RExC_parse + 1;
                    break;
                }
                else if (! UTF) {
                    if (isUPPER(*RExC_parse)) {
                        has_upper = TRUE;
                    }
                    RExC_parse++;
                }
                else {
                    RExC_parse += UTF8SKIP(RExC_parse);
                }
            }
            verb_len = RExC_parse - start_verb;
            if ( start_arg ) {
                if (RExC_parse >= RExC_end) {
                    goto unterminated_verb_pattern;
                }

                RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
                while ( RExC_parse < RExC_end && *RExC_parse != ')' ) {
                    RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
                }
                if ( RExC_parse >= RExC_end || *RExC_parse != ')' ) {
                  unterminated_verb_pattern:
                    if (has_upper) {
                        vFAIL("Unterminated verb pattern argument");
                    }
                    else {
                        vFAIL("Unterminated '(*...' argument");
                    }
                }
            } else {
                if ( RExC_parse >= RExC_end || *RExC_parse != ')' ) {
                    if (has_upper) {
                        vFAIL("Unterminated verb pattern");
                    }
                    else {
                        vFAIL("Unterminated '(*...' construct");
                    }
                }
            }

            /* Here, we know that RExC_parse < RExC_end */

            switch ( *start_verb ) {
            case 'A':  /* (*ACCEPT) */
                if ( memEQs(start_verb, verb_len,"ACCEPT") ) {
                    op = ACCEPT;
                    internal_argval = RExC_nestroot;
                }
                break;
            case 'C':  /* (*COMMIT) */
                if ( memEQs(start_verb, verb_len,"COMMIT") )
                    op = COMMIT;
                break;
            case 'F':  /* (*FAIL) */
                if ( verb_len==1 || memEQs(start_verb, verb_len,"FAIL") ) {
                    op = OPFAIL;
                }
                break;
            case ':':  /* (*:NAME) */
            case 'M':  /* (*MARK:NAME) */
                if ( verb_len==0 || memEQs(start_verb, verb_len,"MARK") ) {
                    op = MARKPOINT;
                    arg_required = 1;
                }
                break;
            case 'P':  /* (*PRUNE) */
                if ( memEQs(start_verb, verb_len,"PRUNE") )
                    op = PRUNE;
                break;
            case 'S':   /* (*SKIP) */
                if ( memEQs(start_verb, verb_len,"SKIP") )
                    op = SKIP;
                break;
            case 'T':  /* (*THEN) */
                /* [19:06] <TimToady> :: is then */
                if ( memEQs(start_verb, verb_len,"THEN") ) {
                    op = CUTGROUP;
                    RExC_seen |= REG_CUTGROUP_SEEN;
                }
                break;
            case 'a':
                if (   memEQs(start_verb, verb_len, "asr")
                    || memEQs(start_verb, verb_len, "atomic_script_run"))
                {
                    paren = 'r';        /* Mnemonic: recursed run */
                    goto script_run;
                }
                else if (memEQs(start_verb, verb_len, "atomic")) {
                    paren = 't';    /* AtOMIC */
                    goto alpha_assertions;
                }
                break;
            case 'p':
                if (   memEQs(start_verb, verb_len, "plb")
                    || memEQs(start_verb, verb_len, "positive_lookbehind"))
                {
                    paren = 'b';
                    goto lookbehind_alpha_assertions;
                }
                else if (   memEQs(start_verb, verb_len, "pla")
                         || memEQs(start_verb, verb_len, "positive_lookahead"))
                {
                    paren = 'a';
                    goto alpha_assertions;
                }
                break;
            case 'n':
                if (   memEQs(start_verb, verb_len, "nlb")
                    || memEQs(start_verb, verb_len, "negative_lookbehind"))
                {
                    paren = 'B';
                    goto lookbehind_alpha_assertions;
                }
                else if (   memEQs(start_verb, verb_len, "nla")
                         || memEQs(start_verb, verb_len, "negative_lookahead"))
                {
                    paren = 'A';
                    goto alpha_assertions;
                }
                break;
            case 's':
                if (   memEQs(start_verb, verb_len, "sr")
                    || memEQs(start_verb, verb_len, "script_run"))
                {
                    regnode_offset atomic;

                    paren = 's';

                   script_run:

                    /* This indicates Unicode rules. */
                    REQUIRE_UNI_RULES(flagp, 0);

                    if (! start_arg) {
                        goto no_colon;
                    }

                    RExC_parse = start_arg;

                    if (RExC_in_script_run) {

                        /*  Nested script runs are treated as no-ops, because
                         *  if the nested one fails, the outer one must as
                         *  well.  It could fail sooner, and avoid (??{} with
                         *  side effects, but that is explicitly documented as
                         *  undefined behavior. */

                        ret = 0;

                        if (paren == 's') {
                            paren = ':';
                            goto parse_rest;
                        }

                        /* But, the atomic part of a nested atomic script run
                         * isn't a no-op, but can be treated just like a '(?>'
                         * */
                        paren = '>';
                        goto parse_rest;
                    }

                    if (paren == 's') {
                        /* Here, we're starting a new regular script run */
                        ret = reg_node(pRExC_state, SROPEN);
                        RExC_in_script_run = 1;
                        is_open = 1;
                        goto parse_rest;
                    }

                    /* Here, we are starting an atomic script run.  This is
                     * handled by recursing to deal with the atomic portion
                     * separately, enclosed in SROPEN ... SRCLOSE nodes */

                    ret = reg_node(pRExC_state, SROPEN);

                    RExC_in_script_run = 1;

                    atomic = reg(pRExC_state, 'r', &flags, depth);
                    if (flags & (RESTART_PARSE|NEED_UTF8)) {
                        *flagp = flags & (RESTART_PARSE|NEED_UTF8);
                        return 0;
                    }

                    if (! REGTAIL(pRExC_state, ret, atomic)) {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }

                    if (! REGTAIL(pRExC_state, atomic, reg_node(pRExC_state,
                                                                SRCLOSE)))
                    {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }

                    RExC_in_script_run = 0;
                    return ret;
                }

                break;

            lookbehind_alpha_assertions:
                RExC_seen |= REG_LOOKBEHIND_SEEN;
                /*FALLTHROUGH*/

            alpha_assertions:

                RExC_in_lookaround++;
                RExC_seen_zerolen++;

                if (! start_arg) {
                    goto no_colon;
                }

                /* An empty negative lookahead assertion simply is failure */
                if (paren == 'A' && RExC_parse == start_arg) {
                    ret=reganode(pRExC_state, OPFAIL, 0);
                    nextchar(pRExC_state);
                    return ret;
                }

                RExC_parse = start_arg;
                goto parse_rest;

              no_colon:
                vFAIL2utf8f(
                "'(*%" UTF8f "' requires a terminating ':'",
                UTF8fARG(UTF, verb_len, start_verb));
                NOT_REACHED; /*NOTREACHED*/

            } /* End of switch */
            if ( ! op ) {
                RExC_parse += UTF
                              ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                              : 1;
                if (has_upper || verb_len == 0) {
                    vFAIL2utf8f(
                    "Unknown verb pattern '%" UTF8f "'",
                    UTF8fARG(UTF, verb_len, start_verb));
                }
                else {
                    vFAIL2utf8f(
                    "Unknown '(*...)' construct '%" UTF8f "'",
                    UTF8fARG(UTF, verb_len, start_verb));
                }
            }
            if ( RExC_parse == start_arg ) {
                start_arg = NULL;
            }
            if ( arg_required && !start_arg ) {
                vFAIL3("Verb pattern '%.*s' has a mandatory argument",
                    (int) verb_len, start_verb);
            }
            if (internal_argval == -1) {
                ret = reganode(pRExC_state, op, 0);
            } else {
                ret = reg2Lanode(pRExC_state, op, 0, internal_argval);
            }
            RExC_seen |= REG_VERBARG_SEEN;
            if (start_arg) {
                SV *sv = newSVpvn( start_arg,
                                    RExC_parse - start_arg);
                ARG(REGNODE_p(ret)) = add_data( pRExC_state,
                                        STR_WITH_LEN("S"));
                RExC_rxi->data->data[ARG(REGNODE_p(ret))]=(void*)sv;
                FLAGS(REGNODE_p(ret)) = 1;
            } else {
                FLAGS(REGNODE_p(ret)) = 0;
            }
            if ( internal_argval != -1 )
                ARG2L_SET(REGNODE_p(ret), internal_argval);
            nextchar(pRExC_state);
            return ret;
        }
        else if (*RExC_parse == '?') { /* (?...) */
            bool is_logical = 0;
            const char * const seqstart = RExC_parse;
            const char * endptr;
            const char non_existent_group_msg[]
                                            = "Reference to nonexistent group";
            const char impossible_group[] = "Invalid reference to group";

            if (has_intervening_patws) {
                RExC_parse++;
                vFAIL("In '(?...)', the '(' and '?' must be adjacent");
            }

            RExC_parse++;           /* past the '?' */
            paren = *RExC_parse;    /* might be a trailing NUL, if not
                                       well-formed */
            RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
            if (RExC_parse > RExC_end) {
                paren = '\0';
            }
            ret = 0;			/* For look-ahead/behind. */
            switch (paren) {

            case 'P':	/* (?P...) variants for those used to PCRE/Python */
                paren = *RExC_parse;
                if ( paren == '<') {    /* (?P<...>) named capture */
                    RExC_parse++;
                    if (RExC_parse >= RExC_end) {
                        vFAIL("Sequence (?P<... not terminated");
                    }
                    goto named_capture;
                }
                else if (paren == '>') {   /* (?P>name) named recursion */
                    RExC_parse++;
                    if (RExC_parse >= RExC_end) {
                        vFAIL("Sequence (?P>... not terminated");
                    }
                    goto named_recursion;
                }
                else if (paren == '=') {   /* (?P=...)  named backref */
                    RExC_parse++;
                    return handle_named_backref(pRExC_state, flagp,
                                                parse_start, ')');
                }
                RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
                /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
                vFAIL3("Sequence (%.*s...) not recognized",
                                (int) (RExC_parse - seqstart), seqstart);
                NOT_REACHED; /*NOTREACHED*/
            case '<':           /* (?<...) */
                /* If you want to support (?<*...), first reconcile with GH #17363 */
                if (*RExC_parse == '!')
                    paren = ',';
                else if (*RExC_parse != '=')
              named_capture:
                {               /* (?<...>) */
                    char *name_start;
                    SV *svname;
                    paren= '>';
                /* FALLTHROUGH */
            case '\'':          /* (?'...') */
                    name_start = RExC_parse;
                    svname = reg_scan_name(pRExC_state, REG_RSN_RETURN_NAME);
                    if (   RExC_parse == name_start
                        || RExC_parse >= RExC_end
                        || *RExC_parse != paren)
                    {
                        vFAIL2("Sequence (?%c... not terminated",
                            paren=='>' ? '<' : (char) paren);
                    }
                    {
                        HE *he_str;
                        SV *sv_dat = NULL;
                        if (!svname) /* shouldn't happen */
                            Perl_croak(aTHX_
                                "panic: reg_scan_name returned NULL");
                        if (!RExC_paren_names) {
                            RExC_paren_names= newHV();
                            sv_2mortal(MUTABLE_SV(RExC_paren_names));
#ifdef DEBUGGING
                            RExC_paren_name_list= newAV();
                            sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
#endif
                        }
                        he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
                        if ( he_str )
                            sv_dat = HeVAL(he_str);
                        if ( ! sv_dat ) {
                            /* croak baby croak */
                            Perl_croak(aTHX_
                                "panic: paren_name hash element allocation failed");
                        } else if ( SvPOK(sv_dat) ) {
                            /* (?|...) can mean we have dupes so scan to check
                               its already been stored. Maybe a flag indicating
                               we are inside such a construct would be useful,
                               but the arrays are likely to be quite small, so
                               for now we punt -- dmq */
                            IV count = SvIV(sv_dat);
                            I32 *pv = (I32*)SvPVX(sv_dat);
                            IV i;
                            for ( i = 0 ; i < count ; i++ ) {
                                if ( pv[i] == RExC_npar ) {
                                    count = 0;
                                    break;
                                }
                            }
                            if ( count ) {
                                pv = (I32*)SvGROW(sv_dat,
                                                SvCUR(sv_dat) + sizeof(I32)+1);
                                SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
                                pv[count] = RExC_npar;
                                SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
                            }
                        } else {
                            (void)SvUPGRADE(sv_dat, SVt_PVNV);
                            sv_setpvn(sv_dat, (char *)&(RExC_npar),
                                                                sizeof(I32));
                            SvIOK_on(sv_dat);
                            SvIV_set(sv_dat, 1);
                        }
#ifdef DEBUGGING
                        /* Yes this does cause a memory leak in debugging Perls
                         * */
                        if (!av_store(RExC_paren_name_list,
                                      RExC_npar, SvREFCNT_inc_NN(svname)))
                            SvREFCNT_dec_NN(svname);
#endif

                        /*sv_dump(sv_dat);*/
                    }
                    nextchar(pRExC_state);
                    paren = 1;
                    goto capturing_parens;
                }

                RExC_seen |= REG_LOOKBEHIND_SEEN;
                RExC_in_lookaround++;
                RExC_parse++;
                if (RExC_parse >= RExC_end) {
                    vFAIL("Sequence (?... not terminated");
                }
                RExC_seen_zerolen++;
                break;
            case '=':           /* (?=...) */
                RExC_seen_zerolen++;
                RExC_in_lookaround++;
                break;
            case '!':           /* (?!...) */
                RExC_seen_zerolen++;
                /* check if we're really just a "FAIL" assertion */
                skip_to_be_ignored_text(pRExC_state, &RExC_parse,
                                        FALSE /* Don't force to /x */ );
                if (*RExC_parse == ')') {
                    ret=reganode(pRExC_state, OPFAIL, 0);
                    nextchar(pRExC_state);
                    return ret;
                }
                RExC_in_lookaround++;
                break;
            case '|':           /* (?|...) */
                /* branch reset, behave like a (?:...) except that
                   buffers in alternations share the same numbers */
                paren = ':';
                after_freeze = freeze_paren = RExC_npar;

                /* XXX This construct currently requires an extra pass.
                 * Investigation would be required to see if that could be
                 * changed */
                REQUIRE_PARENS_PASS;
                break;
            case ':':           /* (?:...) */
            case '>':           /* (?>...) */
                break;
            case '$':           /* (?$...) */
            case '@':           /* (?@...) */
                vFAIL2("Sequence (?%c...) not implemented", (int)paren);
                break;
            case '0' :           /* (?0) */
            case 'R' :           /* (?R) */
                if (RExC_parse == RExC_end || *RExC_parse != ')')
                    FAIL("Sequence (?R) not terminated");
                num = 0;
                RExC_seen |= REG_RECURSE_SEEN;

                /* XXX These constructs currently require an extra pass.
                 * It probably could be changed */
                REQUIRE_PARENS_PASS;

                *flagp |= POSTPONED;
                goto gen_recurse_regop;
                /*notreached*/
            /* named and numeric backreferences */
            case '&':            /* (?&NAME) */
                parse_start = RExC_parse - 1;
              named_recursion:
                {
                    SV *sv_dat = reg_scan_name(pRExC_state,
                                               REG_RSN_RETURN_DATA);
                   num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
                }
                if (RExC_parse >= RExC_end || *RExC_parse != ')')
                    vFAIL("Sequence (?&... not terminated");
                goto gen_recurse_regop;
                /* NOTREACHED */
            case '+':
                if (! inRANGE(RExC_parse[0], '1', '9')) {
                    RExC_parse++;
                    vFAIL("Illegal pattern");
                }
                goto parse_recursion;
                /* NOTREACHED*/
            case '-': /* (?-1) */
                if (! inRANGE(RExC_parse[0], '1', '9')) {
                    RExC_parse--; /* rewind to let it be handled later */
                    goto parse_flags;
                }
                /* FALLTHROUGH */
            case '1': case '2': case '3': case '4': /* (?1) */
            case '5': case '6': case '7': case '8': case '9':
                RExC_parse = (char *) seqstart + 1;  /* Point to the digit */
              parse_recursion:
                {
                    bool is_neg = FALSE;
                    UV unum;
                    parse_start = RExC_parse - 1; /* MJD */
                    if (*RExC_parse == '-') {
                        RExC_parse++;
                        is_neg = TRUE;
                    }
                    endptr = RExC_end;
                    if (grok_atoUV(RExC_parse, &unum, &endptr)
                        && unum <= I32_MAX
                    ) {
                        num = (I32)unum;
                        RExC_parse = (char*)endptr;
                    }
                    else {  /* Overflow, or something like that.  Position
                               beyond all digits for the message */
                        while (RExC_parse < RExC_end && isDIGIT(*RExC_parse))  {
                            RExC_parse++;
                        }
                        vFAIL(impossible_group);
                    }
                    if (is_neg) {
                        /* -num is always representable on 1 and 2's complement
                         * machines */
                        num = -num;
                    }
                }
                if (*RExC_parse!=')')
                    vFAIL("Expecting close bracket");

              gen_recurse_regop:
                if (paren == '-' || paren == '+') {

                    /* Don't overflow */
                    if (UNLIKELY(I32_MAX - RExC_npar < num)) {
                        RExC_parse++;
                        vFAIL(impossible_group);
                    }

                    /*
                    Diagram of capture buffer numbering.
                    Top line is the normal capture buffer numbers
                    Bottom line is the negative indexing as from
                    the X (the (?-2))

                        1 2    3 4 5 X   Y      6 7
                       /(a(x)y)(a(b(c(?+2)d)e)f)(g(h))/
                       /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
                    -   5 4    3 2 1 X   Y      x x

                    Resolve to absolute group.  Recall that RExC_npar is +1 of
                    the actual parenthesis group number.  For lookahead, we
                    have to compensate for that.  Using the above example, when
                    we get to Y in the parse, num is 2 and RExC_npar is 6.  We
                    want 7 for +2, and 4 for -2.
                    */
                    if ( paren == '+' ) {
                        num--;
                    }

                    num += RExC_npar;

                    if (paren == '-' && num < 1) {
                        RExC_parse++;
                        vFAIL(non_existent_group_msg);
                    }
                }

                if (num >= RExC_npar) {

                    /* It might be a forward reference; we can't fail until we
                     * know, by completing the parse to get all the groups, and
                     * then reparsing */
                    if (ALL_PARENS_COUNTED)  {
                        if (num >= RExC_total_parens) {
                            RExC_parse++;
                            vFAIL(non_existent_group_msg);
                        }
                    }
                    else {
                        REQUIRE_PARENS_PASS;
                    }
                }

                /* We keep track how many GOSUB items we have produced.
                   To start off the ARG2L() of the GOSUB holds its "id",
                   which is used later in conjunction with RExC_recurse
                   to calculate the offset we need to jump for the GOSUB,
                   which it will store in the final representation.
                   We have to defer the actual calculation until much later
                   as the regop may move.
                 */
                ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
                RExC_recurse_count++;
                DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
                    "%*s%*s Recurse #%" UVuf " to %" IVdf "\n",
                            22, "|    |", (int)(depth * 2 + 1), "",
                            (UV)ARG(REGNODE_p(ret)),
                            (IV)ARG2L(REGNODE_p(ret))));
                RExC_seen |= REG_RECURSE_SEEN;

                Set_Node_Length(REGNODE_p(ret),
                                1 + regarglen[OP(REGNODE_p(ret))]); /* MJD */
                Set_Node_Offset(REGNODE_p(ret), parse_start); /* MJD */

                *flagp |= POSTPONED;
                assert(*RExC_parse == ')');
                nextchar(pRExC_state);
                return ret;

            /* NOTREACHED */

            case '?':           /* (??...) */
                is_logical = 1;
                if (*RExC_parse != '{') {
                    RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
                    /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
                    vFAIL2utf8f(
                        "Sequence (%" UTF8f "...) not recognized",
                        UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
                    NOT_REACHED; /*NOTREACHED*/
                }
                *flagp |= POSTPONED;
                paren = '{';
                RExC_parse++;
                /* FALLTHROUGH */
            case '{':           /* (?{...}) */
            {
                U32 n = 0;
                struct reg_code_block *cb;
                OP * o;

                RExC_seen_zerolen++;

                if (   !pRExC_state->code_blocks
                    || pRExC_state->code_index
                                        >= pRExC_state->code_blocks->count
                    || pRExC_state->code_blocks->cb[pRExC_state->code_index].start
                        != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
                            - RExC_start)
                ) {
                    if (RExC_pm_flags & PMf_USE_RE_EVAL)
                        FAIL("panic: Sequence (?{...}): no code block found\n");
                    FAIL("Eval-group not allowed at runtime, use re 'eval'");
                }
                /* this is a pre-compiled code block (?{...}) */
                cb = &pRExC_state->code_blocks->cb[pRExC_state->code_index];
                RExC_parse = RExC_start + cb->end;
                o = cb->block;
                if (cb->src_regex) {
                    n = add_data(pRExC_state, STR_WITH_LEN("rl"));
                    RExC_rxi->data->data[n] =
                        (void*)SvREFCNT_inc((SV*)cb->src_regex);
                    RExC_rxi->data->data[n+1] = (void*)o;
                }
                else {
                    n = add_data(pRExC_state,
                            (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
                    RExC_rxi->data->data[n] = (void*)o;
                }
                pRExC_state->code_index++;
                nextchar(pRExC_state);

                if (is_logical) {
                    regnode_offset eval;
                    ret = reg_node(pRExC_state, LOGICAL);

                    eval = reg2Lanode(pRExC_state, EVAL,
                                       n,

                                       /* for later propagation into (??{})
                                        * return value */
                                       RExC_flags & RXf_PMf_COMPILETIME
                                      );
                    FLAGS(REGNODE_p(ret)) = 2;
                    if (! REGTAIL(pRExC_state, ret, eval)) {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }
                    /* deal with the length of this later - MJD */
                    return ret;
                }
                ret = reg2Lanode(pRExC_state, EVAL, n, 0);
                Set_Node_Length(REGNODE_p(ret), RExC_parse - parse_start + 1);
                Set_Node_Offset(REGNODE_p(ret), parse_start);
                return ret;
            }
            case '(':           /* (?(?{...})...) and (?(?=...)...) */
            {
                int is_define= 0;
                const int DEFINE_len = sizeof("DEFINE") - 1;
                if (    RExC_parse < RExC_end - 1
                    && (   (       RExC_parse[0] == '?'        /* (?(?...)) */
                            && (   RExC_parse[1] == '='
                                || RExC_parse[1] == '!'
                                || RExC_parse[1] == '<'
                                || RExC_parse[1] == '{'))
                        || (       RExC_parse[0] == '*'        /* (?(*...)) */
                            && (   memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "pla:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "plb:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "nla:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "nlb:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "positive_lookahead:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "positive_lookbehind:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "negative_lookahead:")
                                || memBEGINs(RExC_parse + 1,
                                         (Size_t) (RExC_end - (RExC_parse + 1)),
                                         "negative_lookbehind:"))))
                ) { /* Lookahead or eval. */
                    I32 flag;
                    regnode_offset tail;

                    ret = reg_node(pRExC_state, LOGICAL);
                    FLAGS(REGNODE_p(ret)) = 1;

                    tail = reg(pRExC_state, 1, &flag, depth+1);
                    RETURN_FAIL_ON_RESTART(flag, flagp);
                    if (! REGTAIL(pRExC_state, ret, tail)) {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }
                    goto insert_if;
                }
                else if (   RExC_parse[0] == '<'     /* (?(<NAME>)...) */
                         || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
                {
                    char ch = RExC_parse[0] == '<' ? '>' : '\'';
                    char *name_start= RExC_parse++;
                    U32 num = 0;
                    SV *sv_dat=reg_scan_name(pRExC_state, REG_RSN_RETURN_DATA);
                    if (   RExC_parse == name_start
                        || RExC_parse >= RExC_end
                        || *RExC_parse != ch)
                    {
                        vFAIL2("Sequence (?(%c... not terminated",
                            (ch == '>' ? '<' : ch));
                    }
                    RExC_parse++;
                    if (sv_dat) {
                        num = add_data( pRExC_state, STR_WITH_LEN("S"));
                        RExC_rxi->data->data[num]=(void*)sv_dat;
                        SvREFCNT_inc_simple_void_NN(sv_dat);
                    }
                    ret = reganode(pRExC_state, GROUPPN, num);
                    goto insert_if_check_paren;
                }
                else if (memBEGINs(RExC_parse,
                                   (STRLEN) (RExC_end - RExC_parse),
                                   "DEFINE"))
                {
                    ret = reganode(pRExC_state, DEFINEP, 0);
                    RExC_parse += DEFINE_len;
                    is_define = 1;
                    goto insert_if_check_paren;
                }
                else if (RExC_parse[0] == 'R') {
                    RExC_parse++;
                    /* parno == 0 => /(?(R)YES|NO)/  "in any form of recursion OR eval"
                     * parno == 1 => /(?(R0)YES|NO)/ "in GOSUB (?0) / (?R)"
                     * parno == 2 => /(?(R1)YES|NO)/ "in GOSUB (?1) (parno-1)"
                     */
                    parno = 0;
                    if (RExC_parse[0] == '0') {
                        parno = 1;
                        RExC_parse++;
                    }
                    else if (inRANGE(RExC_parse[0], '1', '9')) {
                        UV uv;
                        endptr = RExC_end;
                        if (grok_atoUV(RExC_parse, &uv, &endptr)
                            && uv <= I32_MAX
                        ) {
                            parno = (I32)uv + 1;
                            RExC_parse = (char*)endptr;
                        }
                        /* else "Switch condition not recognized" below */
                    } else if (RExC_parse[0] == '&') {
                        SV *sv_dat;
                        RExC_parse++;
                        sv_dat = reg_scan_name(pRExC_state,
                                               REG_RSN_RETURN_DATA);
                        if (sv_dat)
                            parno = 1 + *((I32 *)SvPVX(sv_dat));
                    }
                    ret = reganode(pRExC_state, INSUBP, parno);
                    goto insert_if_check_paren;
                }
                else if (inRANGE(RExC_parse[0], '1', '9')) {
                    /* (?(1)...) */
                    char c;
                    UV uv;
                    endptr = RExC_end;
                    if (grok_atoUV(RExC_parse, &uv, &endptr)
                        && uv <= I32_MAX
                    ) {
                        parno = (I32)uv;
                        RExC_parse = (char*)endptr;
                    }
                    else {
                        vFAIL("panic: grok_atoUV returned FALSE");
                    }
                    ret = reganode(pRExC_state, GROUPP, parno);

                 insert_if_check_paren:
                    if (UCHARAT(RExC_parse) != ')') {
                        RExC_parse += UTF
                                      ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                                      : 1;
                        vFAIL("Switch condition not recognized");
                    }
                    nextchar(pRExC_state);
                  insert_if:
                    if (! REGTAIL(pRExC_state, ret, reganode(pRExC_state,
                                                             IFTHEN, 0)))
                    {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }
                    br = regbranch(pRExC_state, &flags, 1, depth+1);
                    if (br == 0) {
                        RETURN_FAIL_ON_RESTART(flags,flagp);
                        FAIL2("panic: regbranch returned failure, flags=%#" UVxf,
                              (UV) flags);
                    } else
                    if (! REGTAIL(pRExC_state, br, reganode(pRExC_state,
                                                             LONGJMP, 0)))
                    {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }
                    c = UCHARAT(RExC_parse);
                    nextchar(pRExC_state);
                    if (flags&HASWIDTH)
                        *flagp |= HASWIDTH;
                    if (c == '|') {
                        if (is_define)
                            vFAIL("(?(DEFINE)....) does not allow branches");

                        /* Fake one for optimizer.  */
                        lastbr = reganode(pRExC_state, IFTHEN, 0);

                        if (!regbranch(pRExC_state, &flags, 1, depth+1)) {
                            RETURN_FAIL_ON_RESTART(flags, flagp);
                            FAIL2("panic: regbranch returned failure, flags=%#" UVxf,
                                  (UV) flags);
                        }
                        if (! REGTAIL(pRExC_state, ret, lastbr)) {
                            REQUIRE_BRANCHJ(flagp, 0);
                        }
                        if (flags&HASWIDTH)
                            *flagp |= HASWIDTH;
                        c = UCHARAT(RExC_parse);
                        nextchar(pRExC_state);
                    }
                    else
                        lastbr = 0;
                    if (c != ')') {
                        if (RExC_parse >= RExC_end)
                            vFAIL("Switch (?(condition)... not terminated");
                        else
                            vFAIL("Switch (?(condition)... contains too many branches");
                    }
                    ender = reg_node(pRExC_state, TAIL);
                    if (! REGTAIL(pRExC_state, br, ender)) {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }
                    if (lastbr) {
                        if (! REGTAIL(pRExC_state, lastbr, ender)) {
                            REQUIRE_BRANCHJ(flagp, 0);
                        }
                        if (! REGTAIL(pRExC_state,
                                      REGNODE_OFFSET(
                                                 NEXTOPER(
                                                 NEXTOPER(REGNODE_p(lastbr)))),
                                      ender))
                        {
                            REQUIRE_BRANCHJ(flagp, 0);
                        }
                    }
                    else
                        if (! REGTAIL(pRExC_state, ret, ender)) {
                            REQUIRE_BRANCHJ(flagp, 0);
                        }
#if 0  /* Removing this doesn't cause failures in the test suite -- khw */
                    RExC_size++; /* XXX WHY do we need this?!!
                                    For large programs it seems to be required
                                    but I can't figure out why. -- dmq*/
#endif
                    return ret;
                }
                RExC_parse += UTF
                              ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                              : 1;
                vFAIL("Unknown switch condition (?(...))");
            }
            case '[':           /* (?[ ... ]) */
                return handle_regex_sets(pRExC_state, NULL, flagp, depth+1,
                                         oregcomp_parse);
            case 0: /* A NUL */
                RExC_parse--; /* for vFAIL to print correctly */
                vFAIL("Sequence (? incomplete");
                break;

            case ')':
                if (RExC_strict) {  /* [perl #132851] */
                    ckWARNreg(RExC_parse, "Empty (?) without any modifiers");
                }
                /* FALLTHROUGH */
            case '*': /* If you want to support (?*...), first reconcile with GH #17363 */
            /* FALLTHROUGH */
            default: /* e.g., (?i) */
                RExC_parse = (char *) seqstart + 1;
              parse_flags:
                parse_lparen_question_flags(pRExC_state);
                if (UCHARAT(RExC_parse) != ':') {
                    if (RExC_parse < RExC_end)
                        nextchar(pRExC_state);
                    *flagp = TRYAGAIN;
                    return 0;
                }
                paren = ':';
                nextchar(pRExC_state);
                ret = 0;
                goto parse_rest;
            } /* end switch */
        }
        else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) {   /* (...) */
          capturing_parens:
            parno = RExC_npar;
            RExC_npar++;
            if (! ALL_PARENS_COUNTED) {
                /* If we are in our first pass through (and maybe only pass),
                 * we  need to allocate memory for the capturing parentheses
                 * data structures.
                 */

                if (!RExC_parens_buf_size) {
                    /* first guess at number of parens we might encounter */
                    RExC_parens_buf_size = 10;

                    /* setup RExC_open_parens, which holds the address of each
                     * OPEN tag, and to make things simpler for the 0 index the
                     * start of the program - this is used later for offsets */
                    Newxz(RExC_open_parens, RExC_parens_buf_size,
                            regnode_offset);
                    RExC_open_parens[0] = 1;    /* +1 for REG_MAGIC */

                    /* setup RExC_close_parens, which holds the address of each
                     * CLOSE tag, and to make things simpler for the 0 index
                     * the end of the program - this is used later for offsets
                     * */
                    Newxz(RExC_close_parens, RExC_parens_buf_size,
                            regnode_offset);
                    /* we dont know where end op starts yet, so we dont need to
                     * set RExC_close_parens[0] like we do RExC_open_parens[0]
                     * above */
                }
                else if (RExC_npar > RExC_parens_buf_size) {
                    I32 old_size = RExC_parens_buf_size;

                    RExC_parens_buf_size *= 2;

                    Renew(RExC_open_parens, RExC_parens_buf_size,
                            regnode_offset);
                    Zero(RExC_open_parens + old_size,
                            RExC_parens_buf_size - old_size, regnode_offset);

                    Renew(RExC_close_parens, RExC_parens_buf_size,
                            regnode_offset);
                    Zero(RExC_close_parens + old_size,
                            RExC_parens_buf_size - old_size, regnode_offset);
                }
            }

            ret = reganode(pRExC_state, OPEN, parno);
            if (!RExC_nestroot)
                RExC_nestroot = parno;
            if (RExC_open_parens && !RExC_open_parens[parno])
            {
                DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
                    "%*s%*s Setting open paren #%" IVdf " to %zu\n",
                    22, "|    |", (int)(depth * 2 + 1), "",
                    (IV)parno, ret));
                RExC_open_parens[parno]= ret;
            }

            Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
            Set_Node_Offset(REGNODE_p(ret), RExC_parse); /* MJD */
            is_open = 1;
        } else {
            /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
            paren = ':';
            ret = 0;
        }
    }
    else                        /* ! paren */
        ret = 0;

   parse_rest:
    /* Pick up the branches, linking them together. */
    parse_start = RExC_parse;   /* MJD */
    br = regbranch(pRExC_state, &flags, 1, depth+1);

    /*     branch_len = (paren != 0); */

    if (br == 0) {
        RETURN_FAIL_ON_RESTART(flags, flagp);
        FAIL2("panic: regbranch returned failure, flags=%#" UVxf, (UV) flags);
    }
    if (*RExC_parse == '|') {
        if (RExC_use_BRANCHJ) {
            reginsert(pRExC_state, BRANCHJ, br, depth+1);
        }
        else {                  /* MJD */
            reginsert(pRExC_state, BRANCH, br, depth+1);
            Set_Node_Length(REGNODE_p(br), paren != 0);
            Set_Node_Offset_To_R(br, parse_start-RExC_start);
        }
        have_branch = 1;
    }
    else if (paren == ':') {
        *flagp |= flags&SIMPLE;
    }
    if (is_open) {				/* Starts with OPEN. */
        if (! REGTAIL(pRExC_state, ret, br)) {  /* OPEN -> first. */
            REQUIRE_BRANCHJ(flagp, 0);
        }
    }
    else if (paren != '?')		/* Not Conditional */
        ret = br;
    *flagp |= flags & (HASWIDTH | POSTPONED);
    lastbr = br;
    while (*RExC_parse == '|') {
        if (RExC_use_BRANCHJ) {
            bool shut_gcc_up;

            ender = reganode(pRExC_state, LONGJMP, 0);

            /* Append to the previous. */
            shut_gcc_up = REGTAIL(pRExC_state,
                         REGNODE_OFFSET(NEXTOPER(NEXTOPER(REGNODE_p(lastbr)))),
                         ender);
            PERL_UNUSED_VAR(shut_gcc_up);
        }
        nextchar(pRExC_state);
        if (freeze_paren) {
            if (RExC_npar > after_freeze)
                after_freeze = RExC_npar;
            RExC_npar = freeze_paren;
        }
        br = regbranch(pRExC_state, &flags, 0, depth+1);

        if (br == 0) {
            RETURN_FAIL_ON_RESTART(flags, flagp);
            FAIL2("panic: regbranch returned failure, flags=%#" UVxf, (UV) flags);
        }
        if (!  REGTAIL(pRExC_state, lastbr, br)) {  /* BRANCH -> BRANCH. */
            REQUIRE_BRANCHJ(flagp, 0);
        }
        lastbr = br;
        *flagp |= flags & (HASWIDTH | POSTPONED);
    }

    if (have_branch || paren != ':') {
        regnode * br;

        /* Make a closing node, and hook it on the end. */
        switch (paren) {
        case ':':
            ender = reg_node(pRExC_state, TAIL);
            break;
        case 1: case 2:
            ender = reganode(pRExC_state, CLOSE, parno);
            if ( RExC_close_parens ) {
                DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
                        "%*s%*s Setting close paren #%" IVdf " to %zu\n",
                        22, "|    |", (int)(depth * 2 + 1), "",
                        (IV)parno, ender));
                RExC_close_parens[parno]= ender;
                if (RExC_nestroot == parno)
                    RExC_nestroot = 0;
            }
            Set_Node_Offset(REGNODE_p(ender), RExC_parse+1); /* MJD */
            Set_Node_Length(REGNODE_p(ender), 1); /* MJD */
            break;
        case 's':
            ender = reg_node(pRExC_state, SRCLOSE);
            RExC_in_script_run = 0;
            break;
        case '<':
        case 'a':
        case 'A':
        case 'b':
        case 'B':
        case ',':
        case '=':
        case '!':
            *flagp &= ~HASWIDTH;
            /* FALLTHROUGH */
        case 't':   /* aTomic */
        case '>':
            ender = reg_node(pRExC_state, SUCCEED);
            break;
        case 0:
            ender = reg_node(pRExC_state, END);
            assert(!RExC_end_op); /* there can only be one! */
            RExC_end_op = REGNODE_p(ender);
            if (RExC_close_parens) {
                DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
                    "%*s%*s Setting close paren #0 (END) to %zu\n",
                    22, "|    |", (int)(depth * 2 + 1), "",
                    ender));

                RExC_close_parens[0]= ender;
            }
            break;
        }
        DEBUG_PARSE_r({
            DEBUG_PARSE_MSG("lsbr");
            regprop(RExC_rx, RExC_mysv1, REGNODE_p(lastbr), NULL, pRExC_state);
            regprop(RExC_rx, RExC_mysv2, REGNODE_p(ender), NULL, pRExC_state);
            Perl_re_printf( aTHX_  "~ tying lastbr %s (%" IVdf ") to ender %s (%" IVdf ") offset %" IVdf "\n",
                          SvPV_nolen_const(RExC_mysv1),
                          (IV)lastbr,
                          SvPV_nolen_const(RExC_mysv2),
                          (IV)ender,
                          (IV)(ender - lastbr)
            );
        });
        if (! REGTAIL(pRExC_state, lastbr, ender)) {
            REQUIRE_BRANCHJ(flagp, 0);
        }

        if (have_branch) {
            char is_nothing= 1;
            if (depth==1)
                RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;

            /* Hook the tails of the branches to the closing node. */
            for (br = REGNODE_p(ret); br; br = regnext(br)) {
                const U8 op = PL_regkind[OP(br)];
                if (op == BRANCH) {
                    if (! REGTAIL_STUDY(pRExC_state,
                                        REGNODE_OFFSET(NEXTOPER(br)),
                                        ender))
                    {
                        REQUIRE_BRANCHJ(flagp, 0);
                    }
                    if ( OP(NEXTOPER(br)) != NOTHING
                         || regnext(NEXTOPER(br)) != REGNODE_p(ender))
                        is_nothing= 0;
                }
                else if (op == BRANCHJ) {
                    bool shut_gcc_up = REGTAIL_STUDY(pRExC_state,
                                        REGNODE_OFFSET(NEXTOPER(NEXTOPER(br))),
                                        ender);
                    PERL_UNUSED_VAR(shut_gcc_up);
                    /* for now we always disable this optimisation * /
                    if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
                         || regnext(NEXTOPER(NEXTOPER(br))) != REGNODE_p(ender))
                    */
                        is_nothing= 0;
                }
            }
            if (is_nothing) {
                regnode * ret_as_regnode = REGNODE_p(ret);
                br= PL_regkind[OP(ret_as_regnode)] != BRANCH
                               ? regnext(ret_as_regnode)
                               : ret_as_regnode;
                DEBUG_PARSE_r({
                    DEBUG_PARSE_MSG("NADA");
                    regprop(RExC_rx, RExC_mysv1, ret_as_regnode,
                                     NULL, pRExC_state);
                    regprop(RExC_rx, RExC_mysv2, REGNODE_p(ender),
                                     NULL, pRExC_state);
                    Perl_re_printf( aTHX_  "~ converting ret %s (%" IVdf ") to ender %s (%" IVdf ") offset %" IVdf "\n",
                                  SvPV_nolen_const(RExC_mysv1),
                                  (IV)REG_NODE_NUM(ret_as_regnode),
                                  SvPV_nolen_const(RExC_mysv2),
                                  (IV)ender,
                                  (IV)(ender - ret)
                    );
                });
                OP(br)= NOTHING;
                if (OP(REGNODE_p(ender)) == TAIL) {
                    NEXT_OFF(br)= 0;
                    RExC_emit= REGNODE_OFFSET(br) + 1;
                } else {
                    regnode *opt;
                    for ( opt= br + 1; opt < REGNODE_p(ender) ; opt++ )
                        OP(opt)= OPTIMIZED;
                    NEXT_OFF(br)= REGNODE_p(ender) - br;
                }
            }
        }
    }

    {
        const char *p;
         /* Even/odd or x=don't care: 010101x10x */
        static const char parens[] = "=!aA<,>Bbt";
         /* flag below is set to 0 up through 'A'; 1 for larger */

        if (paren && (p = strchr(parens, paren))) {
            U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
            int flag = (p - parens) > 3;

            if (paren == '>' || paren == 't') {
                node = SUSPEND, flag = 0;
            }

            reginsert(pRExC_state, node, ret, depth+1);
            Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
            Set_Node_Offset(REGNODE_p(ret), parse_start + 1);
            FLAGS(REGNODE_p(ret)) = flag;
            if (! REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL)))
            {
                REQUIRE_BRANCHJ(flagp, 0);
            }
        }
    }

    /* Check for proper termination. */
    if (paren) {
        /* restore original flags, but keep (?p) and, if we've encountered
         * something in the parse that changes /d rules into /u, keep the /u */
        RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
        if (DEPENDS_SEMANTICS && toUSE_UNI_CHARSET_NOT_DEPENDS) {
            set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);
        }
        if (RExC_parse >= RExC_end || UCHARAT(RExC_parse) != ')') {
            RExC_parse = oregcomp_parse;
            vFAIL("Unmatched (");
        }
        nextchar(pRExC_state);
    }
    else if (!paren && RExC_parse < RExC_end) {
        if (*RExC_parse == ')') {
            RExC_parse++;
            vFAIL("Unmatched )");
        }
        else
            FAIL("Junk on end of regexp");	/* "Can't happen". */
        NOT_REACHED; /* NOTREACHED */
    }

    if (after_freeze > RExC_npar)
        RExC_npar = after_freeze;

    RExC_in_lookaround = was_in_lookaround;

    return(ret);
}

/*
 - regbranch - one alternative of an | operator
 *
 * Implements the concatenation operator.
 *
 * On success, returns the offset at which any next node should be placed into
 * the regex engine program being compiled.
 *
 * Returns 0 otherwise, setting flagp to RESTART_PARSE if the parse needs
 * to be restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to
 * UTF-8
 */
STATIC regnode_offset
S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
{
    regnode_offset ret;
    regnode_offset chain = 0;
    regnode_offset latest;
    I32 flags = 0, c = 0;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGBRANCH;

    DEBUG_PARSE("brnc");

    if (first)
        ret = 0;
    else {
        if (RExC_use_BRANCHJ)
            ret = reganode(pRExC_state, BRANCHJ, 0);
        else {
            ret = reg_node(pRExC_state, BRANCH);
            Set_Node_Length(REGNODE_p(ret), 1);
        }
    }

    *flagp = 0;			/* Initialize. */

    skip_to_be_ignored_text(pRExC_state, &RExC_parse,
                            FALSE /* Don't force to /x */ );
    while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
        flags &= ~TRYAGAIN;
        latest = regpiece(pRExC_state, &flags, depth+1);
        if (latest == 0) {
            if (flags & TRYAGAIN)
                continue;
            RETURN_FAIL_ON_RESTART(flags, flagp);
            FAIL2("panic: regpiece returned failure, flags=%#" UVxf, (UV) flags);
        }
        else if (ret == 0)
            ret = latest;
        *flagp |= flags&(HASWIDTH|POSTPONED);
        if (chain != 0) {
            /* FIXME adding one for every branch after the first is probably
             * excessive now we have TRIE support. (hv) */
            MARK_NAUGHTY(1);
            if (! REGTAIL(pRExC_state, chain, latest)) {
                /* XXX We could just redo this branch, but figuring out what
                 * bookkeeping needs to be reset is a pain, and it's likely
                 * that other branches that goto END will also be too large */
                REQUIRE_BRANCHJ(flagp, 0);
            }
        }
        chain = latest;
        c++;
    }
    if (chain == 0) {	/* Loop ran zero times. */
        chain = reg_node(pRExC_state, NOTHING);
        if (ret == 0)
            ret = chain;
    }
    if (c == 1) {
        *flagp |= flags&SIMPLE;
    }

    return ret;
}

#define RBRACE  0
#define MIN_S   1
#define MIN_E   2
#define MAX_S   3
#define MAX_E   4

#ifndef PERL_IN_XSUB_RE
bool
Perl_regcurly(const char *s, const char *e, const char * result[5])
{
    /* This function matches a {m,n} quantifier.  When called with a NULL final
     * argument, it simply parses the input from 's' up through 'e-1', and
     * returns a boolean as to whether or not this input is syntactically a
     * {m,n} quantifier.
     *
     * When called with a non-NULL final parameter, and when the function
     * returns TRUE, it additionally stores information into the array
     * specified by that parameter about what it found in the parse.  The
     * parameter must be a pointer into a 5 element array of 'const char *'
     * elements.  The returned information is as follows:
     *   result[RBRACE]  points to the closing brace
     *   result[MIN_S]   points to the first byte of the lower bound
     *   result[MIN_E]   points to one beyond the final byte of the lower bound
     *   result[MAX_S]   points to the first byte of the upper bound
     *   result[MAX_E]   points to one beyond the final byte of the upper bound
     *
     * If the quantifier is of the form {m,} (meaning an infinite upper
     * bound), result[MAX_E] is set to result[MAX_S]; what they actually point
     * to is irrelevant, just that it's the same place
     *
     * If instead the quantifier is of the form {m} there is actually only
     * one bound, and both the upper and lower result[] elements are set to
     * point to it.
     *
     * This function checks only for syntactic validity; it leaves checking for
     * semantic validity and raising any diagnostics to the caller.  This
     * function is called in multiple places to check for syntax, but only from
     * one for semantics.  It makes it as simple as possible for the
     * syntax-only callers, while furnishing just enough information for the
     * semantic caller.
     */

    const char * min_start = NULL;
    const char * max_start = NULL;
    const char * min_end = NULL;
    const char * max_end = NULL;

    bool has_comma = FALSE;

    PERL_ARGS_ASSERT_REGCURLY;

    if (s >= e || *s++ != '{')
        return FALSE;

    while (s < e && isBLANK(*s)) {
        s++;
    }

    if isDIGIT(*s) {
        min_start = s;
        do {
            s++;
        } while (s < e && isDIGIT(*s));
        min_end = s;
    }

    while (s < e && isBLANK(*s)) {
        s++;
    }

    if (*s == ',') {
        has_comma = TRUE;
        s++;

        while (s < e && isBLANK(*s)) {
            s++;
        }

        if isDIGIT(*s) {
            max_start = s;
            do {
                s++;
            } while (s < e && isDIGIT(*s));
            max_end = s;
        }
    }

    while (s < e && isBLANK(*s)) {
        s++;
    }
                               /* Need at least one number */
    if (s >= e || *s != '}' || (! min_start && ! max_end)) {
        return FALSE;
    }

    if (result) {

        result[RBRACE] = s;

        result[MIN_S] = min_start;
        result[MIN_E] = min_end;
        if (has_comma) {
            if (max_start) {
                result[MAX_S] = max_start;
                result[MAX_E] = max_end;
            }
            else {
                /* Having no value after the comma is signalled by setting
                 * start and end to the same value.  What that value is isn't
                 * relevant; NULL is chosen simply because it will fail if the
                 * caller mistakenly uses it */
                result[MAX_S] = result[MAX_E] = NULL;
            }
        }
        else {  /* No comma means lower and upper bounds are the same */
            result[MAX_S] = min_start;
            result[MAX_E] = min_end;
        }
    }

    return TRUE;
}
#endif

U32
S_get_quantifier_value(pTHX_ RExC_state_t *pRExC_state,
                       const char * start, const char * end)
{
    /* This is a helper function for regpiece() to compute, given the
     * quantifier {m,n}, the value of either m or n, based on the starting
     * position 'start' in the string, through the byte 'end-1', returning it
     * if valid, and failing appropriately if not.  It knows the restrictions
     * imposed on quantifier values */

    UV uv;
    STATIC_ASSERT_DECL(REG_INFTY <= U32_MAX);

    PERL_ARGS_ASSERT_GET_QUANTIFIER_VALUE;

    if (grok_atoUV(start, &uv, &end)) {
        if (uv < REG_INFTY) {   /* A valid, small-enough number */
            return (U32) uv;
        }
    }
    else if (*start == '0') { /* grok_atoUV() fails for only two reasons:
                                 leading zeros or overflow */
        RExC_parse = (char * ) end;

        /* Perhaps too generic a msg for what is only failure from having
         * leading zeros, but this is how it's always behaved. */
        vFAIL("Invalid quantifier in {,}");
        NOT_REACHED; /*NOTREACHED*/
    }

    /* Here, found a quantifier, but was too large; either it overflowed or was
     * too big a legal number */
    RExC_parse = (char * ) end;
    vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);

    NOT_REACHED; /*NOTREACHED*/
    return U32_MAX; /* Perhaps some compilers will be expecting a return */
}

/*
 - regpiece - something followed by possible quantifier * + ? {n,m}
 *
 * Note that the branching code sequences used for ? and the general cases
 * of * and + are somewhat optimized:  they use the same NOTHING node as
 * both the endmarker for their branch list and the body of the last branch.
 * It might seem that this node could be dispensed with entirely, but the
 * endmarker role is not redundant.
 *
 * On success, returns the offset at which any next node should be placed into
 * the regex engine program being compiled.
 *
 * Returns 0 otherwise, with *flagp set to indicate why:
 *  TRYAGAIN        if regatom() returns 0 with TRYAGAIN.
 *  RESTART_PARSE   if the parse needs to be restarted, or'd with
 *                  NEED_UTF8 if the pattern needs to be upgraded to UTF-8.
 */
STATIC regnode_offset
S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
    regnode_offset ret;
    char op;
    I32 flags;
    const char * const origparse = RExC_parse;
    I32 min;
    I32 max = REG_INFTY;
#ifdef RE_TRACK_PATTERN_OFFSETS
    char *parse_start;
#endif

    /* Save the original in case we change the emitted regop to a FAIL. */
    const regnode_offset orig_emit = RExC_emit;

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGPIECE;

    DEBUG_PARSE("piec");

    ret = regatom(pRExC_state, &flags, depth+1);
    if (ret == 0) {
        RETURN_FAIL_ON_RESTART_OR_FLAGS(flags, flagp, TRYAGAIN);
        FAIL2("panic: regatom returned failure, flags=%#" UVxf, (UV) flags);
    }

#ifdef RE_TRACK_PATTERN_OFFSETS
    parse_start = RExC_parse;
#endif

    op = *RExC_parse;
    switch (op) {
        const char * regcurly_return[5];

      case '*':
        nextchar(pRExC_state);
        min = 0;
        break;

      case '+':
        nextchar(pRExC_state);
        min = 1;
        break;

      case '?':
        nextchar(pRExC_state);
        min = 0; max = 1;
        break;

      case '{':  /* A '{' may or may not indicate a quantifier; call regcurly()
                    to determine which */
        if (regcurly(RExC_parse, RExC_end, regcurly_return)) {
            const char * min_start = regcurly_return[MIN_S];
            const char * min_end   = regcurly_return[MIN_E];
            const char * max_start = regcurly_return[MAX_S];
            const char * max_end   = regcurly_return[MAX_E];

            if (min_start) {
                min = get_quantifier_value(pRExC_state, min_start, min_end);
            }
            else {
                min = 0;
            }

            if (max_start == max_end) {     /* Was of the form {m,} */
                max = REG_INFTY;
            }
            else if (max_start == min_start) {  /* Was of the form {m} */
                max = min;
            }
            else {  /* Was of the form {m,n} */
                assert(max_end >= max_start);

                max = get_quantifier_value(pRExC_state, max_start, max_end);
            }

            RExC_parse = (char *) regcurly_return[RBRACE];
            nextchar(pRExC_state);

            if (max < min) {    /* If can't match, warn and optimize to fail
                                   unconditionally */
                reginsert(pRExC_state, OPFAIL, orig_emit, depth+1);
                ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
                NEXT_OFF(REGNODE_p(orig_emit)) =
                                    regarglen[OPFAIL] + NODE_STEP_REGNODE;
                return ret;
            }
            else if (min == max && *RExC_parse == '?') {
                ckWARN2reg(RExC_parse + 1,
                           "Useless use of greediness modifier '%c'",
                           *RExC_parse);
            }

            break;
        } /* End of is {m,n} */

        /* Here was a '{', but what followed it didn't form a quantifier. */
        /* FALLTHROUGH */

      default:
        *flagp = flags;
        return(ret);
        NOT_REACHED; /*NOTREACHED*/
    }

    /* Here we have a quantifier, and have calculated 'min' and 'max'.
     *
     * Check and possibly adjust a zero width operand */
    if (! (flags & (HASWIDTH|POSTPONED))) {
        if (max > REG_INFTY/3) {
            if (origparse[0] == '\\' && origparse[1] == 'K') {
                vFAIL2utf8f(
                           "%" UTF8f " is forbidden - matches null string"
                           " many times",
                           UTF8fARG(UTF, (RExC_parse >= origparse
                                         ? RExC_parse - origparse
                                         : 0),
                           origparse));
            } else {
                ckWARN2reg(RExC_parse,
                           "%" UTF8f " matches null string many times",
                           UTF8fARG(UTF, (RExC_parse >= origparse
                                         ? RExC_parse - origparse
                                         : 0),
                           origparse));
            }
        }

        /* There's no point in trying to match something 0 length more than
         * once except for extra side effects, which we don't have here since
         * not POSTPONED */
        if (max > 1) {
            max = 1;
            if (min > max) {
                min = max;
            }
        }
    }

    /* If this is a code block pass it up */
    *flagp |= (flags & POSTPONED);

    if (max > 0) {
        *flagp |= (flags & HASWIDTH);
        if (max == REG_INFTY)
            RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
    }

    /* 'SIMPLE' operands don't require full generality */
    if ((flags&SIMPLE)) {
        if (max == REG_INFTY) {
            if (min == 0) {
                if (UNLIKELY(RExC_pm_flags & PMf_WILDCARD)) {
                    goto min0_maxINF_wildcard_forbidden;
                }

                reginsert(pRExC_state, STAR, ret, depth+1);
                MARK_NAUGHTY(4);
                goto done_main_op;
            }
            else if (min == 1) {
                reginsert(pRExC_state, PLUS, ret, depth+1);
                MARK_NAUGHTY(3);
                goto done_main_op;
            }
        }

        /* Here, SIMPLE, but not the '*' and '+' special cases */

        MARK_NAUGHTY_EXP(2, 2);
        reginsert(pRExC_state, CURLY, ret, depth+1);
        Set_Node_Offset(REGNODE_p(ret), parse_start+1); /* MJD */
        Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
    }
    else {  /* not SIMPLE */
        const regnode_offset w = reg_node(pRExC_state, WHILEM);

        FLAGS(REGNODE_p(w)) = 0;
        if (!  REGTAIL(pRExC_state, ret, w)) {
            REQUIRE_BRANCHJ(flagp, 0);
        }
        if (RExC_use_BRANCHJ) {
            reginsert(pRExC_state, LONGJMP, ret, depth+1);
            reginsert(pRExC_state, NOTHING, ret, depth+1);
            NEXT_OFF(REGNODE_p(ret)) = 3;        /* Go over LONGJMP. */
        }
        reginsert(pRExC_state, CURLYX, ret, depth+1);
                        /* MJD hk */
        Set_Node_Offset(REGNODE_p(ret), parse_start+1);
        Set_Node_Length(REGNODE_p(ret),
                        op == '{' ? (RExC_parse - parse_start) : 1);

        if (RExC_use_BRANCHJ)
            NEXT_OFF(REGNODE_p(ret)) = 3;   /* Go over NOTHING to
                                               LONGJMP. */
        if (! REGTAIL(pRExC_state, ret, reg_node(pRExC_state,
                                                  NOTHING)))
        {
            REQUIRE_BRANCHJ(flagp, 0);
        }
        RExC_whilem_seen++;
        MARK_NAUGHTY_EXP(1, 4);     /* compound interest */
    }

    /* Finish up the CURLY/CURLYX case */
    FLAGS(REGNODE_p(ret)) = 0;

    ARG1_SET(REGNODE_p(ret), (U16)min);
    ARG2_SET(REGNODE_p(ret), (U16)max);

  done_main_op:

    /* Process any greediness modifiers */
    if (*RExC_parse == '?') {
        nextchar(pRExC_state);
        reginsert(pRExC_state, MINMOD, ret, depth+1);
        if (! REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE)) {
            REQUIRE_BRANCHJ(flagp, 0);
        }
    }
    else if (*RExC_parse == '+') {
        regnode_offset ender;
        nextchar(pRExC_state);
        ender = reg_node(pRExC_state, SUCCEED);
        if (! REGTAIL(pRExC_state, ret, ender)) {
            REQUIRE_BRANCHJ(flagp, 0);
        }
        reginsert(pRExC_state, SUSPEND, ret, depth+1);
        ender = reg_node(pRExC_state, TAIL);
        if (! REGTAIL(pRExC_state, ret, ender)) {
            REQUIRE_BRANCHJ(flagp, 0);
        }
    }

    /* Forbid extra quantifiers */
    if (isQUANTIFIER(RExC_parse, RExC_end)) {
        RExC_parse++;
        vFAIL("Nested quantifiers");
    }

    return(ret);

  min0_maxINF_wildcard_forbidden:

    /* Here we are in a wildcard match, and the minimum match length is 0, and
     * the max could be infinity.  This is currently forbidden.  The only
     * reason is to make it harder to write patterns that take a long long time
     * to halt, and because the use of this construct isn't necessary in
     * matching Unicode property values */
    RExC_parse++;
    /* diag_listed_as: Use of %s is not allowed in Unicode property wildcard
       subpatterns in regex; marked by <-- HERE in m/%s/
     */
    vFAIL("Use of quantifier '*' is not allowed in Unicode property wildcard"
          " subpatterns");

    /* Note, don't need to worry about the input being '{0,}', as a '}' isn't
     * legal at all in wildcards, so can't get this far */

    NOT_REACHED; /*NOTREACHED*/
}

STATIC bool
S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
                regnode_offset * node_p,
                UV * code_point_p,
                int * cp_count,
                I32 * flagp,
                const bool strict,
                const U32 depth
    )
{
 /* This routine teases apart the various meanings of \N and returns
  * accordingly.  The input parameters constrain which meaning(s) is/are valid
  * in the current context.
  *
  * Exactly one of <node_p> and <code_point_p> must be non-NULL.
  *
  * If <code_point_p> is not NULL, the context is expecting the result to be a
  * single code point.  If this \N instance turns out to a single code point,
  * the function returns TRUE and sets *code_point_p to that code point.
  *
  * If <node_p> is not NULL, the context is expecting the result to be one of
  * the things representable by a regnode.  If this \N instance turns out to be
  * one such, the function generates the regnode, returns TRUE and sets *node_p
  * to point to the offset of that regnode into the regex engine program being
  * compiled.
  *
  * If this instance of \N isn't legal in any context, this function will
  * generate a fatal error and not return.
  *
  * On input, RExC_parse should point to the first char following the \N at the
  * time of the call.  On successful return, RExC_parse will have been updated
  * to point to just after the sequence identified by this routine.  Also
  * *flagp has been updated as needed.
  *
  * When there is some problem with the current context and this \N instance,
  * the function returns FALSE, without advancing RExC_parse, nor setting
  * *node_p, nor *code_point_p, nor *flagp.
  *
  * If <cp_count> is not NULL, the caller wants to know the length (in code
  * points) that this \N sequence matches.  This is set, and the input is
  * parsed for errors, even if the function returns FALSE, as detailed below.
  *
  * There are 6 possibilities here, as detailed in the next 6 paragraphs.
  *
  * Probably the most common case is for the \N to specify a single code point.
  * *cp_count will be set to 1, and *code_point_p will be set to that code
  * point.
  *
  * Another possibility is for the input to be an empty \N{}.  This is no
  * longer accepted, and will generate a fatal error.
  *
  * Another possibility is for a custom charnames handler to be in effect which
  * translates the input name to an empty string.  *cp_count will be set to 0.
  * *node_p will be set to a generated NOTHING node.
  *
  * Still another possibility is for the \N to mean [^\n]. *cp_count will be
  * set to 0. *node_p will be set to a generated REG_ANY node.
  *
  * The fifth possibility is that \N resolves to a sequence of more than one
  * code points.  *cp_count will be set to the number of code points in the
  * sequence. *node_p will be set to a generated node returned by this
  * function calling S_reg().
  *
  * The sixth and final possibility is that it is premature to be calling this
  * function; the parse needs to be restarted.  This can happen when this
  * changes from /d to /u rules, or when the pattern needs to be upgraded to
  * UTF-8.  The latter occurs only when the fifth possibility would otherwise
  * be in effect, and is because one of those code points requires the pattern
  * to be recompiled as UTF-8.  The function returns FALSE, and sets the
  * RESTART_PARSE and NEED_UTF8 flags in *flagp, as appropriate.  When this
  * happens, the caller needs to desist from continuing parsing, and return
  * this information to its caller.  This is not set for when there is only one
  * code point, as this can be called as part of an ANYOF node, and they can
  * store above-Latin1 code points without the pattern having to be in UTF-8.
  *
  * For non-single-quoted regexes, the tokenizer has resolved character and
  * sequence names inside \N{...} into their Unicode values, normalizing the
  * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
  * hex-represented code points in the sequence.  This is done there because
  * the names can vary based on what charnames pragma is in scope at the time,
  * so we need a way to take a snapshot of what they resolve to at the time of
  * the original parse. [perl #56444].
  *
  * That parsing is skipped for single-quoted regexes, so here we may get
  * '\N{NAME}', which is parsed now.  If the single-quoted regex is something
  * like '\N{U+41}', that code point is Unicode, and has to be translated into
  * the native character set for non-ASCII platforms.  The other possibilities
  * are already native, so no translation is done. */

    char * endbrace;    /* points to '}' following the name */
    char * e;           /* points to final non-blank before endbrace */
    char* p = RExC_parse; /* Temporary */

    SV * substitute_parse = NULL;
    char *orig_end;
    char *save_start;
    I32 flags;

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_GROK_BSLASH_N;

    assert(cBOOL(node_p) ^ cBOOL(code_point_p));  /* Exactly one should be set */
    assert(! (node_p && cp_count));               /* At most 1 should be set */

    if (cp_count) {     /* Initialize return for the most common case */
        *cp_count = 1;
    }

    /* The [^\n] meaning of \N ignores spaces and comments under the /x
     * modifier.  The other meanings do not (except blanks adjacent to and
     * within the braces), so use a temporary until we find out which we are
     * being called with */
    skip_to_be_ignored_text(pRExC_state, &p,
                            FALSE /* Don't force to /x */ );

    /* Disambiguate between \N meaning a named character versus \N meaning
     * [^\n].  The latter is assumed when the {...} following the \N is a legal
     * quantifier, or if there is no '{' at all */
    if (*p != '{' || regcurly(p, RExC_end, NULL)) {
        RExC_parse = p;
        if (cp_count) {
            *cp_count = -1;
        }

        if (! node_p) {
            return FALSE;
        }

        *node_p = reg_node(pRExC_state, REG_ANY);
        *flagp |= HASWIDTH|SIMPLE;
        MARK_NAUGHTY(1);
        Set_Node_Length(REGNODE_p(*(node_p)), 1); /* MJD */
        return TRUE;
    }

    /* The test above made sure that the next real character is a '{', but
     * under the /x modifier, it could be separated by space (or a comment and
     * \n) and this is not allowed (for consistency with \x{...} and the
     * tokenizer handling of \N{NAME}). */
    if (*RExC_parse != '{') {
        vFAIL("Missing braces on \\N{}");
    }

    RExC_parse++;       /* Skip past the '{' */

    endbrace = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
    if (! endbrace) { /* no trailing brace */
        vFAIL2("Missing right brace on \\%c{}", 'N');
    }

    /* Here, we have decided it should be a named character or sequence.  These
     * imply Unicode semantics */
    REQUIRE_UNI_RULES(flagp, FALSE);

    /* \N{_} is what toke.c returns to us to indicate a name that evaluates to
     * nothing at all (not allowed under strict) */
    if (endbrace - RExC_parse == 1 && *RExC_parse == '_') {
        RExC_parse = endbrace;
        if (strict) {
            RExC_parse++;   /* Position after the "}" */
            vFAIL("Zero length \\N{}");
        }

        if (cp_count) {
            *cp_count = 0;
        }
        nextchar(pRExC_state);
        if (! node_p) {
            return FALSE;
        }

        *node_p = reg_node(pRExC_state, NOTHING);
        return TRUE;
    }

    while (isBLANK(*RExC_parse)) {
        RExC_parse++;
    }

    e = endbrace;
    while (RExC_parse < e && isBLANK(*(e-1))) {
        e--;
    }

    if (e - RExC_parse < 2 || ! strBEGINs(RExC_parse, "U+")) {

        /* Here, the name isn't of the form  U+....  This can happen if the
         * pattern is single-quoted, so didn't get evaluated in toke.c.  Now
         * is the time to find out what the name means */

        const STRLEN name_len = e - RExC_parse;
        SV *  value_sv;     /* What does this name evaluate to */
        SV ** value_svp;
        const U8 * value;   /* string of name's value */
        STRLEN value_len;   /* and its length */

        /*  RExC_unlexed_names is a hash of names that weren't evaluated by
         *  toke.c, and their values. Make sure is initialized */
        if (! RExC_unlexed_names) {
            RExC_unlexed_names = newHV();
        }

        /* If we have already seen this name in this pattern, use that.  This
         * allows us to only call the charnames handler once per name per
         * pattern.  A broken or malicious handler could return something
         * different each time, which could cause the results to vary depending
         * on if something gets added or subtracted from the pattern that
         * causes the number of passes to change, for example */
        if ((value_svp = hv_fetch(RExC_unlexed_names, RExC_parse,
                                                      name_len, 0)))
        {
            value_sv = *value_svp;
        }
        else { /* Otherwise we have to go out and get the name */
            const char * error_msg = NULL;
            value_sv = get_and_check_backslash_N_name(RExC_parse, e,
                                                      UTF,
                                                      &error_msg);
            if (error_msg) {
                RExC_parse = endbrace;
                vFAIL(error_msg);
            }

            /* If no error message, should have gotten a valid return */
            assert (value_sv);

            /* Save the name's meaning for later use */
            if (! hv_store(RExC_unlexed_names, RExC_parse, name_len,
                           value_sv, 0))
            {
                Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
            }
        }

        /* Here, we have the value the name evaluates to in 'value_sv' */
        value = (U8 *) SvPV(value_sv, value_len);

        /* See if the result is one code point vs 0 or multiple */
        if (inRANGE(value_len, 1, ((UV) SvUTF8(value_sv)
                                  ? UTF8SKIP(value)
                                  : 1)))
        {
            /* Here, exactly one code point.  If that isn't what is wanted,
             * fail */
            if (! code_point_p) {
                RExC_parse = p;
                return FALSE;
            }

            /* Convert from string to numeric code point */
            *code_point_p = (SvUTF8(value_sv))
                            ? valid_utf8_to_uvchr(value, NULL)
                            : *value;

            /* Have parsed this entire single code point \N{...}.  *cp_count
             * has already been set to 1, so don't do it again. */
            RExC_parse = endbrace;
            nextchar(pRExC_state);
            return TRUE;
        } /* End of is a single code point */

        /* Count the code points, if caller desires.  The API says to do this
         * even if we will later return FALSE */
        if (cp_count) {
            *cp_count = 0;

            *cp_count = (SvUTF8(value_sv))
                        ? utf8_length(value, value + value_len)
                        : value_len;
        }

        /* Fail if caller doesn't want to handle a multi-code-point sequence.
         * But don't back the pointer up if the caller wants to know how many
         * code points there are (they need to handle it themselves in this
         * case).  */
        if (! node_p) {
            if (! cp_count) {
                RExC_parse = p;
            }
            return FALSE;
        }

        /* Convert this to a sub-pattern of the form "(?: ... )", and then call
         * reg recursively to parse it.  That way, it retains its atomicness,
         * while not having to worry about any special handling that some code
         * points may have. */

        substitute_parse = newSVpvs("?:");
        sv_catsv(substitute_parse, value_sv);
        sv_catpv(substitute_parse, ")");

        /* The value should already be native, so no need to convert on EBCDIC
         * platforms.*/
        assert(! RExC_recode_x_to_native);

    }
    else {   /* \N{U+...} */
        Size_t count = 0;   /* code point count kept internally */

        /* We can get to here when the input is \N{U+...} or when toke.c has
         * converted a name to the \N{U+...} form.  This include changing a
         * name that evaluates to multiple code points to \N{U+c1.c2.c3 ...} */

        RExC_parse += 2;    /* Skip past the 'U+' */

        /* Code points are separated by dots.  The '}' terminates the whole
         * thing. */

        do {    /* Loop until the ending brace */
            I32 flags = PERL_SCAN_SILENT_OVERFLOW
                      | PERL_SCAN_SILENT_ILLDIGIT
                      | PERL_SCAN_NOTIFY_ILLDIGIT
                      | PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES
                      | PERL_SCAN_DISALLOW_PREFIX;
            STRLEN len = e - RExC_parse;
            NV overflow_value;
            char * start_digit = RExC_parse;
            UV cp = grok_hex(RExC_parse, &len, &flags, &overflow_value);

            if (len == 0) {
                RExC_parse++;
              bad_NU:
                vFAIL("Invalid hexadecimal number in \\N{U+...}");
            }

            RExC_parse += len;

            if (cp > MAX_LEGAL_CP) {
                vFAIL(form_cp_too_large_msg(16, start_digit, len, 0));
            }

            if (RExC_parse >= e) { /* Got to the closing '}' */
                if (count) {
                    goto do_concat;
                }

                /* Here, is a single code point; fail if doesn't want that */
                if (! code_point_p) {
                    RExC_parse = p;
                    return FALSE;
                }

                /* A single code point is easy to handle; just return it */
                *code_point_p = UNI_TO_NATIVE(cp);
                RExC_parse = endbrace;
                nextchar(pRExC_state);
                return TRUE;
            }

            /* Here, the parse stopped bfore the ending brace.  This is legal
             * only if that character is a dot separating code points, like a
             * multiple character sequence (of the form "\N{U+c1.c2. ... }".
             * So the next character must be a dot (and the one after that
             * can't be the ending brace, or we'd have something like
             * \N{U+100.} )
             * */
            if (*RExC_parse != '.' || RExC_parse + 1 >= e) {
                RExC_parse += (RExC_orig_utf8)  /* point to after 1st invalid */
                              ? UTF8SKIP(RExC_parse)
                              : 1;
                RExC_parse = MIN(e, RExC_parse);/* Guard against malformed utf8
                                                 */
                goto bad_NU;
            }

            /* Here, looks like its really a multiple character sequence.  Fail
             * if that's not what the caller wants.  But continue with counting
             * and error checking if they still want a count */
            if (! node_p && ! cp_count) {
                return FALSE;
            }

            /* What is done here is to convert this to a sub-pattern of the
             * form \x{char1}\x{char2}...  and then call reg recursively to
             * parse it (enclosing in "(?: ... )" ).  That way, it retains its
             * atomicness, while not having to worry about special handling
             * that some code points may have.  We don't create a subpattern,
             * but go through the motions of code point counting and error
             * checking, if the caller doesn't want a node returned. */

            if (node_p && ! substitute_parse) {
                substitute_parse = newSVpvs("?:");
            }

          do_concat:

            if (node_p) {
                /* Convert to notation the rest of the code understands */
                sv_catpvs(substitute_parse, "\\x{");
                sv_catpvn(substitute_parse, start_digit,
                                            RExC_parse - start_digit);
                sv_catpvs(substitute_parse, "}");
            }

            /* Move to after the dot (or ending brace the final time through.)
             * */
            RExC_parse++;
            count++;

        } while (RExC_parse < e);

        if (! node_p) { /* Doesn't want the node */
            assert (cp_count);

            *cp_count = count;
            return FALSE;
        }

        sv_catpvs(substitute_parse, ")");

        /* The values are Unicode, and therefore have to be converted to native
         * on a non-Unicode (meaning non-ASCII) platform. */
        SET_recode_x_to_native(1);
    }

    /* Here, we have the string the name evaluates to, ready to be parsed,
     * stored in 'substitute_parse' as a series of valid "\x{...}\x{...}"
     * constructs.  This can be called from within a substitute parse already.
     * The error reporting mechanism doesn't work for 2 levels of this, but the
     * code above has validated this new construct, so there should be no
     * errors generated by the below.  And this isn't an exact copy, so the
     * mechanism to seamlessly deal with this won't work, so turn off warnings
     * during it */
    save_start = RExC_start;
    orig_end = RExC_end;

    RExC_parse = RExC_start = SvPVX(substitute_parse);
    RExC_end = RExC_parse + SvCUR(substitute_parse);
    TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE;

    *node_p = reg(pRExC_state, 1, &flags, depth+1);

    /* Restore the saved values */
    RESTORE_WARNINGS;
    RExC_start = save_start;
    RExC_parse = endbrace;
    RExC_end = orig_end;
    SET_recode_x_to_native(0);

    SvREFCNT_dec_NN(substitute_parse);

    if (! *node_p) {
        RETURN_FAIL_ON_RESTART(flags, flagp);
        FAIL2("panic: reg returned failure to grok_bslash_N, flags=%#" UVxf,
            (UV) flags);
    }
    *flagp |= flags&(HASWIDTH|SIMPLE|POSTPONED);

    nextchar(pRExC_state);

    return TRUE;
}


STATIC U8
S_compute_EXACTish(RExC_state_t *pRExC_state)
{
    U8 op;

    PERL_ARGS_ASSERT_COMPUTE_EXACTISH;

    if (! FOLD) {
        return (LOC)
                ? EXACTL
                : EXACT;
    }

    op = get_regex_charset(RExC_flags);
    if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
        op--; /* /a is same as /u, and map /aa's offset to what /a's would have
                 been, so there is no hole */
    }

    return op + EXACTF;
}

/* Parse backref decimal value, unless it's too big to sensibly be a backref,
 * in which case return I32_MAX (rather than possibly 32-bit wrapping) */

static I32
S_backref_value(char *p, char *e)
{
    const char* endptr = e;
    UV val;
    if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
        return (I32)val;
    return I32_MAX;
}


/*
 - regatom - the lowest level

   Try to identify anything special at the start of the current parse position.
   If there is, then handle it as required. This may involve generating a
   single regop, such as for an assertion; or it may involve recursing, such as
   to handle a () structure.

   If the string doesn't start with something special then we gobble up
   as much literal text as we can.  If we encounter a quantifier, we have to
   back off the final literal character, as that quantifier applies to just it
   and not to the whole string of literals.

   Once we have been able to handle whatever type of thing started the
   sequence, we return the offset into the regex engine program being compiled
   at which any  next regnode should be placed.

   Returns 0, setting *flagp to TRYAGAIN if reg() returns 0 with TRYAGAIN.
   Returns 0, setting *flagp to RESTART_PARSE if the parse needs to be
   restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to UTF-8
   Otherwise does not return 0.

   Note: we have to be careful with escapes, as they can be both literal
   and special, and in the case of \10 and friends, context determines which.

   A summary of the code structure is:

   switch (first_byte) {
        cases for each special:
            handle this special;
            break;
        case '\\':
            switch (2nd byte) {
                cases for each unambiguous special:
                    handle this special;
                    break;
                cases for each ambigous special/literal:
                    disambiguate;
                    if (special)  handle here
                    else goto defchar;
                default: // unambiguously literal:
                    goto defchar;
            }
        default:  // is a literal char
            // FALL THROUGH
        defchar:
            create EXACTish node for literal;
            while (more input and node isn't full) {
                switch (input_byte) {
                   cases for each special;
                       make sure parse pointer is set so that the next call to
                           regatom will see this special first
                       goto loopdone; // EXACTish node terminated by prev. char
                   default:
                       append char to EXACTISH node;
                }
                get next input byte;
            }
        loopdone:
   }
   return the generated node;

   Specifically there are two separate switches for handling
   escape sequences, with the one for handling literal escapes requiring
   a dummy entry for all of the special escapes that are actually handled
   by the other.

*/

STATIC regnode_offset
S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
    regnode_offset ret = 0;
    I32 flags = 0;
    char *parse_start;
    U8 op;
    int invert = 0;

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    *flagp = 0;		/* Initialize. */

    DEBUG_PARSE("atom");

    PERL_ARGS_ASSERT_REGATOM;

  tryagain:
    parse_start = RExC_parse;
    assert(RExC_parse < RExC_end);
    switch ((U8)*RExC_parse) {
    case '^':
        RExC_seen_zerolen++;
        nextchar(pRExC_state);
        if (RExC_flags & RXf_PMf_MULTILINE)
            ret = reg_node(pRExC_state, MBOL);
        else
            ret = reg_node(pRExC_state, SBOL);
        Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
        break;
    case '$':
        nextchar(pRExC_state);
        if (*RExC_parse)
            RExC_seen_zerolen++;
        if (RExC_flags & RXf_PMf_MULTILINE)
            ret = reg_node(pRExC_state, MEOL);
        else
            ret = reg_node(pRExC_state, SEOL);
        Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
        break;
    case '.':
        nextchar(pRExC_state);
        if (RExC_flags & RXf_PMf_SINGLELINE)
            ret = reg_node(pRExC_state, SANY);
        else
            ret = reg_node(pRExC_state, REG_ANY);
        *flagp |= HASWIDTH|SIMPLE;
        MARK_NAUGHTY(1);
        Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
        break;
    case '[':
    {
        char * const oregcomp_parse = ++RExC_parse;
        ret = regclass(pRExC_state, flagp, depth+1,
                       FALSE, /* means parse the whole char class */
                       TRUE, /* allow multi-char folds */
                       FALSE, /* don't silence non-portable warnings. */
                       (bool) RExC_strict,
                       TRUE, /* Allow an optimized regnode result */
                       NULL);
        if (ret == 0) {
            RETURN_FAIL_ON_RESTART_FLAGP(flagp);
            FAIL2("panic: regclass returned failure to regatom, flags=%#" UVxf,
                  (UV) *flagp);
        }
        if (*RExC_parse != ']') {
            RExC_parse = oregcomp_parse;
            vFAIL("Unmatched [");
        }
        nextchar(pRExC_state);
        Set_Node_Length(REGNODE_p(ret), RExC_parse - oregcomp_parse + 1); /* MJD */
        break;
    }
    case '(':
        nextchar(pRExC_state);
        ret = reg(pRExC_state, 2, &flags, depth+1);
        if (ret == 0) {
                if (flags & TRYAGAIN) {
                    if (RExC_parse >= RExC_end) {
                         /* Make parent create an empty node if needed. */
                        *flagp |= TRYAGAIN;
                        return(0);
                    }
                    goto tryagain;
                }
                RETURN_FAIL_ON_RESTART(flags, flagp);
                FAIL2("panic: reg returned failure to regatom, flags=%#" UVxf,
                                                                 (UV) flags);
        }
        *flagp |= flags&(HASWIDTH|SIMPLE|POSTPONED);
        break;
    case '|':
    case ')':
        if (flags & TRYAGAIN) {
            *flagp |= TRYAGAIN;
            return 0;
        }
        vFAIL("Internal urp");
                                /* Supposed to be caught earlier. */
        break;
    case '?':
    case '+':
    case '*':
        RExC_parse++;
        vFAIL("Quantifier follows nothing");
        break;
    case '\\':
        /* Special Escapes

           This switch handles escape sequences that resolve to some kind
           of special regop and not to literal text. Escape sequences that
           resolve to literal text are handled below in the switch marked
           "Literal Escapes".

           Every entry in this switch *must* have a corresponding entry
           in the literal escape switch. However, the opposite is not
           required, as the default for this switch is to jump to the
           literal text handling code.
        */
        RExC_parse++;
        switch ((U8)*RExC_parse) {
        /* Special Escapes */
        case 'A':
            RExC_seen_zerolen++;
            /* Under wildcards, this is changed to match \n; should be
             * invisible to the user, as they have to compile under /m */
            if (RExC_pm_flags & PMf_WILDCARD) {
                ret = reg_node(pRExC_state, MBOL);
            }
            else {
                ret = reg_node(pRExC_state, SBOL);
                /* SBOL is shared with /^/ so we set the flags so we can tell
                 * /\A/ from /^/ in split. */
                FLAGS(REGNODE_p(ret)) = 1;
            }
            goto finish_meta_pat;
        case 'G':
            if (RExC_pm_flags & PMf_WILDCARD) {
                RExC_parse++;
                /* diag_listed_as: Use of %s is not allowed in Unicode property
                   wildcard subpatterns in regex; marked by <-- HERE in m/%s/
                 */
                vFAIL("Use of '\\G' is not allowed in Unicode property"
                      " wildcard subpatterns");
            }
            ret = reg_node(pRExC_state, GPOS);
            RExC_seen |= REG_GPOS_SEEN;
            goto finish_meta_pat;
        case 'K':
            if (!RExC_in_lookaround) {
                RExC_seen_zerolen++;
                ret = reg_node(pRExC_state, KEEPS);
                /* XXX:dmq : disabling in-place substitution seems to
                 * be necessary here to avoid cases of memory corruption, as
                 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
                 */
                RExC_seen |= REG_LOOKBEHIND_SEEN;
                goto finish_meta_pat;
            }
            else {
                ++RExC_parse; /* advance past the 'K' */
                vFAIL("\\K not permitted in lookahead/lookbehind");
            }
        case 'Z':
            if (RExC_pm_flags & PMf_WILDCARD) {
                /* See comment under \A above */
                ret = reg_node(pRExC_state, MEOL);
            }
            else {
                ret = reg_node(pRExC_state, SEOL);
            }
            RExC_seen_zerolen++;		/* Do not optimize RE away */
            goto finish_meta_pat;
        case 'z':
            if (RExC_pm_flags & PMf_WILDCARD) {
                /* See comment under \A above */
                ret = reg_node(pRExC_state, MEOL);
            }
            else {
                ret = reg_node(pRExC_state, EOS);
            }
            RExC_seen_zerolen++;		/* Do not optimize RE away */
            goto finish_meta_pat;
        case 'C':
            vFAIL("\\C no longer supported");
        case 'X':
            ret = reg_node(pRExC_state, CLUMP);
            *flagp |= HASWIDTH;
            goto finish_meta_pat;

        case 'B':
            invert = 1;
            /* FALLTHROUGH */
        case 'b':
          {
            U8 flags = 0;
            regex_charset charset = get_regex_charset(RExC_flags);

            RExC_seen_zerolen++;
            RExC_seen |= REG_LOOKBEHIND_SEEN;
            op = BOUND + charset;

            if (RExC_parse >= RExC_end || *(RExC_parse + 1) != '{') {
                flags = TRADITIONAL_BOUND;
                if (op > BOUNDA) {  /* /aa is same as /a */
                    op = BOUNDA;
                }
            }
            else {
                STRLEN length;
                char name = *RExC_parse;
                char * endbrace =  (char *) memchr(RExC_parse, '}',
                                                   RExC_end - RExC_parse);
                char * e = endbrace;

                RExC_parse += 2;

                if (! endbrace) {
                    vFAIL2("Missing right brace on \\%c{}", name);
                }

                while (isBLANK(*RExC_parse)) {
                    RExC_parse++;
                }

                while (RExC_parse < e && isBLANK(*(e - 1))) {
                    e--;
                }

                if (e == RExC_parse) {
                    RExC_parse = endbrace + 1;  /* After the '}' */
                    vFAIL2("Empty \\%c{}", name);
                }

                length = e - RExC_parse;

                switch (*RExC_parse) {
                    case 'g':
                        if (    length != 1
                            && (memNEs(RExC_parse + 1, length - 1, "cb")))
                        {
                            goto bad_bound_type;
                        }
                        flags = GCB_BOUND;
                        break;
                    case 'l':
                        if (length != 2 || *(RExC_parse + 1) != 'b') {
                            goto bad_bound_type;
                        }
                        flags = LB_BOUND;
                        break;
                    case 's':
                        if (length != 2 || *(RExC_parse + 1) != 'b') {
                            goto bad_bound_type;
                        }
                        flags = SB_BOUND;
                        break;
                    case 'w':
                        if (length != 2 || *(RExC_parse + 1) != 'b') {
                            goto bad_bound_type;
                        }
                        flags = WB_BOUND;
                        break;
                    default:
                      bad_bound_type:
                        RExC_parse = e;
                        vFAIL2utf8f(
                            "'%" UTF8f "' is an unknown bound type",
                            UTF8fARG(UTF, length, e - length));
                        NOT_REACHED; /*NOTREACHED*/
                }
                RExC_parse = endbrace;
                REQUIRE_UNI_RULES(flagp, 0);

                if (op == BOUND) {
                    op = BOUNDU;
                }
                else if (op >= BOUNDA) {  /* /aa is same as /a */
                    op = BOUNDU;
                    length += 4;

                    /* Don't have to worry about UTF-8, in this message because
                     * to get here the contents of the \b must be ASCII */
                    ckWARN4reg(RExC_parse + 1,  /* Include the '}' in msg */
                              "Using /u for '%.*s' instead of /%s",
                              (unsigned) length,
                              endbrace - length + 1,
                              (charset == REGEX_ASCII_RESTRICTED_CHARSET)
                              ? ASCII_RESTRICT_PAT_MODS
                              : ASCII_MORE_RESTRICT_PAT_MODS);
                }
            }

            if (op == BOUND) {
                RExC_seen_d_op = TRUE;
            }
            else if (op == BOUNDL) {
                RExC_contains_locale = 1;
            }

            if (invert) {
                op += NBOUND - BOUND;
            }

            ret = reg_node(pRExC_state, op);
            FLAGS(REGNODE_p(ret)) = flags;

            goto finish_meta_pat;
          }

        case 'R':
            ret = reg_node(pRExC_state, LNBREAK);
            *flagp |= HASWIDTH|SIMPLE;
            goto finish_meta_pat;

        case 'd':
        case 'D':
        case 'h':
        case 'H':
        case 'p':
        case 'P':
        case 's':
        case 'S':
        case 'v':
        case 'V':
        case 'w':
        case 'W':
            /* These all have the same meaning inside [brackets], and it knows
             * how to do the best optimizations for them.  So, pretend we found
             * these within brackets, and let it do the work */
            RExC_parse--;

            ret = regclass(pRExC_state, flagp, depth+1,
                           TRUE, /* means just parse this element */
                           FALSE, /* don't allow multi-char folds */
                           FALSE, /* don't silence non-portable warnings.  It
                                     would be a bug if these returned
                                     non-portables */
                           (bool) RExC_strict,
                           TRUE, /* Allow an optimized regnode result */
                           NULL);
            RETURN_FAIL_ON_RESTART_FLAGP(flagp);
            /* regclass() can only return RESTART_PARSE and NEED_UTF8 if
             * multi-char folds are allowed.  */
            if (!ret)
                FAIL2("panic: regclass returned failure to regatom, flags=%#" UVxf,
                      (UV) *flagp);

            RExC_parse--;   /* regclass() leaves this one too far ahead */

          finish_meta_pat:
                   /* The escapes above that don't take a parameter can't be
                    * followed by a '{'.  But 'pX', 'p{foo}' and
                    * correspondingly 'P' can be */
            if (   RExC_parse - parse_start == 1
                && UCHARAT(RExC_parse + 1) == '{'
                && UNLIKELY(! regcurly(RExC_parse + 1, RExC_end, NULL)))
            {
                RExC_parse += 2;
                vFAIL("Unescaped left brace in regex is illegal here");
            }
            Set_Node_Offset(REGNODE_p(ret), parse_start);
            Set_Node_Length(REGNODE_p(ret), RExC_parse - parse_start + 1); /* MJD */
            nextchar(pRExC_state);
            break;
        case 'N':
            /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
             * \N{...} evaluates to a sequence of more than one code points).
             * The function call below returns a regnode, which is our result.
             * The parameters cause it to fail if the \N{} evaluates to a
             * single code point; we handle those like any other literal.  The
             * reason that the multicharacter case is handled here and not as
             * part of the EXACtish code is because of quantifiers.  In
             * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
             * this way makes that Just Happen. dmq.
             * join_exact() will join this up with adjacent EXACTish nodes
             * later on, if appropriate. */
            ++RExC_parse;
            if (grok_bslash_N(pRExC_state,
                              &ret,     /* Want a regnode returned */
                              NULL,     /* Fail if evaluates to a single code
                                           point */
                              NULL,     /* Don't need a count of how many code
                                           points */
                              flagp,
                              RExC_strict,
                              depth)
            ) {
                break;
            }

            RETURN_FAIL_ON_RESTART_FLAGP(flagp);

            /* Here, evaluates to a single code point.  Go get that */
            RExC_parse = parse_start;
            goto defchar;

        case 'k':    /* Handle \k<NAME> and \k'NAME' and \k{NAME} */
      parse_named_seq:  /* Also handle non-numeric \g{...} */
        {
            char ch;
            if (   RExC_parse >= RExC_end - 1
                || ((   ch = RExC_parse[1]) != '<'
                                      && ch != '\''
                                      && ch != '{'))
            {
                RExC_parse++;
                /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
                vFAIL2("Sequence %.2s... not terminated", parse_start);
            } else {
                RExC_parse += 2;
                if (ch == '{') {
                    while (isBLANK(*RExC_parse)) {
                        RExC_parse++;
                    }
                }
                ret = handle_named_backref(pRExC_state,
                                           flagp,
                                           parse_start,
                                           (ch == '<')
                                           ? '>'
                                           : (ch == '{')
                                             ? '}'
                                             : '\'');
            }
            break;
        }
        case 'g':
        case '1': case '2': case '3': case '4':
        case '5': case '6': case '7': case '8': case '9':
            {
                I32 num;
                char * endbrace = NULL;
                char * s = RExC_parse;
                char * e = RExC_end;

                if (*s == 'g') {
                    bool isrel = 0;

                    s++;
                    if (*s == '{') {
                        endbrace = (char *) memchr(s, '}', RExC_end - s);
                        if (! endbrace ) {

                            /* Missing '}'.  Position after the number to give
                             * a better indication to the user of where the
                             * problem is. */
                            s++;
                            if (*s == '-') {
                                s++;
                            }

                            /* If it looks to be a name and not a number, go
                             * handle it there */
                            if (! isDIGIT(*s)) {
                                goto parse_named_seq;
                            }

                            do {
                                s++;
                            } while isDIGIT(*s);

                            RExC_parse = s;
                            vFAIL("Unterminated \\g{...} pattern");
                        }

                        s++;    /* Past the '{' */

                        while (isBLANK(*s)) {
                            s++;
                        }

                        /* Ignore trailing blanks */
                        e = endbrace;
                        while (s < e && isBLANK(*(e - 1))) {
                            e--;
                        }
                    }

                    /* Here, have isolated the meat of the construct from any
                     * surrounding braces */

                    if (*s == '-') {
                        isrel = 1;
                        s++;
                    }

                    if (endbrace && !isDIGIT(*s)) {
                        goto parse_named_seq;
                    }

                    RExC_parse = s;
                    num = S_backref_value(RExC_parse, RExC_end);
                    if (num == 0)
                        vFAIL("Reference to invalid group 0");
                    else if (num == I32_MAX) {
                         if (isDIGIT(*RExC_parse))
                            vFAIL("Reference to nonexistent group");
                        else
                            vFAIL("Unterminated \\g... pattern");
                    }

                    if (isrel) {
                        num = RExC_npar - num;
                        if (num < 1)
                            vFAIL("Reference to nonexistent or unclosed group");
                    }
                }
                else {
                    num = S_backref_value(RExC_parse, RExC_end);
                    /* bare \NNN might be backref or octal - if it is larger
                     * than or equal RExC_npar then it is assumed to be an
                     * octal escape. Note RExC_npar is +1 from the actual
                     * number of parens. */
                    /* Note we do NOT check if num == I32_MAX here, as that is
                     * handled by the RExC_npar check */

                    if (    /* any numeric escape < 10 is always a backref */
                           num > 9
                            /* any numeric escape < RExC_npar is a backref */
                        && num >= RExC_npar
                            /* cannot be an octal escape if it starts with [89]
                             * */
                        && ! inRANGE(*RExC_parse, '8', '9')
                    ) {
                        /* Probably not meant to be a backref, instead likely
                         * to be an octal character escape, e.g. \35 or \777.
                         * The above logic should make it obvious why using
                         * octal escapes in patterns is problematic. - Yves */
                        RExC_parse = parse_start;
                        goto defchar;
                    }
                }

                /* At this point RExC_parse points at a numeric escape like
                 * \12 or \88 or the digits in \g{34} or \g34 or something
                 * similar, which we should NOT treat as an octal escape. It
                 * may or may not be a valid backref escape. For instance
                 * \88888888 is unlikely to be a valid backref.
                 *
                 * We've already figured out what value the digits represent.
                 * Now, move the parse to beyond them. */
                if (endbrace) {
                    RExC_parse = endbrace + 1;
                }
                else while (isDIGIT(*RExC_parse)) {
                    RExC_parse++;
                }

                if (num >= (I32)RExC_npar) {

                    /* It might be a forward reference; we can't fail until we
                     * know, by completing the parse to get all the groups, and
                     * then reparsing */
                    if (ALL_PARENS_COUNTED)  {
                        if (num >= RExC_total_parens)  {
                            vFAIL("Reference to nonexistent group");
                        }
                    }
                    else {
                        REQUIRE_PARENS_PASS;
                    }
                }
                RExC_sawback = 1;
                ret = reganode(pRExC_state,
                               ((! FOLD)
                                 ? REF
                                 : (ASCII_FOLD_RESTRICTED)
                                   ? REFFA
                                   : (AT_LEAST_UNI_SEMANTICS)
                                     ? REFFU
                                     : (LOC)
                                       ? REFFL
                                       : REFF),
                                num);
                if (OP(REGNODE_p(ret)) == REFF) {
                    RExC_seen_d_op = TRUE;
                }
                *flagp |= HASWIDTH;

                /* override incorrect value set in reganode MJD */
                Set_Node_Offset(REGNODE_p(ret), parse_start);
                Set_Node_Cur_Length(REGNODE_p(ret), parse_start-1);
                skip_to_be_ignored_text(pRExC_state, &RExC_parse,
                                        FALSE /* Don't force to /x */ );
            }
            break;
        case '\0':
            if (RExC_parse >= RExC_end)
                FAIL("Trailing \\");
            /* FALLTHROUGH */
        default:
            /* Do not generate "unrecognized" warnings here, we fall
               back into the quick-grab loop below */
            RExC_parse = parse_start;
            goto defchar;
        } /* end of switch on a \foo sequence */
        break;

    case '#':

        /* '#' comments should have been spaced over before this function was
         * called */
        assert((RExC_flags & RXf_PMf_EXTENDED) == 0);
        /*
        if (RExC_flags & RXf_PMf_EXTENDED) {
            RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
            if (RExC_parse < RExC_end)
                goto tryagain;
        }
        */

        /* FALLTHROUGH */

    default:
          defchar: {

            /* Here, we have determined that the next thing is probably a
             * literal character.  RExC_parse points to the first byte of its
             * definition.  (It still may be an escape sequence that evaluates
             * to a single character) */

            STRLEN len = 0;
            UV ender = 0;
            char *p;
            char *s, *old_s = NULL, *old_old_s = NULL;
            char *s0;
            U32 max_string_len = 255;

            /* We may have to reparse the node, artificially stopping filling
             * it early, based on info gleaned in the first parse.  This
             * variable gives where we stop.  Make it above the normal stopping
             * place first time through; otherwise it would stop too early */
            U32 upper_fill = max_string_len + 1;

            /* We start out as an EXACT node, even if under /i, until we find a
             * character which is in a fold.  The algorithm now segregates into
             * separate nodes, characters that fold from those that don't under
             * /i.  (This hopefully will create nodes that are fixed strings
             * even under /i, giving the optimizer something to grab on to.)
             * So, if a node has something in it and the next character is in
             * the opposite category, that node is closed up, and the function
             * returns.  Then regatom is called again, and a new node is
             * created for the new category. */
            U8 node_type = EXACT;

            /* Assume the node will be fully used; the excess is given back at
             * the end.  Under /i, we may need to temporarily add the fold of
             * an extra character or two at the end to check for splitting
             * multi-char folds, so allocate extra space for that.   We can't
             * make any other length assumptions, as a byte input sequence
             * could shrink down. */
            Ptrdiff_t current_string_nodes = STR_SZ(max_string_len
                                                 + ((! FOLD)
                                                    ? 0
                                                    : 2 * ((UTF)
                                                           ? UTF8_MAXBYTES_CASE
                        /* Max non-UTF-8 expansion is 2 */ : 2)));

            bool next_is_quantifier;
            char * oldp = NULL;

            /* We can convert EXACTF nodes to EXACTFU if they contain only
             * characters that match identically regardless of the target
             * string's UTF8ness.  The reason to do this is that EXACTF is not
             * trie-able, EXACTFU is, and EXACTFU requires fewer operations at
             * runtime.
             *
             * Similarly, we can convert EXACTFL nodes to EXACTFLU8 if they
             * contain only above-Latin1 characters (hence must be in UTF8),
             * which don't participate in folds with Latin1-range characters,
             * as the latter's folds aren't known until runtime. */
            bool maybe_exactfu = FOLD && (DEPENDS_SEMANTICS || LOC);

            /* Single-character EXACTish nodes are almost always SIMPLE.  This
             * allows us to override this as encountered */
            U8 maybe_SIMPLE = SIMPLE;

            /* Does this node contain something that can't match unless the
             * target string is (also) in UTF-8 */
            bool requires_utf8_target = FALSE;

            /* The sequence 'ss' is problematic in non-UTF-8 patterns. */
            bool has_ss = FALSE;

            /* So is the MICRO SIGN */
            bool has_micro_sign = FALSE;

            /* Set when we fill up the current node and there is still more
             * text to process */
            bool overflowed;

            /* Allocate an EXACT node.  The node_type may change below to
             * another EXACTish node, but since the size of the node doesn't
             * change, it works */
            ret = regnode_guts(pRExC_state, node_type, current_string_nodes,
                                                                    "exact");
            FILL_NODE(ret, node_type);
            RExC_emit++;

            s = STRING(REGNODE_p(ret));

            s0 = s;

          reparse:

            p = RExC_parse;
            len = 0;
            s = s0;
            node_type = EXACT;
            oldp = NULL;
            maybe_exactfu = FOLD && (DEPENDS_SEMANTICS || LOC);
            maybe_SIMPLE = SIMPLE;
            requires_utf8_target = FALSE;
            has_ss = FALSE;
            has_micro_sign = FALSE;

          continue_parse:

            /* This breaks under rare circumstances.  If folding, we do not
             * want to split a node at a character that is a non-final in a
             * multi-char fold, as an input string could just happen to want to
             * match across the node boundary.  The code at the end of the loop
             * looks for this, and backs off until it finds not such a
             * character, but it is possible (though extremely, extremely
             * unlikely) for all characters in the node to be non-final fold
             * ones, in which case we just leave the node fully filled, and
             * hope that it doesn't match the string in just the wrong place */

            assert( ! UTF     /* Is at the beginning of a character */
                   || UTF8_IS_INVARIANT(UCHARAT(RExC_parse))
                   || UTF8_IS_START(UCHARAT(RExC_parse)));

            overflowed = FALSE;

            /* Here, we have a literal character.  Find the maximal string of
             * them in the input that we can fit into a single EXACTish node.
             * We quit at the first non-literal or when the node gets full, or
             * under /i the categorization of folding/non-folding character
             * changes */
            while (p < RExC_end && len < upper_fill) {

                /* In most cases each iteration adds one byte to the output.
                 * The exceptions override this */
                Size_t added_len = 1;

                oldp = p;
                old_old_s = old_s;
                old_s = s;

                /* White space has already been ignored */
                assert(   (RExC_flags & RXf_PMf_EXTENDED) == 0
                       || ! is_PATWS_safe((p), RExC_end, UTF));

                switch ((U8)*p) {
                  const char* message;
                  U32 packed_warn;
                  U8 grok_c_char;

                case '^':
                case '$':
                case '.':
                case '[':
                case '(':
                case ')':
                case '|':
                    goto loopdone;
                case '\\':
                    /* Literal Escapes Switch

                       This switch is meant to handle escape sequences that
                       resolve to a literal character.

                       Every escape sequence that represents something
                       else, like an assertion or a char class, is handled
                       in the switch marked 'Special Escapes' above in this
                       routine, but also has an entry here as anything that
                       isn't explicitly mentioned here will be treated as
                       an unescaped equivalent literal.
                    */

                    switch ((U8)*++p) {

                    /* These are all the special escapes. */
                    case 'A':             /* Start assertion */
                    case 'b': case 'B':   /* Word-boundary assertion*/
                    case 'C':             /* Single char !DANGEROUS! */
                    case 'd': case 'D':   /* digit class */
                    case 'g': case 'G':   /* generic-backref, pos assertion */
                    case 'h': case 'H':   /* HORIZWS */
                    case 'k': case 'K':   /* named backref, keep marker */
                    case 'p': case 'P':   /* Unicode property */
                              case 'R':   /* LNBREAK */
                    case 's': case 'S':   /* space class */
                    case 'v': case 'V':   /* VERTWS */
                    case 'w': case 'W':   /* word class */
                    case 'X':             /* eXtended Unicode "combining
                                             character sequence" */
                    case 'z': case 'Z':   /* End of line/string assertion */
                        --p;
                        goto loopdone;

                    /* Anything after here is an escape that resolves to a
                       literal. (Except digits, which may or may not)
                     */
                    case 'n':
                        ender = '\n';
                        p++;
                        break;
                    case 'N': /* Handle a single-code point named character. */
                        RExC_parse = p + 1;
                        if (! grok_bslash_N(pRExC_state,
                                            NULL,   /* Fail if evaluates to
                                                       anything other than a
                                                       single code point */
                                            &ender, /* The returned single code
                                                       point */
                                            NULL,   /* Don't need a count of
                                                       how many code points */
                                            flagp,
                                            RExC_strict,
                                            depth)
                        ) {
                            if (*flagp & NEED_UTF8)
                                FAIL("panic: grok_bslash_N set NEED_UTF8");
                            RETURN_FAIL_ON_RESTART_FLAGP(flagp);

                            /* Here, it wasn't a single code point.  Go close
                             * up this EXACTish node.  The switch() prior to
                             * this switch handles the other cases */
                            RExC_parse = p = oldp;
                            goto loopdone;
                        }
                        p = RExC_parse;
                        RExC_parse = parse_start;

                        /* The \N{} means the pattern, if previously /d,
                         * becomes /u.  That means it can't be an EXACTF node,
                         * but an EXACTFU */
                        if (node_type == EXACTF) {
                            node_type = EXACTFU;

                            /* If the node already contains something that
                             * differs between EXACTF and EXACTFU, reparse it
                             * as EXACTFU */
                            if (! maybe_exactfu) {
                                len = 0;
                                s = s0;
                                goto reparse;
                            }
                        }

                        break;
                    case 'r':
                        ender = '\r';
                        p++;
                        break;
                    case 't':
                        ender = '\t';
                        p++;
                        break;
                    case 'f':
                        ender = '\f';
                        p++;
                        break;
                    case 'e':
                        ender = ESC_NATIVE;
                        p++;
                        break;
                    case 'a':
                        ender = '\a';
                        p++;
                        break;
                    case 'o':
                        if (! grok_bslash_o(&p,
                                            RExC_end,
                                            &ender,
                                            &message,
                                            &packed_warn,
                                            (bool) RExC_strict,
                                            FALSE, /* No illegal cp's */
                                            UTF))
                        {
                            RExC_parse = p; /* going to die anyway; point to
                                               exact spot of failure */
                            vFAIL(message);
                        }

                        if (message && TO_OUTPUT_WARNINGS(p)) {
                            warn_non_literal_string(p, packed_warn, message);
                        }
                        break;
                    case 'x':
                        if (! grok_bslash_x(&p,
                                            RExC_end,
                                            &ender,
                                            &message,
                                            &packed_warn,
                                            (bool) RExC_strict,
                                            FALSE, /* No illegal cp's */
                                            UTF))
                        {
                            RExC_parse = p;	/* going to die anyway; point
                                                   to exact spot of failure */
                            vFAIL(message);
                        }

                        if (message && TO_OUTPUT_WARNINGS(p)) {
                            warn_non_literal_string(p, packed_warn, message);
                        }

#ifdef EBCDIC
                        if (ender < 0x100) {
                            if (RExC_recode_x_to_native) {
                                ender = LATIN1_TO_NATIVE(ender);
                            }
                        }
#endif
                        break;
                    case 'c':
                        p++;
                        if (! grok_bslash_c(*p, &grok_c_char,
                                            &message, &packed_warn))
                        {
                            /* going to die anyway; point to exact spot of
                             * failure */
                            RExC_parse = p + ((UTF)
                                              ? UTF8_SAFE_SKIP(p, RExC_end)
                                              : 1);
                            vFAIL(message);
                        }

                        ender = grok_c_char;
                        p++;
                        if (message && TO_OUTPUT_WARNINGS(p)) {
                            warn_non_literal_string(p, packed_warn, message);
                        }

                        break;
                    case '8': case '9': /* must be a backreference */
                        --p;
                        /* we have an escape like \8 which cannot be an octal escape
                         * so we exit the loop, and let the outer loop handle this
                         * escape which may or may not be a legitimate backref. */
                        goto loopdone;
                    case '1': case '2': case '3':case '4':
                    case '5': case '6': case '7':

                        /* When we parse backslash escapes there is ambiguity
                         * between backreferences and octal escapes. Any escape
                         * from \1 - \9 is a backreference, any multi-digit
                         * escape which does not start with 0 and which when
                         * evaluated as decimal could refer to an already
                         * parsed capture buffer is a back reference. Anything
                         * else is octal.
                         *
                         * Note this implies that \118 could be interpreted as
                         * 118 OR as "\11" . "8" depending on whether there
                         * were 118 capture buffers defined already in the
                         * pattern.  */

                        /* NOTE, RExC_npar is 1 more than the actual number of
                         * parens we have seen so far, hence the "<" as opposed
                         * to "<=" */
                        if ( !isDIGIT(p[1]) || S_backref_value(p, RExC_end) < RExC_npar)
                        {  /* Not to be treated as an octal constant, go
                                   find backref */
                            p = oldp;
                            goto loopdone;
                        }
                        /* FALLTHROUGH */
                    case '0':
                        {
                            I32 flags = PERL_SCAN_SILENT_ILLDIGIT
                                      | PERL_SCAN_NOTIFY_ILLDIGIT;
                            STRLEN numlen = 3;
                            ender = grok_oct(p, &numlen, &flags, NULL);
                            p += numlen;
                            if (  (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
                                && isDIGIT(*p)  /* like \08, \178 */
                                && ckWARN(WARN_REGEXP))
                            {
                                reg_warn_non_literal_string(
                                     p + 1,
                                     form_alien_digit_msg(8, numlen, p,
                                                        RExC_end, UTF, FALSE));
                            }
                        }
                        break;
                    case '\0':
                        if (p >= RExC_end)
                            FAIL("Trailing \\");
                        /* FALLTHROUGH */
                    default:
                        if (isALPHANUMERIC(*p)) {
                            /* An alpha followed by '{' is going to fail next
                             * iteration, so don't output this warning in that
                             * case */
                            if (! isALPHA(*p) || *(p + 1) != '{') {
                                ckWARN2reg(p + 1, "Unrecognized escape \\%.1s"
                                                  " passed through", p);
                            }
                        }
                        goto normal_default;
                    } /* End of switch on '\' */
                    break;
                case '{':
                    /* Trying to gain new uses for '{' without breaking too
                     * much existing code is hard.  The solution currently
                     * adopted is:
                     *  1)  If there is no ambiguity that a '{' should always
                     *      be taken literally, at the start of a construct, we
                     *      just do so.
                     *  2)  If the literal '{' conflicts with our desired use
                     *      of it as a metacharacter, we die.  The deprecation
                     *      cycles for this have come and gone.
                     *  3)  If there is ambiguity, we raise a simple warning.
                     *      This could happen, for example, if the user
                     *      intended it to introduce a quantifier, but slightly
                     *      misspelled the quantifier.  Without this warning,
                     *      the quantifier would silently be taken as a literal
                     *      string of characters instead of a meta construct */
                    if (len || (p > RExC_start && isALPHA_A(*(p - 1)))) {
                        if (      RExC_strict
                            || (  p > parse_start + 1
                                && isALPHA_A(*(p - 1))
                                && *(p - 2) == '\\'))
                        {
                            RExC_parse = p + 1;
                            vFAIL("Unescaped left brace in regex is "
                                  "illegal here");
                        }
                        ckWARNreg(p + 1, "Unescaped left brace in regex is"
                                         " passed through");
                    }
                    goto normal_default;
                case '}':
                case ']':
                    if (p > RExC_parse && RExC_strict) {
                        ckWARN2reg(p + 1, "Unescaped literal '%c'", *p);
                    }
                    /*FALLTHROUGH*/
                default:    /* A literal character */
                  normal_default:
                    if (! UTF8_IS_INVARIANT(*p) && UTF) {
                        STRLEN numlen;
                        ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
                                               &numlen, UTF8_ALLOW_DEFAULT);
                        p += numlen;
                    }
                    else
                        ender = (U8) *p++;
                    break;
                } /* End of switch on the literal */

                /* Here, have looked at the literal character, and <ender>
                 * contains its ordinal; <p> points to the character after it.
                 * */

                if (ender > 255) {
                    REQUIRE_UTF8(flagp);
                    if (   UNICODE_IS_PERL_EXTENDED(ender)
                        && TO_OUTPUT_WARNINGS(p))
                    {
                        ckWARN2_non_literal_string(p,
                                                   packWARN(WARN_PORTABLE),
                                                   PL_extended_cp_format,
                                                   ender);
                    }
                }

                /* We need to check if the next non-ignored thing is a
                 * quantifier.  Move <p> to after anything that should be
                 * ignored, which, as a side effect, positions <p> for the next
                 * loop iteration */
                skip_to_be_ignored_text(pRExC_state, &p,
                                        FALSE /* Don't force to /x */ );

                /* If the next thing is a quantifier, it applies to this
                 * character only, which means that this character has to be in
                 * its own node and can't just be appended to the string in an
                 * existing node, so if there are already other characters in
                 * the node, close the node with just them, and set up to do
                 * this character again next time through, when it will be the
                 * only thing in its new node */

                next_is_quantifier =    LIKELY(p < RExC_end)
                                     && UNLIKELY(isQUANTIFIER(p, RExC_end));

                if (next_is_quantifier && LIKELY(len)) {
                    p = oldp;
                    goto loopdone;
                }

                /* Ready to add 'ender' to the node */

                if (! FOLD) {  /* The simple case, just append the literal */
                  not_fold_common:

                    /* Don't output if it would overflow */
                    if (UNLIKELY(len > max_string_len - ((UTF)
                                                      ? UVCHR_SKIP(ender)
                                                      : 1)))
                    {
                        overflowed = TRUE;
                        break;
                    }

                    if (UVCHR_IS_INVARIANT(ender) || ! UTF) {
                        *(s++) = (char) ender;
                    }
                    else {
                        U8 * new_s = uvchr_to_utf8((U8*)s, ender);
                        added_len = (char *) new_s - s;
                        s = (char *) new_s;

                        if (ender > 255)  {
                            requires_utf8_target = TRUE;
                        }
                    }
                }
                else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {

                    /* Here are folding under /l, and the code point is
                     * problematic.  If this is the first character in the
                     * node, change the node type to folding.   Otherwise, if
                     * this is the first problematic character, close up the
                     * existing node, so can start a new node with this one */
                    if (! len) {
                        node_type = EXACTFL;
                        RExC_contains_locale = 1;
                    }
                    else if (node_type == EXACT) {
                        p = oldp;
                        goto loopdone;
                    }

                    /* This problematic code point means we can't simplify
                     * things */
                    maybe_exactfu = FALSE;

                    /* Although these two characters have folds that are
                     * locale-problematic, they also have folds to above Latin1
                     * that aren't a problem.  Doing these now helps at
                     * runtime. */
                    if (UNLIKELY(   ender == GREEK_CAPITAL_LETTER_MU
                                 || ender == LATIN_CAPITAL_LETTER_SHARP_S))
                    {
                        goto fold_anyway;
                    }

                    /* Here, we are adding a problematic fold character.
                     * "Problematic" in this context means that its fold isn't
                     * known until runtime.  (The non-problematic code points
                     * are the above-Latin1 ones that fold to also all
                     * above-Latin1.  Their folds don't vary no matter what the
                     * locale is.) But here we have characters whose fold
                     * depends on the locale.  We just add in the unfolded
                     * character, and wait until runtime to fold it */
                    goto not_fold_common;
                }
                else /* regular fold; see if actually is in a fold */
                     if (   (ender < 256 && ! IS_IN_SOME_FOLD_L1(ender))
                         || (ender > 255
                            && ! _invlist_contains_cp(PL_in_some_fold, ender)))
                {
                    /* Here, folding, but the character isn't in a fold.
                     *
                     * Start a new node if previous characters in the node were
                     * folded */
                    if (len && node_type != EXACT) {
                        p = oldp;
                        goto loopdone;
                    }

                    /* Here, continuing a node with non-folded characters.  Add
                     * this one */
                    goto not_fold_common;
                }
                else {  /* Here, does participate in some fold */

                    /* If this is the first character in the node, change its
                     * type to folding.  Otherwise, if this is the first
                     * folding character in the node, close up the existing
                     * node, so can start a new node with this one.  */
                    if (! len) {
                        node_type = compute_EXACTish(pRExC_state);
                    }
                    else if (node_type == EXACT) {
                        p = oldp;
                        goto loopdone;
                    }

                    if (UTF) {  /* Alway use the folded value for UTF-8
                                   patterns */
                        if (UVCHR_IS_INVARIANT(ender)) {
                            if (UNLIKELY(len + 1 > max_string_len)) {
                                overflowed = TRUE;
                                break;
                            }

                            *(s)++ = (U8) toFOLD(ender);
                        }
                        else {
                            UV folded;

                          fold_anyway:
                            folded = _to_uni_fold_flags(
                                    ender,
                                    (U8 *) s,  /* We have allocated extra space
                                                  in 's' so can't run off the
                                                  end */
                                    &added_len,
                                    FOLD_FLAGS_FULL
                                  | ((   ASCII_FOLD_RESTRICTED
                                      || node_type == EXACTFL)
                                    ? FOLD_FLAGS_NOMIX_ASCII
                                    : 0));
                            if (UNLIKELY(len + added_len > max_string_len)) {
                                overflowed = TRUE;
                                break;
                            }

                            s += added_len;

                            if (   folded > 255
                                && LIKELY(folded != GREEK_SMALL_LETTER_MU))
                            {
                                /* U+B5 folds to the MU, so its possible for a
                                 * non-UTF-8 target to match it */
                                requires_utf8_target = TRUE;
                            }
                        }
                    }
                    else { /* Here is non-UTF8. */

                        /* The fold will be one or (rarely) two characters.
                         * Check that there's room for at least a single one
                         * before setting any flags, etc.  Because otherwise an
                         * overflowing character could cause a flag to be set
                         * even though it doesn't end up in this node.  (For
                         * the two character fold, we check again, before
                         * setting any flags) */
                        if (UNLIKELY(len + 1 > max_string_len)) {
                            overflowed = TRUE;
                            break;
                        }

#if    UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */   \
   || (UNICODE_MAJOR_VERSION == 3 && (   UNICODE_DOT_VERSION > 0)       \
                                      || UNICODE_DOT_DOT_VERSION > 0)

                        /* On non-ancient Unicodes, check for the only possible
                         * multi-char fold  */
                        if (UNLIKELY(ender == LATIN_SMALL_LETTER_SHARP_S)) {

                            /* This potential multi-char fold means the node
                             * can't be simple (because it could match more
                             * than a single char).  And in some cases it will
                             * match 'ss', so set that flag */
                            maybe_SIMPLE = 0;
                            has_ss = TRUE;

                            /* It can't change to be an EXACTFU (unless already
                             * is one).  We fold it iff under /u rules. */
                            if (node_type != EXACTFU) {
                                maybe_exactfu = FALSE;
                            }
                            else {
                                if (UNLIKELY(len + 2 > max_string_len)) {
                                    overflowed = TRUE;
                                    break;
                                }

                                *(s++) = 's';
                                *(s++) = 's';
                                added_len = 2;

                                goto done_with_this_char;
                            }
                        }
                        else if (   UNLIKELY(isALPHA_FOLD_EQ(ender, 's'))
                                 && LIKELY(len > 0)
                                 && UNLIKELY(isALPHA_FOLD_EQ(*(s-1), 's')))
                        {
                            /* Also, the sequence 'ss' is special when not
                             * under /u.  If the target string is UTF-8, it
                             * should match SHARP S; otherwise it won't.  So,
                             * here we have to exclude the possibility of this
                             * node moving to /u.*/
                            has_ss = TRUE;
                            maybe_exactfu = FALSE;
                        }
#endif
                        /* Here, the fold will be a single character */

                        if (UNLIKELY(ender == MICRO_SIGN)) {
                            has_micro_sign = TRUE;
                        }
                        else if (PL_fold[ender] != PL_fold_latin1[ender]) {

                            /* If the character's fold differs between /d and
                             * /u, this can't change to be an EXACTFU node */
                            maybe_exactfu = FALSE;
                        }

                        *(s++) = (DEPENDS_SEMANTICS)
                                 ? (char) toFOLD(ender)

                                   /* Under /u, the fold of any character in
                                    * the 0-255 range happens to be its
                                    * lowercase equivalent, except for LATIN
                                    * SMALL LETTER SHARP S, which was handled
                                    * above, and the MICRO SIGN, whose fold
                                    * requires UTF-8 to represent.  */
                                 : (char) toLOWER_L1(ender);
                    }
                } /* End of adding current character to the node */

              done_with_this_char:

                len += added_len;

                if (next_is_quantifier) {

                    /* Here, the next input is a quantifier, and to get here,
                     * the current character is the only one in the node. */
                    goto loopdone;
                }

            } /* End of loop through literal characters */

            /* Here we have either exhausted the input or run out of room in
             * the node.  If the former, we are done.  (If we encountered a
             * character that can't be in the node, transfer is made directly
             * to <loopdone>, and so we wouldn't have fallen off the end of the
             * loop.)  */
            if (LIKELY(! overflowed)) {
                goto loopdone;
            }

            /* Here we have run out of room.  We can grow plain EXACT and
             * LEXACT nodes.  If the pattern is gigantic enough, though,
             * eventually we'll have to artificially chunk the pattern into
             * multiple nodes. */
            if (! LOC && (node_type == EXACT || node_type == LEXACT)) {
                Size_t overhead = 1 + regarglen[OP(REGNODE_p(ret))];
                Size_t overhead_expansion = 0;
                char temp[256];
                Size_t max_nodes_for_string;
                Size_t achievable;
                SSize_t delta;

                /* Here we couldn't fit the final character in the current
                 * node, so it will have to be reparsed, no matter what else we
                 * do */
                p = oldp;

                /* If would have overflowed a regular EXACT node, switch
                 * instead to an LEXACT.  The code below is structured so that
                 * the actual growing code is common to changing from an EXACT
                 * or just increasing the LEXACT size.  This means that we have
                 * to save the string in the EXACT case before growing, and
                 * then copy it afterwards to its new location */
                if (node_type == EXACT) {
                    overhead_expansion = regarglen[LEXACT] - regarglen[EXACT];
                    RExC_emit += overhead_expansion;
                    Copy(s0, temp, len, char);
                }

                /* Ready to grow.  If it was a plain EXACT, the string was
                 * saved, and the first few bytes of it overwritten by adding
                 * an argument field.  We assume, as we do elsewhere in this
                 * file, that one byte of remaining input will translate into
                 * one byte of output, and if that's too small, we grow again,
                 * if too large the excess memory is freed at the end */

                max_nodes_for_string = U16_MAX - overhead - overhead_expansion;
                achievable = MIN(max_nodes_for_string,
                                 current_string_nodes + STR_SZ(RExC_end - p));
                delta = achievable - current_string_nodes;

                /* If there is just no more room, go finish up this chunk of
                 * the pattern. */
                if (delta <= 0) {
                    goto loopdone;
                }

                change_engine_size(pRExC_state, delta + overhead_expansion);
                current_string_nodes += delta;
                max_string_len
                           = sizeof(struct regnode) * current_string_nodes;
                upper_fill = max_string_len + 1;

                /* If the length was small, we know this was originally an
                 * EXACT node now converted to LEXACT, and the string has to be
                 * restored.  Otherwise the string was untouched.  260 is just
                 * a number safely above 255 so don't have to worry about
                 * getting it precise */
                if (len < 260) {
                    node_type = LEXACT;
                    FILL_NODE(ret, node_type);
                    s0 = STRING(REGNODE_p(ret));
                    Copy(temp, s0, len, char);
                    s = s0 + len;
                }

                goto continue_parse;
            }
            else if (FOLD) {
                bool splittable = FALSE;
                bool backed_up = FALSE;
                char * e;       /* should this be U8? */
                char * s_start; /* should this be U8? */

                /* Here is /i.  Running out of room creates a problem if we are
                 * folding, and the split happens in the middle of a
                 * multi-character fold, as a match that should have occurred,
                 * won't, due to the way nodes are matched, and our artificial
                 * boundary.  So back off until we aren't splitting such a
                 * fold.  If there is no such place to back off to, we end up
                 * taking the entire node as-is.  This can happen if the node
                 * consists entirely of 'f' or entirely of 's' characters (or
                 * things that fold to them) as 'ff' and 'ss' are
                 * multi-character folds.
                 *
                 * The Unicode standard says that multi character folds consist
                 * of either two or three characters.  That means we would be
                 * splitting one if the final character in the node is at the
                 * beginning of either type, or is the second of a three
                 * character fold.
                 *
                 * At this point:
                 *  ender     is the code point of the character that won't fit
                 *            in the node
                 *  s         points to just beyond the final byte in the node.
                 *            It's where we would place ender if there were
                 *            room, and where in fact we do place ender's fold
                 *            in the code below, as we've over-allocated space
                 *            for s0 (hence s) to allow for this
                 *  e         starts at 's' and advances as we append things.
                 *  old_s     is the same as 's'.  (If ender had fit, 's' would
                 *            have been advanced to beyond it).
                 *  old_old_s points to the beginning byte of the final
                 *            character in the node
                 *  p         points to the beginning byte in the input of the
                 *            character beyond 'ender'.
                 *  oldp      points to the beginning byte in the input of
                 *            'ender'.
                 *
                 * In the case of /il, we haven't folded anything that could be
                 * affected by the locale.  That means only above-Latin1
                 * characters that fold to other above-latin1 characters get
                 * folded at compile time.  To check where a good place to
                 * split nodes is, everything in it will have to be folded.
                 * The boolean 'maybe_exactfu' keeps track in /il if there are
                 * any unfolded characters in the node. */
                bool need_to_fold_loc = LOC && ! maybe_exactfu;

                /* If we do need to fold the node, we need a place to store the
                 * folded copy, and a way to map back to the unfolded original
                 * */
                char * locfold_buf = NULL;
                Size_t * loc_correspondence = NULL;

                if (! need_to_fold_loc) {   /* The normal case.  Just
                                               initialize to the actual node */
                    e = s;
                    s_start = s0;
                    s = old_old_s;  /* Point to the beginning of the final char
                                       that fits in the node */
                }
                else {

                    /* Here, we have filled a /il node, and there are unfolded
                     * characters in it.  If the runtime locale turns out to be
                     * UTF-8, there are possible multi-character folds, just
                     * like when not under /l.  The node hence can't terminate
                     * in the middle of such a fold.  To determine this, we
                     * have to create a folded copy of this node.  That means
                     * reparsing the node, folding everything assuming a UTF-8
                     * locale.  (If at runtime it isn't such a locale, the
                     * actions here wouldn't have been necessary, but we have
                     * to assume the worst case.)  If we find we need to back
                     * off the folded string, we do so, and then map that
                     * position back to the original unfolded node, which then
                     * gets output, truncated at that spot */

                    char * redo_p = RExC_parse;
                    char * redo_e;
                    char * old_redo_e;

                    /* Allow enough space assuming a single byte input folds to
                     * a single byte output, plus assume that the two unparsed
                     * characters (that we may need) fold to the largest number
                     * of bytes possible, plus extra for one more worst case
                     * scenario.  In the loop below, if we start eating into
                     * that final spare space, we enlarge this initial space */
                    Size_t size = max_string_len + (3 * UTF8_MAXBYTES_CASE) + 1;

                    Newxz(locfold_buf, size, char);
                    Newxz(loc_correspondence, size, Size_t);

                    /* Redo this node's parse, folding into 'locfold_buf' */
                    redo_p = RExC_parse;
                    old_redo_e = redo_e = locfold_buf;
                    while (redo_p <= oldp) {

                        old_redo_e = redo_e;
                        loc_correspondence[redo_e - locfold_buf]
                                                        = redo_p - RExC_parse;

                        if (UTF) {
                            Size_t added_len;

                            (void) _to_utf8_fold_flags((U8 *) redo_p,
                                                       (U8 *) RExC_end,
                                                       (U8 *) redo_e,
                                                       &added_len,
                                                       FOLD_FLAGS_FULL);
                            redo_e += added_len;
                            redo_p += UTF8SKIP(redo_p);
                        }
                        else {

                            /* Note that if this code is run on some ancient
                             * Unicode versions, SHARP S doesn't fold to 'ss',
                             * but rather than clutter the code with #ifdef's,
                             * as is done above, we ignore that possibility.
                             * This is ok because this code doesn't affect what
                             * gets matched, but merely where the node gets
                             * split */
                            if (UCHARAT(redo_p) != LATIN_SMALL_LETTER_SHARP_S) {
                                *redo_e++ = toLOWER_L1(UCHARAT(redo_p));
                            }
                            else {
                                *redo_e++ = 's';
                                *redo_e++ = 's';
                            }
                            redo_p++;
                        }


                        /* If we're getting so close to the end that a
                         * worst-case fold in the next character would cause us
                         * to overflow, increase, assuming one byte output byte
                         * per one byte input one, plus room for another worst
                         * case fold */
                        if (   redo_p <= oldp
                            && redo_e > locfold_buf + size
                                                    - (UTF8_MAXBYTES_CASE + 1))
                        {
                            Size_t new_size = size
                                            + (oldp - redo_p)
                                            + UTF8_MAXBYTES_CASE + 1;
                            Ptrdiff_t e_offset = redo_e - locfold_buf;

                            Renew(locfold_buf, new_size, char);
                            Renew(loc_correspondence, new_size, Size_t);
                            size = new_size;

                            redo_e = locfold_buf + e_offset;
                        }
                    }

                    /* Set so that things are in terms of the folded, temporary
                     * string */
                    s = old_redo_e;
                    s_start = locfold_buf;
                    e = redo_e;

                }

                /* Here, we have 's', 's_start' and 'e' set up to point to the
                 * input that goes into the node, folded.
                 *
                 * If the final character of the node and the fold of ender
                 * form the first two characters of a three character fold, we
                 * need to peek ahead at the next (unparsed) character in the
                 * input to determine if the three actually do form such a
                 * fold.  Just looking at that character is not generally
                 * sufficient, as it could be, for example, an escape sequence
                 * that evaluates to something else, and it needs to be folded.
                 *
                 * khw originally thought to just go through the parse loop one
                 * extra time, but that doesn't work easily as that iteration
                 * could cause things to think that the parse is over and to
                 * goto loopdone.  The character could be a '$' for example, or
                 * the character beyond could be a quantifier, and other
                 * glitches as well.
                 *
                 * The solution used here for peeking ahead is to look at that
                 * next character.  If it isn't ASCII punctuation, then it will
                 * be something that would continue on in an EXACTish node if
                 * there were space.  We append the fold of it to s, having
                 * reserved enough room in s0 for the purpose.  If we can't
                 * reasonably peek ahead, we instead assume the worst case:
                 * that it is something that would form the completion of a
                 * multi-char fold.
                 *
                 * If we can't split between s and ender, we work backwards
                 * character-by-character down to s0.  At each current point
                 * see if we are at the beginning of a multi-char fold.  If so,
                 * that means we would be splitting the fold across nodes, and
                 * so we back up one and try again.
                 *
                 * If we're not at the beginning, we still could be at the
                 * final two characters of a (rare) three character fold.  We
                 * check if the sequence starting at the character before the
                 * current position (and including the current and next
                 * characters) is a three character fold.  If not, the node can
                 * be split here.  If it is, we have to backup two characters
                 * and try again.
                 *
                 * Otherwise, the node can be split at the current position.
                 *
                 * The same logic is used for UTF-8 patterns and not */
                if (UTF) {
                    Size_t added_len;

                    /* Append the fold of ender */
                    (void) _to_uni_fold_flags(
                        ender,
                        (U8 *) e,
                        &added_len,
                        FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
                                        ? FOLD_FLAGS_NOMIX_ASCII
                                        : 0));
                    e += added_len;

                    /* 's' and the character folded to by ender may be the
                     * first two of a three-character fold, in which case the
                     * node should not be split here.  That may mean examining
                     * the so-far unparsed character starting at 'p'.  But if
                     * ender folded to more than one character, we already have
                     * three characters to look at.  Also, we first check if
                     * the sequence consisting of s and the next character form
                     * the first two of some three character fold.  If not,
                     * there's no need to peek ahead. */
                    if (   added_len <= UTF8SKIP(e - added_len)
                        && UNLIKELY(is_THREE_CHAR_FOLD_HEAD_utf8_safe(s, e)))
                    {
                        /* Here, the two do form the beginning of a potential
                         * three character fold.  The unexamined character may
                         * or may not complete it.  Peek at it.  It might be
                         * something that ends the node or an escape sequence,
                         * in which case we don't know without a lot of work
                         * what it evaluates to, so we have to assume the worst
                         * case: that it does complete the fold, and so we
                         * can't split here.  All such instances  will have
                         * that character be an ASCII punctuation character,
                         * like a backslash.  So, for that case, backup one and
                         * drop down to try at that position */
                        if (isPUNCT(*p)) {
                            s = (char *) utf8_hop_back((U8 *) s, -1,
                                       (U8 *) s_start);
                            backed_up = TRUE;
                        }
                        else {
                            /* Here, since it's not punctuation, it must be a
                             * real character, and we can append its fold to
                             * 'e' (having deliberately reserved enough space
                             * for this eventuality) and drop down to check if
                             * the three actually do form a folded sequence */
                            (void) _to_utf8_fold_flags(
                                (U8 *) p, (U8 *) RExC_end,
                                (U8 *) e,
                                &added_len,
                                FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
                                                ? FOLD_FLAGS_NOMIX_ASCII
                                                : 0));
                            e += added_len;
                        }
                    }

                    /* Here, we either have three characters available in
                     * sequence starting at 's', or we have two characters and
                     * know that the following one can't possibly be part of a
                     * three character fold.  We go through the node backwards
                     * until we find a place where we can split it without
                     * breaking apart a multi-character fold.  At any given
                     * point we have to worry about if such a fold begins at
                     * the current 's', and also if a three-character fold
                     * begins at s-1, (containing s and s+1).  Splitting in
                     * either case would break apart a fold */
                    do {
                        char *prev_s = (char *) utf8_hop_back((U8 *) s, -1,
                                                            (U8 *) s_start);

                        /* If is a multi-char fold, can't split here.  Backup
                         * one char and try again */
                        if (UNLIKELY(is_MULTI_CHAR_FOLD_utf8_safe(s, e))) {
                            s = prev_s;
                            backed_up = TRUE;
                            continue;
                        }

                        /* If the two characters beginning at 's' are part of a
                         * three character fold starting at the character
                         * before s, we can't split either before or after s.
                         * Backup two chars and try again */
                        if (   LIKELY(s > s_start)
                            && UNLIKELY(is_THREE_CHAR_FOLD_utf8_safe(prev_s, e)))
                        {
                            s = prev_s;
                            s = (char *) utf8_hop_back((U8 *) s, -1, (U8 *) s_start);
                            backed_up = TRUE;
                            continue;
                        }

                        /* Here there's no multi-char fold between s and the
                         * next character following it.  We can split */
                        splittable = TRUE;
                        break;

                    } while (s > s_start); /* End of loops backing up through the node */

                    /* Here we either couldn't find a place to split the node,
                     * or else we broke out of the loop setting 'splittable' to
                     * true.  In the latter case, the place to split is between
                     * the first and second characters in the sequence starting
                     * at 's' */
                    if (splittable) {
                        s += UTF8SKIP(s);
                    }
                }
                else {  /* Pattern not UTF-8 */
                    if (   ender != LATIN_SMALL_LETTER_SHARP_S
                        || ASCII_FOLD_RESTRICTED)
                    {
                        assert( toLOWER_L1(ender) < 256 );
                        *e++ = (char)(toLOWER_L1(ender)); /* should e and the cast be U8? */
                    }
                    else {
                        *e++ = 's';
                        *e++ = 's';
                    }

                    if (   e - s  <= 1
                        && UNLIKELY(is_THREE_CHAR_FOLD_HEAD_latin1_safe(s, e)))
                    {
                        if (isPUNCT(*p)) {
                            s--;
                            backed_up = TRUE;
                        }
                        else {
                            if (   UCHARAT(p) != LATIN_SMALL_LETTER_SHARP_S
                                || ASCII_FOLD_RESTRICTED)
                            {
                                assert( toLOWER_L1(ender) < 256 );
                                *e++ = (char)(toLOWER_L1(ender)); /* should e and the cast be U8? */
                            }
                            else {
                                *e++ = 's';
                                *e++ = 's';
                            }
                        }
                    }

                    do {
                        if (UNLIKELY(is_MULTI_CHAR_FOLD_latin1_safe(s, e))) {
                            s--;
                            backed_up = TRUE;
                            continue;
                        }

                        if (   LIKELY(s > s_start)
                            && UNLIKELY(is_THREE_CHAR_FOLD_latin1_safe(s - 1, e)))
                        {
                            s -= 2;
                            backed_up = TRUE;
                            continue;
                        }

                        splittable = TRUE;
                        break;

                    } while (s > s_start);

                    if (splittable) {
                        s++;
                    }
                }

                /* Here, we are done backing up.  If we didn't backup at all
                 * (the likely case), just proceed */
                if (backed_up) {

                   /* If we did find a place to split, reparse the entire node
                    * stopping where we have calculated. */
                    if (splittable) {

                       /* If we created a temporary folded string under /l, we
                        * have to map that back to the original */
                        if (need_to_fold_loc) {
                            upper_fill = loc_correspondence[s - s_start];
                            if (upper_fill == 0) {
                                FAIL2("panic: loc_correspondence[%d] is 0",
                                      (int) (s - s_start));
                            }
                            Safefree(locfold_buf);
                            Safefree(loc_correspondence);
                        }
                        else {
                            upper_fill = s - s0;
                        }
                        goto reparse;
                    }

                    /* Here the node consists entirely of non-final multi-char
                     * folds.  (Likely it is all 'f's or all 's's.)  There's no
                     * decent place to split it, so give up and just take the
                     * whole thing */
                    len = old_s - s0;
                }

                if (need_to_fold_loc) {
                    Safefree(locfold_buf);
                    Safefree(loc_correspondence);
                }
            }   /* End of verifying node ends with an appropriate char */

            /* We need to start the next node at the character that didn't fit
             * in this one */
            p = oldp;

          loopdone:   /* Jumped to when encounters something that shouldn't be
                         in the node */

            /* Free up any over-allocated space; cast is to silence bogus
             * warning in MS VC */
            change_engine_size(pRExC_state,
                        - (Ptrdiff_t) (current_string_nodes - STR_SZ(len)));

            /* I (khw) don't know if you can get here with zero length, but the
             * old code handled this situation by creating a zero-length EXACT
             * node.  Might as well be NOTHING instead */
            if (len == 0) {
                OP(REGNODE_p(ret)) = NOTHING;
            }
            else {

                /* If the node type is EXACT here, check to see if it
                 * should be EXACTL, or EXACT_REQ8. */
                if (node_type == EXACT) {
                    if (LOC) {
                        node_type = EXACTL;
                    }
                    else if (requires_utf8_target) {
                        node_type = EXACT_REQ8;
                    }
                }
                else if (node_type == LEXACT) {
                    if (requires_utf8_target) {
                        node_type = LEXACT_REQ8;
                    }
                }
                else if (FOLD) {
                    if (    UNLIKELY(has_micro_sign || has_ss)
                        && (node_type == EXACTFU || (   node_type == EXACTF
                                                     && maybe_exactfu)))
                    {   /* These two conditions are problematic in non-UTF-8
                           EXACTFU nodes. */
                        assert(! UTF);
                        node_type = EXACTFUP;
                    }
                    else if (node_type == EXACTFL) {

                        /* 'maybe_exactfu' is deliberately set above to
                         * indicate this node type, where all code points in it
                         * are above 255 */
                        if (maybe_exactfu) {
                            node_type = EXACTFLU8;
                        }
                        else if (UNLIKELY(
                             _invlist_contains_cp(PL_HasMultiCharFold, ender)))
                        {
                            /* A character that folds to more than one will
                             * match multiple characters, so can't be SIMPLE.
                             * We don't have to worry about this with EXACTFLU8
                             * nodes just above, as they have already been
                             * folded (since the fold doesn't vary at run
                             * time).  Here, if the final character in the node
                             * folds to multiple, it can't be simple.  (This
                             * only has an effect if the node has only a single
                             * character, hence the final one, as elsewhere we
                             * turn off simple for nodes whose length > 1 */
                            maybe_SIMPLE = 0;
                        }
                    }
                    else if (node_type == EXACTF) {  /* Means is /di */

                        /* This intermediate variable is needed solely because
                         * the asserts in the macro where used exceed Win32's
                         * literal string capacity */
                        char first_char = * STRING(REGNODE_p(ret));

                        /* If 'maybe_exactfu' is clear, then we need to stay
                         * /di.  If it is set, it means there are no code
                         * points that match differently depending on UTF8ness
                         * of the target string, so it can become an EXACTFU
                         * node */
                        if (! maybe_exactfu) {
                            RExC_seen_d_op = TRUE;
                        }
                        else if (   isALPHA_FOLD_EQ(first_char, 's')
                                 || isALPHA_FOLD_EQ(ender, 's'))
                        {
                            /* But, if the node begins or ends in an 's' we
                             * have to defer changing it into an EXACTFU, as
                             * the node could later get joined with another one
                             * that ends or begins with 's' creating an 'ss'
                             * sequence which would then wrongly match the
                             * sharp s without the target being UTF-8.  We
                             * create a special node that we resolve later when
                             * we join nodes together */

                            node_type = EXACTFU_S_EDGE;
                        }
                        else {
                            node_type = EXACTFU;
                        }
                    }

                    if (requires_utf8_target && node_type == EXACTFU) {
                        node_type = EXACTFU_REQ8;
                    }
                }

                OP(REGNODE_p(ret)) = node_type;
                setSTR_LEN(REGNODE_p(ret), len);
                RExC_emit += STR_SZ(len);

                /* If the node isn't a single character, it can't be SIMPLE */
                if (len > (Size_t) ((UTF) ? UTF8SKIP(STRING(REGNODE_p(ret))) : 1)) {
                    maybe_SIMPLE = 0;
                }

                *flagp |= HASWIDTH | maybe_SIMPLE;
            }

            Set_Node_Length(REGNODE_p(ret), p - parse_start - 1);
            RExC_parse = p;

            {
                /* len is STRLEN which is unsigned, need to copy to signed */
                IV iv = len;
                if (iv < 0)
                    vFAIL("Internal disaster");
            }

        } /* End of label 'defchar:' */
        break;
    } /* End of giant switch on input character */

    /* Position parse to next real character */
    skip_to_be_ignored_text(pRExC_state, &RExC_parse,
                                            FALSE /* Don't force to /x */ );
    if (   *RExC_parse == '{'
        && OP(REGNODE_p(ret)) != SBOL && ! regcurly(RExC_parse, RExC_end, NULL))
    {
        if (RExC_strict) {
            RExC_parse++;
            vFAIL("Unescaped left brace in regex is illegal here");
        }
        ckWARNreg(RExC_parse + 1, "Unescaped left brace in regex is"
                                  " passed through");
    }

    return(ret);
}


STATIC void
S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
{
    /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'.  It
     * sets up the bitmap and any flags, removing those code points from the
     * inversion list, setting it to NULL should it become completely empty */


    PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
    assert(PL_regkind[OP(node)] == ANYOF);

    /* There is no bitmap for this node type */
    if (inRANGE(OP(node), ANYOFH, ANYOFRb)) {
        return;
    }

    ANYOF_BITMAP_ZERO(node);
    if (*invlist_ptr) {

        /* This gets set if we actually need to modify things */
        bool change_invlist = FALSE;

        UV start, end;

        /* Start looking through *invlist_ptr */
        invlist_iterinit(*invlist_ptr);
        while (invlist_iternext(*invlist_ptr, &start, &end)) {
            UV high;
            int i;

            if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
                ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
            }

            /* Quit if are above what we should change */
            if (start >= NUM_ANYOF_CODE_POINTS) {
                break;
            }

            change_invlist = TRUE;

            /* Set all the bits in the range, up to the max that we are doing */
            high = (end < NUM_ANYOF_CODE_POINTS - 1)
                   ? end
                   : NUM_ANYOF_CODE_POINTS - 1;
            for (i = start; i <= (int) high; i++) {
                ANYOF_BITMAP_SET(node, i);
            }
        }
        invlist_iterfinish(*invlist_ptr);

        /* Done with loop; remove any code points that are in the bitmap from
         * *invlist_ptr; similarly for code points above the bitmap if we have
         * a flag to match all of them anyways */
        if (change_invlist) {
            _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
        }
        if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
            _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
        }

        /* If have completely emptied it, remove it completely */
        if (_invlist_len(*invlist_ptr) == 0) {
            SvREFCNT_dec_NN(*invlist_ptr);
            *invlist_ptr = NULL;
        }
    }
}

/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
   Character classes ([:foo:]) can also be negated ([:^foo:]).
   Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
   Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
   but trigger failures because they are currently unimplemented. */

#define POSIXCC_DONE(c)   ((c) == ':')
#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
#define MAYBE_POSIXCC(c) (POSIXCC(c) || (c) == '^' || (c) == ';')

#define WARNING_PREFIX              "Assuming NOT a POSIX class since "
#define NO_BLANKS_POSIX_WARNING     "no blanks are allowed in one"
#define SEMI_COLON_POSIX_WARNING    "a semi-colon was found instead of a colon"

#define NOT_MEANT_TO_BE_A_POSIX_CLASS (OOB_NAMEDCLASS - 1)

/* 'posix_warnings' and 'warn_text' are names of variables in the following
 * routine. q.v. */
#define ADD_POSIX_WARNING(p, text)  STMT_START {                            \
        if (posix_warnings) {                                               \
            if (! RExC_warn_text ) RExC_warn_text =                         \
                                         (AV *) sv_2mortal((SV *) newAV()); \
            av_push(RExC_warn_text, Perl_newSVpvf(aTHX_                     \
                                             WARNING_PREFIX                 \
                                             text                           \
                                             REPORT_LOCATION,               \
                                             REPORT_LOCATION_ARGS(p)));     \
        }                                                                   \
    } STMT_END
#define CLEAR_POSIX_WARNINGS()                                              \
    STMT_START {                                                            \
        if (posix_warnings && RExC_warn_text)                               \
            av_clear(RExC_warn_text);                                       \
    } STMT_END

#define CLEAR_POSIX_WARNINGS_AND_RETURN(ret)                                \
    STMT_START {                                                            \
        CLEAR_POSIX_WARNINGS();                                             \
        return ret;                                                         \
    } STMT_END

STATIC int
S_handle_possible_posix(pTHX_ RExC_state_t *pRExC_state,

    const char * const s,      /* Where the putative posix class begins.
                                  Normally, this is one past the '['.  This
                                  parameter exists so it can be somewhere
                                  besides RExC_parse. */
    char ** updated_parse_ptr, /* Where to set the updated parse pointer, or
                                  NULL */
    AV ** posix_warnings,      /* Where to place any generated warnings, or
                                  NULL */
    const bool check_only      /* Don't die if error */
)
{
    /* This parses what the caller thinks may be one of the three POSIX
     * constructs:
     *  1) a character class, like [:blank:]
     *  2) a collating symbol, like [. .]
     *  3) an equivalence class, like [= =]
     * In the latter two cases, it croaks if it finds a syntactically legal
     * one, as these are not handled by Perl.
     *
     * The main purpose is to look for a POSIX character class.  It returns:
     *  a) the class number
     *      if it is a completely syntactically and semantically legal class.
     *      'updated_parse_ptr', if not NULL, is set to point to just after the
     *      closing ']' of the class
     *  b) OOB_NAMEDCLASS
     *      if it appears that one of the three POSIX constructs was meant, but
     *      its specification was somehow defective.  'updated_parse_ptr', if
     *      not NULL, is set to point to the character just after the end
     *      character of the class.  See below for handling of warnings.
     *  c) NOT_MEANT_TO_BE_A_POSIX_CLASS
     *      if it  doesn't appear that a POSIX construct was intended.
     *      'updated_parse_ptr' is not changed.  No warnings nor errors are
     *      raised.
     *
     * In b) there may be errors or warnings generated.  If 'check_only' is
     * TRUE, then any errors are discarded.  Warnings are returned to the
     * caller via an AV* created into '*posix_warnings' if it is not NULL.  If
     * instead it is NULL, warnings are suppressed.
     *
     * The reason for this function, and its complexity is that a bracketed
     * character class can contain just about anything.  But it's easy to
     * mistype the very specific posix class syntax but yielding a valid
     * regular bracketed class, so it silently gets compiled into something
     * quite unintended.
     *
     * The solution adopted here maintains backward compatibility except that
     * it adds a warning if it looks like a posix class was intended but
     * improperly specified.  The warning is not raised unless what is input
     * very closely resembles one of the 14 legal posix classes.  To do this,
     * it uses fuzzy parsing.  It calculates how many single-character edits it
     * would take to transform what was input into a legal posix class.  Only
     * if that number is quite small does it think that the intention was a
     * posix class.  Obviously these are heuristics, and there will be cases
     * where it errs on one side or another, and they can be tweaked as
     * experience informs.
     *
     * The syntax for a legal posix class is:
     *
     * qr/(?xa: \[ : \^? [[:lower:]]{4,6} : \] )/
     *
     * What this routine considers syntactically to be an intended posix class
     * is this (the comments indicate some restrictions that the pattern
     * doesn't show):
     *
     *  qr/(?x: \[?                         # The left bracket, possibly
     *                                      # omitted
     *          \h*                         # possibly followed by blanks
     *          (?: \^ \h* )?               # possibly a misplaced caret
     *          [:;]?                       # The opening class character,
     *                                      # possibly omitted.  A typo
     *                                      # semi-colon can also be used.
     *          \h*
     *          \^?                         # possibly a correctly placed
     *                                      # caret, but not if there was also
     *                                      # a misplaced one
     *          \h*
     *          .{3,15}                     # The class name.  If there are
     *                                      # deviations from the legal syntax,
     *                                      # its edit distance must be close
     *                                      # to a real class name in order
     *                                      # for it to be considered to be
     *                                      # an intended posix class.
     *          \h*
     *          [[:punct:]]?                # The closing class character,
     *                                      # possibly omitted.  If not a colon
     *                                      # nor semi colon, the class name
     *                                      # must be even closer to a valid
     *                                      # one
     *          \h*
     *          \]?                         # The right bracket, possibly
     *                                      # omitted.
     *     )/
     *
     * In the above, \h must be ASCII-only.
     *
     * These are heuristics, and can be tweaked as field experience dictates.
     * There will be cases when someone didn't intend to specify a posix class
     * that this warns as being so.  The goal is to minimize these, while
     * maximizing the catching of things intended to be a posix class that
     * aren't parsed as such.
     */

    const char* p             = s;
    const char * const e      = RExC_end;
    unsigned complement       = 0;      /* If to complement the class */
    bool found_problem        = FALSE;  /* Assume OK until proven otherwise */
    bool has_opening_bracket  = FALSE;
    bool has_opening_colon    = FALSE;
    int class_number          = OOB_NAMEDCLASS; /* Out-of-bounds until find
                                                   valid class */
    const char * possible_end = NULL;   /* used for a 2nd parse pass */
    const char* name_start;             /* ptr to class name first char */

    /* If the number of single-character typos the input name is away from a
     * legal name is no more than this number, it is considered to have meant
     * the legal name */
    int max_distance          = 2;

    /* to store the name.  The size determines the maximum length before we
     * decide that no posix class was intended.  Should be at least
     * sizeof("alphanumeric") */
    UV input_text[15];
    STATIC_ASSERT_DECL(C_ARRAY_LENGTH(input_text) >= sizeof "alphanumeric");

    PERL_ARGS_ASSERT_HANDLE_POSSIBLE_POSIX;

    CLEAR_POSIX_WARNINGS();

    if (p >= e) {
        return NOT_MEANT_TO_BE_A_POSIX_CLASS;
    }

    if (*(p - 1) != '[') {
        ADD_POSIX_WARNING(p, "it doesn't start with a '['");
        found_problem = TRUE;
    }
    else {
        has_opening_bracket = TRUE;
    }

    /* They could be confused and think you can put spaces between the
     * components */
    if (isBLANK(*p)) {
        found_problem = TRUE;

        do {
            p++;
        } while (p < e && isBLANK(*p));

        ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
    }

    /* For [. .] and [= =].  These are quite different internally from [: :],
     * so they are handled separately.  */
    if (POSIXCC_NOTYET(*p) && p < e - 3) /* 1 for the close, and 1 for the ']'
                                            and 1 for at least one char in it
                                          */
    {
        const char open_char  = *p;
        const char * temp_ptr = p + 1;

        /* These two constructs are not handled by perl, and if we find a
         * syntactically valid one, we croak.  khw, who wrote this code, finds
         * this explanation of them very unclear:
         * http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
         * And searching the rest of the internet wasn't very helpful either.
         * It looks like just about any byte can be in these constructs,
         * depending on the locale.  But unless the pattern is being compiled
         * under /l, which is very rare, Perl runs under the C or POSIX locale.
         * In that case, it looks like [= =] isn't allowed at all, and that
         * [. .] could be any single code point, but for longer strings the
         * constituent characters would have to be the ASCII alphabetics plus
         * the minus-hyphen.  Any sensible locale definition would limit itself
         * to these.  And any portable one definitely should.  Trying to parse
         * the general case is a nightmare (see [perl #127604]).  So, this code
         * looks only for interiors of these constructs that match:
         *      qr/.|[-\w]{2,}/
         * Using \w relaxes the apparent rules a little, without adding much
         * danger of mistaking something else for one of these constructs.
         *
         * [. .] in some implementations described on the internet is usable to
         * escape a character that otherwise is special in bracketed character
         * classes.  For example [.].] means a literal right bracket instead of
         * the ending of the class
         *
         * [= =] can legitimately contain a [. .] construct, but we don't
         * handle this case, as that [. .] construct will later get parsed
         * itself and croak then.  And [= =] is checked for even when not under
         * /l, as Perl has long done so.
         *
         * The code below relies on there being a trailing NUL, so it doesn't
         * have to keep checking if the parse ptr < e.
         */
        if (temp_ptr[1] == open_char) {
            temp_ptr++;
        }
        else while (    temp_ptr < e
                    && (isWORDCHAR(*temp_ptr) || *temp_ptr == '-'))
        {
            temp_ptr++;
        }

        if (*temp_ptr == open_char) {
            temp_ptr++;
            if (*temp_ptr == ']') {
                temp_ptr++;
                if (! found_problem && ! check_only) {
                    RExC_parse = (char *) temp_ptr;
                    vFAIL3("POSIX syntax [%c %c] is reserved for future "
                            "extensions", open_char, open_char);
                }

                /* Here, the syntax wasn't completely valid, or else the call
                 * is to check-only */
                if (updated_parse_ptr) {
                    *updated_parse_ptr = (char *) temp_ptr;
                }

                CLEAR_POSIX_WARNINGS_AND_RETURN(OOB_NAMEDCLASS);
            }
        }

        /* If we find something that started out to look like one of these
         * constructs, but isn't, we continue below so that it can be checked
         * for being a class name with a typo of '.' or '=' instead of a colon.
         * */
    }

    /* Here, we think there is a possibility that a [: :] class was meant, and
     * we have the first real character.  It could be they think the '^' comes
     * first */
    if (*p == '^') {
        found_problem = TRUE;
        ADD_POSIX_WARNING(p + 1, "the '^' must come after the colon");
        complement = 1;
        p++;

        if (isBLANK(*p)) {
            found_problem = TRUE;

            do {
                p++;
            } while (p < e && isBLANK(*p));

            ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
        }
    }

    /* But the first character should be a colon, which they could have easily
     * mistyped on a qwerty keyboard as a semi-colon (and which may be hard to
     * distinguish from a colon, so treat that as a colon).  */
    if (*p == ':') {
        p++;
        has_opening_colon = TRUE;
    }
    else if (*p == ';') {
        found_problem = TRUE;
        p++;
        ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
        has_opening_colon = TRUE;
    }
    else {
        found_problem = TRUE;
        ADD_POSIX_WARNING(p, "there must be a starting ':'");

        /* Consider an initial punctuation (not one of the recognized ones) to
         * be a left terminator */
        if (*p != '^' && *p != ']' && isPUNCT(*p)) {
            p++;
        }
    }

    /* They may think that you can put spaces between the components */
    if (isBLANK(*p)) {
        found_problem = TRUE;

        do {
            p++;
        } while (p < e && isBLANK(*p));

        ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
    }

    if (*p == '^') {

        /* We consider something like [^:^alnum:]] to not have been intended to
         * be a posix class, but XXX maybe we should */
        if (complement) {
            CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
        }

        complement = 1;
        p++;
    }

    /* Again, they may think that you can put spaces between the components */
    if (isBLANK(*p)) {
        found_problem = TRUE;

        do {
            p++;
        } while (p < e && isBLANK(*p));

        ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
    }

    if (*p == ']') {

        /* XXX This ']' may be a typo, and something else was meant.  But
         * treating it as such creates enough complications, that that
         * possibility isn't currently considered here.  So we assume that the
         * ']' is what is intended, and if we've already found an initial '[',
         * this leaves this construct looking like [:] or [:^], which almost
         * certainly weren't intended to be posix classes */
        if (has_opening_bracket) {
            CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
        }

        /* But this function can be called when we parse the colon for
         * something like qr/[alpha:]]/, so we back up to look for the
         * beginning */
        p--;

        if (*p == ';') {
            found_problem = TRUE;
            ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
        }
        else if (*p != ':') {

            /* XXX We are currently very restrictive here, so this code doesn't
             * consider the possibility that, say, /[alpha.]]/ was intended to
             * be a posix class. */
            CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
        }

        /* Here we have something like 'foo:]'.  There was no initial colon,
         * and we back up over 'foo.  XXX Unlike the going forward case, we
         * don't handle typos of non-word chars in the middle */
        has_opening_colon = FALSE;
        p--;

        while (p > RExC_start && isWORDCHAR(*p)) {
            p--;
        }
        p++;

        /* Here, we have positioned ourselves to where we think the first
         * character in the potential class is */
    }

    /* Now the interior really starts.  There are certain key characters that
     * can end the interior, or these could just be typos.  To catch both
     * cases, we may have to do two passes.  In the first pass, we keep on
     * going unless we come to a sequence that matches
     *      qr/ [[:punct:]] [[:blank:]]* \] /xa
     * This means it takes a sequence to end the pass, so two typos in a row if
     * that wasn't what was intended.  If the class is perfectly formed, just
     * this one pass is needed.  We also stop if there are too many characters
     * being accumulated, but this number is deliberately set higher than any
     * real class.  It is set high enough so that someone who thinks that
     * 'alphanumeric' is a correct name would get warned that it wasn't.
     * While doing the pass, we keep track of where the key characters were in
     * it.  If we don't find an end to the class, and one of the key characters
     * was found, we redo the pass, but stop when we get to that character.
     * Thus the key character was considered a typo in the first pass, but a
     * terminator in the second.  If two key characters are found, we stop at
     * the second one in the first pass.  Again this can miss two typos, but
     * catches a single one
     *
     * In the first pass, 'possible_end' starts as NULL, and then gets set to
     * point to the first key character.  For the second pass, it starts as -1.
     * */

    name_start = p;
  parse_name:
    {
        bool has_blank               = FALSE;
        bool has_upper               = FALSE;
        bool has_terminating_colon   = FALSE;
        bool has_terminating_bracket = FALSE;
        bool has_semi_colon          = FALSE;
        unsigned int name_len        = 0;
        int punct_count              = 0;

        while (p < e) {

            /* Squeeze out blanks when looking up the class name below */
            if (isBLANK(*p) ) {
                has_blank = TRUE;
                found_problem = TRUE;
                p++;
                continue;
            }

            /* The name will end with a punctuation */
            if (isPUNCT(*p)) {
                const char * peek = p + 1;

                /* Treat any non-']' punctuation followed by a ']' (possibly
                 * with intervening blanks) as trying to terminate the class.
                 * ']]' is very likely to mean a class was intended (but
                 * missing the colon), but the warning message that gets
                 * generated shows the error position better if we exit the
                 * loop at the bottom (eventually), so skip it here. */
                if (*p != ']') {
                    if (peek < e && isBLANK(*peek)) {
                        has_blank = TRUE;
                        found_problem = TRUE;
                        do {
                            peek++;
                        } while (peek < e && isBLANK(*peek));
                    }

                    if (peek < e && *peek == ']') {
                        has_terminating_bracket = TRUE;
                        if (*p == ':') {
                            has_terminating_colon = TRUE;
                        }
                        else if (*p == ';') {
                            has_semi_colon = TRUE;
                            has_terminating_colon = TRUE;
                        }
                        else {
                            found_problem = TRUE;
                        }
                        p = peek + 1;
                        goto try_posix;
                    }
                }

                /* Here we have punctuation we thought didn't end the class.
                 * Keep track of the position of the key characters that are
                 * more likely to have been class-enders */
                if (*p == ']' || *p == '[' || *p == ':' || *p == ';') {

                    /* Allow just one such possible class-ender not actually
                     * ending the class. */
                    if (possible_end) {
                        break;
                    }
                    possible_end = p;
                }

                /* If we have too many punctuation characters, no use in
                 * keeping going */
                if (++punct_count > max_distance) {
                    break;
                }

                /* Treat the punctuation as a typo. */
                input_text[name_len++] = *p;
                p++;
            }
            else if (isUPPER(*p)) { /* Use lowercase for lookup */
                input_text[name_len++] = toLOWER(*p);
                has_upper = TRUE;
                found_problem = TRUE;
                p++;
            } else if (! UTF || UTF8_IS_INVARIANT(*p)) {
                input_text[name_len++] = *p;
                p++;
            }
            else {
                input_text[name_len++] = utf8_to_uvchr_buf((U8 *) p, e, NULL);
                p+= UTF8SKIP(p);
            }

            /* The declaration of 'input_text' is how long we allow a potential
             * class name to be, before saying they didn't mean a class name at
             * all */
            if (name_len >= C_ARRAY_LENGTH(input_text)) {
                break;
            }
        }

        /* We get to here when the possible class name hasn't been properly
         * terminated before:
         *   1) we ran off the end of the pattern; or
         *   2) found two characters, each of which might have been intended to
         *      be the name's terminator
         *   3) found so many punctuation characters in the purported name,
         *      that the edit distance to a valid one is exceeded
         *   4) we decided it was more characters than anyone could have
         *      intended to be one. */

        found_problem = TRUE;

        /* In the final two cases, we know that looking up what we've
         * accumulated won't lead to a match, even a fuzzy one. */
        if (   name_len >= C_ARRAY_LENGTH(input_text)
            || punct_count > max_distance)
        {
            /* If there was an intermediate key character that could have been
             * an intended end, redo the parse, but stop there */
            if (possible_end && possible_end != (char *) -1) {
                possible_end = (char *) -1; /* Special signal value to say
                                               we've done a first pass */
                p = name_start;
                goto parse_name;
            }

            /* Otherwise, it can't have meant to have been a class */
            CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
        }

        /* If we ran off the end, and the final character was a punctuation
         * one, back up one, to look at that final one just below.  Later, we
         * will restore the parse pointer if appropriate */
        if (name_len && p == e && isPUNCT(*(p-1))) {
            p--;
            name_len--;
        }

        if (p < e && isPUNCT(*p)) {
            if (*p == ']') {
                has_terminating_bracket = TRUE;

                /* If this is a 2nd ']', and the first one is just below this
                 * one, consider that to be the real terminator.  This gives a
                 * uniform and better positioning for the warning message  */
                if (   possible_end
                    && possible_end != (char *) -1
                    && *possible_end == ']'
                    && name_len && input_text[name_len - 1] == ']')
                {
                    name_len--;
                    p = possible_end;

                    /* And this is actually equivalent to having done the 2nd
                     * pass now, so set it to not try again */
                    possible_end = (char *) -1;
                }
            }
            else {
                if (*p == ':') {
                    has_terminating_colon = TRUE;
                }
                else if (*p == ';') {
                    has_semi_colon = TRUE;
                    has_terminating_colon = TRUE;
                }
                p++;
            }
        }

    try_posix:

        /* Here, we have a class name to look up.  We can short circuit the
         * stuff below for short names that can't possibly be meant to be a
         * class name.  (We can do this on the first pass, as any second pass
         * will yield an even shorter name) */
        if (name_len < 3) {
            CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
        }

        /* Find which class it is.  Initially switch on the length of the name.
         * */
        switch (name_len) {
            case 4:
                if (memEQs(name_start, 4, "word")) {
                    /* this is not POSIX, this is the Perl \w */
                    class_number = ANYOF_WORDCHAR;
                }
                break;
            case 5:
                /* Names all of length 5: alnum alpha ascii blank cntrl digit
                 *                        graph lower print punct space upper
                 * Offset 4 gives the best switch position.  */
                switch (name_start[4]) {
                    case 'a':
                        if (memBEGINs(name_start, 5, "alph")) /* alpha */
                            class_number = ANYOF_ALPHA;
                        break;
                    case 'e':
                        if (memBEGINs(name_start, 5, "spac")) /* space */
                            class_number = ANYOF_SPACE;
                        break;
                    case 'h':
                        if (memBEGINs(name_start, 5, "grap")) /* graph */
                            class_number = ANYOF_GRAPH;
                        break;
                    case 'i':
                        if (memBEGINs(name_start, 5, "asci")) /* ascii */
                            class_number = ANYOF_ASCII;
                        break;
                    case 'k':
                        if (memBEGINs(name_start, 5, "blan")) /* blank */
                            class_number = ANYOF_BLANK;
                        break;
                    case 'l':
                        if (memBEGINs(name_start, 5, "cntr")) /* cntrl */
                            class_number = ANYOF_CNTRL;
                        break;
                    case 'm':
                        if (memBEGINs(name_start, 5, "alnu")) /* alnum */
                            class_number = ANYOF_ALPHANUMERIC;
                        break;
                    case 'r':
                        if (memBEGINs(name_start, 5, "lowe")) /* lower */
                            class_number = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
                        else if (memBEGINs(name_start, 5, "uppe")) /* upper */
                            class_number = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
                        break;
                    case 't':
                        if (memBEGINs(name_start, 5, "digi")) /* digit */
                            class_number = ANYOF_DIGIT;
                        else if (memBEGINs(name_start, 5, "prin")) /* print */
                            class_number = ANYOF_PRINT;
                        else if (memBEGINs(name_start, 5, "punc")) /* punct */
                            class_number = ANYOF_PUNCT;
                        break;
                }
                break;
            case 6:
                if (memEQs(name_start, 6, "xdigit"))
                    class_number = ANYOF_XDIGIT;
                break;
        }

        /* If the name exactly matches a posix class name the class number will
         * here be set to it, and the input almost certainly was meant to be a
         * posix class, so we can skip further checking.  If instead the syntax
         * is exactly correct, but the name isn't one of the legal ones, we
         * will return that as an error below.  But if neither of these apply,
         * it could be that no posix class was intended at all, or that one
         * was, but there was a typo.  We tease these apart by doing fuzzy
         * matching on the name */
        if (class_number == OOB_NAMEDCLASS && found_problem) {
            const UV posix_names[][6] = {
                                                { 'a', 'l', 'n', 'u', 'm' },
                                                { 'a', 'l', 'p', 'h', 'a' },
                                                { 'a', 's', 'c', 'i', 'i' },
                                                { 'b', 'l', 'a', 'n', 'k' },
                                                { 'c', 'n', 't', 'r', 'l' },
                                                { 'd', 'i', 'g', 'i', 't' },
                                                { 'g', 'r', 'a', 'p', 'h' },
                                                { 'l', 'o', 'w', 'e', 'r' },
                                                { 'p', 'r', 'i', 'n', 't' },
                                                { 'p', 'u', 'n', 'c', 't' },
                                                { 's', 'p', 'a', 'c', 'e' },
                                                { 'u', 'p', 'p', 'e', 'r' },
                                                { 'w', 'o', 'r', 'd' },
                                                { 'x', 'd', 'i', 'g', 'i', 't' }
                                            };
            /* The names of the above all have added NULs to make them the same
             * size, so we need to also have the real lengths */
            const UV posix_name_lengths[] = {
                                                sizeof("alnum") - 1,
                                                sizeof("alpha") - 1,
                                                sizeof("ascii") - 1,
                                                sizeof("blank") - 1,
                                                sizeof("cntrl") - 1,
                                                sizeof("digit") - 1,
                                                sizeof("graph") - 1,
                                                sizeof("lower") - 1,
                                                sizeof("print") - 1,
                                                sizeof("punct") - 1,
                                                sizeof("space") - 1,
                                                sizeof("upper") - 1,
                                                sizeof("word")  - 1,
                                                sizeof("xdigit")- 1
                                            };
            unsigned int i;
            int temp_max = max_distance;    /* Use a temporary, so if we
                                               reparse, we haven't changed the
                                               outer one */

            /* Use a smaller max edit distance if we are missing one of the
             * delimiters */
            if (   has_opening_bracket + has_opening_colon < 2
                || has_terminating_bracket + has_terminating_colon < 2)
            {
                temp_max--;
            }

            /* See if the input name is close to a legal one */
            for (i = 0; i < C_ARRAY_LENGTH(posix_names); i++) {

                /* Short circuit call if the lengths are too far apart to be
                 * able to match */
                if (abs( (int) (name_len - posix_name_lengths[i]))
                    > temp_max)
                {
                    continue;
                }

                if (edit_distance(input_text,
                                  posix_names[i],
                                  name_len,
                                  posix_name_lengths[i],
                                  temp_max
                                 )
                    > -1)
                { /* If it is close, it probably was intended to be a class */
                    goto probably_meant_to_be;
                }
            }

            /* Here the input name is not close enough to a valid class name
             * for us to consider it to be intended to be a posix class.  If
             * we haven't already done so, and the parse found a character that
             * could have been terminators for the name, but which we absorbed
             * as typos during the first pass, repeat the parse, signalling it
             * to stop at that character */
            if (possible_end && possible_end != (char *) -1) {
                possible_end = (char *) -1;
                p = name_start;
                goto parse_name;
            }

            /* Here neither pass found a close-enough class name */
            CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
        }

    probably_meant_to_be:

        /* Here we think that a posix specification was intended.  Update any
         * parse pointer */
        if (updated_parse_ptr) {
            *updated_parse_ptr = (char *) p;
        }

        /* If a posix class name was intended but incorrectly specified, we
         * output or return the warnings */
        if (found_problem) {

            /* We set flags for these issues in the parse loop above instead of
             * adding them to the list of warnings, because we can parse it
             * twice, and we only want one warning instance */
            if (has_upper) {
                ADD_POSIX_WARNING(p, "the name must be all lowercase letters");
            }
            if (has_blank) {
                ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
            }
            if (has_semi_colon) {
                ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
            }
            else if (! has_terminating_colon) {
                ADD_POSIX_WARNING(p, "there is no terminating ':'");
            }
            if (! has_terminating_bracket) {
                ADD_POSIX_WARNING(p, "there is no terminating ']'");
            }

            if (   posix_warnings
                && RExC_warn_text
                && av_count(RExC_warn_text) > 0)
            {
                *posix_warnings = RExC_warn_text;
            }
        }
        else if (class_number != OOB_NAMEDCLASS) {
            /* If it is a known class, return the class.  The class number
             * #defines are structured so each complement is +1 to the normal
             * one */
            CLEAR_POSIX_WARNINGS_AND_RETURN(class_number + complement);
        }
        else if (! check_only) {

            /* Here, it is an unrecognized class.  This is an error (unless the
            * call is to check only, which we've already handled above) */
            const char * const complement_string = (complement)
                                                   ? "^"
                                                   : "";
            RExC_parse = (char *) p;
            vFAIL3utf8f("POSIX class [:%s%" UTF8f ":] unknown",
                        complement_string,
                        UTF8fARG(UTF, RExC_parse - name_start - 2, name_start));
        }
    }

    return OOB_NAMEDCLASS;
}
#undef ADD_POSIX_WARNING

STATIC unsigned  int
S_regex_set_precedence(const U8 my_operator) {

    /* Returns the precedence in the (?[...]) construct of the input operator,
     * specified by its character representation.  The precedence follows
     * general Perl rules, but it extends this so that ')' and ']' have (low)
     * precedence even though they aren't really operators */

    switch (my_operator) {
        case '!':
            return 5;
        case '&':
            return 4;
        case '^':
        case '|':
        case '+':
        case '-':
            return 3;
        case ')':
            return 2;
        case ']':
            return 1;
    }

    NOT_REACHED; /* NOTREACHED */
    return 0;   /* Silence compiler warning */
}

STATIC regnode_offset
S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
                    I32 *flagp, U32 depth,
                    char * const oregcomp_parse)
{
    /* Handle the (?[...]) construct to do set operations */

    U8 curchar;                     /* Current character being parsed */
    UV start, end;	            /* End points of code point ranges */
    SV* final = NULL;               /* The end result inversion list */
    SV* result_string;              /* 'final' stringified */
    AV* stack;                      /* stack of operators and operands not yet
                                       resolved */
    AV* fence_stack = NULL;         /* A stack containing the positions in
                                       'stack' of where the undealt-with left
                                       parens would be if they were actually
                                       put there */
    /* The 'volatile' is a workaround for an optimiser bug
     * in Solaris Studio 12.3. See RT #127455 */
    volatile IV fence = 0;          /* Position of where most recent undealt-
                                       with left paren in stack is; -1 if none.
                                     */
    STRLEN len;                     /* Temporary */
    regnode_offset node;            /* Temporary, and final regnode returned by
                                       this function */
    const bool save_fold = FOLD;    /* Temporary */
    char *save_end, *save_parse;    /* Temporaries */
    const bool in_locale = LOC;     /* we turn off /l during processing */

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
    PERL_UNUSED_ARG(oregcomp_parse); /* Only for Set_Node_Length */

    DEBUG_PARSE("xcls");

    if (in_locale) {
        set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);
    }

    /* The use of this operator implies /u.  This is required so that the
     * compile time values are valid in all runtime cases */
    REQUIRE_UNI_RULES(flagp, 0);

    ckWARNexperimental(RExC_parse,
                       WARN_EXPERIMENTAL__REGEX_SETS,
                       "The regex_sets feature is experimental");

    /* Everything in this construct is a metacharacter.  Operands begin with
     * either a '\' (for an escape sequence), or a '[' for a bracketed
     * character class.  Any other character should be an operator, or
     * parenthesis for grouping.  Both types of operands are handled by calling
     * regclass() to parse them.  It is called with a parameter to indicate to
     * return the computed inversion list.  The parsing here is implemented via
     * a stack.  Each entry on the stack is a single character representing one
     * of the operators; or else a pointer to an operand inversion list. */

#define IS_OPERATOR(a) SvIOK(a)
#define IS_OPERAND(a)  (! IS_OPERATOR(a))

    /* The stack is kept in Łukasiewicz order.  (That's pronounced similar
     * to luke-a-shave-itch (or -itz), but people who didn't want to bother
     * with pronouncing it called it Reverse Polish instead, but now that YOU
     * know how to pronounce it you can use the correct term, thus giving due
     * credit to the person who invented it, and impressing your geek friends.
     * Wikipedia says that the pronounciation of "Ł" has been changing so that
     * it is now more like an English initial W (as in wonk) than an L.)
     *
     * This means that, for example, 'a | b & c' is stored on the stack as
     *
     * c  [4]
     * b  [3]
     * &  [2]
     * a  [1]
     * |  [0]
     *
     * where the numbers in brackets give the stack [array] element number.
     * In this implementation, parentheses are not stored on the stack.
     * Instead a '(' creates a "fence" so that the part of the stack below the
     * fence is invisible except to the corresponding ')' (this allows us to
     * replace testing for parens, by using instead subtraction of the fence
     * position).  As new operands are processed they are pushed onto the stack
     * (except as noted in the next paragraph).  New operators of higher
     * precedence than the current final one are inserted on the stack before
     * the lhs operand (so that when the rhs is pushed next, everything will be
     * in the correct positions shown above.  When an operator of equal or
     * lower precedence is encountered in parsing, all the stacked operations
     * of equal or higher precedence are evaluated, leaving the result as the
     * top entry on the stack.  This makes higher precedence operations
     * evaluate before lower precedence ones, and causes operations of equal
     * precedence to left associate.
     *
     * The only unary operator '!' is immediately pushed onto the stack when
     * encountered.  When an operand is encountered, if the top of the stack is
     * a '!", the complement is immediately performed, and the '!' popped.  The
     * resulting value is treated as a new operand, and the logic in the
     * previous paragraph is executed.  Thus in the expression
     *      [a] + ! [b]
     * the stack looks like
     *
     * !
     * a
     * +
     *
     * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
     * becomes
     *
     * !b
     * a
     * +
     *
     * A ')' is treated as an operator with lower precedence than all the
     * aforementioned ones, which causes all operations on the stack above the
     * corresponding '(' to be evaluated down to a single resultant operand.
     * Then the fence for the '(' is removed, and the operand goes through the
     * algorithm above, without the fence.
     *
     * A separate stack is kept of the fence positions, so that the position of
     * the latest so-far unbalanced '(' is at the top of it.
     *
     * The ']' ending the construct is treated as the lowest operator of all,
     * so that everything gets evaluated down to a single operand, which is the
     * result */

    sv_2mortal((SV *)(stack = newAV()));
    sv_2mortal((SV *)(fence_stack = newAV()));

    while (RExC_parse < RExC_end) {
        I32 top_index;              /* Index of top-most element in 'stack' */
        SV** top_ptr;               /* Pointer to top 'stack' element */
        SV* current = NULL;         /* To contain the current inversion list
                                       operand */
        SV* only_to_avoid_leaks;

        skip_to_be_ignored_text(pRExC_state, &RExC_parse,
                                TRUE /* Force /x */ );
        if (RExC_parse >= RExC_end) {   /* Fail */
            break;
        }

        curchar = UCHARAT(RExC_parse);

redo_curchar:

#ifdef ENABLE_REGEX_SETS_DEBUGGING
                    /* Enable with -Accflags=-DENABLE_REGEX_SETS_DEBUGGING */
        DEBUG_U(dump_regex_sets_structures(pRExC_state,
                                           stack, fence, fence_stack));
#endif

        top_index = av_tindex_skip_len_mg(stack);

        switch (curchar) {
            SV** stacked_ptr;       /* Ptr to something already on 'stack' */
            char stacked_operator;  /* The topmost operator on the 'stack'. */
            SV* lhs;                /* Operand to the left of the operator */
            SV* rhs;                /* Operand to the right of the operator */
            SV* fence_ptr;          /* Pointer to top element of the fence
                                       stack */
            case '(':

                if (   RExC_parse < RExC_end - 2
                    && UCHARAT(RExC_parse + 1) == '?'
                    && UCHARAT(RExC_parse + 2) == '^')
                {
                    const regnode_offset orig_emit = RExC_emit;
                    SV * resultant_invlist;

                    /* If is a '(?^', could be an embedded '(?^flags:(?[...])'.
                     * This happens when we have some thing like
                     *
                     *   my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
                     *   ...
                     *   qr/(?[ \p{Digit} & $thai_or_lao ])/;
                     *
                     * Here we would be handling the interpolated
                     * '$thai_or_lao'.  We handle this by a recursive call to
                     * reg which returns the inversion list the
                     * interpolated expression evaluates to.  Actually, the
                     * return is a special regnode containing a pointer to that
                     * inversion list.  If the return isn't that regnode alone,
                     * we know that this wasn't such an interpolation, which is
                     * an error: we need to get a single inversion list back
                     * from the recursion */

                    RExC_parse++;
                    RExC_sets_depth++;

                    node = reg(pRExC_state, 2, flagp, depth+1);
                    RETURN_FAIL_ON_RESTART(*flagp, flagp);

                    if (   OP(REGNODE_p(node)) != REGEX_SET
                           /* If more than a single node returned, the nested
                            * parens evaluated to more than just a (?[...]),
                            * which isn't legal */
                        || RExC_emit != orig_emit
                                      + NODE_STEP_REGNODE
                                      + regarglen[REGEX_SET])
                    {
                        vFAIL("Expecting interpolated extended charclass");
                    }
                    resultant_invlist = (SV *) ARGp(REGNODE_p(node));
                    current = invlist_clone(resultant_invlist, NULL);
                    SvREFCNT_dec(resultant_invlist);

                    RExC_sets_depth--;
                    RExC_emit = orig_emit;
                    goto handle_operand;
                }

                /* A regular '('.  Look behind for illegal syntax */
                if (top_index - fence >= 0) {
                    /* If the top entry on the stack is an operator, it had
                     * better be a '!', otherwise the entry below the top
                     * operand should be an operator */
                    if (   ! (top_ptr = av_fetch(stack, top_index, FALSE))
                        || (IS_OPERATOR(*top_ptr) && SvUV(*top_ptr) != '!')
                        || (   IS_OPERAND(*top_ptr)
                            && (   top_index - fence < 1
                                || ! (stacked_ptr = av_fetch(stack,
                                                             top_index - 1,
                                                             FALSE))
                                || ! IS_OPERATOR(*stacked_ptr))))
                    {
                        RExC_parse++;
                        vFAIL("Unexpected '(' with no preceding operator");
                    }
                }

                /* Stack the position of this undealt-with left paren */
                av_push(fence_stack, newSViv(fence));
                fence = top_index + 1;
                break;

            case '\\':
                /* regclass() can only return RESTART_PARSE and NEED_UTF8 if
                 * multi-char folds are allowed.  */
                if (!regclass(pRExC_state, flagp, depth+1,
                              TRUE, /* means parse just the next thing */
                              FALSE, /* don't allow multi-char folds */
                              FALSE, /* don't silence non-portable warnings.  */
                              TRUE,  /* strict */
                              FALSE, /* Require return to be an ANYOF */
                              &current))
                {
                    RETURN_FAIL_ON_RESTART(*flagp, flagp);
                    goto regclass_failed;
                }

                assert(current);

                /* regclass() will return with parsing just the \ sequence,
                 * leaving the parse pointer at the next thing to parse */
                RExC_parse--;
                goto handle_operand;

            case '[':   /* Is a bracketed character class */
            {
                /* See if this is a [:posix:] class. */
                bool is_posix_class = (OOB_NAMEDCLASS
                            < handle_possible_posix(pRExC_state,
                                                RExC_parse + 1,
                                                NULL,
                                                NULL,
                                                TRUE /* checking only */));
                /* If it is a posix class, leave the parse pointer at the '['
                 * to fool regclass() into thinking it is part of a
                 * '[[:posix:]]'. */
                if (! is_posix_class) {
                    RExC_parse++;
                }

                /* regclass() can only return RESTART_PARSE and NEED_UTF8 if
                 * multi-char folds are allowed.  */
                if (!regclass(pRExC_state, flagp, depth+1,
                                is_posix_class, /* parse the whole char
                                                    class only if not a
                                                    posix class */
                                FALSE, /* don't allow multi-char folds */
                                TRUE, /* silence non-portable warnings. */
                                TRUE, /* strict */
                                FALSE, /* Require return to be an ANYOF */
                                &current))
                {
                    RETURN_FAIL_ON_RESTART(*flagp, flagp);
                    goto regclass_failed;
                }

                assert(current);

                /* function call leaves parse pointing to the ']', except if we
                 * faked it */
                if (is_posix_class) {
                    RExC_parse--;
                }

                goto handle_operand;
            }

            case ']':
                if (top_index >= 1) {
                    goto join_operators;
                }

                /* Only a single operand on the stack: are done */
                goto done;

            case ')':
                if (av_tindex_skip_len_mg(fence_stack) < 0) {
                    if (UCHARAT(RExC_parse - 1) == ']')  {
                        break;
                    }
                    RExC_parse++;
                    vFAIL("Unexpected ')'");
                }

                /* If nothing after the fence, is missing an operand */
                if (top_index - fence < 0) {
                    RExC_parse++;
                    goto bad_syntax;
                }
                /* If at least two things on the stack, treat this as an
                  * operator */
                if (top_index - fence >= 1) {
                    goto join_operators;
                }

                /* Here only a single thing on the fenced stack, and there is a
                 * fence.  Get rid of it */
                fence_ptr = av_pop(fence_stack);
                assert(fence_ptr);
                fence = SvIV(fence_ptr);
                SvREFCNT_dec_NN(fence_ptr);
                fence_ptr = NULL;

                if (fence < 0) {
                    fence = 0;
                }

                /* Having gotten rid of the fence, we pop the operand at the
                 * stack top and process it as a newly encountered operand */
                current = av_pop(stack);
                if (IS_OPERAND(current)) {
                    goto handle_operand;
                }

                RExC_parse++;
                goto bad_syntax;

            case '&':
            case '|':
            case '+':
            case '-':
            case '^':

                /* These binary operators should have a left operand already
                 * parsed */
                if (   top_index - fence < 0
                    || top_index - fence == 1
                    || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
                    || ! IS_OPERAND(*top_ptr))
                {
                    goto unexpected_binary;
                }

                /* If only the one operand is on the part of the stack visible
                 * to us, we just place this operator in the proper position */
                if (top_index - fence < 2) {

                    /* Place the operator before the operand */

                    SV* lhs = av_pop(stack);
                    av_push(stack, newSVuv(curchar));
                    av_push(stack, lhs);
                    break;
                }

                /* But if there is something else on the stack, we need to
                 * process it before this new operator if and only if the
                 * stacked operation has equal or higher precedence than the
                 * new one */

             join_operators:

                /* The operator on the stack is supposed to be below both its
                 * operands */
                if (   ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
                    || IS_OPERAND(*stacked_ptr))
                {
                    /* But if not, it's legal and indicates we are completely
                     * done if and only if we're currently processing a ']',
                     * which should be the final thing in the expression */
                    if (curchar == ']') {
                        goto done;
                    }

                  unexpected_binary:
                    RExC_parse++;
                    vFAIL2("Unexpected binary operator '%c' with no "
                           "preceding operand", curchar);
                }
                stacked_operator = (char) SvUV(*stacked_ptr);

                if (regex_set_precedence(curchar)
                    > regex_set_precedence(stacked_operator))
                {
                    /* Here, the new operator has higher precedence than the
                     * stacked one.  This means we need to add the new one to
                     * the stack to await its rhs operand (and maybe more
                     * stuff).  We put it before the lhs operand, leaving
                     * untouched the stacked operator and everything below it
                     * */
                    lhs = av_pop(stack);
                    assert(IS_OPERAND(lhs));

                    av_push(stack, newSVuv(curchar));
                    av_push(stack, lhs);
                    break;
                }

                /* Here, the new operator has equal or lower precedence than
                 * what's already there.  This means the operation already
                 * there should be performed now, before the new one. */

                rhs = av_pop(stack);
                if (! IS_OPERAND(rhs)) {

                    /* This can happen when a ! is not followed by an operand,
                     * like in /(?[\t &!])/ */
                    goto bad_syntax;
                }

                lhs = av_pop(stack);

                if (! IS_OPERAND(lhs)) {

                    /* This can happen when there is an empty (), like in
                     * /(?[[0]+()+])/ */
                    goto bad_syntax;
                }

                switch (stacked_operator) {
                    case '&':
                        _invlist_intersection(lhs, rhs, &rhs);
                        break;

                    case '|':
                    case '+':
                        _invlist_union(lhs, rhs, &rhs);
                        break;

                    case '-':
                        _invlist_subtract(lhs, rhs, &rhs);
                        break;

                    case '^':   /* The union minus the intersection */
                    {
                        SV* i = NULL;
                        SV* u = NULL;

                        _invlist_union(lhs, rhs, &u);
                        _invlist_intersection(lhs, rhs, &i);
                        _invlist_subtract(u, i, &rhs);
                        SvREFCNT_dec_NN(i);
                        SvREFCNT_dec_NN(u);
                        break;
                    }
                }
                SvREFCNT_dec(lhs);

                /* Here, the higher precedence operation has been done, and the
                 * result is in 'rhs'.  We overwrite the stacked operator with
                 * the result.  Then we redo this code to either push the new
                 * operator onto the stack or perform any higher precedence
                 * stacked operation */
                only_to_avoid_leaks = av_pop(stack);
                SvREFCNT_dec(only_to_avoid_leaks);
                av_push(stack, rhs);
                goto redo_curchar;

            case '!':   /* Highest priority, right associative */

                /* If what's already at the top of the stack is another '!",
                 * they just cancel each other out */
                if (   (top_ptr = av_fetch(stack, top_index, FALSE))
                    && (IS_OPERATOR(*top_ptr) && SvUV(*top_ptr) == '!'))
                {
                    only_to_avoid_leaks = av_pop(stack);
                    SvREFCNT_dec(only_to_avoid_leaks);
                }
                else { /* Otherwise, since it's right associative, just push
                          onto the stack */
                    av_push(stack, newSVuv(curchar));
                }
                break;

            default:
                RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
                if (RExC_parse >= RExC_end) {
                    break;
                }
                vFAIL("Unexpected character");

          handle_operand:

            /* Here 'current' is the operand.  If something is already on the
             * stack, we have to check if it is a !.  But first, the code above
             * may have altered the stack in the time since we earlier set
             * 'top_index'.  */

            top_index = av_tindex_skip_len_mg(stack);
            if (top_index - fence >= 0) {
                /* If the top entry on the stack is an operator, it had better
                 * be a '!', otherwise the entry below the top operand should
                 * be an operator */
                top_ptr = av_fetch(stack, top_index, FALSE);
                assert(top_ptr);
                if (IS_OPERATOR(*top_ptr)) {

                    /* The only permissible operator at the top of the stack is
                     * '!', which is applied immediately to this operand. */
                    curchar = (char) SvUV(*top_ptr);
                    if (curchar != '!') {
                        SvREFCNT_dec(current);
                        vFAIL2("Unexpected binary operator '%c' with no "
                                "preceding operand", curchar);
                    }

                    _invlist_invert(current);

                    only_to_avoid_leaks = av_pop(stack);
                    SvREFCNT_dec(only_to_avoid_leaks);

                    /* And we redo with the inverted operand.  This allows
                     * handling multiple ! in a row */
                    goto handle_operand;
                }
                          /* Single operand is ok only for the non-binary ')'
                           * operator */
                else if ((top_index - fence == 0 && curchar != ')')
                         || (top_index - fence > 0
                             && (! (stacked_ptr = av_fetch(stack,
                                                           top_index - 1,
                                                           FALSE))
                                 || IS_OPERAND(*stacked_ptr))))
                {
                    SvREFCNT_dec(current);
                    vFAIL("Operand with no preceding operator");
                }
            }

            /* Here there was nothing on the stack or the top element was
             * another operand.  Just add this new one */
            av_push(stack, current);

        } /* End of switch on next parse token */

        RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
    } /* End of loop parsing through the construct */

    vFAIL("Syntax error in (?[...])");

  done:

    if (RExC_parse >= RExC_end || RExC_parse[1] != ')') {
        if (RExC_parse < RExC_end) {
            RExC_parse++;
        }

        vFAIL("Unexpected ']' with no following ')' in (?[...");
    }

    if (av_tindex_skip_len_mg(fence_stack) >= 0) {
        vFAIL("Unmatched (");
    }

    if (av_tindex_skip_len_mg(stack) < 0   /* Was empty */
        || ((final = av_pop(stack)) == NULL)
        || ! IS_OPERAND(final)
        || ! is_invlist(final)
        || av_tindex_skip_len_mg(stack) >= 0)  /* More left on stack */
    {
      bad_syntax:
        SvREFCNT_dec(final);
        vFAIL("Incomplete expression within '(?[ ])'");
    }

    /* Here, 'final' is the resultant inversion list from evaluating the
     * expression.  Return it if so requested */
    if (return_invlist) {
        *return_invlist = final;
        return END;
    }

    if (RExC_sets_depth) {  /* If within a recursive call, return in a special
                               regnode */
        RExC_parse++;
        node = regpnode(pRExC_state, REGEX_SET, final);
    }
    else {

        /* Otherwise generate a resultant node, based on 'final'.  regclass()
         * is expecting a string of ranges and individual code points */
        invlist_iterinit(final);
        result_string = newSVpvs("");
        while (invlist_iternext(final, &start, &end)) {
            if (start == end) {
                Perl_sv_catpvf(aTHX_ result_string, "\\x{%" UVXf "}", start);
            }
            else {
                Perl_sv_catpvf(aTHX_ result_string, "\\x{%" UVXf "}-\\x{%"
                                                        UVXf "}", start, end);
            }
        }

        /* About to generate an ANYOF (or similar) node from the inversion list
         * we have calculated */
        save_parse = RExC_parse;
        RExC_parse = SvPV(result_string, len);
        save_end = RExC_end;
        RExC_end = RExC_parse + len;
        TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE;

        /* We turn off folding around the call, as the class we have
         * constructed already has all folding taken into consideration, and we
         * don't want regclass() to add to that */
        RExC_flags &= ~RXf_PMf_FOLD;
        /* regclass() can only return RESTART_PARSE and NEED_UTF8 if multi-char
         * folds are allowed.  */
        node = regclass(pRExC_state, flagp, depth+1,
                        FALSE, /* means parse the whole char class */
                        FALSE, /* don't allow multi-char folds */
                        TRUE, /* silence non-portable warnings.  The above may
                                 very well have generated non-portable code
                                 points, but they're valid on this machine */
                        FALSE, /* similarly, no need for strict */

                        /* We can optimize into something besides an ANYOF,
                         * except under /l, which needs to be ANYOF because of
                         * runtime checks for locale sanity, etc */
                    ! in_locale,
                        NULL
                    );

        RESTORE_WARNINGS;
        RExC_parse = save_parse + 1;
        RExC_end = save_end;
        SvREFCNT_dec_NN(final);
        SvREFCNT_dec_NN(result_string);

        if (save_fold) {
            RExC_flags |= RXf_PMf_FOLD;
        }

        if (!node) {
            RETURN_FAIL_ON_RESTART(*flagp, flagp);
            goto regclass_failed;
        }

        /* Fix up the node type if we are in locale.  (We have pretended we are
         * under /u for the purposes of regclass(), as this construct will only
         * work under UTF-8 locales.  But now we change the opcode to be ANYOFL
         * (so as to cause any warnings about bad locales to be output in
         * regexec.c), and add the flag that indicates to check if not in a
         * UTF-8 locale.  The reason we above forbid optimization into
         * something other than an ANYOF node is simply to minimize the number
         * of code changes in regexec.c.  Otherwise we would have to create new
         * EXACTish node types and deal with them.  This decision could be
         * revisited should this construct become popular.
         *
         * (One might think we could look at the resulting ANYOF node and
         * suppress the flag if everything is above 255, as those would be
         * UTF-8 only, but this isn't true, as the components that led to that
         * result could have been locale-affected, and just happen to cancel
         * each other out under UTF-8 locales.) */
        if (in_locale) {
            set_regex_charset(&RExC_flags, REGEX_LOCALE_CHARSET);

            assert(OP(REGNODE_p(node)) == ANYOF);

            OP(REGNODE_p(node)) = ANYOFL;
            ANYOF_FLAGS(REGNODE_p(node))
                    |= ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
        }
    }

    nextchar(pRExC_state);
    Set_Node_Length(REGNODE_p(node), RExC_parse - oregcomp_parse + 1); /* MJD */
    return node;

  regclass_failed:
    FAIL2("panic: regclass returned failure to handle_sets, " "flags=%#" UVxf,
                                                                (UV) *flagp);
}

#ifdef ENABLE_REGEX_SETS_DEBUGGING

STATIC void
S_dump_regex_sets_structures(pTHX_ RExC_state_t *pRExC_state,
                             AV * stack, const IV fence, AV * fence_stack)
{   /* Dumps the stacks in handle_regex_sets() */

    const SSize_t stack_top = av_tindex_skip_len_mg(stack);
    const SSize_t fence_stack_top = av_tindex_skip_len_mg(fence_stack);
    SSize_t i;

    PERL_ARGS_ASSERT_DUMP_REGEX_SETS_STRUCTURES;

    PerlIO_printf(Perl_debug_log, "\nParse position is:%s\n", RExC_parse);

    if (stack_top < 0) {
        PerlIO_printf(Perl_debug_log, "Nothing on stack\n");
    }
    else {
        PerlIO_printf(Perl_debug_log, "Stack: (fence=%d)\n", (int) fence);
        for (i = stack_top; i >= 0; i--) {
            SV ** element_ptr = av_fetch(stack, i, FALSE);
            if (! element_ptr) {
            }

            if (IS_OPERATOR(*element_ptr)) {
                PerlIO_printf(Perl_debug_log, "[%d]: %c\n",
                                            (int) i, (int) SvIV(*element_ptr));
            }
            else {
                PerlIO_printf(Perl_debug_log, "[%d] ", (int) i);
                sv_dump(*element_ptr);
            }
        }
    }

    if (fence_stack_top < 0) {
        PerlIO_printf(Perl_debug_log, "Nothing on fence_stack\n");
    }
    else {
        PerlIO_printf(Perl_debug_log, "Fence_stack: \n");
        for (i = fence_stack_top; i >= 0; i--) {
            SV ** element_ptr = av_fetch(fence_stack, i, FALSE);
            if (! element_ptr) {
            }

            PerlIO_printf(Perl_debug_log, "[%d]: %d\n",
                                            (int) i, (int) SvIV(*element_ptr));
        }
    }
}

#endif

#undef IS_OPERATOR
#undef IS_OPERAND

STATIC void
S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
{
    /* This adds the Latin1/above-Latin1 folding rules.
     *
     * This should be called only for a Latin1-range code points, cp, which is
     * known to be involved in a simple fold with other code points above
     * Latin1.  It would give false results if /aa has been specified.
     * Multi-char folds are outside the scope of this, and must be handled
     * specially. */

    PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;

    assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));

    /* The rules that are valid for all Unicode versions are hard-coded in */
    switch (cp) {
        case 'k':
        case 'K':
          *invlist =
             add_cp_to_invlist(*invlist, KELVIN_SIGN);
            break;
        case 's':
        case 'S':
          *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
            break;
        case MICRO_SIGN:
          *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
          *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
            break;
        case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
        case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
          *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
            break;
        case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
          *invlist = add_cp_to_invlist(*invlist,
                                        LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
            break;

        default:    /* Other code points are checked against the data for the
                       current Unicode version */
          {
            Size_t folds_count;
            U32 first_fold;
            const U32 * remaining_folds;
            UV folded_cp;

            if (isASCII(cp)) {
                folded_cp = toFOLD(cp);
            }
            else {
                U8 dummy_fold[UTF8_MAXBYTES_CASE+1];
                Size_t dummy_len;
                folded_cp = _to_fold_latin1(cp, dummy_fold, &dummy_len, 0);
            }

            if (folded_cp > 255) {
                *invlist = add_cp_to_invlist(*invlist, folded_cp);
            }

            folds_count = _inverse_folds(folded_cp, &first_fold,
                                                    &remaining_folds);
            if (folds_count == 0) {

                /* Use deprecated warning to increase the chances of this being
                 * output */
                ckWARN2reg_d(RExC_parse,
                        "Perl folding rules are not up-to-date for 0x%02X;"
                        " please use the perlbug utility to report;", cp);
            }
            else {
                unsigned int i;

                if (first_fold > 255) {
                    *invlist = add_cp_to_invlist(*invlist, first_fold);
                }
                for (i = 0; i < folds_count - 1; i++) {
                    if (remaining_folds[i] > 255) {
                        *invlist = add_cp_to_invlist(*invlist,
                                                    remaining_folds[i]);
                    }
                }
            }
            break;
         }
    }
}

STATIC void
S_output_posix_warnings(pTHX_ RExC_state_t *pRExC_state, AV* posix_warnings)
{
    /* Output the elements of the array given by '*posix_warnings' as REGEXP
     * warnings. */

    SV * msg;
    const bool first_is_fatal = ckDEAD(packWARN(WARN_REGEXP));

    PERL_ARGS_ASSERT_OUTPUT_POSIX_WARNINGS;

    if (! TO_OUTPUT_WARNINGS(RExC_parse)) {
        CLEAR_POSIX_WARNINGS();
        return;
    }

    while ((msg = av_shift(posix_warnings)) != &PL_sv_undef) {
        if (first_is_fatal) {           /* Avoid leaking this */
            av_undef(posix_warnings);   /* This isn't necessary if the
                                            array is mortal, but is a
                                            fail-safe */
            (void) sv_2mortal(msg);
            PREPARE_TO_DIE;
        }
        Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s", SvPVX(msg));
        SvREFCNT_dec_NN(msg);
    }

    UPDATE_WARNINGS_LOC(RExC_parse);
}

PERL_STATIC_INLINE Size_t
S_find_first_differing_byte_pos(const U8 * s1, const U8 * s2, const Size_t max)
{
    const U8 * const start = s1;
    const U8 * const send = start + max;

    PERL_ARGS_ASSERT_FIND_FIRST_DIFFERING_BYTE_POS;

    while (s1 < send && *s1  == *s2) {
        s1++; s2++;
    }

    return s1 - start;
}


STATIC AV *
S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
{
    /* This adds the string scalar <multi_string> to the array
     * <multi_char_matches>.  <multi_string> is known to have exactly
     * <cp_count> code points in it.  This is used when constructing a
     * bracketed character class and we find something that needs to match more
     * than a single character.
     *
     * <multi_char_matches> is actually an array of arrays.  Each top-level
     * element is an array that contains all the strings known so far that are
     * the same length.  And that length (in number of code points) is the same
     * as the index of the top-level array.  Hence, the [2] element is an
     * array, each element thereof is a string containing TWO code points;
     * while element [3] is for strings of THREE characters, and so on.  Since
     * this is for multi-char strings there can never be a [0] nor [1] element.
     *
     * When we rewrite the character class below, we will do so such that the
     * longest strings are written first, so that it prefers the longest
     * matching strings first.  This is done even if it turns out that any
     * quantifier is non-greedy, out of this programmer's (khw) laziness.  Tom
     * Christiansen has agreed that this is ok.  This makes the test for the
     * ligature 'ffi' come before the test for 'ff', for example */

    AV* this_array;
    AV** this_array_ptr;

    PERL_ARGS_ASSERT_ADD_MULTI_MATCH;

    if (! multi_char_matches) {
        multi_char_matches = newAV();
    }

    if (av_exists(multi_char_matches, cp_count)) {
        this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
        this_array = *this_array_ptr;
    }
    else {
        this_array = newAV();
        av_store(multi_char_matches, cp_count,
                 (SV*) this_array);
    }
    av_push(this_array, multi_string);

    return multi_char_matches;
}

/* The names of properties whose definitions are not known at compile time are
 * stored in this SV, after a constant heading.  So if the length has been
 * changed since initialization, then there is a run-time definition. */
#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION                            \
                                        (SvCUR(listsv) != initial_listsv_len)

/* There is a restricted set of white space characters that are legal when
 * ignoring white space in a bracketed character class.  This generates the
 * code to skip them.
 *
 * There is a line below that uses the same white space criteria but is outside
 * this macro.  Both here and there must use the same definition */
#define SKIP_BRACKETED_WHITE_SPACE(do_skip, p, stop_p)                  \
    STMT_START {                                                        \
        if (do_skip) {                                                  \
            while (p < stop_p && isBLANK_A(UCHARAT(p)))                 \
            {                                                           \
                p++;                                                    \
            }                                                           \
        }                                                               \
    } STMT_END

STATIC regnode_offset
S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
                 const bool stop_at_1,  /* Just parse the next thing, don't
                                           look for a full character class */
                 bool allow_mutiple_chars,
                 const bool silence_non_portable,   /* Don't output warnings
                                                       about too large
                                                       characters */
                 const bool strict,
                 bool optimizable,                  /* ? Allow a non-ANYOF return
                                                       node */
                 SV** ret_invlist  /* Return an inversion list, not a node */
          )
{
    /* parse a bracketed class specification.  Most of these will produce an
     * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
     * EXACTFish node; [[:ascii:]], a POSIXA node; etc.  It is more complex
     * under /i with multi-character folds: it will be rewritten following the
     * paradigm of this example, where the <multi-fold>s are characters which
     * fold to multiple character sequences:
     *      /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
     * gets effectively rewritten as:
     *      /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
     * reg() gets called (recursively) on the rewritten version, and this
     * function will return what it constructs.  (Actually the <multi-fold>s
     * aren't physically removed from the [abcdefghi], it's just that they are
     * ignored in the recursion by means of a flag:
     * <RExC_in_multi_char_class>.)
     *
     * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
     * characters, with the corresponding bit set if that character is in the
     * list.  For characters above this, an inversion list is used.  There
     * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
     * determinable at compile time
     *
     * On success, returns the offset at which any next node should be placed
     * into the regex engine program being compiled.
     *
     * Returns 0 otherwise, setting flagp to RESTART_PARSE if the parse needs
     * to be restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to
     * UTF-8
     */

    UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
    IV range = 0;
    UV value = OOB_UNICODE, save_value = OOB_UNICODE;
    regnode_offset ret = -1;    /* Initialized to an illegal value */
    STRLEN numlen;
    int namedclass = OOB_NAMEDCLASS;
    char *rangebegin = NULL;
    SV *listsv = NULL;      /* List of \p{user-defined} whose definitions
                               aren't available at the time this was called */
    STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
                                      than just initialized.  */
    SV* properties = NULL;    /* Code points that match \p{} \P{} */
    SV* posixes = NULL;     /* Code points that match classes like [:word:],
                               extended beyond the Latin1 range.  These have to
                               be kept separate from other code points for much
                               of this function because their handling  is
                               different under /i, and for most classes under
                               /d as well */
    SV* nposixes = NULL;    /* Similarly for [:^word:].  These are kept
                               separate for a while from the non-complemented
                               versions because of complications with /d
                               matching */
    SV* simple_posixes = NULL; /* But under some conditions, the classes can be
                                  treated more simply than the general case,
                                  leading to less compilation and execution
                                  work */
    UV element_count = 0;   /* Number of distinct elements in the class.
                               Optimizations may be possible if this is tiny */
    AV * multi_char_matches = NULL; /* Code points that fold to more than one
                                       character; used under /i */
    UV n;
    char * stop_ptr = RExC_end;    /* where to stop parsing */

    /* ignore unescaped whitespace? */
    const bool skip_white = cBOOL(   ret_invlist
                                  || (RExC_flags & RXf_PMf_EXTENDED_MORE));

    /* inversion list of code points this node matches only when the target
     * string is in UTF-8.  These are all non-ASCII, < 256.  (Because is under
     * /d) */
    SV* upper_latin1_only_utf8_matches = NULL;

    /* Inversion list of code points this node matches regardless of things
     * like locale, folding, utf8ness of the target string */
    SV* cp_list = NULL;

    /* Like cp_list, but code points on this list need to be checked for things
     * that fold to/from them under /i */
    SV* cp_foldable_list = NULL;

    /* Like cp_list, but code points on this list are valid only when the
     * runtime locale is UTF-8 */
    SV* only_utf8_locale_list = NULL;

    /* In a range, if one of the endpoints is non-character-set portable,
     * meaning that it hard-codes a code point that may mean a different
     * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
     * mnemonic '\t' which each mean the same character no matter which
     * character set the platform is on. */
    unsigned int non_portable_endpoint = 0;

    /* Is the range unicode? which means on a platform that isn't 1-1 native
     * to Unicode (i.e. non-ASCII), each code point in it should be considered
     * to be a Unicode value.  */
    bool unicode_range = FALSE;
    bool invert = FALSE;    /* Is this class to be complemented */

    bool warn_super = ALWAYS_WARN_SUPER;

    const char * orig_parse = RExC_parse;

    /* This variable is used to mark where the end in the input is of something
     * that looks like a POSIX construct but isn't.  During the parse, when
     * something looks like it could be such a construct is encountered, it is
     * checked for being one, but not if we've already checked this area of the
     * input.  Only after this position is reached do we check again */
    char *not_posix_region_end = RExC_parse - 1;

    AV* posix_warnings = NULL;
    const bool do_posix_warnings = ckWARN(WARN_REGEXP);
    U8 op = ANYOF;    /* The returned node-type, initialized to the expected
                         type. */
    U8 anyof_flags = 0;   /* flag bits if the node is an ANYOF-type */
    U32 posixl = 0;       /* bit field of posix classes matched under /l */


/* Flags as to what things aren't knowable until runtime.  (Note that these are
 * mutually exclusive.) */
#define HAS_USER_DEFINED_PROPERTY 0x01   /* /u any user-defined properties that
                                            haven't been defined as of yet */
#define HAS_D_RUNTIME_DEPENDENCY  0x02   /* /d if the target being matched is
                                            UTF-8 or not */
#define HAS_L_RUNTIME_DEPENDENCY   0x04 /* /l what the posix classes match and
                                            what gets folded */
    U32 has_runtime_dependency = 0;     /* OR of the above flags */

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGCLASS;
#ifndef DEBUGGING
    PERL_UNUSED_ARG(depth);
#endif

    assert(! (ret_invlist && allow_mutiple_chars));

    /* If wants an inversion list returned, we can't optimize to something
     * else. */
    if (ret_invlist) {
        optimizable = FALSE;
    }

    DEBUG_PARSE("clas");

#if UNICODE_MAJOR_VERSION < 3 /* no multifolds in early Unicode */      \
    || (UNICODE_MAJOR_VERSION == 3 && UNICODE_DOT_VERSION == 0          \
                                   && UNICODE_DOT_DOT_VERSION == 0)
    allow_mutiple_chars = FALSE;
#endif

    /* We include the /i status at the beginning of this so that we can
     * know it at runtime */
    listsv = sv_2mortal(Perl_newSVpvf(aTHX_ "#%d\n", cBOOL(FOLD)));
    initial_listsv_len = SvCUR(listsv);
    SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated.  */

    SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);

    assert(RExC_parse <= RExC_end);

    if (UCHARAT(RExC_parse) == '^') {	/* Complement the class */
        RExC_parse++;
        invert = TRUE;
        allow_mutiple_chars = FALSE;
        MARK_NAUGHTY(1);
        SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
    }

    /* Check that they didn't say [:posix:] instead of [[:posix:]] */
    if (! ret_invlist && MAYBE_POSIXCC(UCHARAT(RExC_parse))) {
        int maybe_class = handle_possible_posix(pRExC_state,
                                                RExC_parse,
                                                &not_posix_region_end,
                                                NULL,
                                                TRUE /* checking only */);
        if (maybe_class >= OOB_NAMEDCLASS && do_posix_warnings) {
            ckWARN4reg(not_posix_region_end,
                    "POSIX syntax [%c %c] belongs inside character classes%s",
                    *RExC_parse, *RExC_parse,
                    (maybe_class == OOB_NAMEDCLASS)
                    ? ((POSIXCC_NOTYET(*RExC_parse))
                        ? " (but this one isn't implemented)"
                        : " (but this one isn't fully valid)")
                    : ""
                    );
        }
    }

    /* If the caller wants us to just parse a single element, accomplish this
     * by faking the loop ending condition */
    if (stop_at_1 && RExC_end > RExC_parse) {
        stop_ptr = RExC_parse + 1;
    }

    /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
    if (UCHARAT(RExC_parse) == ']')
        goto charclassloop;

    while (1) {

        if (   posix_warnings
            && av_tindex_skip_len_mg(posix_warnings) >= 0
            && RExC_parse > not_posix_region_end)
        {
            /* Warnings about posix class issues are considered tentative until
             * we are far enough along in the parse that we can no longer
             * change our mind, at which point we output them.  This is done
             * each time through the loop so that a later class won't zap them
             * before they have been dealt with. */
            output_posix_warnings(pRExC_state, posix_warnings);
        }

        SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);

        if  (RExC_parse >= stop_ptr) {
            break;
        }

        if  (UCHARAT(RExC_parse) == ']') {
            break;
        }

      charclassloop:

        namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
        save_value = value;
        save_prevvalue = prevvalue;

        if (!range) {
            rangebegin = RExC_parse;
            element_count++;
            non_portable_endpoint = 0;
        }
        if (UTF && ! UTF8_IS_INVARIANT(* RExC_parse)) {
            value = utf8n_to_uvchr((U8*)RExC_parse,
                                   RExC_end - RExC_parse,
                                   &numlen, UTF8_ALLOW_DEFAULT);
            RExC_parse += numlen;
        }
        else
            value = UCHARAT(RExC_parse++);

        if (value == '[') {
            char * posix_class_end;
            namedclass = handle_possible_posix(pRExC_state,
                                               RExC_parse,
                                               &posix_class_end,
                                               do_posix_warnings ? &posix_warnings : NULL,
                                               FALSE    /* die if error */);
            if (namedclass > OOB_NAMEDCLASS) {

                /* If there was an earlier attempt to parse this particular
                 * posix class, and it failed, it was a false alarm, as this
                 * successful one proves */
                if (   posix_warnings
                    && av_tindex_skip_len_mg(posix_warnings) >= 0
                    && not_posix_region_end >= RExC_parse
                    && not_posix_region_end <= posix_class_end)
                {
                    av_undef(posix_warnings);
                }

                RExC_parse = posix_class_end;
            }
            else if (namedclass == OOB_NAMEDCLASS) {
                not_posix_region_end = posix_class_end;
            }
            else {
                namedclass = OOB_NAMEDCLASS;
            }
        }
        else if (   RExC_parse - 1 > not_posix_region_end
                 && MAYBE_POSIXCC(value))
        {
            (void) handle_possible_posix(
                        pRExC_state,
                        RExC_parse - 1,  /* -1 because parse has already been
                                            advanced */
                        &not_posix_region_end,
                        do_posix_warnings ? &posix_warnings : NULL,
                        TRUE /* checking only */);
        }
        else if (  strict && ! skip_white
                 && (   _generic_isCC(value, _CC_VERTSPACE)
                     || is_VERTWS_cp_high(value)))
        {
            vFAIL("Literal vertical space in [] is illegal except under /x");
        }
        else if (value == '\\') {
            /* Is a backslash; get the code point of the char after it */

            if (RExC_parse >= RExC_end) {
                vFAIL("Unmatched [");
            }

            if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
                value = utf8n_to_uvchr((U8*)RExC_parse,
                                   RExC_end - RExC_parse,
                                   &numlen, UTF8_ALLOW_DEFAULT);
                RExC_parse += numlen;
            }
            else
                value = UCHARAT(RExC_parse++);

            /* Some compilers cannot handle switching on 64-bit integer
             * values, therefore value cannot be an UV.  Yes, this will
             * be a problem later if we want switch on Unicode.
             * A similar issue a little bit later when switching on
             * namedclass. --jhi */

            /* If the \ is escaping white space when white space is being
             * skipped, it means that that white space is wanted literally, and
             * is already in 'value'.  Otherwise, need to translate the escape
             * into what it signifies. */
            if (! skip_white || ! isBLANK_A(value)) switch ((I32)value) {
                const char * message;
                U32 packed_warn;
                U8 grok_c_char;

            case 'w':	namedclass = ANYOF_WORDCHAR;	break;
            case 'W':	namedclass = ANYOF_NWORDCHAR;	break;
            case 's':	namedclass = ANYOF_SPACE;	break;
            case 'S':	namedclass = ANYOF_NSPACE;	break;
            case 'd':	namedclass = ANYOF_DIGIT;	break;
            case 'D':	namedclass = ANYOF_NDIGIT;	break;
            case 'v':	namedclass = ANYOF_VERTWS;	break;
            case 'V':	namedclass = ANYOF_NVERTWS;	break;
            case 'h':	namedclass = ANYOF_HORIZWS;	break;
            case 'H':	namedclass = ANYOF_NHORIZWS;	break;
            case 'N':  /* Handle \N{NAME} in class */
                {
                    const char * const backslash_N_beg = RExC_parse - 2;
                    int cp_count;

                    if (! grok_bslash_N(pRExC_state,
                                        NULL,      /* No regnode */
                                        &value,    /* Yes single value */
                                        &cp_count, /* Multiple code pt count */
                                        flagp,
                                        strict,
                                        depth)
                    ) {

                        if (*flagp & NEED_UTF8)
                            FAIL("panic: grok_bslash_N set NEED_UTF8");

                        RETURN_FAIL_ON_RESTART_FLAGP(flagp);

                        if (cp_count < 0) {
                            vFAIL("\\N in a character class must be a named character: \\N{...}");
                        }
                        else if (cp_count == 0) {
                            ckWARNreg(RExC_parse,
                              "Ignoring zero length \\N{} in character class");
                        }
                        else { /* cp_count > 1 */
                            assert(cp_count > 1);
                            if (! RExC_in_multi_char_class) {
                                if ( ! allow_mutiple_chars
                                    || invert
                                    || range
                                    || *RExC_parse == '-')
                                {
                                    if (strict) {
                                        RExC_parse--;
                                        vFAIL("\\N{} here is restricted to one character");
                                    }
                                    ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
                                    break; /* <value> contains the first code
                                              point. Drop out of the switch to
                                              process it */
                                }
                                else {
                                    SV * multi_char_N = newSVpvn(backslash_N_beg,
                                                 RExC_parse - backslash_N_beg);
                                    multi_char_matches
                                        = add_multi_match(multi_char_matches,
                                                          multi_char_N,
                                                          cp_count);
                                }
                            }
                        } /* End of cp_count != 1 */

                        /* This element should not be processed further in this
                         * class */
                        element_count--;
                        value = save_value;
                        prevvalue = save_prevvalue;
                        continue;   /* Back to top of loop to get next char */
                    }

                    /* Here, is a single code point, and <value> contains it */
                    unicode_range = TRUE;   /* \N{} are Unicode */
                }
                break;
            case 'p':
            case 'P':
                {
                char *e;

                if (RExC_pm_flags & PMf_WILDCARD) {
                    RExC_parse++;
                    /* diag_listed_as: Use of %s is not allowed in Unicode
                       property wildcard subpatterns in regex; marked by <--
                       HERE in m/%s/ */
                    vFAIL3("Use of '\\%c%c' is not allowed in Unicode property"
                           " wildcard subpatterns", (char) value, *(RExC_parse - 1));
                }

                /* \p means they want Unicode semantics */
                REQUIRE_UNI_RULES(flagp, 0);

                if (RExC_parse >= RExC_end)
                    vFAIL2("Empty \\%c", (U8)value);
                if (*RExC_parse == '{') {
                    const U8 c = (U8)value;
                    e = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
                    if (!e) {
                        RExC_parse++;
                        vFAIL2("Missing right brace on \\%c{}", c);
                    }

                    RExC_parse++;

                    /* White space is allowed adjacent to the braces and after
                     * any '^', even when not under /x */
                    while (isSPACE(*RExC_parse)) {
                         RExC_parse++;
                    }

                    if (UCHARAT(RExC_parse) == '^') {

                        /* toggle.  (The rhs xor gets the single bit that
                         * differs between P and p; the other xor inverts just
                         * that bit) */
                        value ^= 'P' ^ 'p';

                        RExC_parse++;
                        while (isSPACE(*RExC_parse)) {
                            RExC_parse++;
                        }
                    }

                    if (e == RExC_parse)
                        vFAIL2("Empty \\%c{}", c);

                    n = e - RExC_parse;
                    while (isSPACE(*(RExC_parse + n - 1)))
                        n--;

                }   /* The \p isn't immediately followed by a '{' */
                else if (! isALPHA(*RExC_parse)) {
                    RExC_parse += (UTF)
                                  ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                                  : 1;
                    vFAIL2("Character following \\%c must be '{' or a "
                           "single-character Unicode property name",
                           (U8) value);
                }
                else {
                    e = RExC_parse;
                    n = 1;
                }
                {
                    char* name = RExC_parse;

                    /* Any message returned about expanding the definition */
                    SV* msg = newSVpvs_flags("", SVs_TEMP);

                    /* If set TRUE, the property is user-defined as opposed to
                     * official Unicode */
                    bool user_defined = FALSE;
                    AV * strings = NULL;

                    SV * prop_definition = parse_uniprop_string(
                                            name, n, UTF, FOLD,
                                            FALSE, /* This is compile-time */

                                            /* We can't defer this defn when
                                             * the full result is required in
                                             * this call */
                                            ! cBOOL(ret_invlist),

                                            &strings,
                                            &user_defined,
                                            msg,
                                            0 /* Base level */
                                           );
                    if (SvCUR(msg)) {   /* Assumes any error causes a msg */
                        assert(prop_definition == NULL);
                        RExC_parse = e + 1;
                        if (SvUTF8(msg)) {  /* msg being UTF-8 makes the whole
                                               thing so, or else the display is
                                               mojibake */
                            RExC_utf8 = TRUE;
                        }
                        /* diag_listed_as: Can't find Unicode property definition "%s" in regex; marked by <-- HERE in m/%s/ */
                        vFAIL2utf8f("%" UTF8f, UTF8fARG(SvUTF8(msg),
                                    SvCUR(msg), SvPVX(msg)));
                    }

                    assert(prop_definition || strings);

                    if (strings) {
                        if (ret_invlist) {
                            if (! prop_definition) {
                                RExC_parse = e + 1;
                                vFAIL("Unicode string properties are not implemented in (?[...])");
                            }
                            else {
                                ckWARNreg(e + 1,
                                    "Using just the single character results"
                                    " returned by \\p{} in (?[...])");
                            }
                        }
                        else if (! RExC_in_multi_char_class) {
                            if (invert ^ (value == 'P')) {
                                RExC_parse = e + 1;
                                vFAIL("Inverting a character class which contains"
                                    " a multi-character sequence is illegal");
                            }

                            /* For each multi-character string ... */
                            while (av_count(strings) > 0) {
                                /* ... Each entry is itself an array of code
                                * points. */
                                AV * this_string = (AV *) av_shift( strings);
                                STRLEN cp_count = av_count(this_string);
                                SV * final = newSV(cp_count * 4);
                                SvPVCLEAR(final);

                                /* Create another string of sequences of \x{...} */
                                while (av_count(this_string) > 0) {
                                    SV * character = av_shift(this_string);
                                    UV cp = SvUV(character);

                                    if (cp > 255) {
                                        REQUIRE_UTF8(flagp);
                                    }
                                    Perl_sv_catpvf(aTHX_ final, "\\x{%" UVXf "}",
                                                                        cp);
                                    SvREFCNT_dec_NN(character);
                                }
                                SvREFCNT_dec_NN(this_string);

                                /* And add that to the list of such things */
                                multi_char_matches
                                            = add_multi_match(multi_char_matches,
                                                            final,
                                                            cp_count);
                            }
                        }
                        SvREFCNT_dec_NN(strings);
                    }

                    if (! prop_definition) {    /* If we got only a string,
                                                   this iteration didn't really
                                                   find a character */
                        element_count--;
                    }
                    else if (! is_invlist(prop_definition)) {

                        /* Here, the definition isn't known, so we have gotten
                         * returned a string that will be evaluated if and when
                         * encountered at runtime.  We add it to the list of
                         * such properties, along with whether it should be
                         * complemented or not */
                        if (value == 'P') {
                            sv_catpvs(listsv, "!");
                        }
                        else {
                            sv_catpvs(listsv, "+");
                        }
                        sv_catsv(listsv, prop_definition);

                        has_runtime_dependency |= HAS_USER_DEFINED_PROPERTY;

                        /* We don't know yet what this matches, so have to flag
                         * it */
                        anyof_flags |= ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP;
                    }
                    else {
                        assert (prop_definition && is_invlist(prop_definition));

                        /* Here we do have the complete property definition
                         *
                         * Temporary workaround for [perl #133136].  For this
                         * precise input that is in the .t that is failing,
                         * load utf8.pm, which is what the test wants, so that
                         * that .t passes */
                        if (     memEQs(RExC_start, e + 1 - RExC_start,
                                        "foo\\p{Alnum}")
                            && ! hv_common(GvHVn(PL_incgv),
                                           NULL,
                                           "utf8.pm", sizeof("utf8.pm") - 1,
                                           0, HV_FETCH_ISEXISTS, NULL, 0))
                        {
                            require_pv("utf8.pm");
                        }

                        if (! user_defined &&
                            /* We warn on matching an above-Unicode code point
                             * if the match would return true, except don't
                             * warn for \p{All}, which has exactly one element
                             * = 0 */
                            (_invlist_contains_cp(prop_definition, 0x110000)
                                && (! (_invlist_len(prop_definition) == 1
                                       && *invlist_array(prop_definition) == 0))))
                        {
                            warn_super = TRUE;
                        }

                        /* Invert if asking for the complement */
                        if (value == 'P') {
                            _invlist_union_complement_2nd(properties,
                                                          prop_definition,
                                                          &properties);
                        }
                        else {
                            _invlist_union(properties, prop_definition, &properties);
                        }
                    }
                }

                RExC_parse = e + 1;
                namedclass = ANYOF_UNIPROP;  /* no official name, but it's
                                                named */
                }
                break;
            case 'n':	value = '\n';			break;
            case 'r':	value = '\r';			break;
            case 't':	value = '\t';			break;
            case 'f':	value = '\f';			break;
            case 'b':	value = '\b';			break;
            case 'e':	value = ESC_NATIVE;             break;
            case 'a':	value = '\a';                   break;
            case 'o':
                RExC_parse--;	/* function expects to be pointed at the 'o' */
                if (! grok_bslash_o(&RExC_parse,
                                            RExC_end,
                                            &value,
                                            &message,
                                            &packed_warn,
                                            strict,
                                            cBOOL(range), /* MAX_UV allowed for range
                                                      upper limit */
                                            UTF))
                {
                    vFAIL(message);
                }
                else if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
                    warn_non_literal_string(RExC_parse, packed_warn, message);
                }

                if (value < 256) {
                    non_portable_endpoint++;
                }
                break;
            case 'x':
                RExC_parse--;	/* function expects to be pointed at the 'x' */
                if (!  grok_bslash_x(&RExC_parse,
                                            RExC_end,
                                            &value,
                                            &message,
                                            &packed_warn,
                                            strict,
                                            cBOOL(range), /* MAX_UV allowed for range
                                                      upper limit */
                                            UTF))
                {
                    vFAIL(message);
                }
                else if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
                    warn_non_literal_string(RExC_parse, packed_warn, message);
                }

                if (value < 256) {
                    non_portable_endpoint++;
                }
                break;
            case 'c':
                if (! grok_bslash_c(*RExC_parse, &grok_c_char, &message,
                                                                &packed_warn))
                {
                    /* going to die anyway; point to exact spot of
                        * failure */
                    RExC_parse += (UTF)
                                  ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                                  : 1;
                    vFAIL(message);
                }

                value = grok_c_char;
                RExC_parse++;
                if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
                    warn_non_literal_string(RExC_parse, packed_warn, message);
                }

                non_portable_endpoint++;
                break;
            case '0': case '1': case '2': case '3': case '4':
            case '5': case '6': case '7':
                {
                    /* Take 1-3 octal digits */
                    I32 flags = PERL_SCAN_SILENT_ILLDIGIT
                              | PERL_SCAN_NOTIFY_ILLDIGIT;
                    numlen = (strict) ? 4 : 3;
                    value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
                    RExC_parse += numlen;
                    if (numlen != 3) {
                        if (strict) {
                            RExC_parse += (UTF)
                                          ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                                          : 1;
                            vFAIL("Need exactly 3 octal digits");
                        }
                        else if (  (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
                                 && RExC_parse < RExC_end
                                 && isDIGIT(*RExC_parse)
                                 && ckWARN(WARN_REGEXP))
                        {
                            reg_warn_non_literal_string(
                                 RExC_parse + 1,
                                 form_alien_digit_msg(8, numlen, RExC_parse,
                                                        RExC_end, UTF, FALSE));
                        }
                    }
                    if (value < 256) {
                        non_portable_endpoint++;
                    }
                    break;
                }
            default:
                /* Allow \_ to not give an error */
                if (isWORDCHAR(value) && value != '_') {
                    if (strict) {
                        vFAIL2("Unrecognized escape \\%c in character class",
                               (int)value);
                    }
                    else {
                        ckWARN2reg(RExC_parse,
                            "Unrecognized escape \\%c in character class passed through",
                            (int)value);
                    }
                }
                break;
            }   /* End of switch on char following backslash */
        } /* end of handling backslash escape sequences */

        /* Here, we have the current token in 'value' */

        if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
            U8 classnum;

            /* a bad range like a-\d, a-[:digit:].  The '-' is taken as a
             * literal, as is the character that began the false range, i.e.
             * the 'a' in the examples */
            if (range) {
                const int w = (RExC_parse >= rangebegin)
                                ? RExC_parse - rangebegin
                                : 0;
                if (strict) {
                    vFAIL2utf8f(
                        "False [] range \"%" UTF8f "\"",
                        UTF8fARG(UTF, w, rangebegin));
                }
                else {
                    ckWARN2reg(RExC_parse,
                        "False [] range \"%" UTF8f "\"",
                        UTF8fARG(UTF, w, rangebegin));
                    cp_list = add_cp_to_invlist(cp_list, '-');
                    cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
                                                            prevvalue);
                }

                range = 0; /* this was not a true range */
                element_count += 2; /* So counts for three values */
            }

            classnum = namedclass_to_classnum(namedclass);

            if (LOC && namedclass < ANYOF_POSIXL_MAX
#ifndef HAS_ISASCII
                && classnum != _CC_ASCII
#endif
            ) {
                SV* scratch_list = NULL;

                /* What the Posix classes (like \w, [:space:]) match isn't
                 * generally knowable under locale until actual match time.  A
                 * special node is used for these which has extra space for a
                 * bitmap, with a bit reserved for each named class that is to
                 * be matched against.  (This isn't needed for \p{} and
                 * pseudo-classes, as they are not affected by locale, and
                 * hence are dealt with separately.)  However, if a named class
                 * and its complement are both present, then it matches
                 * everything, and there is no runtime dependency.  Odd numbers
                 * are the complements of the next lower number, so xor works.
                 * (Note that something like [\w\D] should match everything,
                 * because \d should be a proper subset of \w.  But rather than
                 * trust that the locale is well behaved, we leave this to
                 * runtime to sort out) */
                if (POSIXL_TEST(posixl, namedclass ^ 1)) {
                    cp_list = _add_range_to_invlist(cp_list, 0, UV_MAX);
                    POSIXL_ZERO(posixl);
                    has_runtime_dependency &= ~HAS_L_RUNTIME_DEPENDENCY;
                    anyof_flags &= ~ANYOF_MATCHES_POSIXL;
                    continue;   /* We could ignore the rest of the class, but
                                   best to parse it for any errors */
                }
                else { /* Here, isn't the complement of any already parsed
                          class */
                    POSIXL_SET(posixl, namedclass);
                    has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
                    anyof_flags |= ANYOF_MATCHES_POSIXL;

                    /* The above-Latin1 characters are not subject to locale
                     * rules.  Just add them to the unconditionally-matched
                     * list */

                    /* Get the list of the above-Latin1 code points this
                     * matches */
                    _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
                                            PL_XPosix_ptrs[classnum],

                                            /* Odd numbers are complements,
                                             * like NDIGIT, NASCII, ... */
                                            namedclass % 2 != 0,
                                            &scratch_list);
                    /* Checking if 'cp_list' is NULL first saves an extra
                     * clone.  Its reference count will be decremented at the
                     * next union, etc, or if this is the only instance, at the
                     * end of the routine */
                    if (! cp_list) {
                        cp_list = scratch_list;
                    }
                    else {
                        _invlist_union(cp_list, scratch_list, &cp_list);
                        SvREFCNT_dec_NN(scratch_list);
                    }
                    continue;   /* Go get next character */
                }
            }
            else {

                /* Here, is not /l, or is a POSIX class for which /l doesn't
                 * matter (or is a Unicode property, which is skipped here). */
                if (namedclass >= ANYOF_POSIXL_MAX) {  /* If a special class */
                    if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */

                        /* Here, should be \h, \H, \v, or \V.  None of /d, /i
                         * nor /l make a difference in what these match,
                         * therefore we just add what they match to cp_list. */
                        if (classnum != _CC_VERTSPACE) {
                            assert(   namedclass == ANYOF_HORIZWS
                                   || namedclass == ANYOF_NHORIZWS);

                            /* It turns out that \h is just a synonym for
                             * XPosixBlank */
                            classnum = _CC_BLANK;
                        }

                        _invlist_union_maybe_complement_2nd(
                                cp_list,
                                PL_XPosix_ptrs[classnum],
                                namedclass % 2 != 0,    /* Complement if odd
                                                          (NHORIZWS, NVERTWS)
                                                        */
                                &cp_list);
                    }
                }
                else if (   AT_LEAST_UNI_SEMANTICS
                         || classnum == _CC_ASCII
                         || (DEPENDS_SEMANTICS && (   classnum == _CC_DIGIT
                                                   || classnum == _CC_XDIGIT)))
                {
                    /* We usually have to worry about /d affecting what POSIX
                     * classes match, with special code needed because we won't
                     * know until runtime what all matches.  But there is no
                     * extra work needed under /u and /a; and [:ascii:] is
                     * unaffected by /d; and :digit: and :xdigit: don't have
                     * runtime differences under /d.  So we can special case
                     * these, and avoid some extra work below, and at runtime.
                     * */
                    _invlist_union_maybe_complement_2nd(
                                                     simple_posixes,
                                                      ((AT_LEAST_ASCII_RESTRICTED)
                                                       ? PL_Posix_ptrs[classnum]
                                                       : PL_XPosix_ptrs[classnum]),
                                                     namedclass % 2 != 0,
                                                     &simple_posixes);
                }
                else {  /* Garden variety class.  If is NUPPER, NALPHA, ...
                           complement and use nposixes */
                    SV** posixes_ptr = namedclass % 2 == 0
                                       ? &posixes
                                       : &nposixes;
                    _invlist_union_maybe_complement_2nd(
                                                     *posixes_ptr,
                                                     PL_XPosix_ptrs[classnum],
                                                     namedclass % 2 != 0,
                                                     posixes_ptr);
                }
            }
        } /* end of namedclass \blah */

        SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);

        /* If 'range' is set, 'value' is the ending of a range--check its
         * validity.  (If value isn't a single code point in the case of a
         * range, we should have figured that out above in the code that
         * catches false ranges).  Later, we will handle each individual code
         * point in the range.  If 'range' isn't set, this could be the
         * beginning of a range, so check for that by looking ahead to see if
         * the next real character to be processed is the range indicator--the
         * minus sign */

        if (range) {
#ifdef EBCDIC
            /* For unicode ranges, we have to test that the Unicode as opposed
             * to the native values are not decreasing.  (Above 255, there is
             * no difference between native and Unicode) */
            if (unicode_range && prevvalue < 255 && value < 255) {
                if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
                    goto backwards_range;
                }
            }
            else
#endif
            if (prevvalue > value) /* b-a */ {
                int w;
#ifdef EBCDIC
              backwards_range:
#endif
                w = RExC_parse - rangebegin;
                vFAIL2utf8f(
                    "Invalid [] range \"%" UTF8f "\"",
                    UTF8fARG(UTF, w, rangebegin));
                NOT_REACHED; /* NOTREACHED */
            }
        }
        else {
            prevvalue = value; /* save the beginning of the potential range */
            if (! stop_at_1     /* Can't be a range if parsing just one thing */
                && *RExC_parse == '-')
            {
                char* next_char_ptr = RExC_parse + 1;

                /* Get the next real char after the '-' */
                SKIP_BRACKETED_WHITE_SPACE(skip_white, next_char_ptr, RExC_end);

                /* If the '-' is at the end of the class (just before the ']',
                 * it is a literal minus; otherwise it is a range */
                if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
                    RExC_parse = next_char_ptr;

                    /* a bad range like \w-, [:word:]- ? */
                    if (namedclass > OOB_NAMEDCLASS) {
                        if (strict || ckWARN(WARN_REGEXP)) {
                            const int w = RExC_parse >= rangebegin
                                          ?  RExC_parse - rangebegin
                                          : 0;
                            if (strict) {
                                vFAIL4("False [] range \"%*.*s\"",
                                    w, w, rangebegin);
                            }
                            else {
                                vWARN4(RExC_parse,
                                    "False [] range \"%*.*s\"",
                                    w, w, rangebegin);
                            }
                        }
                        cp_list = add_cp_to_invlist(cp_list, '-');
                        element_count++;
                    } else
                        range = 1;	/* yeah, it's a range! */
                    continue;	/* but do it the next time */
                }
            }
        }

        if (namedclass > OOB_NAMEDCLASS) {
            continue;
        }

        /* Here, we have a single value this time through the loop, and
         * <prevvalue> is the beginning of the range, if any; or <value> if
         * not. */

        /* non-Latin1 code point implies unicode semantics. */
        if (value > 255) {
            if (value > MAX_LEGAL_CP && (   value != UV_MAX
                                         || prevvalue > MAX_LEGAL_CP))
            {
                vFAIL(form_cp_too_large_msg(16, NULL, 0, value));
            }
            REQUIRE_UNI_RULES(flagp, 0);
            if (  ! silence_non_portable
                &&  UNICODE_IS_PERL_EXTENDED(value)
                &&  TO_OUTPUT_WARNINGS(RExC_parse))
            {
                ckWARN2_non_literal_string(RExC_parse,
                                           packWARN(WARN_PORTABLE),
                                           PL_extended_cp_format,
                                           value);
            }
        }

        /* Ready to process either the single value, or the completed range.
         * For single-valued non-inverted ranges, we consider the possibility
         * of multi-char folds.  (We made a conscious decision to not do this
         * for the other cases because it can often lead to non-intuitive
         * results.  For example, you have the peculiar case that:
         *  "s s" =~ /^[^\xDF]+$/i => Y
         *  "ss"  =~ /^[^\xDF]+$/i => N
         *
         * See [perl #89750] */
        if (FOLD && allow_mutiple_chars && value == prevvalue) {
            if (    value == LATIN_SMALL_LETTER_SHARP_S
                || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
                                                        value)))
            {
                /* Here <value> is indeed a multi-char fold.  Get what it is */

                U8 foldbuf[UTF8_MAXBYTES_CASE+1];
                STRLEN foldlen;

                UV folded = _to_uni_fold_flags(
                                value,
                                foldbuf,
                                &foldlen,
                                FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
                                                   ? FOLD_FLAGS_NOMIX_ASCII
                                                   : 0)
                                );

                /* Here, <folded> should be the first character of the
                 * multi-char fold of <value>, with <foldbuf> containing the
                 * whole thing.  But, if this fold is not allowed (because of
                 * the flags), <fold> will be the same as <value>, and should
                 * be processed like any other character, so skip the special
                 * handling */
                if (folded != value) {

                    /* Skip if we are recursed, currently parsing the class
                     * again.  Otherwise add this character to the list of
                     * multi-char folds. */
                    if (! RExC_in_multi_char_class) {
                        STRLEN cp_count = utf8_length(foldbuf,
                                                      foldbuf + foldlen);
                        SV* multi_fold = sv_2mortal(newSVpvs(""));

                        Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%" UVXf "}", value);

                        multi_char_matches
                                        = add_multi_match(multi_char_matches,
                                                          multi_fold,
                                                          cp_count);

                    }

                    /* This element should not be processed further in this
                     * class */
                    element_count--;
                    value = save_value;
                    prevvalue = save_prevvalue;
                    continue;
                }
            }
        }

        if (strict && ckWARN(WARN_REGEXP)) {
            if (range) {

                /* If the range starts above 255, everything is portable and
                 * likely to be so for any forseeable character set, so don't
                 * warn. */
                if (unicode_range && non_portable_endpoint && prevvalue < 256) {
                    vWARN(RExC_parse, "Both or neither range ends should be Unicode");
                }
                else if (prevvalue != value) {

                    /* Under strict, ranges that stop and/or end in an ASCII
                     * printable should have each end point be a portable value
                     * for it (preferably like 'A', but we don't warn if it is
                     * a (portable) Unicode name or code point), and the range
                     * must be all digits or all letters of the same case.
                     * Otherwise, the range is non-portable and unclear as to
                     * what it contains */
                    if (             (isPRINT_A(prevvalue) || isPRINT_A(value))
                        && (          non_portable_endpoint
                            || ! (   (isDIGIT_A(prevvalue) && isDIGIT_A(value))
                                  || (isLOWER_A(prevvalue) && isLOWER_A(value))
                                  || (isUPPER_A(prevvalue) && isUPPER_A(value))
                    ))) {
                        vWARN(RExC_parse, "Ranges of ASCII printables should"
                                          " be some subset of \"0-9\","
                                          " \"A-Z\", or \"a-z\"");
                    }
                    else if (prevvalue >= FIRST_NON_ASCII_DECIMAL_DIGIT) {
                        SSize_t index_start;
                        SSize_t index_final;

                        /* But the nature of Unicode and languages mean we
                         * can't do the same checks for above-ASCII ranges,
                         * except in the case of digit ones.  These should
                         * contain only digits from the same group of 10.  The
                         * ASCII case is handled just above.  Hence here, the
                         * range could be a range of digits.  First some
                         * unlikely special cases.  Grandfather in that a range
                         * ending in 19DA (NEW TAI LUE THAM DIGIT ONE) is bad
                         * if its starting value is one of the 10 digits prior
                         * to it.  This is because it is an alternate way of
                         * writing 19D1, and some people may expect it to be in
                         * that group.  But it is bad, because it won't give
                         * the expected results.  In Unicode 5.2 it was
                         * considered to be in that group (of 11, hence), but
                         * this was fixed in the next version */

                        if (UNLIKELY(value == 0x19DA && prevvalue >= 0x19D0)) {
                            goto warn_bad_digit_range;
                        }
                        else if (UNLIKELY(   prevvalue >= 0x1D7CE
                                          &&     value <= 0x1D7FF))
                        {
                            /* This is the only other case currently in Unicode
                             * where the algorithm below fails.  The code
                             * points just above are the end points of a single
                             * range containing only decimal digits.  It is 5
                             * different series of 0-9.  All other ranges of
                             * digits currently in Unicode are just a single
                             * series.  (And mktables will notify us if a later
                             * Unicode version breaks this.)
                             *
                             * If the range being checked is at most 9 long,
                             * and the digit values represented are in
                             * numerical order, they are from the same series.
                             * */
                            if (         value - prevvalue > 9
                                ||    (((    value - 0x1D7CE) % 10)
                                     <= (prevvalue - 0x1D7CE) % 10))
                            {
                                goto warn_bad_digit_range;
                            }
                        }
                        else {

                            /* For all other ranges of digits in Unicode, the
                             * algorithm is just to check if both end points
                             * are in the same series, which is the same range.
                             * */
                            index_start = _invlist_search(
                                                    PL_XPosix_ptrs[_CC_DIGIT],
                                                    prevvalue);

                            /* Warn if the range starts and ends with a digit,
                             * and they are not in the same group of 10. */
                            if (   index_start >= 0
                                && ELEMENT_RANGE_MATCHES_INVLIST(index_start)
                                && (index_final =
                                    _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
                                                    value)) != index_start
                                && index_final >= 0
                                && ELEMENT_RANGE_MATCHES_INVLIST(index_final))
                            {
                              warn_bad_digit_range:
                                vWARN(RExC_parse, "Ranges of digits should be"
                                                  " from the same group of"
                                                  " 10");
                            }
                        }
                    }
                }
            }
            if ((! range || prevvalue == value) && non_portable_endpoint) {
                if (isPRINT_A(value)) {
                    char literal[3];
                    unsigned d = 0;
                    if (isBACKSLASHED_PUNCT(value)) {
                        literal[d++] = '\\';
                    }
                    literal[d++] = (char) value;
                    literal[d++] = '\0';

                    vWARN4(RExC_parse,
                           "\"%.*s\" is more clearly written simply as \"%s\"",
                           (int) (RExC_parse - rangebegin),
                           rangebegin,
                           literal
                        );
                }
                else if (isMNEMONIC_CNTRL(value)) {
                    vWARN4(RExC_parse,
                           "\"%.*s\" is more clearly written simply as \"%s\"",
                           (int) (RExC_parse - rangebegin),
                           rangebegin,
                           cntrl_to_mnemonic((U8) value)
                        );
                }
            }
        }

        /* Deal with this element of the class */

#ifndef EBCDIC
        cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
                                                    prevvalue, value);
#else
        /* On non-ASCII platforms, for ranges that span all of 0..255, and ones
         * that don't require special handling, we can just add the range like
         * we do for ASCII platforms */
        if ((UNLIKELY(prevvalue == 0) && value >= 255)
            || ! (prevvalue < 256
                    && (unicode_range
                        || (! non_portable_endpoint
                            && ((isLOWER_A(prevvalue) && isLOWER_A(value))
                                || (isUPPER_A(prevvalue)
                                    && isUPPER_A(value)))))))
        {
            cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
                                                        prevvalue, value);
        }
        else {
            /* Here, requires special handling.  This can be because it is a
             * range whose code points are considered to be Unicode, and so
             * must be individually translated into native, or because its a
             * subrange of 'A-Z' or 'a-z' which each aren't contiguous in
             * EBCDIC, but we have defined them to include only the "expected"
             * upper or lower case ASCII alphabetics.  Subranges above 255 are
             * the same in native and Unicode, so can be added as a range */
            U8 start = NATIVE_TO_LATIN1(prevvalue);
            unsigned j;
            U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
            for (j = start; j <= end; j++) {
                cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
            }
            if (value > 255) {
                cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
                                                            256, value);
            }
        }
#endif

        range = 0; /* this range (if it was one) is done now */
    } /* End of loop through all the text within the brackets */

    if (   posix_warnings && av_tindex_skip_len_mg(posix_warnings) >= 0) {
        output_posix_warnings(pRExC_state, posix_warnings);
    }

    /* If anything in the class expands to more than one character, we have to
     * deal with them by building up a substitute parse string, and recursively
     * calling reg() on it, instead of proceeding */
    if (multi_char_matches) {
        SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
        I32 cp_count;
        STRLEN len;
        char *save_end = RExC_end;
        char *save_parse = RExC_parse;
        char *save_start = RExC_start;
        Size_t constructed_prefix_len = 0; /* This gives the length of the
                                              constructed portion of the
                                              substitute parse. */
        bool first_time = TRUE;     /* First multi-char occurrence doesn't get
                                       a "|" */
        I32 reg_flags;

        assert(! invert);
        /* Only one level of recursion allowed */
        assert(RExC_copy_start_in_constructed == RExC_precomp);

#if 0   /* Have decided not to deal with multi-char folds in inverted classes,
           because too confusing */
        if (invert) {
            sv_catpvs(substitute_parse, "(?:");
        }
#endif

        /* Look at the longest strings first */
        for (cp_count = av_tindex_skip_len_mg(multi_char_matches);
                        cp_count > 0;
                        cp_count--)
        {

            if (av_exists(multi_char_matches, cp_count)) {
                AV** this_array_ptr;
                SV* this_sequence;

                this_array_ptr = (AV**) av_fetch(multi_char_matches,
                                                 cp_count, FALSE);
                while ((this_sequence = av_pop(*this_array_ptr)) !=
                                                                &PL_sv_undef)
                {
                    if (! first_time) {
                        sv_catpvs(substitute_parse, "|");
                    }
                    first_time = FALSE;

                    sv_catpv(substitute_parse, SvPVX(this_sequence));
                }
            }
        }

        /* If the character class contains anything else besides these
         * multi-character strings, have to include it in recursive parsing */
        if (element_count) {
            bool has_l_bracket = orig_parse > RExC_start && *(orig_parse - 1) == '[';

            sv_catpvs(substitute_parse, "|");
            if (has_l_bracket) {    /* Add an [ if the original had one */
                sv_catpvs(substitute_parse, "[");
            }
            constructed_prefix_len = SvCUR(substitute_parse);
            sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);

            /* Put in a closing ']' to match any opening one, but not if going
             * off the end, as otherwise we are adding something that really
             * isn't there */
            if (has_l_bracket && RExC_parse < RExC_end) {
                sv_catpvs(substitute_parse, "]");
            }
        }

        sv_catpvs(substitute_parse, ")");
#if 0
        if (invert) {
            /* This is a way to get the parse to skip forward a whole named
             * sequence instead of matching the 2nd character when it fails the
             * first */
            sv_catpvs(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
        }
#endif

        /* Set up the data structure so that any errors will be properly
         * reported.  See the comments at the definition of
         * REPORT_LOCATION_ARGS for details */
        RExC_copy_start_in_input = (char *) orig_parse;
        RExC_start = RExC_parse = SvPV(substitute_parse, len);
        RExC_copy_start_in_constructed = RExC_start + constructed_prefix_len;
        RExC_end = RExC_parse + len;
        RExC_in_multi_char_class = 1;

        ret = reg(pRExC_state, 1, &reg_flags, depth+1);

        *flagp |= reg_flags & (HASWIDTH|SIMPLE|POSTPONED|RESTART_PARSE|NEED_UTF8);

        /* And restore so can parse the rest of the pattern */
        RExC_parse = save_parse;
        RExC_start = RExC_copy_start_in_constructed = RExC_copy_start_in_input = save_start;
        RExC_end = save_end;
        RExC_in_multi_char_class = 0;
        SvREFCNT_dec_NN(multi_char_matches);
        SvREFCNT_dec(properties);
        SvREFCNT_dec(cp_list);
        SvREFCNT_dec(simple_posixes);
        SvREFCNT_dec(posixes);
        SvREFCNT_dec(nposixes);
        SvREFCNT_dec(cp_foldable_list);
        return ret;
    }

    /* If folding, we calculate all characters that could fold to or from the
     * ones already on the list */
    if (cp_foldable_list) {
        if (FOLD) {
            UV start, end;	/* End points of code point ranges */

            SV* fold_intersection = NULL;
            SV** use_list;

            /* Our calculated list will be for Unicode rules.  For locale
             * matching, we have to keep a separate list that is consulted at
             * runtime only when the locale indicates Unicode rules (and we
             * don't include potential matches in the ASCII/Latin1 range, as
             * any code point could fold to any other, based on the run-time
             * locale).   For non-locale, we just use the general list */
            if (LOC) {
                use_list = &only_utf8_locale_list;
            }
            else {
                use_list = &cp_list;
            }

            /* Only the characters in this class that participate in folds need
             * be checked.  Get the intersection of this class and all the
             * possible characters that are foldable.  This can quickly narrow
             * down a large class */
            _invlist_intersection(PL_in_some_fold, cp_foldable_list,
                                  &fold_intersection);

            /* Now look at the foldable characters in this class individually */
            invlist_iterinit(fold_intersection);
            while (invlist_iternext(fold_intersection, &start, &end)) {
                UV j;
                UV folded;

                /* Look at every character in the range */
                for (j = start; j <= end; j++) {
                    U8 foldbuf[UTF8_MAXBYTES_CASE+1];
                    STRLEN foldlen;
                    unsigned int k;
                    Size_t folds_count;
                    U32 first_fold;
                    const U32 * remaining_folds;

                    if (j < 256) {

                        /* Under /l, we don't know what code points below 256
                         * fold to, except we do know the MICRO SIGN folds to
                         * an above-255 character if the locale is UTF-8, so we
                         * add it to the special list (in *use_list)  Otherwise
                         * we know now what things can match, though some folds
                         * are valid under /d only if the target is UTF-8.
                         * Those go in a separate list */
                        if (      IS_IN_SOME_FOLD_L1(j)
                            && ! (LOC && j != MICRO_SIGN))
                        {

                            /* ASCII is always matched; non-ASCII is matched
                             * only under Unicode rules (which could happen
                             * under /l if the locale is a UTF-8 one */
                            if (isASCII(j) || ! DEPENDS_SEMANTICS) {
                                *use_list = add_cp_to_invlist(*use_list,
                                                            PL_fold_latin1[j]);
                            }
                            else if (j != PL_fold_latin1[j]) {
                                upper_latin1_only_utf8_matches
                                        = add_cp_to_invlist(
                                                upper_latin1_only_utf8_matches,
                                                PL_fold_latin1[j]);
                            }
                        }

                        if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
                            && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
                        {
                            add_above_Latin1_folds(pRExC_state,
                                                   (U8) j,
                                                   use_list);
                        }
                        continue;
                    }

                    /* Here is an above Latin1 character.  We don't have the
                     * rules hard-coded for it.  First, get its fold.  This is
                     * the simple fold, as the multi-character folds have been
                     * handled earlier and separated out */
                    folded = _to_uni_fold_flags(j, foldbuf, &foldlen,
                                                        (ASCII_FOLD_RESTRICTED)
                                                        ? FOLD_FLAGS_NOMIX_ASCII
                                                        : 0);

                    /* Single character fold of above Latin1.  Add everything
                     * in its fold closure to the list that this node should
                     * match. */
                    folds_count = _inverse_folds(folded, &first_fold,
                                                    &remaining_folds);
                    for (k = 0; k <= folds_count; k++) {
                        UV c = (k == 0)     /* First time through use itself */
                                ? folded
                                : (k == 1)  /* 2nd time use, the first fold */
                                   ? first_fold

                                     /* Then the remaining ones */
                                   : remaining_folds[k-2];

                        /* /aa doesn't allow folds between ASCII and non- */
                        if ((   ASCII_FOLD_RESTRICTED
                            && (isASCII(c) != isASCII(j))))
                        {
                            continue;
                        }

                        /* Folds under /l which cross the 255/256 boundary are
                         * added to a separate list.  (These are valid only
                         * when the locale is UTF-8.) */
                        if (c < 256 && LOC) {
                            *use_list = add_cp_to_invlist(*use_list, c);
                            continue;
                        }

                        if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
                        {
                            cp_list = add_cp_to_invlist(cp_list, c);
                        }
                        else {
                            /* Similarly folds involving non-ascii Latin1
                             * characters under /d are added to their list */
                            upper_latin1_only_utf8_matches
                                    = add_cp_to_invlist(
                                                upper_latin1_only_utf8_matches,
                                                c);
                        }
                    }
                }
            }
            SvREFCNT_dec_NN(fold_intersection);
        }

        /* Now that we have finished adding all the folds, there is no reason
         * to keep the foldable list separate */
        _invlist_union(cp_list, cp_foldable_list, &cp_list);
        SvREFCNT_dec_NN(cp_foldable_list);
    }

    /* And combine the result (if any) with any inversion lists from posix
     * classes.  The lists are kept separate up to now because we don't want to
     * fold the classes */
    if (simple_posixes) {   /* These are the classes known to be unaffected by
                               /a, /aa, and /d */
        if (cp_list) {
            _invlist_union(cp_list, simple_posixes, &cp_list);
            SvREFCNT_dec_NN(simple_posixes);
        }
        else {
            cp_list = simple_posixes;
        }
    }
    if (posixes || nposixes) {
        if (! DEPENDS_SEMANTICS) {

            /* For everything but /d, we can just add the current 'posixes' and
             * 'nposixes' to the main list */
            if (posixes) {
                if (cp_list) {
                    _invlist_union(cp_list, posixes, &cp_list);
                    SvREFCNT_dec_NN(posixes);
                }
                else {
                    cp_list = posixes;
                }
            }
            if (nposixes) {
                if (cp_list) {
                    _invlist_union(cp_list, nposixes, &cp_list);
                    SvREFCNT_dec_NN(nposixes);
                }
                else {
                    cp_list = nposixes;
                }
            }
        }
        else {
            /* Under /d, things like \w match upper Latin1 characters only if
             * the target string is in UTF-8.  But things like \W match all the
             * upper Latin1 characters if the target string is not in UTF-8.
             *
             * Handle the case with something like \W separately */
            if (nposixes) {
                SV* only_non_utf8_list = invlist_clone(PL_UpperLatin1, NULL);

                /* A complemented posix class matches all upper Latin1
                 * characters if not in UTF-8.  And it matches just certain
                 * ones when in UTF-8.  That means those certain ones are
                 * matched regardless, so can just be added to the
                 * unconditional list */
                if (cp_list) {
                    _invlist_union(cp_list, nposixes, &cp_list);
                    SvREFCNT_dec_NN(nposixes);
                    nposixes = NULL;
                }
                else {
                    cp_list = nposixes;
                }

                /* Likewise for 'posixes' */
                _invlist_union(posixes, cp_list, &cp_list);
                SvREFCNT_dec(posixes);

                /* Likewise for anything else in the range that matched only
                 * under UTF-8 */
                if (upper_latin1_only_utf8_matches) {
                    _invlist_union(cp_list,
                                   upper_latin1_only_utf8_matches,
                                   &cp_list);
                    SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
                    upper_latin1_only_utf8_matches = NULL;
                }

                /* If we don't match all the upper Latin1 characters regardless
                 * of UTF-8ness, we have to set a flag to match the rest when
                 * not in UTF-8 */
                _invlist_subtract(only_non_utf8_list, cp_list,
                                  &only_non_utf8_list);
                if (_invlist_len(only_non_utf8_list) != 0) {
                    anyof_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
                }
                SvREFCNT_dec_NN(only_non_utf8_list);
            }
            else {
                /* Here there were no complemented posix classes.  That means
                 * the upper Latin1 characters in 'posixes' match only when the
                 * target string is in UTF-8.  So we have to add them to the
                 * list of those types of code points, while adding the
                 * remainder to the unconditional list.
                 *
                 * First calculate what they are */
                SV* nonascii_but_latin1_properties = NULL;
                _invlist_intersection(posixes, PL_UpperLatin1,
                                      &nonascii_but_latin1_properties);

                /* And add them to the final list of such characters. */
                _invlist_union(upper_latin1_only_utf8_matches,
                               nonascii_but_latin1_properties,
                               &upper_latin1_only_utf8_matches);

                /* Remove them from what now becomes the unconditional list */
                _invlist_subtract(posixes, nonascii_but_latin1_properties,
                                  &posixes);

                /* And add those unconditional ones to the final list */
                if (cp_list) {
                    _invlist_union(cp_list, posixes, &cp_list);
                    SvREFCNT_dec_NN(posixes);
                    posixes = NULL;
                }
                else {
                    cp_list = posixes;
                }

                SvREFCNT_dec(nonascii_but_latin1_properties);

                /* Get rid of any characters from the conditional list that we
                 * now know are matched unconditionally, which may make that
                 * list empty */
                _invlist_subtract(upper_latin1_only_utf8_matches,
                                  cp_list,
                                  &upper_latin1_only_utf8_matches);
                if (_invlist_len(upper_latin1_only_utf8_matches) == 0) {
                    SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
                    upper_latin1_only_utf8_matches = NULL;
                }
            }
        }
    }

    /* And combine the result (if any) with any inversion list from properties.
     * The lists are kept separate up to now so that we can distinguish the two
     * in regards to matching above-Unicode.  A run-time warning is generated
     * if a Unicode property is matched against a non-Unicode code point. But,
     * we allow user-defined properties to match anything, without any warning,
     * and we also suppress the warning if there is a portion of the character
     * class that isn't a Unicode property, and which matches above Unicode, \W
     * or [\x{110000}] for example.
     * (Note that in this case, unlike the Posix one above, there is no
     * <upper_latin1_only_utf8_matches>, because having a Unicode property
     * forces Unicode semantics */
    if (properties) {
        if (cp_list) {

            /* If it matters to the final outcome, see if a non-property
             * component of the class matches above Unicode.  If so, the
             * warning gets suppressed.  This is true even if just a single
             * such code point is specified, as, though not strictly correct if
             * another such code point is matched against, the fact that they
             * are using above-Unicode code points indicates they should know
             * the issues involved */
            if (warn_super) {
                warn_super = ! (invert
                               ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
            }

            _invlist_union(properties, cp_list, &cp_list);
            SvREFCNT_dec_NN(properties);
        }
        else {
            cp_list = properties;
        }

        if (warn_super) {
            anyof_flags
             |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;

            /* Because an ANYOF node is the only one that warns, this node
             * can't be optimized into something else */
            optimizable = FALSE;
        }
    }

    /* Here, we have calculated what code points should be in the character
     * class.
     *
     * Now we can see about various optimizations.  Fold calculation (which we
     * did above) needs to take place before inversion.  Otherwise /[^k]/i
     * would invert to include K, which under /i would match k, which it
     * shouldn't.  Therefore we can't invert folded locale now, as it won't be
     * folded until runtime */

    /* If we didn't do folding, it's because some information isn't available
     * until runtime; set the run-time fold flag for these  We know to set the
     * flag if we have a non-NULL list for UTF-8 locales, or the class matches
     * at least one 0-255 range code point */
    if (LOC && FOLD) {

        /* Some things on the list might be unconditionally included because of
         * other components.  Remove them, and clean up the list if it goes to
         * 0 elements */
        if (only_utf8_locale_list && cp_list) {
            _invlist_subtract(only_utf8_locale_list, cp_list,
                              &only_utf8_locale_list);

            if (_invlist_len(only_utf8_locale_list) == 0) {
                SvREFCNT_dec_NN(only_utf8_locale_list);
                only_utf8_locale_list = NULL;
            }
        }
        if (    only_utf8_locale_list
            || (cp_list && (   _invlist_contains_cp(cp_list, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE)
                            || _invlist_contains_cp(cp_list, LATIN_SMALL_LETTER_DOTLESS_I))))
        {
            has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
            anyof_flags
                 |= ANYOFL_FOLD
                 |  ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
        }
        else if (cp_list && invlist_lowest(cp_list) < 256) {
            /* If nothing is below 256, has no locale dependency; otherwise it
             * does */
            anyof_flags |= ANYOFL_FOLD;
            has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
        }
    }
    else if (   DEPENDS_SEMANTICS
             && (    upper_latin1_only_utf8_matches
                 || (anyof_flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)))
    {
        RExC_seen_d_op = TRUE;
        has_runtime_dependency |= HAS_D_RUNTIME_DEPENDENCY;
    }

    /* Optimize inverted patterns (e.g. [^a-z]) when everything is known at
     * compile time. */
    if (     cp_list
        &&   invert
        && ! has_runtime_dependency)
    {
        _invlist_invert(cp_list);

        /* Clear the invert flag since have just done it here */
        invert = FALSE;
    }

    /* All possible optimizations below still have these characteristics.
     * (Multi-char folds aren't SIMPLE, but they don't get this far in this
     * routine) */
    *flagp |= HASWIDTH|SIMPLE;

    if (ret_invlist) {
        *ret_invlist = cp_list;

        return (cp_list) ? RExC_emit : 0;
    }

    if (anyof_flags & ANYOF_LOCALE_FLAGS) {
        RExC_contains_locale = 1;
    }

    if (optimizable) {

        /* Some character classes are equivalent to other nodes.  Such nodes
         * take up less room, and some nodes require fewer operations to
         * execute, than ANYOF nodes.  EXACTish nodes may be joinable with
         * adjacent nodes to improve efficiency. */
        op = optimize_regclass(pRExC_state, cp_list,
                                            only_utf8_locale_list,
                                            upper_latin1_only_utf8_matches,
                                            has_runtime_dependency,
                                            posixl,
                                            &anyof_flags, &invert, &ret, flagp);
        RETURN_FAIL_ON_RESTART_FLAGP(flagp);

        /* If optimized to something else and emitted, clean up and return */
        if (ret >= 0) {
            Set_Node_Offset_Length(REGNODE_p(ret), orig_parse - RExC_start,
                                                   RExC_parse - orig_parse);;
            SvREFCNT_dec(cp_list);;
            SvREFCNT_dec(only_utf8_locale_list);
            SvREFCNT_dec(upper_latin1_only_utf8_matches);
            return ret;
        }
    }

    /* Here are going to emit an ANYOF; set the particular type */
    if (op == ANYOF) {
        if (has_runtime_dependency & HAS_D_RUNTIME_DEPENDENCY) {
            op = ANYOFD;
        }
        else if (posixl) {
            op = ANYOFPOSIXL;
        }
        else if (LOC) {
            op = ANYOFL;
        }
    }

    ret = regnode_guts(pRExC_state, op, regarglen[op], "anyof");
    FILL_NODE(ret, op);        /* We set the argument later */
    RExC_emit += 1 + regarglen[op];
    ANYOF_FLAGS(REGNODE_p(ret)) = anyof_flags;

    /* Here, <cp_list> contains all the code points we can determine at
     * compile time that match under all conditions.  Go through it, and
     * for things that belong in the bitmap, put them there, and delete from
     * <cp_list>.  While we are at it, see if everything above 255 is in the
     * list, and if so, set a flag to speed up execution */

    populate_ANYOF_from_invlist(REGNODE_p(ret), &cp_list);

    if (posixl) {
        ANYOF_POSIXL_SET_TO_BITMAP(REGNODE_p(ret), posixl);
    }

    if (invert) {
        ANYOF_FLAGS(REGNODE_p(ret)) |= ANYOF_INVERT;
    }

    /* Here, the bitmap has been populated with all the Latin1 code points that
     * always match.  Can now add to the overall list those that match only
     * when the target string is UTF-8 (<upper_latin1_only_utf8_matches>).
     * */
    if (upper_latin1_only_utf8_matches) {
        if (cp_list) {
            _invlist_union(cp_list,
                           upper_latin1_only_utf8_matches,
                           &cp_list);
            SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
        }
        else {
            cp_list = upper_latin1_only_utf8_matches;
        }
        ANYOF_FLAGS(REGNODE_p(ret)) |= ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP;
    }

    set_ANYOF_arg(pRExC_state, REGNODE_p(ret), cp_list,
                  (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
                   ? listsv
                   : NULL,
                  only_utf8_locale_list);

    SvREFCNT_dec(cp_list);;
    SvREFCNT_dec(only_utf8_locale_list);
    return ret;
}

STATIC U8
S_optimize_regclass(pTHX_
                    RExC_state_t *pRExC_state,
                    SV * cp_list,
                    SV* only_utf8_locale_list,
                    SV* upper_latin1_only_utf8_matches,
                    const U32 has_runtime_dependency,
                    const U32 posixl,
                    U8  * anyof_flags,
                    bool * invert,
                    regnode_offset * ret,
                    I32 *flagp
                  )
{
    /* This function exists just to make S_regclass() smaller.  It extracts out
     * the code that looks for potential optimizations away from a full generic
     * ANYOF node.  The parameter names are the same as the corresponding
     * variables in S_regclass.
     *
     * It returns the new op (ANYOF if no optimization found) and sets *ret to
     * any created regnode.  If the new op is sufficiently like plain ANYOF, it
     * leaves *ret unchanged for allocation in S_regclass.
     *
     * Certain of the parameters may be updated as a result of the changes
     * herein */

    U8 op = ANYOF; /* The returned node-type, initialized to the unoptimized
                      one. */
    UV value;
    PERL_UINT_FAST8_T i;
    UV partial_cp_count = 0;
    UV start[MAX_FOLD_FROMS+1] = { 0 }; /* +1 for the folded-to char */
    UV   end[MAX_FOLD_FROMS+1] = { 0 };
    bool single_range = FALSE;

    PERL_ARGS_ASSERT_OPTIMIZE_REGCLASS;

    if (cp_list) { /* Count the code points in enough ranges that we would see
                      all the ones possible in any fold in this version of
                      Unicode */

        invlist_iterinit(cp_list);
        for (i = 0; i <= MAX_FOLD_FROMS; i++) {
            if (! invlist_iternext(cp_list, &start[i], &end[i])) {
                break;
            }
            partial_cp_count += end[i] - start[i] + 1;
        }

        if (i == 1) {
            single_range = TRUE;
        }
        invlist_iterfinish(cp_list);
    }

    /* If we know at compile time that this matches every possible code point,
     * any run-time dependencies don't matter */
    if (start[0] == 0 && end[0] == UV_MAX) {
        if (*invert) {
            op = OPFAIL;
            *ret = reganode(pRExC_state, op, 0);
        }
        else {
            op = SANY;
            *ret = reg_node(pRExC_state, op);
            MARK_NAUGHTY(1);
        }
        return op;
    }

    /* Similarly, for /l posix classes, if both a class and its complement
     * match, any run-time dependencies don't matter */
    if (posixl) {
        int namedclass;
        for (namedclass = 0; namedclass < ANYOF_POSIXL_MAX; namedclass += 2) {
            if (   POSIXL_TEST(posixl, namedclass)      /* class */
                && POSIXL_TEST(posixl, namedclass + 1)) /* its complement */
            {
                if (*invert) {
                    op = OPFAIL;
                    *ret = reganode(pRExC_state, op, 0);
                }
                else {
                    op = SANY;
                    *ret = reg_node(pRExC_state, op);
                    MARK_NAUGHTY(1);
                }
                return op;
            }
        }

        /* For well-behaved locales, some classes are subsets of others, so
         * complementing the subset and including the non-complemented superset
         * should match everything, like [\D[:alnum:]], and
         * [[:^alpha:][:alnum:]], but some implementations of locales are
         * buggy, and khw thinks its a bad idea to have optimization change
         * behavior, even if it avoids an OS bug in a given case */

#define isSINGLE_BIT_SET(n) isPOWER_OF_2(n)

        /* If is a single posix /l class, can optimize to just that op.  Such a
         * node will not match anything in the Latin1 range, as that is not
         * determinable until runtime, but will match whatever the class does
         * outside that range.  (Note that some classes won't match anything
         * outside the range, like [:ascii:]) */
        if (   isSINGLE_BIT_SET(posixl)
            && (partial_cp_count == 0 || start[0] > 255))
        {
            U8 classnum;
            SV * class_above_latin1 = NULL;
            bool already_inverted;
            bool are_equivalent;

            /* Compute which bit is set, which is the same thing as, e.g.,
             * ANYOF_CNTRL.  From
             * https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn
             * */
            static const int MultiplyDeBruijnBitPosition2[32] = {
                0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
                31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
                };

            namedclass = MultiplyDeBruijnBitPosition2[(posixl
                                                      * 0x077CB531U) >> 27];
            classnum = namedclass_to_classnum(namedclass);

            /* The named classes are such that the inverted number is one
             * larger than the non-inverted one */
            already_inverted = namedclass - classnum_to_namedclass(classnum);

            /* Create an inversion list of the official property, inverted if
             * the constructed node list is inverted, and restricted to only
             * the above latin1 code points, which are the only ones known at
             * compile time */
            _invlist_intersection_maybe_complement_2nd(
                                                PL_AboveLatin1,
                                                PL_XPosix_ptrs[classnum],
                                                already_inverted,
                                                &class_above_latin1);
            are_equivalent = _invlistEQ(class_above_latin1, cp_list, FALSE);
            SvREFCNT_dec_NN(class_above_latin1);

            if (are_equivalent) {

                /* Resolve the run-time inversion flag with this possibly
                 * inverted class */
                *invert = *invert ^ already_inverted;

                op = POSIXL + *invert * (NPOSIXL - POSIXL);
                *ret = reg_node(pRExC_state, op);
                FLAGS(REGNODE_p(*ret)) = classnum;
                return op;
            }
        }
    }

    /* khw can't think of any other possible transformation involving these. */
    if (has_runtime_dependency & HAS_USER_DEFINED_PROPERTY) {
        return op;
    }

    if (! has_runtime_dependency) {

        /* If the list is empty, nothing matches.  This happens, for example,
         * when a Unicode property that doesn't match anything is the only
         * element in the character class (perluniprops.pod notes such
         * properties). */
        if (partial_cp_count == 0) {
            if (*invert) {
                op = SANY;
                *ret = reg_node(pRExC_state, op);
            }
            else {
                op = OPFAIL;
                *ret = reganode(pRExC_state, op, 0);
            }

            return op;
        }

        /* If matches everything but \n */
        if (   start[0] == 0 && end[0] == '\n' - 1
            && start[1] == '\n' + 1 && end[1] == UV_MAX)
        {
            assert (! *invert);
            op = REG_ANY;
            *ret = reg_node(pRExC_state, op);
            MARK_NAUGHTY(1);
            return op;
        }
    }

    /* Next see if can optimize classes that contain just a few code points
     * into an EXACTish node.  The reason to do this is to let the optimizer
     * join this node with adjacent EXACTish ones, and ANYOF nodes require
     * runtime conversion to code point from UTF-8, which we'd like to avoid.
     *
     * An EXACTFish node can be generated even if not under /i, and vice versa.
     * But care must be taken.  An EXACTFish node has to be such that it only
     * matches precisely the code points in the class, but we want to generate
     * the least restrictive one that does that, to increase the odds of being
     * able to join with an adjacent node.  For example, if the class contains
     * [kK], we have to make it an EXACTFAA node to prevent the KELVIN SIGN
     * from matching.  Whether we are under /i or not is irrelevant in this
     * case.  Less obvious is the pattern qr/[\x{02BC}]n/i.  U+02BC is MODIFIER
     * LETTER APOSTROPHE. That is supposed to match the single character U+0149
     * LATIN SMALL LETTER N PRECEDED BY APOSTROPHE.  And so even though there
     * is no simple fold that includes \X{02BC}, there is a multi-char fold
     * that does, and so the node generated for it must be an EXACTFish one.
     * On the other hand qr/:/i should generate a plain EXACT node since the
     * colon participates in no fold whatsoever, and having it be EXACT tells
     * the optimizer the target string cannot match unless it has a colon in
     * it. */
    if (   ! posixl
        && ! *invert

            /* Only try if there are no more code points in the class than in
             * the max possible fold */
        &&   inRANGE(partial_cp_count, 1, MAX_FOLD_FROMS + 1))
    {
        /* We can always make a single code point class into an EXACTish node.
         * */
        if (partial_cp_count == 1 && ! upper_latin1_only_utf8_matches) {
            if (LOC) {

                /* Here is /l:  Use EXACTL, except if there is a fold not known
                 * until runtime so shows as only a single code point here.
                 * For code points above 255, we know which can cause problems
                 * by having a potential fold to the Latin1 range. */
                if (  ! FOLD
                    || (     start[0] > 255
                        && ! is_PROBLEMATIC_LOCALE_FOLD_cp(start[0])))
                {
                    op = EXACTL;
                }
                else {
                    op = EXACTFL;
                }
            }
            else if (! FOLD) { /* Not /l and not /i */
                op = (start[0] < 256) ? EXACT : EXACT_REQ8;
            }
            else if (start[0] < 256) { /* /i, not /l, and the code point is
                                          small */

                /* Under /i, it gets a little tricky.  A code point that
                 * doesn't participate in a fold should be an EXACT node.  We
                 * know this one isn't the result of a simple fold, or there'd
                 * be more than one code point in the list, but it could be
                 * part of a multi-character fold.  In that case we better not
                 * create an EXACT node, as we would wrongly be telling the
                 * optimizer that this code point must be in the target string,
                 * and that is wrong.  This is because if the sequence around
                 * this code point forms a multi-char fold, what needs to be in
                 * the string could be the code point that folds to the
                 * sequence.
                 *
                 * This handles the case of below-255 code points, as we have
                 * an easy look up for those.  The next clause handles the
                 * above-256 one */
                op = IS_IN_SOME_FOLD_L1(start[0])
                     ? EXACTFU
                     : EXACT;
            }
            else {  /* /i, larger code point.  Since we are under /i, and have
                       just this code point, we know that it can't fold to
                       something else, so PL_InMultiCharFold applies to it */
                op = (_invlist_contains_cp(PL_InMultiCharFold, start[0]))
                         ? EXACTFU_REQ8
                         : EXACT_REQ8;
                }

                value = start[0];
        }
        else if (  ! (has_runtime_dependency & ~HAS_D_RUNTIME_DEPENDENCY)
                 && _invlist_contains_cp(PL_in_some_fold, start[0]))
        {
            /* Here, the only runtime dependency, if any, is from /d, and the
             * class matches more than one code point, and the lowest code
             * point participates in some fold.  It might be that the other
             * code points are /i equivalent to this one, and hence they would
             * be representable by an EXACTFish node.  Above, we eliminated
             * classes that contain too many code points to be EXACTFish, with
             * the test for MAX_FOLD_FROMS
             *
             * First, special case the ASCII fold pairs, like 'B' and 'b'.  We
             * do this because we have EXACTFAA at our disposal for the ASCII
             * range */
            if (partial_cp_count == 2 && isASCII(start[0])) {

                /* The only ASCII characters that participate in folds are
                 * alphabetics */
                assert(isALPHA(start[0]));
                if (   end[0] == start[0]   /* First range is a single
                                               character, so 2nd exists */
                    && isALPHA_FOLD_EQ(start[0], start[1]))
                {
                    /* Here, is part of an ASCII fold pair */

                    if (   ASCII_FOLD_RESTRICTED
                        || HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(start[0]))
                    {
                        /* If the second clause just above was true, it means
                         * we can't be under /i, or else the list would have
                         * included more than this fold pair.  Therefore we
                         * have to exclude the possibility of whatever else it
                         * is that folds to these, by using EXACTFAA */
                        op = EXACTFAA;
                    }
                    else if (HAS_NONLATIN1_FOLD_CLOSURE(start[0])) {

                        /* Here, there's no simple fold that start[0] is part
                         * of, but there is a multi-character one.  If we are
                         * not under /i, we want to exclude that possibility;
                         * if under /i, we want to include it */
                        op = (FOLD) ? EXACTFU : EXACTFAA;
                    }
                    else {

                        /* Here, the only possible fold start[0] particpates in
                         * is with start[1].  /i or not isn't relevant */
                        op = EXACTFU;
                    }

                    value = toFOLD(start[0]);
                }
            }
            else if (  ! upper_latin1_only_utf8_matches
                     || (   _invlist_len(upper_latin1_only_utf8_matches) == 2
                         && PL_fold_latin1[
                           invlist_highest(upper_latin1_only_utf8_matches)]
                         == start[0]))
            {
                /* Here, the smallest character is non-ascii or there are more
                 * than 2 code points matched by this node.  Also, we either
                 * don't have /d UTF-8 dependent matches, or if we do, they
                 * look like they could be a single character that is the fold
                 * of the lowest one is in the always-match list.  This test
                 * quickly excludes most of the false positives when there are
                 * /d UTF-8 depdendent matches.  These are like LATIN CAPITAL
                 * LETTER A WITH GRAVE matching LATIN SMALL LETTER A WITH GRAVE
                 * iff the target string is UTF-8.  (We don't have to worry
                 * above about exceeding the array bounds of PL_fold_latin1[]
                 * because any code point in 'upper_latin1_only_utf8_matches'
                 * is below 256.)
                 *
                 * EXACTFAA would apply only to pairs (hence exactly 2 code
                 * points) in the ASCII range, so we can't use it here to
                 * artificially restrict the fold domain, so we check if the
                 * class does or does not match some EXACTFish node.  Further,
                 * if we aren't under /i, and and the folded-to character is
                 * part of a multi-character fold, we can't do this
                 * optimization, as the sequence around it could be that
                 * multi-character fold, and we don't here know the context, so
                 * we have to assume it is that multi-char fold, to prevent
                 * potential bugs.
                 *
                 * To do the general case, we first find the fold of the lowest
                 * code point (which may be higher than that lowest unfolded
                 * one), then find everything that folds to it.  (The data
                 * structure we have only maps from the folded code points, so
                 * we have to do the earlier step.) */

                Size_t foldlen;
                U8 foldbuf[UTF8_MAXBYTES_CASE];
                UV folded = _to_uni_fold_flags(start[0], foldbuf, &foldlen, 0);
                U32 first_fold;
                const U32 * remaining_folds;
                Size_t folds_to_this_cp_count = _inverse_folds(
                                                            folded,
                                                            &first_fold,
                                                            &remaining_folds);
                Size_t folds_count = folds_to_this_cp_count + 1;
                SV * fold_list = _new_invlist(folds_count);
                unsigned int i;

                /* If there are UTF-8 dependent matches, create a temporary
                 * list of what this node matches, including them. */
                SV * all_cp_list = NULL;
                SV ** use_this_list = &cp_list;

                if (upper_latin1_only_utf8_matches) {
                    all_cp_list = _new_invlist(0);
                    use_this_list = &all_cp_list;
                    _invlist_union(cp_list,
                                   upper_latin1_only_utf8_matches,
                                   use_this_list);
                }

                /* Having gotten everything that participates in the fold
                 * containing the lowest code point, we turn that into an
                 * inversion list, making sure everything is included. */
                fold_list = add_cp_to_invlist(fold_list, start[0]);
                fold_list = add_cp_to_invlist(fold_list, folded);
                if (folds_to_this_cp_count > 0) {
                    fold_list = add_cp_to_invlist(fold_list, first_fold);
                    for (i = 0; i + 1 < folds_to_this_cp_count; i++) {
                        fold_list = add_cp_to_invlist(fold_list,
                                                    remaining_folds[i]);
                    }
                }

                /* If the fold list is identical to what's in this ANYOF node,
                 * the node can be represented by an EXACTFish one instead */
                if (_invlistEQ(*use_this_list, fold_list,
                               0 /* Don't complement */ )
                ) {

                    /* But, we have to be careful, as mentioned above.  Just
                     * the right sequence of characters could match this if it
                     * is part of a multi-character fold.  That IS what we want
                     * if we are under /i.  But it ISN'T what we want if not
                     * under /i, as it could match when it shouldn't.  So, when
                     * we aren't under /i and this character participates in a
                     * multi-char fold, we don't optimize into an EXACTFish
                     * node.  So, for each case below we have to check if we
                     * are folding, and if not, if it is not part of a
                     * multi-char fold.  */
                    if (start[0] > 255) {    /* Highish code point */
                        if (FOLD || ! _invlist_contains_cp(
                                                   PL_InMultiCharFold, folded))
                        {
                            op = (LOC)
                                 ? EXACTFLU8
                                 : (ASCII_FOLD_RESTRICTED)
                                   ? EXACTFAA
                                   : EXACTFU_REQ8;
                            value = folded;
                        }
                    }   /* Below, the lowest code point < 256 */
                    else if (    FOLD
                             &&  folded == 's'
                             &&  DEPENDS_SEMANTICS)
                    {   /* An EXACTF node containing a single character 's',
                           can be an EXACTFU if it doesn't get joined with an
                           adjacent 's' */
                        op = EXACTFU_S_EDGE;
                        value = folded;
                    }
                    else if (     FOLD
                             || ! HAS_NONLATIN1_FOLD_CLOSURE(start[0]))
                    {
                        if (upper_latin1_only_utf8_matches) {
                            op = EXACTF;

                            /* We can't use the fold, as that only matches
                             * under UTF-8 */
                            value = start[0];
                        }
                        else if (     UNLIKELY(start[0] == MICRO_SIGN)
                                 && ! UTF)
                        {   /* EXACTFUP is a special node for this character */
                            op = (ASCII_FOLD_RESTRICTED)
                                 ? EXACTFAA
                                 : EXACTFUP;
                            value = MICRO_SIGN;
                        }
                        else if (     ASCII_FOLD_RESTRICTED
                                 && ! isASCII(start[0]))
                        {   /* For ASCII under /iaa, we can use EXACTFU below
                             */
                            op = EXACTFAA;
                            value = folded;
                        }
                        else {
                            op = EXACTFU;
                            value = folded;
                        }
                    }
                }

                SvREFCNT_dec_NN(fold_list);
                SvREFCNT_dec(all_cp_list);
            }
        }

        if (op != ANYOF) {
            U8 len;

            /* Here, we have calculated what EXACTish node to use.  Have to
             * convert to UTF-8 if not already there */
            if (value > 255) {
                if (! UTF) {
                    SvREFCNT_dec(cp_list);;
                    REQUIRE_UTF8(flagp);
                }

                /* This is a kludge to the special casing issues with this
                 * ligature under /aa.  FB05 should fold to FB06, but the call
                 * above to _to_uni_fold_flags() didn't find this, as it didn't
                 * use the /aa restriction in order to not miss other folds
                 * that would be affected.  This is the only instance likely to
                 * ever be a problem in all of Unicode.  So special case it. */
                if (   value == LATIN_SMALL_LIGATURE_LONG_S_T
                    && ASCII_FOLD_RESTRICTED)
                {
                    value = LATIN_SMALL_LIGATURE_ST;
                }
            }

            len = (UTF) ? UVCHR_SKIP(value) : 1;

            *ret = regnode_guts(pRExC_state, op, len, "exact");
            FILL_NODE(*ret, op);
            RExC_emit += 1 + STR_SZ(len);
            setSTR_LEN(REGNODE_p(*ret), len);
            if (len == 1) {
                *STRINGs(REGNODE_p(*ret)) = (U8) value;
            }
            else {
                uvchr_to_utf8((U8 *) STRINGs(REGNODE_p(*ret)), value);
            }
            return op;
        }
    }

    if (! has_runtime_dependency) {

        /* See if this can be turned into an ANYOFM node.  Think about the bit
         * patterns in two different bytes.  In some positions, the bits in
         * each will be 1; and in other positions both will be 0; and in some
         * positions the bit will be 1 in one byte, and 0 in the other.  Let
         * 'n' be the number of positions where the bits differ.  We create a
         * mask which has exactly 'n' 0 bits, each in a position where the two
         * bytes differ.  Now take the set of all bytes that when ANDed with
         * the mask yield the same result.  That set has 2**n elements, and is
         * representable by just two 8 bit numbers: the result and the mask.
         * Importantly, matching the set can be vectorized by creating a word
         * full of the result bytes, and a word full of the mask bytes,
         * yielding a significant speed up.  Here, see if this node matches
         * such a set.  As a concrete example consider [01], and the byte
         * representing '0' which is 0x30 on ASCII machines.  It has the bits
         * 0011 0000.  Take the mask 1111 1110.  If we AND 0x31 and 0x30 with
         * that mask we get 0x30.  Any other bytes ANDed yield something else.
         * So [01], which is a common usage, is optimizable into ANYOFM, and
         * can benefit from the speed up.  We can only do this on UTF-8
         * invariant bytes, because they have the same bit patterns under UTF-8
         * as not. */
        PERL_UINT_FAST8_T inverted = 0;
#ifdef EBCDIC
        const PERL_UINT_FAST8_T max_permissible = 0xFF;
#else
        const PERL_UINT_FAST8_T max_permissible = 0x7F;
#endif
        /* If doesn't fit the criteria for ANYOFM, invert and try again.  If
         * that works we will instead later generate an NANYOFM, and invert
         * back when through */
        if (invlist_highest(cp_list) > max_permissible) {
            _invlist_invert(cp_list);
            inverted = 1;
        }

        if (invlist_highest(cp_list) <= max_permissible) {
            UV this_start, this_end;
            UV lowest_cp = UV_MAX;  /* init'ed to suppress compiler warn */
            U8 bits_differing = 0;
            Size_t full_cp_count = 0;
            bool first_time = TRUE;

            /* Go through the bytes and find the bit positions that differ */
            invlist_iterinit(cp_list);
            while (invlist_iternext(cp_list, &this_start, &this_end)) {
                unsigned int i = this_start;

                if (first_time) {
                    if (! UVCHR_IS_INVARIANT(i)) {
                        goto done_anyofm;
                    }

                    first_time = FALSE;
                    lowest_cp = this_start;

                    /* We have set up the code point to compare with.  Don't
                     * compare it with itself */
                    i++;
                }

                /* Find the bit positions that differ from the lowest code
                 * point in the node.  Keep track of all such positions by
                 * OR'ing */
                for (; i <= this_end; i++) {
                    if (! UVCHR_IS_INVARIANT(i)) {
                        goto done_anyofm;
                    }

                    bits_differing  |= i ^ lowest_cp;
                }

                full_cp_count += this_end - this_start + 1;
            }

            /* At the end of the loop, we count how many bits differ from the
             * bits in lowest code point, call the count 'd'.  If the set we
             * found contains 2**d elements, it is the closure of all code
             * points that differ only in those bit positions.  To convince
             * yourself of that, first note that the number in the closure must
             * be a power of 2, which we test for.  The only way we could have
             * that count and it be some differing set, is if we got some code
             * points that don't differ from the lowest code point in any
             * position, but do differ from each other in some other position.
             * That means one code point has a 1 in that position, and another
             * has a 0.  But that would mean that one of them differs from the
             * lowest code point in that position, which possibility we've
             * already excluded.  */
            if (  (inverted || full_cp_count > 1)
                && full_cp_count == 1U << PL_bitcount[bits_differing])
            {
                U8 ANYOFM_mask;

                op = ANYOFM + inverted;;

                /* We need to make the bits that differ be 0's */
                ANYOFM_mask = ~ bits_differing; /* This goes into FLAGS */

                /* The argument is the lowest code point */
                *ret = reganode(pRExC_state, op, lowest_cp);
                FLAGS(REGNODE_p(*ret)) = ANYOFM_mask;
            }

          done_anyofm:
            invlist_iterfinish(cp_list);
        }

        if (inverted) {
            _invlist_invert(cp_list);
        }

        if (op != ANYOF) {
            return op;
        }

        /* XXX We could create an ANYOFR_LOW node here if we saved above if all
         * were invariants, it wasn't inverted, and there is a single range.
         * This would be faster than some of the posix nodes we create below
         * like /\d/a, but would be twice the size.  Without having actually
         * measured the gain, khw doesn't think the tradeoff is really worth it
         * */
    }

    if (! (*anyof_flags & ANYOF_LOCALE_FLAGS)) {
        PERL_UINT_FAST8_T type;
        SV * intersection = NULL;
        SV* d_invlist = NULL;

        /* See if this matches any of the POSIX classes.  The POSIXA and POSIXD
         * ones are about the same speed as ANYOF ops, but take less room; the
         * ones that have above-Latin1 code point matches are somewhat faster
         * than ANYOF. */

        for (type = POSIXA; type >= POSIXD; type--) {
            int posix_class;

            if (type == POSIXL) {   /* But not /l posix classes */
                continue;
            }

            for (posix_class = 0;
                 posix_class <= _HIGHEST_REGCOMP_DOT_H_SYNC;
                 posix_class++)
            {
                SV** our_code_points = &cp_list;
                SV** official_code_points;
                int try_inverted;

                if (type == POSIXA) {
                    official_code_points = &PL_Posix_ptrs[posix_class];
                }
                else {
                    official_code_points = &PL_XPosix_ptrs[posix_class];
                }

                /* Skip non-existent classes of this type.  e.g. \v only has an
                 * entry in PL_XPosix_ptrs */
                if (! *official_code_points) {
                    continue;
                }

                /* Try both the regular class, and its inversion */
                for (try_inverted = 0; try_inverted < 2; try_inverted++) {
                    bool this_inverted = *invert ^ try_inverted;

                    if (type != POSIXD) {

                        /* This class that isn't /d can't match if we have /d
                         * dependencies */
                        if (has_runtime_dependency
                                                & HAS_D_RUNTIME_DEPENDENCY)
                        {
                            continue;
                        }
                    }
                    else /* is /d */ if (! this_inverted) {

                        /* /d classes don't match anything non-ASCII below 256
                         * unconditionally (which cp_list contains) */
                        _invlist_intersection(cp_list, PL_UpperLatin1,
                                                       &intersection);
                        if (_invlist_len(intersection) != 0) {
                            continue;
                        }

                        SvREFCNT_dec(d_invlist);
                        d_invlist = invlist_clone(cp_list, NULL);

                        /* But under UTF-8 it turns into using /u rules.  Add
                         * the things it matches under these conditions so that
                         * we check below that these are identical to what the
                         * tested class should match */
                        if (upper_latin1_only_utf8_matches) {
                            _invlist_union(
                                        d_invlist,
                                        upper_latin1_only_utf8_matches,
                                        &d_invlist);
                        }
                        our_code_points = &d_invlist;
                    }
                    else {  /* POSIXD, inverted.  If this doesn't have this
                               flag set, it isn't /d. */
                        if (! (*anyof_flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
                        {
                            continue;
                        }
                        our_code_points = &cp_list;
                    }

                    /* Here, have weeded out some things.  We want to see if
                     * the list of characters this node contains
                     * ('*our_code_points') precisely matches those of the
                     * class we are currently checking against
                     * ('*official_code_points'). */
                    if (_invlistEQ(*our_code_points,
                                   *official_code_points,
                                   try_inverted))
                    {
                        /* Here, they precisely match.  Optimize this ANYOF
                         * node into its equivalent POSIX one of the correct
                         * type, possibly inverted */
                        op = (try_inverted)
                            ? type + NPOSIXA - POSIXA
                            : type;
                        *ret = reg_node(pRExC_state, op);
                        FLAGS(REGNODE_p(*ret)) = posix_class;
                        SvREFCNT_dec(d_invlist);
                        SvREFCNT_dec(intersection);
                        return op;
                    }
                }
            }
        }
        SvREFCNT_dec(d_invlist);
        SvREFCNT_dec(intersection);
    }

    /* If it is a single contiguous range, ANYOFR is an efficient regnode, both
     * in size and speed.  Currently, a 20 bit range base (smallest code point
     * in the range), and a 12 bit maximum delta are packed into a 32 bit word.
     * This allows for using it on all of the Unicode code points except for
     * the highest plane, which is only for private use code points.  khw
     * doubts that a bigger delta is likely in real world applications */
    if (     single_range
        && ! has_runtime_dependency
        &&   *anyof_flags == 0
        &&   start[0] < (1 << ANYOFR_BASE_BITS)
        &&   end[0] - start[0]
                < ((1U << (sizeof(((struct regnode_1 *)NULL)->arg1)
                               * CHARBITS - ANYOFR_BASE_BITS))))

    {
        U8 low_utf8[UTF8_MAXBYTES+1];
        U8 high_utf8[UTF8_MAXBYTES+1];

        op = ANYOFR;
        *ret = reganode(pRExC_state, op,
                        (start[0] | (end[0] - start[0]) << ANYOFR_BASE_BITS));

        /* Place the lowest UTF-8 start byte in the flags field, so as to allow
         * efficient ruling out at run time of many possible inputs.  */
        (void) uvchr_to_utf8(low_utf8, start[0]);
        (void) uvchr_to_utf8(high_utf8, end[0]);

        /* If all code points share the same first byte, this can be an
         * ANYOFRb.  Otherwise store the lowest UTF-8 start byte which can
         * quickly rule out many inputs at run-time without having to compute
         * the code point from UTF-8.  For EBCDIC, we use I8, as not doing that
         * transformation would not rule out nearly so many things */
        if (low_utf8[0] == high_utf8[0]) {
            op = ANYOFRb;
            OP(REGNODE_p(*ret)) = op;
            ANYOF_FLAGS(REGNODE_p(*ret)) = low_utf8[0];
        }
        else {
            ANYOF_FLAGS(REGNODE_p(*ret)) = NATIVE_UTF8_TO_I8(low_utf8[0]);
        }

        return op;
    }

    /* If didn't find an optimization and there is no need for a bitmap,
     * optimize to indicate that */
    if (     start[0] >= NUM_ANYOF_CODE_POINTS
        && ! LOC
        && ! upper_latin1_only_utf8_matches
        &&   *anyof_flags == 0)
    {
        U8 low_utf8[UTF8_MAXBYTES+1];
        UV highest_cp = invlist_highest(cp_list);

        /* Currently the maximum allowed code point by the system is IV_MAX.
         * Higher ones are reserved for future internal use.  This particular
         * regnode can be used for higher ones, but we can't calculate the code
         * point of those.  IV_MAX suffices though, as it will be a large first
         * byte */
        Size_t low_len = uvchr_to_utf8(low_utf8, MIN(start[0], IV_MAX))
                       - low_utf8;

        /* We store the lowest possible first byte of the UTF-8 representation,
         * using the flags field.  This allows for quick ruling out of some
         * inputs without having to convert from UTF-8 to code point.  For
         * EBCDIC, we use I8, as not doing that transformation would not rule
         * out nearly so many things */
        *anyof_flags = NATIVE_UTF8_TO_I8(low_utf8[0]);

        op = ANYOFH;

        /* If the first UTF-8 start byte for the highest code point in the
         * range is suitably small, we may be able to get an upper bound as
         * well */
        if (highest_cp <= IV_MAX) {
            U8 high_utf8[UTF8_MAXBYTES+1];
            Size_t high_len = uvchr_to_utf8(high_utf8, highest_cp) - high_utf8;

            /* If the lowest and highest are the same, we can get an exact
             * first byte instead of a just minimum or even a sequence of exact
             * leading bytes.  We signal these with different regnodes */
            if (low_utf8[0] == high_utf8[0]) {
                Size_t len = find_first_differing_byte_pos(low_utf8,
                                                           high_utf8,
                                                   MIN(low_len, high_len));

                if (len == 1) {

                    /* No need to convert to I8 for EBCDIC as this is an exact
                     * match */
                    *anyof_flags = low_utf8[0];
                    op = ANYOFHb;
                }
                else {
                    op = ANYOFHs;
                    *ret = regnode_guts(pRExC_state, op,
                                       regarglen[op] + STR_SZ(len),
                                       "anyofhs");
                    FILL_NODE(*ret, op);
                    ((struct regnode_anyofhs *) REGNODE_p(*ret))->str_len
                                                                    = len;
                    Copy(low_utf8,  /* Add the common bytes */
                    ((struct regnode_anyofhs *) REGNODE_p(*ret))->string,
                       len, U8);
                    RExC_emit += NODE_SZ_STR(REGNODE_p(*ret));
                    set_ANYOF_arg(pRExC_state, REGNODE_p(*ret), cp_list,
                                              NULL, only_utf8_locale_list);
                    return op;
                }
            }
            else if (NATIVE_UTF8_TO_I8(high_utf8[0]) <= MAX_ANYOF_HRx_BYTE) {

                /* Here, the high byte is not the same as the low, but is small
                 * enough that its reasonable to have a loose upper bound,
                 * which is packed in with the strict lower bound.  See
                 * comments at the definition of MAX_ANYOF_HRx_BYTE.  On EBCDIC
                 * platforms, I8 is used.  On ASCII platforms I8 is the same
                 * thing as UTF-8 */

                U8 bits = 0;
                U8 max_range_diff = MAX_ANYOF_HRx_BYTE - *anyof_flags;
                U8 range_diff = NATIVE_UTF8_TO_I8(high_utf8[0])
                            - *anyof_flags;

                if (range_diff <= max_range_diff / 8) {
                    bits = 3;
                }
                else if (range_diff <= max_range_diff / 4) {
                    bits = 2;
                }
                else if (range_diff <= max_range_diff / 2) {
                    bits = 1;
                }
                *anyof_flags = (*anyof_flags - 0xC0) << 2 | bits;
                op = ANYOFHr;
            }
        }
    }

    return op;
}

#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION

STATIC void
S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
                regnode* const node,
                SV* const cp_list,
                SV* const runtime_defns,
                SV* const only_utf8_locale_list)
{
    /* Sets the arg field of an ANYOF-type node 'node', using information about
     * the node passed-in.  If there is nothing outside the node's bitmap, the
     * arg is set to ANYOF_ONLY_HAS_BITMAP.  Otherwise, it sets the argument to
     * the count returned by add_data(), having allocated and stored an array,
     * av, as follows:
     *
     *  av[0] stores the inversion list defining this class as far as known at
     *        this time, or PL_sv_undef if nothing definite is now known.
     *  av[1] stores the inversion list of code points that match only if the
     *        current locale is UTF-8, or if none, PL_sv_undef if there is an
     *        av[2], or no entry otherwise.
     *  av[2] stores the list of user-defined properties whose subroutine
     *        definitions aren't known at this time, or no entry if none. */

    UV n;

    PERL_ARGS_ASSERT_SET_ANYOF_ARG;

    if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
        assert(! (ANYOF_FLAGS(node)
                & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP));
        ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
    }
    else {
        AV * const av = newAV();
        SV *rv;

        if (cp_list) {
            av_store(av, INVLIST_INDEX, SvREFCNT_inc_NN(cp_list));
        }

        /* (Note that if any of this changes, the size calculations in
         * S_optimize_regclass() might need to be updated.) */

        if (only_utf8_locale_list) {
            av_store(av, ONLY_LOCALE_MATCHES_INDEX,
                                     SvREFCNT_inc_NN(only_utf8_locale_list));
        }

        if (runtime_defns) {
            av_store(av, DEFERRED_USER_DEFINED_INDEX,
                         SvREFCNT_inc_NN(runtime_defns));
        }

        rv = newRV_noinc(MUTABLE_SV(av));
        n = add_data(pRExC_state, STR_WITH_LEN("s"));
        RExC_rxi->data->data[n] = (void*)rv;
        ARG_SET(node, n);
    }
}

SV *

#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
Perl_get_regclass_nonbitmap_data(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV** only_utf8_locale_ptr, SV** output_invlist)
#else
Perl_get_re_gclass_nonbitmap_data(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV** only_utf8_locale_ptr, SV** output_invlist)
#endif

{
    /* For internal core use only.
     * Returns the inversion list for the input 'node' in the regex 'prog'.
     * If <doinit> is 'true', will attempt to create the inversion list if not
     *    already done.
     * If <listsvp> is non-null, will return the printable contents of the
     *    property definition.  This can be used to get debugging information
     *    even before the inversion list exists, by calling this function with
     *    'doinit' set to false, in which case the components that will be used
     *    to eventually create the inversion list are returned  (in a printable
     *    form).
     * If <only_utf8_locale_ptr> is not NULL, it is where this routine is to
     *    store an inversion list of code points that should match only if the
     *    execution-time locale is a UTF-8 one.
     * If <output_invlist> is not NULL, it is where this routine is to store an
     *    inversion list of the code points that would be instead returned in
     *    <listsvp> if this were NULL.  Thus, what gets output in <listsvp>
     *    when this parameter is used, is just the non-code point data that
     *    will go into creating the inversion list.  This currently should be just
     *    user-defined properties whose definitions were not known at compile
     *    time.  Using this parameter allows for easier manipulation of the
     *    inversion list's data by the caller.  It is illegal to call this
     *    function with this parameter set, but not <listsvp>
     *
     * Tied intimately to how S_set_ANYOF_arg sets up the data structure.  Note
     * that, in spite of this function's name, the inversion list it returns
     * may include the bitmap data as well */

    SV *si  = NULL;         /* Input initialization string */
    SV* invlist = NULL;

    RXi_GET_DECL(prog, progi);
    const struct reg_data * const data = prog ? progi->data : NULL;

#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
    PERL_ARGS_ASSERT_GET_REGCLASS_NONBITMAP_DATA;
#else
    PERL_ARGS_ASSERT_GET_RE_GCLASS_NONBITMAP_DATA;
#endif
    assert(! output_invlist || listsvp);

    if (data && data->count) {
        const U32 n = ARG(node);

        if (data->what[n] == 's') {
            SV * const rv = MUTABLE_SV(data->data[n]);
            AV * const av = MUTABLE_AV(SvRV(rv));
            SV **const ary = AvARRAY(av);

            invlist = ary[INVLIST_INDEX];

            if (av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX) {
                *only_utf8_locale_ptr = ary[ONLY_LOCALE_MATCHES_INDEX];
            }

            if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
                si = ary[DEFERRED_USER_DEFINED_INDEX];
            }

            if (doinit && (si || invlist)) {
                if (si) {
                    bool user_defined;
                    SV * msg = newSVpvs_flags("", SVs_TEMP);

                    SV * prop_definition = handle_user_defined_property(
                            "", 0, FALSE,   /* There is no \p{}, \P{} */
                            SvPVX_const(si)[1] - '0',   /* /i or not has been
                                                           stored here for just
                                                           this occasion */
                            TRUE,           /* run time */
                            FALSE,          /* This call must find the defn */
                            si,             /* The property definition  */
                            &user_defined,
                            msg,
                            0               /* base level call */
                           );

                    if (SvCUR(msg)) {
                        assert(prop_definition == NULL);

                        Perl_croak(aTHX_ "%" UTF8f,
                                UTF8fARG(SvUTF8(msg), SvCUR(msg), SvPVX(msg)));
                    }

                    if (invlist) {
                        _invlist_union(invlist, prop_definition, &invlist);
                        SvREFCNT_dec_NN(prop_definition);
                    }
                    else {
                        invlist = prop_definition;
                    }

                    STATIC_ASSERT_STMT(ONLY_LOCALE_MATCHES_INDEX == 1 + INVLIST_INDEX);
                    STATIC_ASSERT_STMT(DEFERRED_USER_DEFINED_INDEX == 1 + ONLY_LOCALE_MATCHES_INDEX);

                    ary[INVLIST_INDEX] = invlist;
                    av_fill(av, (ary[ONLY_LOCALE_MATCHES_INDEX])
                                 ? ONLY_LOCALE_MATCHES_INDEX
                                 : INVLIST_INDEX);
                    si = NULL;
                }
            }
        }
    }

    /* If requested, return a printable version of what this ANYOF node matches
     * */
    if (listsvp) {
        SV* matches_string = NULL;

        /* This function can be called at compile-time, before everything gets
         * resolved, in which case we return the currently best available
         * information, which is the string that will eventually be used to do
         * that resolving, 'si' */
        if (si) {
            /* Here, we only have 'si' (and possibly some passed-in data in
             * 'invlist', which is handled below)  If the caller only wants
             * 'si', use that.  */
            if (! output_invlist) {
                matches_string = newSVsv(si);
            }
            else {
                /* But if the caller wants an inversion list of the node, we
                 * need to parse 'si' and place as much as possible in the
                 * desired output inversion list, making 'matches_string' only
                 * contain the currently unresolvable things */
                const char *si_string = SvPVX(si);
                STRLEN remaining = SvCUR(si);
                UV prev_cp = 0;
                U8 count = 0;

                /* Ignore everything before and including the first new-line */
                si_string = (const char *) memchr(si_string, '\n', SvCUR(si));
                assert (si_string != NULL);
                si_string++;
                remaining = SvPVX(si) + SvCUR(si) - si_string;

                while (remaining > 0) {

                    /* The data consists of just strings defining user-defined
                     * property names, but in prior incarnations, and perhaps
                     * somehow from pluggable regex engines, it could still
                     * hold hex code point definitions, all of which should be
                     * legal (or it wouldn't have gotten this far).  Each
                     * component of a range would be separated by a tab, and
                     * each range by a new-line.  If these are found, instead
                     * add them to the inversion list */
                    I32 grok_flags =  PERL_SCAN_SILENT_ILLDIGIT
                                     |PERL_SCAN_SILENT_NON_PORTABLE;
                    STRLEN len = remaining;
                    UV cp = grok_hex(si_string, &len, &grok_flags, NULL);

                    /* If the hex decode routine found something, it should go
                     * up to the next \n */
                    if (   *(si_string + len) == '\n') {
                        if (count) {    /* 2nd code point on line */
                            *output_invlist = _add_range_to_invlist(*output_invlist, prev_cp, cp);
                        }
                        else {
                            *output_invlist = add_cp_to_invlist(*output_invlist, cp);
                        }
                        count = 0;
                        goto prepare_for_next_iteration;
                    }

                    /* If the hex decode was instead for the lower range limit,
                     * save it, and go parse the upper range limit */
                    if (*(si_string + len) == '\t') {
                        assert(count == 0);

                        prev_cp = cp;
                        count = 1;
                      prepare_for_next_iteration:
                        si_string += len + 1;
                        remaining -= len + 1;
                        continue;
                    }

                    /* Here, didn't find a legal hex number.  Just add the text
                     * from here up to the next \n, omitting any trailing
                     * markers. */

                    remaining -= len;
                    len = strcspn(si_string,
                                        DEFERRED_COULD_BE_OFFICIAL_MARKERs "\n");
                    remaining -= len;
                    if (matches_string) {
                        sv_catpvn(matches_string, si_string, len);
                    }
                    else {
                        matches_string = newSVpvn(si_string, len);
                    }
                    sv_catpvs(matches_string, " ");

                    si_string += len;
                    if (   remaining
                        && UCHARAT(si_string)
                                            == DEFERRED_COULD_BE_OFFICIAL_MARKERc)
                    {
                        si_string++;
                        remaining--;
                    }
                    if (remaining && UCHARAT(si_string) == '\n') {
                        si_string++;
                        remaining--;
                    }
                } /* end of loop through the text */

                assert(matches_string);
                if (SvCUR(matches_string)) {  /* Get rid of trailing blank */
                    SvCUR_set(matches_string, SvCUR(matches_string) - 1);
                }
            } /* end of has an 'si' */
        }

        /* Add the stuff that's already known */
        if (invlist) {

            /* Again, if the caller doesn't want the output inversion list, put
             * everything in 'matches-string' */
            if (! output_invlist) {
                if ( ! matches_string) {
                    matches_string = newSVpvs("\n");
                }
                sv_catsv(matches_string, invlist_contents(invlist,
                                                  TRUE /* traditional style */
                                                  ));
            }
            else if (! *output_invlist) {
                *output_invlist = invlist_clone(invlist, NULL);
            }
            else {
                _invlist_union(*output_invlist, invlist, output_invlist);
            }
        }

        *listsvp = matches_string;
    }

    return invlist;
}

/* reg_skipcomment()

   Absorbs an /x style # comment from the input stream,
   returning a pointer to the first character beyond the comment, or if the
   comment terminates the pattern without anything following it, this returns
   one past the final character of the pattern (in other words, RExC_end) and
   sets the REG_RUN_ON_COMMENT_SEEN flag.

   Note it's the callers responsibility to ensure that we are
   actually in /x mode

*/

PERL_STATIC_INLINE char*
S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
{
    PERL_ARGS_ASSERT_REG_SKIPCOMMENT;

    assert(*p == '#');

    while (p < RExC_end) {
        if (*(++p) == '\n') {
            return p+1;
        }
    }

    /* we ran off the end of the pattern without ending the comment, so we have
     * to add an \n when wrapping */
    RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
    return p;
}

STATIC void
S_skip_to_be_ignored_text(pTHX_ RExC_state_t *pRExC_state,
                                char ** p,
                                const bool force_to_xmod
                         )
{
    /* If the text at the current parse position '*p' is a '(?#...)' comment,
     * or if we are under /x or 'force_to_xmod' is TRUE, and the text at '*p'
     * is /x whitespace, advance '*p' so that on exit it points to the first
     * byte past all such white space and comments */

    const bool use_xmod = force_to_xmod || (RExC_flags & RXf_PMf_EXTENDED);

    PERL_ARGS_ASSERT_SKIP_TO_BE_IGNORED_TEXT;

    assert( ! UTF || UTF8_IS_INVARIANT(**p) || UTF8_IS_START(**p));

    for (;;) {
        if (RExC_end - (*p) >= 3
            && *(*p)     == '('
            && *(*p + 1) == '?'
            && *(*p + 2) == '#')
        {
            while (*(*p) != ')') {
                if ((*p) == RExC_end)
                    FAIL("Sequence (?#... not terminated");
                (*p)++;
            }
            (*p)++;
            continue;
        }

        if (use_xmod) {
            const char * save_p = *p;
            while ((*p) < RExC_end) {
                STRLEN len;
                if ((len = is_PATWS_safe((*p), RExC_end, UTF))) {
                    (*p) += len;
                }
                else if (*(*p) == '#') {
                    (*p) = reg_skipcomment(pRExC_state, (*p));
                }
                else {
                    break;
                }
            }
            if (*p != save_p) {
                continue;
            }
        }

        break;
    }

    return;
}

/* nextchar()

   Advances the parse position by one byte, unless that byte is the beginning
   of a '(?#...)' style comment, or is /x whitespace and /x is in effect.  In
   those two cases, the parse position is advanced beyond all such comments and
   white space.

   This is the UTF, (?#...), and /x friendly way of saying RExC_parse++.
*/

STATIC void
S_nextchar(pTHX_ RExC_state_t *pRExC_state)
{
    PERL_ARGS_ASSERT_NEXTCHAR;

    if (RExC_parse < RExC_end) {
        assert(   ! UTF
               || UTF8_IS_INVARIANT(*RExC_parse)
               || UTF8_IS_START(*RExC_parse));

        RExC_parse += (UTF)
                      ? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
                      : 1;

        skip_to_be_ignored_text(pRExC_state, &RExC_parse,
                                FALSE /* Don't force /x */ );
    }
}

STATIC void
S_change_engine_size(pTHX_ RExC_state_t *pRExC_state, const Ptrdiff_t size)
{
    /* 'size' is the delta number of smallest regnode equivalents to add or
     * subtract from the current memory allocated to the regex engine being
     * constructed. */

    PERL_ARGS_ASSERT_CHANGE_ENGINE_SIZE;

    RExC_size += size;

    Renewc(RExC_rxi,
           sizeof(regexp_internal) + (RExC_size + 1) * sizeof(regnode),
                                                /* +1 for REG_MAGIC */
           char,
           regexp_internal);
    if ( RExC_rxi == NULL )
        FAIL("Regexp out of space");
    RXi_SET(RExC_rx, RExC_rxi);

    RExC_emit_start = RExC_rxi->program;
    if (size > 0) {
        Zero(REGNODE_p(RExC_emit), size, regnode);
    }

#ifdef RE_TRACK_PATTERN_OFFSETS
    Renew(RExC_offsets, 2*RExC_size+1, U32);
    if (size > 0) {
        Zero(RExC_offsets + 2*(RExC_size - size) + 1, 2 * size, U32);
    }
    RExC_offsets[0] = RExC_size;
#endif
}

STATIC regnode_offset
S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
{
    /* Allocate a regnode for 'op', with 'extra_size' extra (smallest) regnode
     * equivalents space.  It aligns and increments RExC_size
     *
     * It returns the regnode's offset into the regex engine program */

    const regnode_offset ret = RExC_emit;

    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGNODE_GUTS;

    SIZE_ALIGN(RExC_size);
    change_engine_size(pRExC_state, (Ptrdiff_t) 1 + extra_size);
    NODE_ALIGN_FILL(REGNODE_p(ret));
#ifndef RE_TRACK_PATTERN_OFFSETS
    PERL_UNUSED_ARG(name);
    PERL_UNUSED_ARG(op);
#else
    assert(extra_size >= regarglen[op] || PL_regkind[op] == ANYOF);

    if (RExC_offsets) {         /* MJD */
        MJD_OFFSET_DEBUG(
              ("%s:%d: (op %s) %s %" UVuf " (len %" UVuf ") (max %" UVuf ").\n",
              name, __LINE__,
              PL_reg_name[op],
              (UV)(RExC_emit) > RExC_offsets[0]
                ? "Overwriting end of array!\n" : "OK",
              (UV)(RExC_emit),
              (UV)(RExC_parse - RExC_start),
              (UV)RExC_offsets[0]));
        Set_Node_Offset(REGNODE_p(RExC_emit), RExC_parse + (op == END));
    }
#endif
    return(ret);
}

/*
- reg_node - emit a node
*/
STATIC regnode_offset /* Location. */
S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
{
    const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
    regnode_offset ptr = ret;

    PERL_ARGS_ASSERT_REG_NODE;

    assert(regarglen[op] == 0);

    FILL_ADVANCE_NODE(ptr, op);
    RExC_emit = ptr;
    return(ret);
}

/*
- reganode - emit a node with an argument
*/
STATIC regnode_offset /* Location. */
S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
{
    const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
    regnode_offset ptr = ret;

    PERL_ARGS_ASSERT_REGANODE;

    /* ANYOF are special cased to allow non-length 1 args */
    assert(regarglen[op] == 1);

    FILL_ADVANCE_NODE_ARG(ptr, op, arg);
    RExC_emit = ptr;
    return(ret);
}

/*
- regpnode - emit a temporary node with a SV* argument
*/
STATIC regnode_offset /* Location. */
S_regpnode(pTHX_ RExC_state_t *pRExC_state, U8 op, SV * arg)
{
    const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "regpnode");
    regnode_offset ptr = ret;

    PERL_ARGS_ASSERT_REGPNODE;

    FILL_ADVANCE_NODE_ARGp(ptr, op, arg);
    RExC_emit = ptr;
    return(ret);
}

STATIC regnode_offset
S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
{
    /* emit a node with U32 and I32 arguments */

    const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
    regnode_offset ptr = ret;

    PERL_ARGS_ASSERT_REG2LANODE;

    assert(regarglen[op] == 2);

    FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
    RExC_emit = ptr;
    return(ret);
}

/*
- reginsert - insert an operator in front of already-emitted operand
*
* That means that on exit 'operand' is the offset of the newly inserted
* operator, and the original operand has been relocated.
*
* IMPORTANT NOTE - it is the *callers* responsibility to correctly
* set up NEXT_OFF() of the inserted node if needed. Something like this:
*
*   reginsert(pRExC, OPFAIL, orig_emit, depth+1);
*   NEXT_OFF(orig_emit) = regarglen[OPFAIL] + NODE_STEP_REGNODE;
*
* ALSO NOTE - FLAGS(newly-inserted-operator) will be set to 0 as well.
*/
STATIC void
S_reginsert(pTHX_ RExC_state_t *pRExC_state, const U8 op,
                  const regnode_offset operand, const U32 depth)
{
    regnode *src;
    regnode *dst;
    regnode *place;
    const int offset = regarglen[(U8)op];
    const int size = NODE_STEP_REGNODE + offset;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGINSERT;
    PERL_UNUSED_CONTEXT;
    PERL_UNUSED_ARG(depth);
/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
    DEBUG_PARSE_FMT("inst"," - %s", PL_reg_name[op]);
    assert(!RExC_study_started); /* I believe we should never use reginsert once we have started
                                    studying. If this is wrong then we need to adjust RExC_recurse
                                    below like we do with RExC_open_parens/RExC_close_parens. */
    change_engine_size(pRExC_state, (Ptrdiff_t) size);
    src = REGNODE_p(RExC_emit);
    RExC_emit += size;
    dst = REGNODE_p(RExC_emit);

    /* If we are in a "count the parentheses" pass, the numbers are unreliable,
     * and [perl #133871] shows this can lead to problems, so skip this
     * realignment of parens until a later pass when they are reliable */
    if (! IN_PARENS_PASS && RExC_open_parens) {
        int paren;
        /*DEBUG_PARSE_FMT("inst"," - %" IVdf, (IV)RExC_npar);*/
        /* remember that RExC_npar is rex->nparens + 1,
         * iow it is 1 more than the number of parens seen in
         * the pattern so far. */
        for ( paren=0 ; paren < RExC_npar ; paren++ ) {
            /* note, RExC_open_parens[0] is the start of the
             * regex, it can't move. RExC_close_parens[0] is the end
             * of the regex, it *can* move. */
            if ( paren && RExC_open_parens[paren] >= operand ) {
                /*DEBUG_PARSE_FMT("open"," - %d", size);*/
                RExC_open_parens[paren] += size;
            } else {
                /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
            }
            if ( RExC_close_parens[paren] >= operand ) {
                /*DEBUG_PARSE_FMT("close"," - %d", size);*/
                RExC_close_parens[paren] += size;
            } else {
                /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
            }
        }
    }
    if (RExC_end_op)
        RExC_end_op += size;

    while (src > REGNODE_p(operand)) {
        StructCopy(--src, --dst, regnode);
#ifdef RE_TRACK_PATTERN_OFFSETS
        if (RExC_offsets) {     /* MJD 20010112 */
            MJD_OFFSET_DEBUG(
                 ("%s(%d): (op %s) %s copy %" UVuf " -> %" UVuf " (max %" UVuf ").\n",
                  "reginsert",
                  __LINE__,
                  PL_reg_name[op],
                  (UV)(REGNODE_OFFSET(dst)) > RExC_offsets[0]
                    ? "Overwriting end of array!\n" : "OK",
                  (UV)REGNODE_OFFSET(src),
                  (UV)REGNODE_OFFSET(dst),
                  (UV)RExC_offsets[0]));
            Set_Node_Offset_To_R(REGNODE_OFFSET(dst), Node_Offset(src));
            Set_Node_Length_To_R(REGNODE_OFFSET(dst), Node_Length(src));
        }
#endif
    }

    place = REGNODE_p(operand);	/* Op node, where operand used to be. */
#ifdef RE_TRACK_PATTERN_OFFSETS
    if (RExC_offsets) {         /* MJD */
        MJD_OFFSET_DEBUG(
              ("%s(%d): (op %s) %s %" UVuf " <- %" UVuf " (max %" UVuf ").\n",
              "reginsert",
              __LINE__,
              PL_reg_name[op],
              (UV)REGNODE_OFFSET(place) > RExC_offsets[0]
              ? "Overwriting end of array!\n" : "OK",
              (UV)REGNODE_OFFSET(place),
              (UV)(RExC_parse - RExC_start),
              (UV)RExC_offsets[0]));
        Set_Node_Offset(place, RExC_parse);
        Set_Node_Length(place, 1);
    }
#endif
    src = NEXTOPER(place);
    FLAGS(place) = 0;
    FILL_NODE(operand, op);

    /* Zero out any arguments in the new node */
    Zero(src, offset, regnode);
}

/*
- regtail - set the next-pointer at the end of a node chain of p to val.  If
            that value won't fit in the space available, instead returns FALSE.
            (Except asserts if we can't fit in the largest space the regex
            engine is designed for.)
- SEE ALSO: regtail_study
*/
STATIC bool
S_regtail(pTHX_ RExC_state_t * pRExC_state,
                const regnode_offset p,
                const regnode_offset val,
                const U32 depth)
{
    regnode_offset scan;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGTAIL;
#ifndef DEBUGGING
    PERL_UNUSED_ARG(depth);
#endif

    /* The final node in the chain is the first one with a nonzero next pointer
     * */
    scan = (regnode_offset) p;
    for (;;) {
        regnode * const temp = regnext(REGNODE_p(scan));
        DEBUG_PARSE_r({
            DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
            regprop(RExC_rx, RExC_mysv, REGNODE_p(scan), NULL, pRExC_state);
            Perl_re_printf( aTHX_  "~ %s (%zu) %s %s\n",
                SvPV_nolen_const(RExC_mysv), scan,
                    (temp == NULL ? "->" : ""),
                    (temp == NULL ? PL_reg_name[OP(REGNODE_p(val))] : "")
            );
        });
        if (temp == NULL)
            break;
        scan = REGNODE_OFFSET(temp);
    }

    /* Populate this node's next pointer */
    assert(val >= scan);
    if (reg_off_by_arg[OP(REGNODE_p(scan))]) {
        assert((UV) (val - scan) <= U32_MAX);
        ARG_SET(REGNODE_p(scan), val - scan);
    }
    else {
        if (val - scan > U16_MAX) {
            /* Populate this with something that won't loop and will likely
             * lead to a crash if the caller ignores the failure return, and
             * execution continues */
            NEXT_OFF(REGNODE_p(scan)) = U16_MAX;
            return FALSE;
        }
        NEXT_OFF(REGNODE_p(scan)) = val - scan;
    }

    return TRUE;
}

#ifdef DEBUGGING
/*
- regtail_study - set the next-pointer at the end of a node chain of p to val.
- Look for optimizable sequences at the same time.
- currently only looks for EXACT chains.

This is experimental code. The idea is to use this routine to perform
in place optimizations on branches and groups as they are constructed,
with the long term intention of removing optimization from study_chunk so
that it is purely analytical.

Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
to control which is which.

This used to return a value that was ignored.  It was a problem that it is
#ifdef'd to be another function that didn't return a value.  khw has changed it
so both currently return a pass/fail return.

*/
/* TODO: All four parms should be const */

STATIC bool
S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode_offset p,
                      const regnode_offset val, U32 depth)
{
    regnode_offset scan;
    U8 exact = PSEUDO;
#ifdef EXPERIMENTAL_INPLACESCAN
    I32 min = 0;
#endif
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGTAIL_STUDY;


    /* Find last node. */

    scan = p;
    for (;;) {
        regnode * const temp = regnext(REGNODE_p(scan));
#ifdef EXPERIMENTAL_INPLACESCAN
        if (PL_regkind[OP(REGNODE_p(scan))] == EXACT) {
            bool unfolded_multi_char;	/* Unexamined in this routine */
            if (join_exact(pRExC_state, scan, &min,
                           &unfolded_multi_char, 1, REGNODE_p(val), depth+1))
                return TRUE; /* Was return EXACT */
        }
#endif
        if ( exact ) {
            if (PL_regkind[OP(REGNODE_p(scan))] == EXACT) {
                if (exact == PSEUDO )
                    exact= OP(REGNODE_p(scan));
                else if (exact != OP(REGNODE_p(scan)) )
                    exact= 0;
            }
            else if (OP(REGNODE_p(scan)) != NOTHING) {
                exact= 0;
            }
        }
        DEBUG_PARSE_r({
            DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
            regprop(RExC_rx, RExC_mysv, REGNODE_p(scan), NULL, pRExC_state);
            Perl_re_printf( aTHX_  "~ %s (%zu) -> %s\n",
                SvPV_nolen_const(RExC_mysv),
                scan,
                PL_reg_name[exact]);
        });
        if (temp == NULL)
            break;
        scan = REGNODE_OFFSET(temp);
    }
    DEBUG_PARSE_r({
        DEBUG_PARSE_MSG("");
        regprop(RExC_rx, RExC_mysv, REGNODE_p(val), NULL, pRExC_state);
        Perl_re_printf( aTHX_
                      "~ attach to %s (%" IVdf ") offset to %" IVdf "\n",
                      SvPV_nolen_const(RExC_mysv),
                      (IV)val,
                      (IV)(val - scan)
        );
    });
    if (reg_off_by_arg[OP(REGNODE_p(scan))]) {
        assert((UV) (val - scan) <= U32_MAX);
        ARG_SET(REGNODE_p(scan), val - scan);
    }
    else {
        if (val - scan > U16_MAX) {
            /* Populate this with something that won't loop and will likely
             * lead to a crash if the caller ignores the failure return, and
             * execution continues */
            NEXT_OFF(REGNODE_p(scan)) = U16_MAX;
            return FALSE;
        }
        NEXT_OFF(REGNODE_p(scan)) = val - scan;
    }

    return TRUE; /* Was 'return exact' */
}
#endif

STATIC SV*
S_get_ANYOFM_contents(pTHX_ const regnode * n) {

    /* Returns an inversion list of all the code points matched by the
     * ANYOFM/NANYOFM node 'n' */

    SV * cp_list = _new_invlist(-1);
    const U8 lowest = (U8) ARG(n);
    unsigned int i;
    U8 count = 0;
    U8 needed = 1U << PL_bitcount[ (U8) ~ FLAGS(n)];

    PERL_ARGS_ASSERT_GET_ANYOFM_CONTENTS;

    /* Starting with the lowest code point, any code point that ANDed with the
     * mask yields the lowest code point is in the set */
    for (i = lowest; i <= 0xFF; i++) {
        if ((i & FLAGS(n)) == ARG(n)) {
            cp_list = add_cp_to_invlist(cp_list, i);
            count++;

            /* We know how many code points (a power of two) that are in the
             * set.  No use looking once we've got that number */
            if (count >= needed) break;
        }
    }

    if (OP(n) == NANYOFM) {
        _invlist_invert(cp_list);
    }
    return cp_list;
}

/*
 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
 */
#ifdef DEBUGGING

static void
S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
{
    int bit;
    int set=0;

    ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);

    for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
        if (flags & (1<<bit)) {
            if (!set++ && lead)
                Perl_re_printf( aTHX_  "%s", lead);
            Perl_re_printf( aTHX_  "%s ", PL_reg_intflags_name[bit]);
        }
    }
    if (lead)  {
        if (set)
            Perl_re_printf( aTHX_  "\n");
        else
            Perl_re_printf( aTHX_  "%s[none-set]\n", lead);
    }
}

static void
S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
{
    int bit;
    int set=0;
    regex_charset cs;

    ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);

    for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
        if (flags & (1<<bit)) {
            if ((1<<bit) & RXf_PMf_CHARSET) {	/* Output separately, below */
                continue;
            }
            if (!set++ && lead)
                Perl_re_printf( aTHX_  "%s", lead);
            Perl_re_printf( aTHX_  "%s ", PL_reg_extflags_name[bit]);
        }
    }
    if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
            if (!set++ && lead) {
                Perl_re_printf( aTHX_  "%s", lead);
            }
            switch (cs) {
                case REGEX_UNICODE_CHARSET:
                    Perl_re_printf( aTHX_  "UNICODE");
                    break;
                case REGEX_LOCALE_CHARSET:
                    Perl_re_printf( aTHX_  "LOCALE");
                    break;
                case REGEX_ASCII_RESTRICTED_CHARSET:
                    Perl_re_printf( aTHX_  "ASCII-RESTRICTED");
                    break;
                case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
                    Perl_re_printf( aTHX_  "ASCII-MORE_RESTRICTED");
                    break;
                default:
                    Perl_re_printf( aTHX_  "UNKNOWN CHARACTER SET");
                    break;
            }
    }
    if (lead)  {
        if (set)
            Perl_re_printf( aTHX_  "\n");
        else
            Perl_re_printf( aTHX_  "%s[none-set]\n", lead);
    }
}
#endif

void
Perl_regdump(pTHX_ const regexp *r)
{
#ifdef DEBUGGING
    int i;
    SV * const sv = sv_newmortal();
    SV *dsv= sv_newmortal();
    RXi_GET_DECL(r, ri);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGDUMP;

    (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);

    /* Header fields of interest. */
    for (i = 0; i < 2; i++) {
        if (r->substrs->data[i].substr) {
            RE_PV_QUOTED_DECL(s, 0, dsv,
                            SvPVX_const(r->substrs->data[i].substr),
                            RE_SV_DUMPLEN(r->substrs->data[i].substr),
                            PL_dump_re_max_len);
            Perl_re_printf( aTHX_
                          "%s %s%s at %" IVdf "..%" UVuf " ",
                          i ? "floating" : "anchored",
                          s,
                          RE_SV_TAIL(r->substrs->data[i].substr),
                          (IV)r->substrs->data[i].min_offset,
                          (UV)r->substrs->data[i].max_offset);
        }
        else if (r->substrs->data[i].utf8_substr) {
            RE_PV_QUOTED_DECL(s, 1, dsv,
                            SvPVX_const(r->substrs->data[i].utf8_substr),
                            RE_SV_DUMPLEN(r->substrs->data[i].utf8_substr),
                            30);
            Perl_re_printf( aTHX_
                          "%s utf8 %s%s at %" IVdf "..%" UVuf " ",
                          i ? "floating" : "anchored",
                          s,
                          RE_SV_TAIL(r->substrs->data[i].utf8_substr),
                          (IV)r->substrs->data[i].min_offset,
                          (UV)r->substrs->data[i].max_offset);
        }
    }

    if (r->check_substr || r->check_utf8)
        Perl_re_printf( aTHX_
                      (const char *)
                      (   r->check_substr == r->substrs->data[1].substr
                       && r->check_utf8   == r->substrs->data[1].utf8_substr
                       ? "(checking floating" : "(checking anchored"));
    if (r->intflags & PREGf_NOSCAN)
        Perl_re_printf( aTHX_  " noscan");
    if (r->extflags & RXf_CHECK_ALL)
        Perl_re_printf( aTHX_  " isall");
    if (r->check_substr || r->check_utf8)
        Perl_re_printf( aTHX_  ") ");

    if (ri->regstclass) {
        regprop(r, sv, ri->regstclass, NULL, NULL);
        Perl_re_printf( aTHX_  "stclass %s ", SvPVX_const(sv));
    }
    if (r->intflags & PREGf_ANCH) {
        Perl_re_printf( aTHX_  "anchored");
        if (r->intflags & PREGf_ANCH_MBOL)
            Perl_re_printf( aTHX_  "(MBOL)");
        if (r->intflags & PREGf_ANCH_SBOL)
            Perl_re_printf( aTHX_  "(SBOL)");
        if (r->intflags & PREGf_ANCH_GPOS)
            Perl_re_printf( aTHX_  "(GPOS)");
        Perl_re_printf( aTHX_ " ");
    }
    if (r->intflags & PREGf_GPOS_SEEN)
        Perl_re_printf( aTHX_  "GPOS:%" UVuf " ", (UV)r->gofs);
    if (r->intflags & PREGf_SKIP)
        Perl_re_printf( aTHX_  "plus ");
    if (r->intflags & PREGf_IMPLICIT)
        Perl_re_printf( aTHX_  "implicit ");
    Perl_re_printf( aTHX_  "minlen %" IVdf " ", (IV)r->minlen);
    if (r->extflags & RXf_EVAL_SEEN)
        Perl_re_printf( aTHX_  "with eval ");
    Perl_re_printf( aTHX_  "\n");
    DEBUG_FLAGS_r({
        regdump_extflags("r->extflags: ", r->extflags);
        regdump_intflags("r->intflags: ", r->intflags);
    });
#else
    PERL_ARGS_ASSERT_REGDUMP;
    PERL_UNUSED_CONTEXT;
    PERL_UNUSED_ARG(r);
#endif	/* DEBUGGING */
}

/* Should be synchronized with ANYOF_ #defines in regcomp.h */
#ifdef DEBUGGING

#  if   _CC_WORDCHAR != 0 || _CC_DIGIT != 1        || _CC_ALPHA != 2    \
     || _CC_LOWER != 3    || _CC_UPPER != 4        || _CC_PUNCT != 5    \
     || _CC_PRINT != 6    || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8    \
     || _CC_CASED != 9    || _CC_SPACE != 10       || _CC_BLANK != 11   \
     || _CC_XDIGIT != 12  || _CC_CNTRL != 13       || _CC_ASCII != 14   \
     || _CC_VERTSPACE != 15
#   error Need to adjust order of anyofs[]
#  endif
static const char * const anyofs[] = {
    "\\w",
    "\\W",
    "\\d",
    "\\D",
    "[:alpha:]",
    "[:^alpha:]",
    "[:lower:]",
    "[:^lower:]",
    "[:upper:]",
    "[:^upper:]",
    "[:punct:]",
    "[:^punct:]",
    "[:print:]",
    "[:^print:]",
    "[:alnum:]",
    "[:^alnum:]",
    "[:graph:]",
    "[:^graph:]",
    "[:cased:]",
    "[:^cased:]",
    "\\s",
    "\\S",
    "[:blank:]",
    "[:^blank:]",
    "[:xdigit:]",
    "[:^xdigit:]",
    "[:cntrl:]",
    "[:^cntrl:]",
    "[:ascii:]",
    "[:^ascii:]",
    "\\v",
    "\\V"
};
#endif

/*
- regprop - printable representation of opcode, with run time support
*/

void
Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
{
#ifdef DEBUGGING
    int k;
    RXi_GET_DECL(prog, progi);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGPROP;

    SvPVCLEAR(sv);

    if (OP(o) > REGNODE_MAX) {          /* regnode.type is unsigned */
        if (pRExC_state) {  /* This gives more info, if we have it */
            FAIL3("panic: corrupted regexp opcode %d > %d",
                  (int)OP(o), (int)REGNODE_MAX);
        }
        else {
            Perl_croak(aTHX_ "panic: corrupted regexp opcode %d > %d",
                             (int)OP(o), (int)REGNODE_MAX);
        }
    }
    sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */

    k = PL_regkind[OP(o)];

    if (k == EXACT) {
        sv_catpvs(sv, " ");
        /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
         * is a crude hack but it may be the best for now since
         * we have no flag "this EXACTish node was UTF-8"
         * --jhi */
        pv_pretty(sv, STRING(o), STR_LEN(o), PL_dump_re_max_len,
                  PL_colors[0], PL_colors[1],
                  PERL_PV_ESCAPE_UNI_DETECT |
                  PERL_PV_ESCAPE_NONASCII   |
                  PERL_PV_PRETTY_ELLIPSES   |
                  PERL_PV_PRETTY_LTGT       |
                  PERL_PV_PRETTY_NOCLEAR
                  );
    } else if (k == TRIE) {
        /* print the details of the trie in dumpuntil instead, as
         * progi->data isn't available here */
        const char op = OP(o);
        const U32 n = ARG(o);
        const reg_ac_data * const ac = IS_TRIE_AC(op) ?
               (reg_ac_data *)progi->data->data[n] :
               NULL;
        const reg_trie_data * const trie
            = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];

        Perl_sv_catpvf(aTHX_ sv, "-%s", PL_reg_name[o->flags]);
        DEBUG_TRIE_COMPILE_r({
          if (trie->jump)
            sv_catpvs(sv, "(JUMP)");
          Perl_sv_catpvf(aTHX_ sv,
            "<S:%" UVuf "/%" IVdf " W:%" UVuf " L:%" UVuf "/%" UVuf " C:%" UVuf "/%" UVuf ">",
            (UV)trie->startstate,
            (IV)trie->statecount-1, /* -1 because of the unused 0 element */
            (UV)trie->wordcount,
            (UV)trie->minlen,
            (UV)trie->maxlen,
            (UV)TRIE_CHARCOUNT(trie),
            (UV)trie->uniquecharcount
          );
        });
        if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
            sv_catpvs(sv, "[");
            (void) put_charclass_bitmap_innards(sv,
                                                ((IS_ANYOF_TRIE(op))
                                                 ? ANYOF_BITMAP(o)
                                                 : TRIE_BITMAP(trie)),
                                                NULL,
                                                NULL,
                                                NULL,
                                                0,
                                                FALSE
                                               );
            sv_catpvs(sv, "]");
        }
    } else if (k == CURLY) {
        U32 lo = ARG1(o), hi = ARG2(o);
        if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
            Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
        Perl_sv_catpvf(aTHX_ sv, "{%u,", (unsigned) lo);
        if (hi == REG_INFTY)
            sv_catpvs(sv, "INFTY");
        else
            Perl_sv_catpvf(aTHX_ sv, "%u", (unsigned) hi);
        sv_catpvs(sv, "}");
    }
    else if (k == WHILEM && o->flags)			/* Ordinal/of */
        Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
    else if (k == REF || k == OPEN || k == CLOSE
             || k == GROUPP || OP(o)==ACCEPT)
    {
        AV *name_list= NULL;
        U32 parno= OP(o) == ACCEPT ? (U32)ARG2L(o) : ARG(o);
        Perl_sv_catpvf(aTHX_ sv, "%" UVuf, (UV)parno);        /* Parenth number */
        if ( RXp_PAREN_NAMES(prog) ) {
            name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
        } else if ( pRExC_state ) {
            name_list= RExC_paren_name_list;
        }
        if (name_list) {
            if ( k != REF || (OP(o) < REFN)) {
                SV **name= av_fetch(name_list, parno, 0 );
                if (name)
                    Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
            }
            else {
                SV *sv_dat= MUTABLE_SV(progi->data->data[ parno ]);
                I32 *nums=(I32*)SvPVX(sv_dat);
                SV **name= av_fetch(name_list, nums[0], 0 );
                I32 n;
                if (name) {
                    for ( n=0; n<SvIVX(sv_dat); n++ ) {
                        Perl_sv_catpvf(aTHX_ sv, "%s%" IVdf,
                                    (n ? "," : ""), (IV)nums[n]);
                    }
                    Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
                }
            }
        }
        if ( k == REF && reginfo) {
            U32 n = ARG(o);  /* which paren pair */
            I32 ln = prog->offs[n].start;
            if (prog->lastparen < n || ln == -1 || prog->offs[n].end == -1)
                Perl_sv_catpvf(aTHX_ sv, ": FAIL");
            else if (ln == prog->offs[n].end)
                Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
            else {
                const char *s = reginfo->strbeg + ln;
                Perl_sv_catpvf(aTHX_ sv, ": ");
                Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
                    PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
            }
        }
    } else if (k == GOSUB) {
        AV *name_list= NULL;
        if ( RXp_PAREN_NAMES(prog) ) {
            name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
        } else if ( pRExC_state ) {
            name_list= RExC_paren_name_list;
        }

        /* Paren and offset */
        Perl_sv_catpvf(aTHX_ sv, "%d[%+d:%d]", (int)ARG(o),(int)ARG2L(o),
                (int)((o + (int)ARG2L(o)) - progi->program) );
        if (name_list) {
            SV **name= av_fetch(name_list, ARG(o), 0 );
            if (name)
                Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
        }
    }
    else if (k == LOGICAL)
        /* 2: embedded, otherwise 1 */
        Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
    else if (k == ANYOF || k == ANYOFR) {
        U8 flags;
        char * bitmap;
        U32 arg;
        bool do_sep = FALSE;    /* Do we need to separate various components of
                                   the output? */
        /* Set if there is still an unresolved user-defined property */
        SV *unresolved                = NULL;

        /* Things that are ignored except when the runtime locale is UTF-8 */
        SV *only_utf8_locale_invlist = NULL;

        /* Code points that don't fit in the bitmap */
        SV *nonbitmap_invlist = NULL;

        /* And things that aren't in the bitmap, but are small enough to be */
        SV* bitmap_range_not_in_bitmap = NULL;

        bool inverted;

        if (inRANGE(OP(o), ANYOFH, ANYOFRb)) {
            flags = 0;
            bitmap = NULL;
            arg = 0;
        }
        else {
            flags = ANYOF_FLAGS(o);
            bitmap = ANYOF_BITMAP(o);
            arg = ARG(o);
        }

        if (OP(o) == ANYOFL || OP(o) == ANYOFPOSIXL) {
            if (ANYOFL_UTF8_LOCALE_REQD(flags)) {
                sv_catpvs(sv, "{utf8-locale-reqd}");
            }
            if (flags & ANYOFL_FOLD) {
                sv_catpvs(sv, "{i}");
            }
        }

        inverted = flags & ANYOF_INVERT;

        /* If there is stuff outside the bitmap, get it */
        if (arg != ANYOF_ONLY_HAS_BITMAP) {
            if (inRANGE(OP(o), ANYOFR, ANYOFRb)) {
                nonbitmap_invlist = _add_range_to_invlist(nonbitmap_invlist,
                                            ANYOFRbase(o),
                                            ANYOFRbase(o) + ANYOFRdelta(o));
            }
            else {
#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
                (void) get_regclass_nonbitmap_data(prog, o, FALSE,
                                                &unresolved,
                                                &only_utf8_locale_invlist,
                                                &nonbitmap_invlist);
#else
                (void) get_re_gclass_nonbitmap_data(prog, o, FALSE,
                                                &unresolved,
                                                &only_utf8_locale_invlist,
                                                &nonbitmap_invlist);
#endif
            }

            /* The non-bitmap data may contain stuff that could fit in the
             * bitmap.  This could come from a user-defined property being
             * finally resolved when this call was done; or much more likely
             * because there are matches that require UTF-8 to be valid, and so
             * aren't in the bitmap (or ANYOFR).  This is teased apart later */
            _invlist_intersection(nonbitmap_invlist,
                                  PL_InBitmap,
                                  &bitmap_range_not_in_bitmap);
            /* Leave just the things that don't fit into the bitmap */
            _invlist_subtract(nonbitmap_invlist,
                              PL_InBitmap,
                              &nonbitmap_invlist);
        }

        /* Obey this flag to add all above-the-bitmap code points */
        if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
            nonbitmap_invlist = _add_range_to_invlist(nonbitmap_invlist,
                                                      NUM_ANYOF_CODE_POINTS,
                                                      UV_MAX);
        }

        /* Ready to start outputting.  First, the initial left bracket */
        Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);

        /* ANYOFH by definition doesn't have anything that will fit inside the
         * bitmap;  ANYOFR may or may not. */
        if (  ! inRANGE(OP(o), ANYOFH, ANYOFHr)
            && (   ! inRANGE(OP(o), ANYOFR, ANYOFRb)
                ||   ANYOFRbase(o) < NUM_ANYOF_CODE_POINTS))
        {
            /* Then all the things that could fit in the bitmap */
            do_sep = put_charclass_bitmap_innards(sv,
                                                  bitmap,
                                                  bitmap_range_not_in_bitmap,
                                                  only_utf8_locale_invlist,
                                                  o,
                                                  flags,

                                                  /* Can't try inverting for a
                                                   * better display if there
                                                   * are things that haven't
                                                   * been resolved */
                                                  unresolved != NULL
                                            || inRANGE(OP(o), ANYOFR, ANYOFRb));
            SvREFCNT_dec(bitmap_range_not_in_bitmap);

            /* If there are user-defined properties which haven't been defined
             * yet, output them.  If the result is not to be inverted, it is
             * clearest to output them in a separate [] from the bitmap range
             * stuff.  If the result is to be complemented, we have to show
             * everything in one [], as the inversion applies to the whole
             * thing.  Use {braces} to separate them from anything in the
             * bitmap and anything above the bitmap. */
            if (unresolved) {
                if (inverted) {
                    if (! do_sep) { /* If didn't output anything in the bitmap
                                     */
                        sv_catpvs(sv, "^");
                    }
                    sv_catpvs(sv, "{");
                }
                else if (do_sep) {
                    Perl_sv_catpvf(aTHX_ sv,"%s][%s", PL_colors[1],
                                                      PL_colors[0]);
                }
                sv_catsv(sv, unresolved);
                if (inverted) {
                    sv_catpvs(sv, "}");
                }
                do_sep = ! inverted;
            }
        }

        /* And, finally, add the above-the-bitmap stuff */
        if (nonbitmap_invlist && _invlist_len(nonbitmap_invlist)) {
            SV* contents;

            /* See if truncation size is overridden */
            const STRLEN dump_len = (PL_dump_re_max_len > 256)
                                    ? PL_dump_re_max_len
                                    : 256;

            /* This is output in a separate [] */
            if (do_sep) {
                Perl_sv_catpvf(aTHX_ sv,"%s][%s", PL_colors[1], PL_colors[0]);
            }

            /* And, for easy of understanding, it is shown in the
             * uncomplemented form if possible.  The one exception being if
             * there are unresolved items, where the inversion has to be
             * delayed until runtime */
            if (inverted && ! unresolved) {
                _invlist_invert(nonbitmap_invlist);
                _invlist_subtract(nonbitmap_invlist, PL_InBitmap, &nonbitmap_invlist);
            }

            contents = invlist_contents(nonbitmap_invlist,
                                        FALSE /* output suitable for catsv */
                                       );

            /* If the output is shorter than the permissible maximum, just do it. */
            if (SvCUR(contents) <= dump_len) {
                sv_catsv(sv, contents);
            }
            else {
                const char * contents_string = SvPVX(contents);
                STRLEN i = dump_len;

                /* Otherwise, start at the permissible max and work back to the
                 * first break possibility */
                while (i > 0 && contents_string[i] != ' ') {
                    i--;
                }
                if (i == 0) {       /* Fail-safe.  Use the max if we couldn't
                                       find a legal break */
                    i = dump_len;
                }

                sv_catpvn(sv, contents_string, i);
                sv_catpvs(sv, "...");
            }

            SvREFCNT_dec_NN(contents);
            SvREFCNT_dec_NN(nonbitmap_invlist);
        }

        /* And finally the matching, closing ']' */
        Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);

        if (OP(o) == ANYOFHs) {
            Perl_sv_catpvf(aTHX_ sv, " (Leading UTF-8 bytes=%s", _byte_dump_string((U8 *) ((struct regnode_anyofhs *) o)->string, FLAGS(o), 1));
        }
        else if (inRANGE(OP(o), ANYOFH, ANYOFRb)) {
            U8 lowest = (OP(o) != ANYOFHr)
                         ? FLAGS(o)
                         : LOWEST_ANYOF_HRx_BYTE(FLAGS(o));
            U8 highest = (OP(o) == ANYOFHr)
                         ? HIGHEST_ANYOF_HRx_BYTE(FLAGS(o))
                         : (OP(o) == ANYOFH || OP(o) == ANYOFR)
                           ? 0xFF
                           : lowest;
#ifndef EBCDIC
            if (OP(o) != ANYOFR || ! isASCII(ANYOFRbase(o) + ANYOFRdelta(o)))
#endif
            {
                Perl_sv_catpvf(aTHX_ sv, " (First UTF-8 byte=%02X", lowest);
                if (lowest != highest) {
                    Perl_sv_catpvf(aTHX_ sv, "-%02X", highest);
                }
                Perl_sv_catpvf(aTHX_ sv, ")");
            }
        }

        SvREFCNT_dec(unresolved);
    }
    else if (k == ANYOFM) {
        SV * cp_list = get_ANYOFM_contents(o);

        Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
        if (OP(o) == NANYOFM) {
            _invlist_invert(cp_list);
        }

        put_charclass_bitmap_innards(sv, NULL, cp_list, NULL, NULL, 0, TRUE);
        Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);

        SvREFCNT_dec(cp_list);
    }
    else if (k == POSIXD || k == NPOSIXD) {
        U8 index = FLAGS(o) * 2;
        if (index < C_ARRAY_LENGTH(anyofs)) {
            if (*anyofs[index] != '[')  {
                sv_catpvs(sv, "[");
            }
            sv_catpv(sv, anyofs[index]);
            if (*anyofs[index] != '[')  {
                sv_catpvs(sv, "]");
            }
        }
        else {
            Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
        }
    }
    else if (k == BOUND || k == NBOUND) {
        /* Must be synced with order of 'bound_type' in regcomp.h */
        const char * const bounds[] = {
            "",      /* Traditional */
            "{gcb}",
            "{lb}",
            "{sb}",
            "{wb}"
        };
        assert(FLAGS(o) < C_ARRAY_LENGTH(bounds));
        sv_catpv(sv, bounds[FLAGS(o)]);
    }
    else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH)) {
        Perl_sv_catpvf(aTHX_ sv, "[%d", -(o->flags));
        if (o->next_off) {
            Perl_sv_catpvf(aTHX_ sv, "..-%d", o->flags - o->next_off);
        }
        Perl_sv_catpvf(aTHX_ sv, "]");
    }
    else if (OP(o) == SBOL)
        Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");

    /* add on the verb argument if there is one */
    if ( ( k == VERB || OP(o) == ACCEPT || OP(o) == OPFAIL ) && o->flags) {
        if ( ARG(o) )
            Perl_sv_catpvf(aTHX_ sv, ":%" SVf,
                       SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
        else
            sv_catpvs(sv, ":NULL");
    }
#else
    PERL_UNUSED_CONTEXT;
    PERL_UNUSED_ARG(sv);
    PERL_UNUSED_ARG(o);
    PERL_UNUSED_ARG(prog);
    PERL_UNUSED_ARG(reginfo);
    PERL_UNUSED_ARG(pRExC_state);
#endif	/* DEBUGGING */
}



SV *
Perl_re_intuit_string(pTHX_ REGEXP * const r)
{				/* Assume that RE_INTUIT is set */
    /* Returns an SV containing a string that must appear in the target for it
     * to match, or NULL if nothing is known that must match.
     *
     * CAUTION: the SV can be freed during execution of the regex engine */

    struct regexp *const prog = ReANY(r);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_RE_INTUIT_STRING;
    PERL_UNUSED_CONTEXT;

    DEBUG_COMPILE_r(
        {
            if (prog->maxlen > 0) {
                const char * const s = SvPV_nolen_const(RX_UTF8(r)
                      ? prog->check_utf8 : prog->check_substr);

                if (!PL_colorset) reginitcolors();
                Perl_re_printf( aTHX_
                      "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
                      PL_colors[4],
                      RX_UTF8(r) ? "utf8 " : "",
                      PL_colors[5], PL_colors[0],
                      s,
                      PL_colors[1],
                      (strlen(s) > PL_dump_re_max_len ? "..." : ""));
            }
        } );

    /* use UTF8 check substring if regexp pattern itself is in UTF8 */
    return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
}

/*
   pregfree()

   handles refcounting and freeing the perl core regexp structure. When
   it is necessary to actually free the structure the first thing it
   does is call the 'free' method of the regexp_engine associated to
   the regexp, allowing the handling of the void *pprivate; member
   first. (This routine is not overridable by extensions, which is why
   the extensions free is called first.)

   See regdupe and regdupe_internal if you change anything here.
*/
#ifndef PERL_IN_XSUB_RE
void
Perl_pregfree(pTHX_ REGEXP *r)
{
    SvREFCNT_dec(r);
}

void
Perl_pregfree2(pTHX_ REGEXP *rx)
{
    struct regexp *const r = ReANY(rx);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_PREGFREE2;

    if (! r)
        return;

    if (r->mother_re) {
        ReREFCNT_dec(r->mother_re);
    } else {
        CALLREGFREE_PVT(rx); /* free the private data */
        SvREFCNT_dec(RXp_PAREN_NAMES(r));
    }
    if (r->substrs) {
        int i;
        for (i = 0; i < 2; i++) {
            SvREFCNT_dec(r->substrs->data[i].substr);
            SvREFCNT_dec(r->substrs->data[i].utf8_substr);
        }
        Safefree(r->substrs);
    }
    RX_MATCH_COPY_FREE(rx);
#ifdef PERL_ANY_COW
    SvREFCNT_dec(r->saved_copy);
#endif
    Safefree(r->offs);
    SvREFCNT_dec(r->qr_anoncv);
    if (r->recurse_locinput)
        Safefree(r->recurse_locinput);
}


/*  reg_temp_copy()

    Copy ssv to dsv, both of which should of type SVt_REGEXP or SVt_PVLV,
    except that dsv will be created if NULL.

    This function is used in two main ways. First to implement
        $r = qr/....; $s = $$r;

    Secondly, it is used as a hacky workaround to the structural issue of
    match results
    being stored in the regexp structure which is in turn stored in
    PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
    could be PL_curpm in multiple contexts, and could require multiple
    result sets being associated with the pattern simultaneously, such
    as when doing a recursive match with (??{$qr})

    The solution is to make a lightweight copy of the regexp structure
    when a qr// is returned from the code executed by (??{$qr}) this
    lightweight copy doesn't actually own any of its data except for
    the starp/end and the actual regexp structure itself.

*/


REGEXP *
Perl_reg_temp_copy(pTHX_ REGEXP *dsv, REGEXP *ssv)
{
    struct regexp *drx;
    struct regexp *const srx = ReANY(ssv);
    const bool islv = dsv && SvTYPE(dsv) == SVt_PVLV;

    PERL_ARGS_ASSERT_REG_TEMP_COPY;

    if (!dsv)
        dsv = (REGEXP*) newSV_type(SVt_REGEXP);
    else {
        assert(SvTYPE(dsv) == SVt_REGEXP || (SvTYPE(dsv) == SVt_PVLV));

        /* our only valid caller, sv_setsv_flags(), should have done
         * a SV_CHECK_THINKFIRST_COW_DROP() by now */
        assert(!SvOOK(dsv));
        assert(!SvIsCOW(dsv));
        assert(!SvROK(dsv));

        if (SvPVX_const(dsv)) {
            if (SvLEN(dsv))
                Safefree(SvPVX(dsv));
            SvPVX(dsv) = NULL;
        }
        SvLEN_set(dsv, 0);
        SvCUR_set(dsv, 0);
        SvOK_off((SV *)dsv);

        if (islv) {
            /* For PVLVs, the head (sv_any) points to an XPVLV, while
             * the LV's xpvlenu_rx will point to a regexp body, which
             * we allocate here */
            REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
            assert(!SvPVX(dsv));
            ((XPV*)SvANY(dsv))->xpv_len_u.xpvlenu_rx = temp->sv_any;
            temp->sv_any = NULL;
            SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
            SvREFCNT_dec_NN(temp);
            /* SvCUR still resides in the xpvlv struct, so the regexp copy-
               ing below will not set it. */
            SvCUR_set(dsv, SvCUR(ssv));
        }
    }
    /* This ensures that SvTHINKFIRST(sv) is true, and hence that
       sv_force_normal(sv) is called.  */
    SvFAKE_on(dsv);
    drx = ReANY(dsv);

    SvFLAGS(dsv) |= SvFLAGS(ssv) & (SVf_POK|SVp_POK|SVf_UTF8);
    SvPV_set(dsv, RX_WRAPPED(ssv));
    /* We share the same string buffer as the original regexp, on which we
       hold a reference count, incremented when mother_re is set below.
       The string pointer is copied here, being part of the regexp struct.
     */
    memcpy(&(drx->xpv_cur), &(srx->xpv_cur),
           sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
    if (!islv)
        SvLEN_set(dsv, 0);
    if (srx->offs) {
        const I32 npar = srx->nparens+1;
        Newx(drx->offs, npar, regexp_paren_pair);
        Copy(srx->offs, drx->offs, npar, regexp_paren_pair);
    }
    if (srx->substrs) {
        int i;
        Newx(drx->substrs, 1, struct reg_substr_data);
        StructCopy(srx->substrs, drx->substrs, struct reg_substr_data);

        for (i = 0; i < 2; i++) {
            SvREFCNT_inc_void(drx->substrs->data[i].substr);
            SvREFCNT_inc_void(drx->substrs->data[i].utf8_substr);
        }

        /* check_substr and check_utf8, if non-NULL, point to either their
           anchored or float namesakes, and don't hold a second reference.  */
    }
    RX_MATCH_COPIED_off(dsv);
#ifdef PERL_ANY_COW
    drx->saved_copy = NULL;
#endif
    drx->mother_re = ReREFCNT_inc(srx->mother_re ? srx->mother_re : ssv);
    SvREFCNT_inc_void(drx->qr_anoncv);
    if (srx->recurse_locinput)
        Newx(drx->recurse_locinput, srx->nparens + 1, char *);

    return dsv;
}
#endif


/* regfree_internal()

   Free the private data in a regexp. This is overloadable by
   extensions. Perl takes care of the regexp structure in pregfree(),
   this covers the *pprivate pointer which technically perl doesn't
   know about, however of course we have to handle the
   regexp_internal structure when no extension is in use.

   Note this is called before freeing anything in the regexp
   structure.
 */

void
Perl_regfree_internal(pTHX_ REGEXP * const rx)
{
    struct regexp *const r = ReANY(rx);
    RXi_GET_DECL(r, ri);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_REGFREE_INTERNAL;

    if (! ri) {
        return;
    }

    DEBUG_COMPILE_r({
        if (!PL_colorset)
            reginitcolors();
        {
            SV *dsv= sv_newmortal();
            RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
                dsv, RX_PRECOMP(rx), RX_PRELEN(rx), PL_dump_re_max_len);
            Perl_re_printf( aTHX_ "%sFreeing REx:%s %s\n",
                PL_colors[4], PL_colors[5], s);
        }
    });

#ifdef RE_TRACK_PATTERN_OFFSETS
    if (ri->u.offsets)
        Safefree(ri->u.offsets);             /* 20010421 MJD */
#endif
    if (ri->code_blocks)
        S_free_codeblocks(aTHX_ ri->code_blocks);

    if (ri->data) {
        int n = ri->data->count;

        while (--n >= 0) {
          /* If you add a ->what type here, update the comment in regcomp.h */
            switch (ri->data->what[n]) {
            case 'a':
            case 'r':
            case 's':
            case 'S':
            case 'u':
                SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
                break;
            case 'f':
                Safefree(ri->data->data[n]);
                break;
            case 'l':
            case 'L':
                break;
            case 'T':
                { /* Aho Corasick add-on structure for a trie node.
                     Used in stclass optimization only */
                    U32 refcount;
                    reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
                    OP_REFCNT_LOCK;
                    refcount = --aho->refcount;
                    OP_REFCNT_UNLOCK;
                    if ( !refcount ) {
                        PerlMemShared_free(aho->states);
                        PerlMemShared_free(aho->fail);
                         /* do this last!!!! */
                        PerlMemShared_free(ri->data->data[n]);
                        /* we should only ever get called once, so
                         * assert as much, and also guard the free
                         * which /might/ happen twice. At the least
                         * it will make code anlyzers happy and it
                         * doesn't cost much. - Yves */
                        assert(ri->regstclass);
                        if (ri->regstclass) {
                            PerlMemShared_free(ri->regstclass);
                            ri->regstclass = 0;
                        }
                    }
                }
                break;
            case 't':
                {
                    /* trie structure. */
                    U32 refcount;
                    reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
                    OP_REFCNT_LOCK;
                    refcount = --trie->refcount;
                    OP_REFCNT_UNLOCK;
                    if ( !refcount ) {
                        PerlMemShared_free(trie->charmap);
                        PerlMemShared_free(trie->states);
                        PerlMemShared_free(trie->trans);
                        if (trie->bitmap)
                            PerlMemShared_free(trie->bitmap);
                        if (trie->jump)
                            PerlMemShared_free(trie->jump);
                        PerlMemShared_free(trie->wordinfo);
                        /* do this last!!!! */
                        PerlMemShared_free(ri->data->data[n]);
                    }
                }
                break;
            default:
                Perl_croak(aTHX_ "panic: regfree data code '%c'",
                                                    ri->data->what[n]);
            }
        }
        Safefree(ri->data->what);
        Safefree(ri->data);
    }

    Safefree(ri);
}

#define av_dup_inc(s, t)	MUTABLE_AV(sv_dup_inc((const SV *)s, t))
#define hv_dup_inc(s, t)	MUTABLE_HV(sv_dup_inc((const SV *)s, t))
#define SAVEPVN(p, n)	((p) ? savepvn(p, n) : NULL)

/*
=for apidoc re_dup_guts
Duplicate a regexp.

This routine is expected to clone a given regexp structure. It is only
compiled under USE_ITHREADS.

After all of the core data stored in struct regexp is duplicated
the C<regexp_engine.dupe> method is used to copy any private data
stored in the *pprivate pointer. This allows extensions to handle
any duplication they need to do.

=cut

   See pregfree() and regfree_internal() if you change anything here.
*/
#if defined(USE_ITHREADS)
#ifndef PERL_IN_XSUB_RE
void
Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
{
    I32 npar;
    const struct regexp *r = ReANY(sstr);
    struct regexp *ret = ReANY(dstr);

    PERL_ARGS_ASSERT_RE_DUP_GUTS;

    npar = r->nparens+1;
    Newx(ret->offs, npar, regexp_paren_pair);
    Copy(r->offs, ret->offs, npar, regexp_paren_pair);

    if (ret->substrs) {
        /* Do it this way to avoid reading from *r after the StructCopy().
           That way, if any of the sv_dup_inc()s dislodge *r from the L1
           cache, it doesn't matter.  */
        int i;
        const bool anchored = r->check_substr
            ? r->check_substr == r->substrs->data[0].substr
            : r->check_utf8   == r->substrs->data[0].utf8_substr;
        Newx(ret->substrs, 1, struct reg_substr_data);
        StructCopy(r->substrs, ret->substrs, struct reg_substr_data);

        for (i = 0; i < 2; i++) {
            ret->substrs->data[i].substr =
                        sv_dup_inc(ret->substrs->data[i].substr, param);
            ret->substrs->data[i].utf8_substr =
                        sv_dup_inc(ret->substrs->data[i].utf8_substr, param);
        }

        /* check_substr and check_utf8, if non-NULL, point to either their
           anchored or float namesakes, and don't hold a second reference.  */

        if (ret->check_substr) {
            if (anchored) {
                assert(r->check_utf8 == r->substrs->data[0].utf8_substr);

                ret->check_substr = ret->substrs->data[0].substr;
                ret->check_utf8   = ret->substrs->data[0].utf8_substr;
            } else {
                assert(r->check_substr == r->substrs->data[1].substr);
                assert(r->check_utf8   == r->substrs->data[1].utf8_substr);

                ret->check_substr = ret->substrs->data[1].substr;
                ret->check_utf8   = ret->substrs->data[1].utf8_substr;
            }
        } else if (ret->check_utf8) {
            if (anchored) {
                ret->check_utf8 = ret->substrs->data[0].utf8_substr;
            } else {
                ret->check_utf8 = ret->substrs->data[1].utf8_substr;
            }
        }
    }

    RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
    ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
    if (r->recurse_locinput)
        Newx(ret->recurse_locinput, r->nparens + 1, char *);

    if (ret->pprivate)
        RXi_SET(ret, CALLREGDUPE_PVT(dstr, param));

    if (RX_MATCH_COPIED(dstr))
        ret->subbeg  = SAVEPVN(ret->subbeg, ret->sublen);
    else
        ret->subbeg = NULL;
#ifdef PERL_ANY_COW
    ret->saved_copy = NULL;
#endif

    /* Whether mother_re be set or no, we need to copy the string.  We
       cannot refrain from copying it when the storage points directly to
       our mother regexp, because that's
               1: a buffer in a different thread
               2: something we no longer hold a reference on
               so we need to copy it locally.  */
    RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED_const(sstr), SvCUR(sstr)+1);
    /* set malloced length to a non-zero value so it will be freed
     * (otherwise in combination with SVf_FAKE it looks like an alien
     * buffer). It doesn't have to be the actual malloced size, since it
     * should never be grown */
    SvLEN_set(dstr, SvCUR(sstr)+1);
    ret->mother_re   = NULL;
}
#endif /* PERL_IN_XSUB_RE */

/*
   regdupe_internal()

   This is the internal complement to regdupe() which is used to copy
   the structure pointed to by the *pprivate pointer in the regexp.
   This is the core version of the extension overridable cloning hook.
   The regexp structure being duplicated will be copied by perl prior
   to this and will be provided as the regexp *r argument, however
   with the /old/ structures pprivate pointer value. Thus this routine
   may override any copying normally done by perl.

   It returns a pointer to the new regexp_internal structure.
*/

void *
Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
{
    struct regexp *const r = ReANY(rx);
    regexp_internal *reti;
    int len;
    RXi_GET_DECL(r, ri);

    PERL_ARGS_ASSERT_REGDUPE_INTERNAL;

    len = ProgLen(ri);

    Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
          char, regexp_internal);
    Copy(ri->program, reti->program, len+1, regnode);


    if (ri->code_blocks) {
        int n;
        Newx(reti->code_blocks, 1, struct reg_code_blocks);
        Newx(reti->code_blocks->cb, ri->code_blocks->count,
                    struct reg_code_block);
        Copy(ri->code_blocks->cb, reti->code_blocks->cb,
             ri->code_blocks->count, struct reg_code_block);
        for (n = 0; n < ri->code_blocks->count; n++)
             reti->code_blocks->cb[n].src_regex = (REGEXP*)
                    sv_dup_inc((SV*)(ri->code_blocks->cb[n].src_regex), param);
        reti->code_blocks->count = ri->code_blocks->count;
        reti->code_blocks->refcnt = 1;
    }
    else
        reti->code_blocks = NULL;

    reti->regstclass = NULL;

    if (ri->data) {
        struct reg_data *d;
        const int count = ri->data->count;
        int i;

        Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
                char, struct reg_data);
        Newx(d->what, count, U8);

        d->count = count;
        for (i = 0; i < count; i++) {
            d->what[i] = ri->data->what[i];
            switch (d->what[i]) {
                /* see also regcomp.h and regfree_internal() */
            case 'a': /* actually an AV, but the dup function is identical.
                         values seem to be "plain sv's" generally. */
            case 'r': /* a compiled regex (but still just another SV) */
            case 's': /* an RV (currently only used for an RV to an AV by the ANYOF code)
                         this use case should go away, the code could have used
                         'a' instead - see S_set_ANYOF_arg() for array contents. */
            case 'S': /* actually an SV, but the dup function is identical.  */
            case 'u': /* actually an HV, but the dup function is identical.
                         values are "plain sv's" */
                d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
                break;
            case 'f':
                /* Synthetic Start Class - "Fake" charclass we generate to optimize
                 * patterns which could start with several different things. Pre-TRIE
                 * this was more important than it is now, however this still helps
                 * in some places, for instance /x?a+/ might produce a SSC equivalent
                 * to [xa]. This is used by Perl_re_intuit_start() and S_find_byclass()
                 * in regexec.c
                 */
                /* This is cheating. */
                Newx(d->data[i], 1, regnode_ssc);
                StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
                reti->regstclass = (regnode*)d->data[i];
                break;
            case 'T':
                /* AHO-CORASICK fail table */
                /* Trie stclasses are readonly and can thus be shared
                 * without duplication. We free the stclass in pregfree
                 * when the corresponding reg_ac_data struct is freed.
                 */
                reti->regstclass= ri->regstclass;
                /* FALLTHROUGH */
            case 't':
                /* TRIE transition table */
                OP_REFCNT_LOCK;
                ((reg_trie_data*)ri->data->data[i])->refcount++;
                OP_REFCNT_UNLOCK;
                /* FALLTHROUGH */
            case 'l': /* (?{...}) or (??{ ... }) code (cb->block) */
            case 'L': /* same when RExC_pm_flags & PMf_HAS_CV and code
                         is not from another regexp */
                d->data[i] = ri->data->data[i];
                break;
            default:
                Perl_croak(aTHX_ "panic: re_dup_guts unknown data code '%c'",
                                                           ri->data->what[i]);
            }
        }

        reti->data = d;
    }
    else
        reti->data = NULL;

    reti->name_list_idx = ri->name_list_idx;

#ifdef RE_TRACK_PATTERN_OFFSETS
    if (ri->u.offsets) {
        Newx(reti->u.offsets, 2*len+1, U32);
        Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
    }
#else
    SetProgLen(reti, len);
#endif

    return (void*)reti;
}

#endif    /* USE_ITHREADS */

#ifndef PERL_IN_XSUB_RE

/*
 - regnext - dig the "next" pointer out of a node
 */
regnode *
Perl_regnext(pTHX_ regnode *p)
{
    I32 offset;

    if (!p)
        return(NULL);

    if (OP(p) > REGNODE_MAX) {		/* regnode.type is unsigned */
        Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
                                                (int)OP(p), (int)REGNODE_MAX);
    }

    offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
    if (offset == 0)
        return(NULL);

    return(p+offset);
}

#endif

STATIC void
S_re_croak(pTHX_ bool utf8, const char* pat,...)
{
    va_list args;
    STRLEN len = strlen(pat);
    char buf[512];
    SV *msv;
    const char *message;

    PERL_ARGS_ASSERT_RE_CROAK;

    if (len > 510)
        len = 510;
    Copy(pat, buf, len , char);
    buf[len] = '\n';
    buf[len + 1] = '\0';
    va_start(args, pat);
    msv = vmess(buf, &args);
    va_end(args);
    message = SvPV_const(msv, len);
    if (len > 512)
        len = 512;
    Copy(message, buf, len , char);
    /* len-1 to avoid \n */
    Perl_croak(aTHX_ "%" UTF8f, UTF8fARG(utf8, len-1, buf));
}

/* XXX Here's a total kludge.  But we need to re-enter for swash routines. */

#ifndef PERL_IN_XSUB_RE
void
Perl_save_re_context(pTHX)
{
    I32 nparens = -1;
    I32 i;

    /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */

    if (PL_curpm) {
        const REGEXP * const rx = PM_GETRE(PL_curpm);
        if (rx)
            nparens = RX_NPARENS(rx);
    }

    /* RT #124109. This is a complete hack; in the SWASHNEW case we know
     * that PL_curpm will be null, but that utf8.pm and the modules it
     * loads will only use $1..$3.
     * The t/porting/re_context.t test file checks this assumption.
     */
    if (nparens == -1)
        nparens = 3;

    for (i = 1; i <= nparens; i++) {
        char digits[TYPE_CHARS(long)];
        const STRLEN len = my_snprintf(digits, sizeof(digits),
                                       "%lu", (long)i);
        GV *const *const gvp
            = (GV**)hv_fetch(PL_defstash, digits, len, 0);

        if (gvp) {
            GV * const gv = *gvp;
            if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
                save_scalar(gv);
        }
    }
}
#endif

#ifdef DEBUGGING

STATIC void
S_put_code_point(pTHX_ SV *sv, UV c)
{
    PERL_ARGS_ASSERT_PUT_CODE_POINT;

    if (c > 255) {
        Perl_sv_catpvf(aTHX_ sv, "\\x{%04" UVXf "}", c);
    }
    else if (isPRINT(c)) {
        const char string = (char) c;

        /* We use {phrase} as metanotation in the class, so also escape literal
         * braces */
        if (isBACKSLASHED_PUNCT(c) || c == '{' || c == '}')
            sv_catpvs(sv, "\\");
        sv_catpvn(sv, &string, 1);
    }
    else if (isMNEMONIC_CNTRL(c)) {
        Perl_sv_catpvf(aTHX_ sv, "%s", cntrl_to_mnemonic((U8) c));
    }
    else {
        Perl_sv_catpvf(aTHX_ sv, "\\x%02X", (U8) c);
    }
}

STATIC void
S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
{
    /* Appends to 'sv' a displayable version of the range of code points from
     * 'start' to 'end'.  Mnemonics (like '\r') are used for the few controls
     * that have them, when they occur at the beginning or end of the range.
     * It uses hex to output the remaining code points, unless 'allow_literals'
     * is true, in which case the printable ASCII ones are output as-is (though
     * some of these will be escaped by put_code_point()).
     *
     * NOTE:  This is designed only for printing ranges of code points that fit
     *        inside an ANYOF bitmap.  Higher code points are simply suppressed
     */

    const unsigned int min_range_count = 3;

    assert(start <= end);

    PERL_ARGS_ASSERT_PUT_RANGE;

    while (start <= end) {
        UV this_end;
        const char * format;

        if (    end - start < min_range_count
            && (end - start <= 2 || (isPRINT_A(start) && isPRINT_A(end))))
        {
            /* Output a range of 1 or 2 chars individually, or longer ranges
             * when printable */
            for (; start <= end; start++) {
                put_code_point(sv, start);
            }
            break;
        }

        /* If permitted by the input options, and there is a possibility that
         * this range contains a printable literal, look to see if there is
         * one. */
        if (allow_literals && start <= MAX_PRINT_A) {

            /* If the character at the beginning of the range isn't an ASCII
             * printable, effectively split the range into two parts:
             *  1) the portion before the first such printable,
             *  2) the rest
             * and output them separately. */
            if (! isPRINT_A(start)) {
                UV temp_end = start + 1;

                /* There is no point looking beyond the final possible
                 * printable, in MAX_PRINT_A */
                UV max = MIN(end, MAX_PRINT_A);

                while (temp_end <= max && ! isPRINT_A(temp_end)) {
                    temp_end++;
                }

                /* Here, temp_end points to one beyond the first printable if
                 * found, or to one beyond 'max' if not.  If none found, make
                 * sure that we use the entire range */
                if (temp_end > MAX_PRINT_A) {
                    temp_end = end + 1;
                }

                /* Output the first part of the split range: the part that
                 * doesn't have printables, with the parameter set to not look
                 * for literals (otherwise we would infinitely recurse) */
                put_range(sv, start, temp_end - 1, FALSE);

                /* The 2nd part of the range (if any) starts here. */
                start = temp_end;

                /* We do a continue, instead of dropping down, because even if
                 * the 2nd part is non-empty, it could be so short that we want
                 * to output it as individual characters, as tested for at the
                 * top of this loop.  */
                continue;
            }

            /* Here, 'start' is a printable ASCII.  If it is an alphanumeric,
             * output a sub-range of just the digits or letters, then process
             * the remaining portion as usual. */
            if (isALPHANUMERIC_A(start)) {
                UV mask = (isDIGIT_A(start))
                           ? _CC_DIGIT
                             : isUPPER_A(start)
                               ? _CC_UPPER
                               : _CC_LOWER;
                UV temp_end = start + 1;

                /* Find the end of the sub-range that includes just the
                 * characters in the same class as the first character in it */
                while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
                    temp_end++;
                }
                temp_end--;

                /* For short ranges, don't duplicate the code above to output
                 * them; just call recursively */
                if (temp_end - start < min_range_count) {
                    put_range(sv, start, temp_end, FALSE);
                }
                else {  /* Output as a range */
                    put_code_point(sv, start);
                    sv_catpvs(sv, "-");
                    put_code_point(sv, temp_end);
                }
                start = temp_end + 1;
                continue;
            }

            /* We output any other printables as individual characters */
            if (isPUNCT_A(start) || isSPACE_A(start)) {
                while (start <= end && (isPUNCT_A(start)
                                        || isSPACE_A(start)))
                {
                    put_code_point(sv, start);
                    start++;
                }
                continue;
            }
        } /* End of looking for literals */

        /* Here is not to output as a literal.  Some control characters have
         * mnemonic names.  Split off any of those at the beginning and end of
         * the range to print mnemonically.  It isn't possible for many of
         * these to be in a row, so this won't overwhelm with output */
        if (   start <= end
            && (isMNEMONIC_CNTRL(start) || isMNEMONIC_CNTRL(end)))
        {
            while (isMNEMONIC_CNTRL(start) && start <= end) {
                put_code_point(sv, start);
                start++;
            }

            /* If this didn't take care of the whole range ... */
            if (start <= end) {

                /* Look backwards from the end to find the final non-mnemonic
                 * */
                UV temp_end = end;
                while (isMNEMONIC_CNTRL(temp_end)) {
                    temp_end--;
                }

                /* And separately output the interior range that doesn't start
                 * or end with mnemonics */
                put_range(sv, start, temp_end, FALSE);

                /* Then output the mnemonic trailing controls */
                start = temp_end + 1;
                while (start <= end) {
                    put_code_point(sv, start);
                    start++;
                }
                break;
            }
        }

        /* As a final resort, output the range or subrange as hex. */

        if (start >= NUM_ANYOF_CODE_POINTS) {
            this_end = end;
        }
        else {  /* Have to split range at the bitmap boundary */
            this_end = (end < NUM_ANYOF_CODE_POINTS)
                        ? end
                        : NUM_ANYOF_CODE_POINTS - 1;
        }
#if NUM_ANYOF_CODE_POINTS > 256
        format = (this_end < 256)
                 ? "\\x%02" UVXf "-\\x%02" UVXf
                 : "\\x{%04" UVXf "}-\\x{%04" UVXf "}";
#else
        format = "\\x%02" UVXf "-\\x%02" UVXf;
#endif
        GCC_DIAG_IGNORE_STMT(-Wformat-nonliteral);
        Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
        GCC_DIAG_RESTORE_STMT;
        break;
    }
}

STATIC void
S_put_charclass_bitmap_innards_invlist(pTHX_ SV *sv, SV* invlist)
{
    /* Concatenate onto the PV in 'sv' a displayable form of the inversion list
     * 'invlist' */

    UV start, end;
    bool allow_literals = TRUE;

    PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS_INVLIST;

    /* Generally, it is more readable if printable characters are output as
     * literals, but if a range (nearly) spans all of them, it's best to output
     * it as a single range.  This code will use a single range if all but 2
     * ASCII printables are in it */
    invlist_iterinit(invlist);
    while (invlist_iternext(invlist, &start, &end)) {

        /* If the range starts beyond the final printable, it doesn't have any
         * in it */
        if (start > MAX_PRINT_A) {
            break;
        }

        /* In both ASCII and EBCDIC, a SPACE is the lowest printable.  To span
         * all but two, the range must start and end no later than 2 from
         * either end */
        if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
            if (end > MAX_PRINT_A) {
                end = MAX_PRINT_A;
            }
            if (start < ' ') {
                start = ' ';
            }
            if (end - start >= MAX_PRINT_A - ' ' - 2) {
                allow_literals = FALSE;
            }
            break;
        }
    }
    invlist_iterfinish(invlist);

    /* Here we have figured things out.  Output each range */
    invlist_iterinit(invlist);
    while (invlist_iternext(invlist, &start, &end)) {
        if (start >= NUM_ANYOF_CODE_POINTS) {
            break;
        }
        put_range(sv, start, end, allow_literals);
    }
    invlist_iterfinish(invlist);

    return;
}

STATIC SV*
S_put_charclass_bitmap_innards_common(pTHX_
        SV* invlist,            /* The bitmap */
        SV* posixes,            /* Under /l, things like [:word:], \S */
        SV* only_utf8,          /* Under /d, matches iff the target is UTF-8 */
        SV* not_utf8,           /* /d, matches iff the target isn't UTF-8 */
        SV* only_utf8_locale,   /* Under /l, matches if the locale is UTF-8 */
        const bool invert       /* Is the result to be inverted? */
)
{
    /* Create and return an SV containing a displayable version of the bitmap
     * and associated information determined by the input parameters.  If the
     * output would have been only the inversion indicator '^', NULL is instead
     * returned. */

    SV * output;

    PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS_COMMON;

    if (invert) {
        output = newSVpvs("^");
    }
    else {
        output = newSVpvs("");
    }

    /* First, the code points in the bitmap that are unconditionally there */
    put_charclass_bitmap_innards_invlist(output, invlist);

    /* Traditionally, these have been placed after the main code points */
    if (posixes) {
        sv_catsv(output, posixes);
    }

    if (only_utf8 && _invlist_len(only_utf8)) {
        Perl_sv_catpvf(aTHX_ output, "%s{utf8}%s", PL_colors[1], PL_colors[0]);
        put_charclass_bitmap_innards_invlist(output, only_utf8);
    }

    if (not_utf8 && _invlist_len(not_utf8)) {
        Perl_sv_catpvf(aTHX_ output, "%s{not utf8}%s", PL_colors[1], PL_colors[0]);
        put_charclass_bitmap_innards_invlist(output, not_utf8);
    }

    if (only_utf8_locale && _invlist_len(only_utf8_locale)) {
        Perl_sv_catpvf(aTHX_ output, "%s{utf8 locale}%s", PL_colors[1], PL_colors[0]);
        put_charclass_bitmap_innards_invlist(output, only_utf8_locale);

        /* This is the only list in this routine that can legally contain code
         * points outside the bitmap range.  The call just above to
         * 'put_charclass_bitmap_innards_invlist' will simply suppress them, so
         * output them here.  There's about a half-dozen possible, and none in
         * contiguous ranges longer than 2 */
        if (invlist_highest(only_utf8_locale) >= NUM_ANYOF_CODE_POINTS) {
            UV start, end;
            SV* above_bitmap = NULL;

            _invlist_subtract(only_utf8_locale, PL_InBitmap, &above_bitmap);

            invlist_iterinit(above_bitmap);
            while (invlist_iternext(above_bitmap, &start, &end)) {
                UV i;

                for (i = start; i <= end; i++) {
                    put_code_point(output, i);
                }
            }
            invlist_iterfinish(above_bitmap);
            SvREFCNT_dec_NN(above_bitmap);
        }
    }

    if (invert && SvCUR(output) == 1) {
        return NULL;
    }

    return output;
}

STATIC bool
S_put_charclass_bitmap_innards(pTHX_ SV *sv,
                                     char *bitmap,
                                     SV *nonbitmap_invlist,
                                     SV *only_utf8_locale_invlist,
                                     const regnode * const node,
                                     const U8 flags,
                                     const bool force_as_is_display)
{
    /* Appends to 'sv' a displayable version of the innards of the bracketed
     * character class defined by the other arguments:
     *  'bitmap' points to the bitmap, or NULL if to ignore that.
     *  'nonbitmap_invlist' is an inversion list of the code points that are in
     *      the bitmap range, but for some reason aren't in the bitmap; NULL if
     *      none.  The reasons for this could be that they require some
     *      condition such as the target string being or not being in UTF-8
     *      (under /d), or because they came from a user-defined property that
     *      was not resolved at the time of the regex compilation (under /u)
     *  'only_utf8_locale_invlist' is an inversion list of the code points that
     *      are valid only if the runtime locale is a UTF-8 one; NULL if none
     *  'node' is the regex pattern ANYOF node.  It is needed only when the
     *      above two parameters are not null, and is passed so that this
     *      routine can tease apart the various reasons for them.
     *  'flags' is the flags field of 'node'
     *  'force_as_is_display' is TRUE if this routine should definitely NOT try
     *      to invert things to see if that leads to a cleaner display.  If
     *      FALSE, this routine is free to use its judgment about doing this.
     *
     * It returns TRUE if there was actually something output.  (It may be that
     * the bitmap, etc is empty.)
     *
     * When called for outputting the bitmap of a non-ANYOF node, just pass the
     * bitmap, with the succeeding parameters set to NULL, and the final one to
     * FALSE.
     */

    /* In general, it tries to display the 'cleanest' representation of the
     * innards, choosing whether to display them inverted or not, regardless of
     * whether the class itself is to be inverted.  However,  there are some
     * cases where it can't try inverting, as what actually matches isn't known
     * until runtime, and hence the inversion isn't either. */

    bool inverting_allowed = ! force_as_is_display;

    int i;
    STRLEN orig_sv_cur = SvCUR(sv);

    SV* invlist;            /* Inversion list we accumulate of code points that
                               are unconditionally matched */
    SV* only_utf8 = NULL;   /* Under /d, list of matches iff the target is
                               UTF-8 */
    SV* not_utf8 =  NULL;   /* /d, list of matches iff the target isn't UTF-8
                             */
    SV* posixes = NULL;     /* Under /l, string of things like [:word:], \D */
    SV* only_utf8_locale = NULL;    /* Under /l, list of matches if the locale
                                       is UTF-8 */

    SV* as_is_display;      /* The output string when we take the inputs
                               literally */
    SV* inverted_display;   /* The output string when we invert the inputs */

    bool invert = cBOOL(flags & ANYOF_INVERT);  /* Is the input to be inverted
                                                   to match? */
    /* We are biased in favor of displaying things without them being inverted,
     * as that is generally easier to understand */
    const int bias = 5;

    PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;

    /* Start off with whatever code points are passed in.  (We clone, so we
     * don't change the caller's list) */
    if (nonbitmap_invlist) {
        assert(invlist_highest(nonbitmap_invlist) < NUM_ANYOF_CODE_POINTS);
        invlist = invlist_clone(nonbitmap_invlist, NULL);
    }
    else {  /* Worst case size is every other code point is matched */
        invlist = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
    }

    if (flags) {
        if (OP(node) == ANYOFD) {

            /* This flag indicates that the code points below 0x100 in the
             * nonbitmap list are precisely the ones that match only when the
             * target is UTF-8 (they should all be non-ASCII). */
            if (flags & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)
            {
                _invlist_intersection(invlist, PL_UpperLatin1, &only_utf8);
                _invlist_subtract(invlist, only_utf8, &invlist);
            }

            /* And this flag for matching all non-ASCII 0xFF and below */
            if (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)
            {
                not_utf8 = invlist_clone(PL_UpperLatin1, NULL);
            }
        }
        else if (OP(node) == ANYOFL || OP(node) == ANYOFPOSIXL) {

            /* If either of these flags are set, what matches isn't
             * determinable except during execution, so don't know enough here
             * to invert */
            if (flags & (ANYOFL_FOLD|ANYOF_MATCHES_POSIXL)) {
                inverting_allowed = FALSE;
            }

            /* What the posix classes match also varies at runtime, so these
             * will be output symbolically. */
            if (ANYOF_POSIXL_TEST_ANY_SET(node)) {
                int i;

                posixes = newSVpvs("");
                for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
                    if (ANYOF_POSIXL_TEST(node, i)) {
                        sv_catpv(posixes, anyofs[i]);
                    }
                }
            }
        }
    }

    /* Accumulate the bit map into the unconditional match list */
    if (bitmap) {
        for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
            if (BITMAP_TEST(bitmap, i)) {
                int start = i++;
                for (;
                     i < NUM_ANYOF_CODE_POINTS && BITMAP_TEST(bitmap, i);
                     i++)
                { /* empty */ }
                invlist = _add_range_to_invlist(invlist, start, i-1);
            }
        }
    }

    /* Make sure that the conditional match lists don't have anything in them
     * that match unconditionally; otherwise the output is quite confusing.
     * This could happen if the code that populates these misses some
     * duplication. */
    if (only_utf8) {
        _invlist_subtract(only_utf8, invlist, &only_utf8);
    }
    if (not_utf8) {
        _invlist_subtract(not_utf8, invlist, &not_utf8);
    }

    if (only_utf8_locale_invlist) {

        /* Since this list is passed in, we have to make a copy before
         * modifying it */
        only_utf8_locale = invlist_clone(only_utf8_locale_invlist, NULL);

        _invlist_subtract(only_utf8_locale, invlist, &only_utf8_locale);

        /* And, it can get really weird for us to try outputting an inverted
         * form of this list when it has things above the bitmap, so don't even
         * try */
        if (invlist_highest(only_utf8_locale) >= NUM_ANYOF_CODE_POINTS) {
            inverting_allowed = FALSE;
        }
    }

    /* Calculate what the output would be if we take the input as-is */
    as_is_display = put_charclass_bitmap_innards_common(invlist,
                                                    posixes,
                                                    only_utf8,
                                                    not_utf8,
                                                    only_utf8_locale,
                                                    invert);

    /* If have to take the output as-is, just do that */
    if (! inverting_allowed) {
        if (as_is_display) {
            sv_catsv(sv, as_is_display);
            SvREFCNT_dec_NN(as_is_display);
        }
    }
    else { /* But otherwise, create the output again on the inverted input, and
              use whichever version is shorter */

        int inverted_bias, as_is_bias;

        /* We will apply our bias to whichever of the results doesn't have
         * the '^' */
        if (invert) {
            invert = FALSE;
            as_is_bias = bias;
            inverted_bias = 0;
        }
        else {
            invert = TRUE;
            as_is_bias = 0;
            inverted_bias = bias;
        }

        /* Now invert each of the lists that contribute to the output,
         * excluding from the result things outside the possible range */

        /* For the unconditional inversion list, we have to add in all the
         * conditional code points, so that when inverted, they will be gone
         * from it */
        _invlist_union(only_utf8, invlist, &invlist);
        _invlist_union(not_utf8, invlist, &invlist);
        _invlist_union(only_utf8_locale, invlist, &invlist);
        _invlist_invert(invlist);
        _invlist_intersection(invlist, PL_InBitmap, &invlist);

        if (only_utf8) {
            _invlist_invert(only_utf8);
            _invlist_intersection(only_utf8, PL_UpperLatin1, &only_utf8);
        }
        else if (not_utf8) {

            /* If a code point matches iff the target string is not in UTF-8,
             * then complementing the result has it not match iff not in UTF-8,
             * which is the same thing as matching iff it is UTF-8. */
            only_utf8 = not_utf8;
            not_utf8 = NULL;
        }

        if (only_utf8_locale) {
            _invlist_invert(only_utf8_locale);
            _invlist_intersection(only_utf8_locale,
                                  PL_InBitmap,
                                  &only_utf8_locale);
        }

        inverted_display = put_charclass_bitmap_innards_common(
                                            invlist,
                                            posixes,
                                            only_utf8,
                                            not_utf8,
                                            only_utf8_locale, invert);

        /* Use the shortest representation, taking into account our bias
         * against showing it inverted */
        if (   inverted_display
            && (   ! as_is_display
                || (  SvCUR(inverted_display) + inverted_bias
                    < SvCUR(as_is_display)    + as_is_bias)))
        {
            sv_catsv(sv, inverted_display);
        }
        else if (as_is_display) {
            sv_catsv(sv, as_is_display);
        }

        SvREFCNT_dec(as_is_display);
        SvREFCNT_dec(inverted_display);
    }

    SvREFCNT_dec_NN(invlist);
    SvREFCNT_dec(only_utf8);
    SvREFCNT_dec(not_utf8);
    SvREFCNT_dec(posixes);
    SvREFCNT_dec(only_utf8_locale);

    return SvCUR(sv) > orig_sv_cur;
}

#define CLEAR_OPTSTART                                                       \
    if (optstart) STMT_START {                                               \
        DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_                                           \
                              " (%" IVdf " nodes)\n", (IV)(node - optstart))); \
        optstart=NULL;                                                       \
    } STMT_END

#define DUMPUNTIL(b,e)                                                       \
                    CLEAR_OPTSTART;                                          \
                    node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);

STATIC const regnode *
S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
            const regnode *last, const regnode *plast,
            SV* sv, I32 indent, U32 depth)
{
    U8 op = PSEUDO;	/* Arbitrary non-END op. */
    const regnode *next;
    const regnode *optstart= NULL;

    RXi_GET_DECL(r, ri);
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_DUMPUNTIL;

#ifdef DEBUG_DUMPUNTIL
    Perl_re_printf( aTHX_  "--- %d : %d - %d - %d\n", indent, node-start,
        last ? last-start : 0, plast ? plast-start : 0);
#endif

    if (plast && plast < last)
        last= plast;

    while (PL_regkind[op] != END && (!last || node < last)) {
        assert(node);
        /* While that wasn't END last time... */
        NODE_ALIGN(node);
        op = OP(node);
        if (op == CLOSE || op == SRCLOSE || op == WHILEM)
            indent--;
        next = regnext((regnode *)node);

        /* Where, what. */
        if (OP(node) == OPTIMIZED) {
            if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
                optstart = node;
            else
                goto after_print;
        } else
            CLEAR_OPTSTART;

        regprop(r, sv, node, NULL, NULL);
        Perl_re_printf( aTHX_  "%4" IVdf ":%*s%s", (IV)(node - start),
                      (int)(2*indent + 1), "", SvPVX_const(sv));

        if (OP(node) != OPTIMIZED) {
            if (next == NULL)		/* Next ptr. */
                Perl_re_printf( aTHX_  " (0)");
            else if (PL_regkind[(U8)op] == BRANCH
                     && PL_regkind[OP(next)] != BRANCH )
                Perl_re_printf( aTHX_  " (FAIL)");
            else
                Perl_re_printf( aTHX_  " (%" IVdf ")", (IV)(next - start));
            Perl_re_printf( aTHX_ "\n");
        }

      after_print:
        if (PL_regkind[(U8)op] == BRANCHJ) {
            assert(next);
            {
                const regnode *nnode = (OP(next) == LONGJMP
                                       ? regnext((regnode *)next)
                                       : next);
                if (last && nnode > last)
                    nnode = last;
                DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
            }
        }
        else if (PL_regkind[(U8)op] == BRANCH) {
            assert(next);
            DUMPUNTIL(NEXTOPER(node), next);
        }
        else if ( PL_regkind[(U8)op]  == TRIE ) {
            const regnode *this_trie = node;
            const char op = OP(node);
            const U32 n = ARG(node);
            const reg_ac_data * const ac = op>=AHOCORASICK ?
               (reg_ac_data *)ri->data->data[n] :
               NULL;
            const reg_trie_data * const trie =
                (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
#ifdef DEBUGGING
            AV *const trie_words
                           = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
#endif
            const regnode *nextbranch= NULL;
            I32 word_idx;
            SvPVCLEAR(sv);
            for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
                SV ** const elem_ptr = av_fetch(trie_words, word_idx, 0);

                Perl_re_indentf( aTHX_  "%s ",
                    indent+3,
                    elem_ptr
                    ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
                                SvCUR(*elem_ptr), PL_dump_re_max_len,
                                PL_colors[0], PL_colors[1],
                                (SvUTF8(*elem_ptr)
                                 ? PERL_PV_ESCAPE_UNI
                                 : 0)
                                | PERL_PV_PRETTY_ELLIPSES
                                | PERL_PV_PRETTY_LTGT
                            )
                    : "???"
                );
                if (trie->jump) {
                    U16 dist= trie->jump[word_idx+1];
                    Perl_re_printf( aTHX_  "(%" UVuf ")\n",
                               (UV)((dist ? this_trie + dist : next) - start));
                    if (dist) {
                        if (!nextbranch)
                            nextbranch= this_trie + trie->jump[0];
                        DUMPUNTIL(this_trie + dist, nextbranch);
                    }
                    if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
                        nextbranch= regnext((regnode *)nextbranch);
                } else {
                    Perl_re_printf( aTHX_  "\n");
                }
            }
            if (last && next > last)
                node= last;
            else
                node= next;
        }
        else if ( op == CURLY ) {   /* "next" might be very big: optimizer */
            DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
                    NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
        }
        else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
            assert(next);
            DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
        }
        else if ( op == PLUS || op == STAR) {
            DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
        }
        else if (PL_regkind[(U8)op] == EXACT || op == ANYOFHs) {
            /* Literal string, where present. */
            node += NODE_SZ_STR(node) - 1;
            node = NEXTOPER(node);
        }
        else {
            node = NEXTOPER(node);
            node += regarglen[(U8)op];
        }
        if (op == CURLYX || op == OPEN || op == SROPEN)
            indent++;
    }
    CLEAR_OPTSTART;
#ifdef DEBUG_DUMPUNTIL
    Perl_re_printf( aTHX_  "--- %d\n", (int)indent);
#endif
    return node;
}

#endif	/* DEBUGGING */

#ifndef PERL_IN_XSUB_RE

#  include "uni_keywords.h"

void
Perl_init_uniprops(pTHX)
{

#  ifdef DEBUGGING
    char * dump_len_string;

    dump_len_string = PerlEnv_getenv("PERL_DUMP_RE_MAX_LEN");
    if (   ! dump_len_string
        || ! grok_atoUV(dump_len_string, (UV *)&PL_dump_re_max_len, NULL))
    {
        PL_dump_re_max_len = 60;    /* A reasonable default */
    }
#  endif

    PL_user_def_props = newHV();

#  ifdef USE_ITHREADS

    HvSHAREKEYS_off(PL_user_def_props);
    PL_user_def_props_aTHX = aTHX;

#  endif

    /* Set up the inversion list interpreter-level variables */

    PL_XPosix_ptrs[_CC_ASCII] = _new_invlist_C_array(uni_prop_ptrs[UNI_ASCII]);
    PL_XPosix_ptrs[_CC_ALPHANUMERIC] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXALNUM]);
    PL_XPosix_ptrs[_CC_ALPHA] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXALPHA]);
    PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXBLANK]);
    PL_XPosix_ptrs[_CC_CASED] =  _new_invlist_C_array(uni_prop_ptrs[UNI_CASED]);
    PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXCNTRL]);
    PL_XPosix_ptrs[_CC_DIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXDIGIT]);
    PL_XPosix_ptrs[_CC_GRAPH] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXGRAPH]);
    PL_XPosix_ptrs[_CC_LOWER] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXLOWER]);
    PL_XPosix_ptrs[_CC_PRINT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXPRINT]);
    PL_XPosix_ptrs[_CC_PUNCT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXPUNCT]);
    PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXSPACE]);
    PL_XPosix_ptrs[_CC_UPPER] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXUPPER]);
    PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_VERTSPACE]);
    PL_XPosix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXWORD]);
    PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXXDIGIT]);

    PL_Posix_ptrs[_CC_ASCII] = _new_invlist_C_array(uni_prop_ptrs[UNI_ASCII]);
    PL_Posix_ptrs[_CC_ALPHANUMERIC] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXALNUM]);
    PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXALPHA]);
    PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXBLANK]);
    PL_Posix_ptrs[_CC_CASED] = PL_Posix_ptrs[_CC_ALPHA];
    PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXCNTRL]);
    PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXDIGIT]);
    PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXGRAPH]);
    PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXLOWER]);
    PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXPRINT]);
    PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXPUNCT]);
    PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXSPACE]);
    PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXUPPER]);
    PL_Posix_ptrs[_CC_VERTSPACE] = NULL;
    PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXWORD]);
    PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXXDIGIT]);

    PL_GCB_invlist = _new_invlist_C_array(_Perl_GCB_invlist);
    PL_SB_invlist = _new_invlist_C_array(_Perl_SB_invlist);
    PL_WB_invlist = _new_invlist_C_array(_Perl_WB_invlist);
    PL_LB_invlist = _new_invlist_C_array(_Perl_LB_invlist);
    PL_SCX_invlist = _new_invlist_C_array(_Perl_SCX_invlist);

    PL_InBitmap = _new_invlist_C_array(InBitmap_invlist);
    PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
    PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
    PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);

    PL_Assigned_invlist = _new_invlist_C_array(uni_prop_ptrs[UNI_ASSIGNED]);

    PL_utf8_perl_idstart = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_IDSTART]);
    PL_utf8_perl_idcont = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_IDCONT]);

    PL_utf8_charname_begin = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_CHARNAME_BEGIN]);
    PL_utf8_charname_continue = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_CHARNAME_CONTINUE]);

    PL_in_some_fold = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_ANY_FOLDS]);
    PL_HasMultiCharFold = _new_invlist_C_array(uni_prop_ptrs[
                                            UNI__PERL_FOLDS_TO_MULTI_CHAR]);
    PL_InMultiCharFold = _new_invlist_C_array(uni_prop_ptrs[
                                            UNI__PERL_IS_IN_MULTI_CHAR_FOLD]);
    PL_utf8_toupper = _new_invlist_C_array(Uppercase_Mapping_invlist);
    PL_utf8_tolower = _new_invlist_C_array(Lowercase_Mapping_invlist);
    PL_utf8_totitle = _new_invlist_C_array(Titlecase_Mapping_invlist);
    PL_utf8_tofold = _new_invlist_C_array(Case_Folding_invlist);
    PL_utf8_tosimplefold = _new_invlist_C_array(Simple_Case_Folding_invlist);
    PL_utf8_foldclosures = _new_invlist_C_array(_Perl_IVCF_invlist);
    PL_utf8_mark = _new_invlist_C_array(uni_prop_ptrs[UNI_M]);
    PL_CCC_non0_non230 = _new_invlist_C_array(_Perl_CCC_non0_non230_invlist);
    PL_Private_Use = _new_invlist_C_array(uni_prop_ptrs[UNI_CO]);

#  ifdef UNI_XIDC
    /* The below are used only by deprecated functions.  They could be removed */
    PL_utf8_xidcont  = _new_invlist_C_array(uni_prop_ptrs[UNI_XIDC]);
    PL_utf8_idcont   = _new_invlist_C_array(uni_prop_ptrs[UNI_IDC]);
    PL_utf8_xidstart = _new_invlist_C_array(uni_prop_ptrs[UNI_XIDS]);
#  endif
}

/* These four functions are compiled only in regcomp.c, where they have access
 * to the data they return.  They are a way for re_comp.c to get access to that
 * data without having to compile the whole data structures. */

I16
Perl_do_uniprop_match(const char * const key, const U16 key_len)
{
    PERL_ARGS_ASSERT_DO_UNIPROP_MATCH;

    return match_uniprop((U8 *) key, key_len);
}

SV *
Perl_get_prop_definition(pTHX_ const int table_index)
{
    PERL_ARGS_ASSERT_GET_PROP_DEFINITION;

    /* Create and return the inversion list */
    return _new_invlist_C_array(uni_prop_ptrs[table_index]);
}

const char * const *
Perl_get_prop_values(const int table_index)
{
    PERL_ARGS_ASSERT_GET_PROP_VALUES;

    return UNI_prop_value_ptrs[table_index];
}

const char *
Perl_get_deprecated_property_msg(const Size_t warning_offset)
{
    PERL_ARGS_ASSERT_GET_DEPRECATED_PROPERTY_MSG;

    return deprecated_property_msgs[warning_offset];
}

#  if 0

This code was mainly added for backcompat to give a warning for non-portable
code points in user-defined properties.  But experiments showed that the
warning in earlier perls were only omitted on overflow, which should be an
error, so there really isnt a backcompat issue, and actually adding the
warning when none was present before might cause breakage, for little gain.  So
khw left this code in, but not enabled.  Tests were never added.

embed.fnc entry:
Ei	|const char *|get_extended_utf8_msg|const UV cp

PERL_STATIC_INLINE const char *
S_get_extended_utf8_msg(pTHX_ const UV cp)
{
    U8 dummy[UTF8_MAXBYTES + 1];
    HV *msgs;
    SV **msg;

    uvchr_to_utf8_flags_msgs(dummy, cp, UNICODE_WARN_PERL_EXTENDED,
                             &msgs);

    msg = hv_fetchs(msgs, "text", 0);
    assert(msg);

    (void) sv_2mortal((SV *) msgs);

    return SvPVX(*msg);
}

#  endif
#endif /* end of ! PERL_IN_XSUB_RE */

STATIC REGEXP *
S_compile_wildcard(pTHX_ const char * subpattern, const STRLEN len,
                         const bool ignore_case)
{
    /* Pretends that the input subpattern is qr/subpattern/aam, compiling it
     * possibly with /i if the 'ignore_case' parameter is true.  Use /aa
     * because nothing outside of ASCII will match.  Use /m because the input
     * string may be a bunch of lines strung together.
     *
     * Also sets up the debugging info */

    U32 flags = PMf_MULTILINE|PMf_WILDCARD;
    U32 rx_flags;
    SV * subpattern_sv = sv_2mortal(newSVpvn(subpattern, len));
    REGEXP * subpattern_re;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_COMPILE_WILDCARD;

    if (ignore_case) {
        flags |= PMf_FOLD;
    }
    set_regex_charset(&flags, REGEX_ASCII_MORE_RESTRICTED_CHARSET);

    /* Like in op.c, we copy the compile time pm flags to the rx ones */
    rx_flags = flags & RXf_PMf_COMPILETIME;

#ifndef PERL_IN_XSUB_RE
    /* Use the core engine if this file is regcomp.c.  That means no
     * 'use re "Debug ..." is in effect, so the core engine is sufficient */
    subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
                                             &PL_core_reg_engine,
                                             NULL, NULL,
                                             rx_flags, flags);
#else
    if (isDEBUG_WILDCARD) {
        /* Use the special debugging engine if this file is re_comp.c and wants
         * to output the wildcard matching.  This uses whatever
         * 'use re "Debug ..." is in effect */
        subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
                                                 &my_reg_engine,
                                                 NULL, NULL,
                                                 rx_flags, flags);
    }
    else {
        /* Use the special wildcard engine if this file is re_comp.c and
         * doesn't want to output the wildcard matching.  This uses whatever
         * 'use re "Debug ..." is in effect for compilation, but this engine
         * structure has been set up so that it uses the core engine for
         * execution, so no execution debugging as a result of re.pm will be
         * displayed. */
        subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
                                                 &wild_reg_engine,
                                                 NULL, NULL,
                                                 rx_flags, flags);
        /* XXX The above has the effect that any user-supplied regex engine
         * won't be called for matching wildcards.  That might be good, or bad.
         * It could be changed in several ways.  The reason it is done the
         * current way is to avoid having to save and restore
         * ^{^RE_DEBUG_FLAGS} around the execution.  save_scalar() perhaps
         * could be used.  Another suggestion is to keep the authoritative
         * value of the debug flags in a thread-local variable and add set/get
         * magic to ${^RE_DEBUG_FLAGS} to keep the C level variable up to date.
         * Still another is to pass a flag, say in the engine's intflags that
         * would be checked each time before doing the debug output */
    }
#endif

    assert(subpattern_re);  /* Should have died if didn't compile successfully */
    return subpattern_re;
}

STATIC I32
S_execute_wildcard(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
         char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
{
    I32 result;
    DECLARE_AND_GET_RE_DEBUG_FLAGS;

    PERL_ARGS_ASSERT_EXECUTE_WILDCARD;

    ENTER;

    /* The compilation has set things up so that if the program doesn't want to
     * see the wildcard matching procedure, it will get the core execution
     * engine, which is subject only to -Dr.  So we have to turn that off
     * around this procedure */
    if (! isDEBUG_WILDCARD) {
        /* Note! Casts away 'volatile' */
        SAVEI32(PL_debug);
        PL_debug &= ~ DEBUG_r_FLAG;
    }

    result = CALLREGEXEC(prog, stringarg, strend, strbeg, minend, screamer,
                         NULL, nosave);
    LEAVE;

    return result;
}

SV *
S_handle_user_defined_property(pTHX_

    /* Parses the contents of a user-defined property definition; returning the
     * expanded definition if possible.  If so, the return is an inversion
     * list.
     *
     * If there are subroutines that are part of the expansion and which aren't
     * known at the time of the call to this function, this returns what
     * parse_uniprop_string() returned for the first one encountered.
     *
     * If an error was found, NULL is returned, and 'msg' gets a suitable
     * message appended to it.  (Appending allows the back trace of how we got
     * to the faulty definition to be displayed through nested calls of
     * user-defined subs.)
     *
     * The caller IS responsible for freeing any returned SV.
     *
     * The syntax of the contents is pretty much described in perlunicode.pod,
     * but we also allow comments on each line */

    const char * name,          /* Name of property */
    const STRLEN name_len,      /* The name's length in bytes */
    const bool is_utf8,         /* ? Is 'name' encoded in UTF-8 */
    const bool to_fold,         /* ? Is this under /i */
    const bool runtime,         /* ? Are we in compile- or run-time */
    const bool deferrable,      /* Is it ok for this property's full definition
                                   to be deferred until later? */
    SV* contents,               /* The property's definition */
    bool *user_defined_ptr,     /* This will be set TRUE as we wouldn't be
                                   getting called unless this is thought to be
                                   a user-defined property */
    SV * msg,                   /* Any error or warning msg(s) are appended to
                                   this */
    const STRLEN level)         /* Recursion level of this call */
{
    STRLEN len;
    const char * string         = SvPV_const(contents, len);
    const char * const e        = string + len;
    const bool is_contents_utf8 = cBOOL(SvUTF8(contents));
    const STRLEN msgs_length_on_entry = SvCUR(msg);

    const char * s0 = string;   /* Points to first byte in the current line
                                   being parsed in 'string' */
    const char overflow_msg[] = "Code point too large in \"";
    SV* running_definition = NULL;

    PERL_ARGS_ASSERT_HANDLE_USER_DEFINED_PROPERTY;

    *user_defined_ptr = TRUE;

    /* Look at each line */
    while (s0 < e) {
        const char * s;     /* Current byte */
        char op = '+';      /* Default operation is 'union' */
        IV   min = 0;       /* range begin code point */
        IV   max = -1;      /* and range end */
        SV* this_definition;

        /* Skip comment lines */
        if (*s0 == '#') {
            s0 = strchr(s0, '\n');
            if (s0 == NULL) {
                break;
            }
            s0++;
            continue;
        }

        /* For backcompat, allow an empty first line */
        if (*s0 == '\n') {
            s0++;
            continue;
        }

        /* First character in the line may optionally be the operation */
        if (   *s0 == '+'
            || *s0 == '!'
            || *s0 == '-'
            || *s0 == '&')
        {
            op = *s0++;
        }

        /* If the line is one or two hex digits separated by blank space, its
         * a range; otherwise it is either another user-defined property or an
         * error */

        s = s0;

        if (! isXDIGIT(*s)) {
            goto check_if_property;
        }

        do { /* Each new hex digit will add 4 bits. */
            if (min > ( (IV) MAX_LEGAL_CP >> 4)) {
                s = strchr(s, '\n');
                if (s == NULL) {
                    s = e;
                }
                if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                sv_catpv(msg, overflow_msg);
                Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
                                     UTF8fARG(is_contents_utf8, s - s0, s0));
                sv_catpvs(msg, "\"");
                goto return_failure;
            }

            /* Accumulate this digit into the value */
            min = (min << 4) + READ_XDIGIT(s);
        } while (isXDIGIT(*s));

        while (isBLANK(*s)) { s++; }

        /* We allow comments at the end of the line */
        if (*s == '#') {
            s = strchr(s, '\n');
            if (s == NULL) {
                s = e;
            }
            s++;
        }
        else if (s < e && *s != '\n') {
            if (! isXDIGIT(*s)) {
                goto check_if_property;
            }

            /* Look for the high point of the range */
            max = 0;
            do {
                if (max > ( (IV) MAX_LEGAL_CP >> 4)) {
                    s = strchr(s, '\n');
                    if (s == NULL) {
                        s = e;
                    }
                    if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                    sv_catpv(msg, overflow_msg);
                    Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
                                      UTF8fARG(is_contents_utf8, s - s0, s0));
                    sv_catpvs(msg, "\"");
                    goto return_failure;
                }

                max = (max << 4) + READ_XDIGIT(s);
            } while (isXDIGIT(*s));

            while (isBLANK(*s)) { s++; }

            if (*s == '#') {
                s = strchr(s, '\n');
                if (s == NULL) {
                    s = e;
                }
            }
            else if (s < e && *s != '\n') {
                goto check_if_property;
            }
        }

        if (max == -1) {    /* The line only had one entry */
            max = min;
        }
        else if (max < min) {
            if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
            sv_catpvs(msg, "Illegal range in \"");
            Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
                                UTF8fARG(is_contents_utf8, s - s0, s0));
            sv_catpvs(msg, "\"");
            goto return_failure;
        }

#  if 0   /* See explanation at definition above of get_extended_utf8_msg() */

        if (   UNICODE_IS_PERL_EXTENDED(min)
            || UNICODE_IS_PERL_EXTENDED(max))
        {
            if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");

            /* If both code points are non-portable, warn only on the lower
             * one. */
            sv_catpv(msg, get_extended_utf8_msg(
                                            (UNICODE_IS_PERL_EXTENDED(min))
                                            ? min : max));
            sv_catpvs(msg, " in \"");
            Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
                                 UTF8fARG(is_contents_utf8, s - s0, s0));
            sv_catpvs(msg, "\"");
        }

#  endif

        /* Here, this line contains a legal range */
        this_definition = sv_2mortal(_new_invlist(2));
        this_definition = _add_range_to_invlist(this_definition, min, max);
        goto calculate;

      check_if_property:

        /* Here it isn't a legal range line.  See if it is a legal property
         * line.  First find the end of the meat of the line */
        s = strpbrk(s, "#\n");
        if (s == NULL) {
            s = e;
        }

        /* Ignore trailing blanks in keeping with the requirements of
         * parse_uniprop_string() */
        s--;
        while (s > s0 && isBLANK_A(*s)) {
            s--;
        }
        s++;

        this_definition = parse_uniprop_string(s0, s - s0,
                                               is_utf8, to_fold, runtime,
                                               deferrable,
                                               NULL,
                                               user_defined_ptr, msg,
                                               (name_len == 0)
                                                ? level /* Don't increase level
                                                           if input is empty */
                                                : level + 1
                                              );
        if (this_definition == NULL) {
            goto return_failure;    /* 'msg' should have had the reason
                                       appended to it by the above call */
        }

        if (! is_invlist(this_definition)) {    /* Unknown at this time */
            return newSVsv(this_definition);
        }

        if (*s != '\n') {
            s = strchr(s, '\n');
            if (s == NULL) {
                s = e;
            }
        }

      calculate:

        switch (op) {
            case '+':
                _invlist_union(running_definition, this_definition,
                                                        &running_definition);
                break;
            case '-':
                _invlist_subtract(running_definition, this_definition,
                                                        &running_definition);
                break;
            case '&':
                _invlist_intersection(running_definition, this_definition,
                                                        &running_definition);
                break;
            case '!':
                _invlist_union_complement_2nd(running_definition,
                                        this_definition, &running_definition);
                break;
            default:
                Perl_croak(aTHX_ "panic: %s: %d: Unexpected operation %d",
                                 __FILE__, __LINE__, op);
                break;
        }

        /* Position past the '\n' */
        s0 = s + 1;
    }   /* End of loop through the lines of 'contents' */

    /* Here, we processed all the lines in 'contents' without error.  If we
     * didn't add any warnings, simply return success */
    if (msgs_length_on_entry == SvCUR(msg)) {

        /* If the expansion was empty, the answer isn't nothing: its an empty
         * inversion list */
        if (running_definition == NULL) {
            running_definition = _new_invlist(1);
        }

        return running_definition;
    }

    /* Otherwise, add some explanatory text, but we will return success */
    goto return_msg;

  return_failure:
    running_definition = NULL;

  return_msg:

    if (name_len > 0) {
        sv_catpvs(msg, " in expansion of ");
        Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8, name_len, name));
    }

    return running_definition;
}

/* As explained below, certain operations need to take place in the first
 * thread created.  These macros switch contexts */
#  ifdef USE_ITHREADS
#    define DECLARATION_FOR_GLOBAL_CONTEXT                                  \
                                        PerlInterpreter * save_aTHX = aTHX;
#    define SWITCH_TO_GLOBAL_CONTEXT                                        \
                           PERL_SET_CONTEXT((aTHX = PL_user_def_props_aTHX))
#    define RESTORE_CONTEXT  PERL_SET_CONTEXT((aTHX = save_aTHX));
#    define CUR_CONTEXT      aTHX
#    define ORIGINAL_CONTEXT save_aTHX
#  else
#    define DECLARATION_FOR_GLOBAL_CONTEXT    dNOOP
#    define SWITCH_TO_GLOBAL_CONTEXT          NOOP
#    define RESTORE_CONTEXT                   NOOP
#    define CUR_CONTEXT                       NULL
#    define ORIGINAL_CONTEXT                  NULL
#  endif

STATIC void
S_delete_recursion_entry(pTHX_ void *key)
{
    /* Deletes the entry used to detect recursion when expanding user-defined
     * properties.  This is a function so it can be set up to be called even if
     * the program unexpectedly quits */

    SV ** current_entry;
    const STRLEN key_len = strlen((const char *) key);
    DECLARATION_FOR_GLOBAL_CONTEXT;

    SWITCH_TO_GLOBAL_CONTEXT;

    /* If the entry is one of these types, it is a permanent entry, and not the
     * one used to detect recursions.  This function should delete only the
     * recursion entry */
    current_entry = hv_fetch(PL_user_def_props, (const char *) key, key_len, 0);
    if (     current_entry
        && ! is_invlist(*current_entry)
        && ! SvPOK(*current_entry))
    {
        (void) hv_delete(PL_user_def_props, (const char *) key, key_len,
                                                                    G_DISCARD);
    }

    RESTORE_CONTEXT;
}

STATIC SV *
S_get_fq_name(pTHX_
              const char * const name,    /* The first non-blank in the \p{}, \P{} */
              const Size_t name_len,      /* Its length in bytes, not including any trailing space */
              const bool is_utf8,         /* ? Is 'name' encoded in UTF-8 */
              const bool has_colon_colon
             )
{
    /* Returns a mortal SV containing the fully qualified version of the input
     * name */

    SV * fq_name;

    fq_name = newSVpvs_flags("", SVs_TEMP);

    /* Use the current package if it wasn't included in our input */
    if (! has_colon_colon) {
        const HV * pkg = (IN_PERL_COMPILETIME)
                         ? PL_curstash
                         : CopSTASH(PL_curcop);
        const char* pkgname = HvNAME(pkg);

        Perl_sv_catpvf(aTHX_ fq_name, "%" UTF8f,
                      UTF8fARG(is_utf8, strlen(pkgname), pkgname));
        sv_catpvs(fq_name, "::");
    }

    Perl_sv_catpvf(aTHX_ fq_name, "%" UTF8f,
                         UTF8fARG(is_utf8, name_len, name));
    return fq_name;
}

STATIC SV *
S_parse_uniprop_string(pTHX_

    /* Parse the interior of a \p{}, \P{}.  Returns its definition if knowable
     * now.  If so, the return is an inversion list.
     *
     * If the property is user-defined, it is a subroutine, which in turn
     * may call other subroutines.  This function will call the whole nest of
     * them to get the definition they return; if some aren't known at the time
     * of the call to this function, the fully qualified name of the highest
     * level sub is returned.  It is an error to call this function at runtime
     * without every sub defined.
     *
     * If an error was found, NULL is returned, and 'msg' gets a suitable
     * message appended to it.  (Appending allows the back trace of how we got
     * to the faulty definition to be displayed through nested calls of
     * user-defined subs.)
     *
     * The caller should NOT try to free any returned inversion list.
     *
     * Other parameters will be set on return as described below */

    const char * const name,    /* The first non-blank in the \p{}, \P{} */
    Size_t name_len,            /* Its length in bytes, not including any
                                   trailing space */
    const bool is_utf8,         /* ? Is 'name' encoded in UTF-8 */
    const bool to_fold,         /* ? Is this under /i */
    const bool runtime,         /* TRUE if this is being called at run time */
    const bool deferrable,      /* TRUE if it's ok for the definition to not be
                                   known at this call */
    AV ** strings,              /* To return string property values, like named
                                   sequences */
    bool *user_defined_ptr,     /* Upon return from this function it will be
                                   set to TRUE if any component is a
                                   user-defined property */
    SV * msg,                   /* Any error or warning msg(s) are appended to
                                   this */
    const STRLEN level)         /* Recursion level of this call */
{
    char* lookup_name;          /* normalized name for lookup in our tables */
    unsigned lookup_len;        /* Its length */
    enum { Not_Strict = 0,      /* Some properties have stricter name */
           Strict,              /* normalization rules, which we decide */
           As_Is                /* upon based on parsing */
         } stricter = Not_Strict;

    /* nv= or numeric_value=, or possibly one of the cjk numeric properties
     * (though it requires extra effort to download them from Unicode and
     * compile perl to know about them) */
    bool is_nv_type = FALSE;

    unsigned int i, j = 0;
    int equals_pos = -1;    /* Where the '=' is found, or negative if none */
    int slash_pos  = -1;    /* Where the '/' is found, or negative if none */
    int table_index = 0;    /* The entry number for this property in the table
                               of all Unicode property names */
    bool starts_with_Is = FALSE;  /* ? Does the name start with 'Is' */
    Size_t lookup_offset = 0;   /* Used to ignore the first few characters of
                                   the normalized name in certain situations */
    Size_t non_pkg_begin = 0;   /* Offset of first byte in 'name' that isn't
                                   part of a package name */
    Size_t lun_non_pkg_begin = 0;   /* Similarly for 'lookup_name' */
    bool could_be_user_defined = TRUE;  /* ? Could this be a user-defined
                                             property rather than a Unicode
                                             one. */
    SV * prop_definition = NULL;  /* The returned definition of 'name' or NULL
                                     if an error.  If it is an inversion list,
                                     it is the definition.  Otherwise it is a
                                     string containing the fully qualified sub
                                     name of 'name' */
    SV * fq_name = NULL;        /* For user-defined properties, the fully
                                   qualified name */
    bool invert_return = FALSE; /* ? Do we need to complement the result before
                                     returning it */
    bool stripped_utf8_pkg = FALSE; /* Set TRUE if the input includes an
                                       explicit utf8:: package that we strip
                                       off  */
    /* The expansion of properties that could be either user-defined or
     * official unicode ones is deferred until runtime, including a marker for
     * those that might be in the latter category.  This boolean indicates if
     * we've seen that marker.  If not, what we're parsing can't be such an
     * official Unicode property whose expansion was deferred */
    bool could_be_deferred_official = FALSE;

    PERL_ARGS_ASSERT_PARSE_UNIPROP_STRING;

    /* The input will be normalized into 'lookup_name' */
    Newx(lookup_name, name_len, char);
    SAVEFREEPV(lookup_name);

    /* Parse the input. */
    for (i = 0; i < name_len; i++) {
        char cur = name[i];

        /* Most of the characters in the input will be of this ilk, being parts
         * of a name */
        if (isIDCONT_A(cur)) {

            /* Case differences are ignored.  Our lookup routine assumes
             * everything is lowercase, so normalize to that */
            if (isUPPER_A(cur)) {
                lookup_name[j++] = toLOWER_A(cur);
                continue;
            }

            if (cur == '_') { /* Don't include these in the normalized name */
                continue;
            }

            lookup_name[j++] = cur;

            /* The first character in a user-defined name must be of this type.
             * */
            if (i - non_pkg_begin == 0 && ! isIDFIRST_A(cur)) {
                could_be_user_defined = FALSE;
            }

            continue;
        }

        /* Here, the character is not something typically in a name,  But these
         * two types of characters (and the '_' above) can be freely ignored in
         * most situations.  Later it may turn out we shouldn't have ignored
         * them, and we have to reparse, but we don't have enough information
         * yet to make that decision */
        if (cur == '-' || isSPACE_A(cur)) {
            could_be_user_defined = FALSE;
            continue;
        }

        /* An equals sign or single colon mark the end of the first part of
         * the property name */
        if (    cur == '='
            || (cur == ':' && (i >= name_len - 1 || name[i+1] != ':')))
        {
            lookup_name[j++] = '='; /* Treat the colon as an '=' */
            equals_pos = j; /* Note where it occurred in the input */
            could_be_user_defined = FALSE;
            break;
        }

        /* If this looks like it is a marker we inserted at compile time,
         * set a flag and otherwise ignore it.  If it isn't in the final
         * position, keep it as it would have been user input. */
        if (     UNLIKELY(cur == DEFERRED_COULD_BE_OFFICIAL_MARKERc)
            && ! deferrable
            &&   could_be_user_defined
            &&   i == name_len - 1)
        {
            name_len--;
            could_be_deferred_official = TRUE;
            continue;
        }

        /* Otherwise, this character is part of the name. */
        lookup_name[j++] = cur;

        /* Here it isn't a single colon, so if it is a colon, it must be a
         * double colon */
        if (cur == ':') {

            /* A double colon should be a package qualifier.  We note its
             * position and continue.  Note that one could have
             *      pkg1::pkg2::...::foo
             * so that the position at the end of the loop will be just after
             * the final qualifier */

            i++;
            non_pkg_begin = i + 1;
            lookup_name[j++] = ':';
            lun_non_pkg_begin = j;
        }
        else { /* Only word chars (and '::') can be in a user-defined name */
            could_be_user_defined = FALSE;
        }
    } /* End of parsing through the lhs of the property name (or all of it if
         no rhs) */

#  define STRLENs(s)  (sizeof("" s "") - 1)

    /* If there is a single package name 'utf8::', it is ambiguous.  It could
     * be for a user-defined property, or it could be a Unicode property, as
     * all of them are considered to be for that package.  For the purposes of
     * parsing the rest of the property, strip it off */
    if (non_pkg_begin == STRLENs("utf8::") && memBEGINPs(name, name_len, "utf8::")) {
        lookup_name +=  STRLENs("utf8::");
        j -=  STRLENs("utf8::");
        equals_pos -=  STRLENs("utf8::");
        stripped_utf8_pkg = TRUE;
    }

    /* Here, we are either done with the whole property name, if it was simple;
     * or are positioned just after the '=' if it is compound. */

    if (equals_pos >= 0) {
        assert(stricter == Not_Strict); /* We shouldn't have set this yet */

        /* Space immediately after the '=' is ignored */
        i++;
        for (; i < name_len; i++) {
            if (! isSPACE_A(name[i])) {
                break;
            }
        }

        /* Most punctuation after the equals indicates a subpattern, like
         * \p{foo=/bar/} */
        if (   isPUNCT_A(name[i])
            &&  name[i] != '-'
            &&  name[i] != '+'
            &&  name[i] != '_'
            &&  name[i] != '{'
                /* A backslash means the real delimitter is the next character,
                 * but it must be punctuation */
            && (name[i] != '\\' || (i < name_len && isPUNCT_A(name[i+1]))))
        {
            bool special_property = memEQs(lookup_name, j - 1, "name")
                                 || memEQs(lookup_name, j - 1, "na");
            if (! special_property) {
                /* Find the property.  The table includes the equals sign, so
                 * we use 'j' as-is */
                table_index = do_uniprop_match(lookup_name, j);
            }
            if (special_property || table_index) {
                REGEXP * subpattern_re;
                char open = name[i++];
                char close;
                const char * pos_in_brackets;
                const char * const * prop_values;
                bool escaped = 0;

                /* Backslash => delimitter is the character following.  We
                 * already checked that it is punctuation */
                if (open == '\\') {
                    open = name[i++];
                    escaped = 1;
                }

                /* This data structure is constructed so that the matching
                 * closing bracket is 3 past its matching opening.  The second
                 * set of closing is so that if the opening is something like
                 * ']', the closing will be that as well.  Something similar is
                 * done in toke.c */
                pos_in_brackets = memCHRs("([<)]>)]>", open);
                close = (pos_in_brackets) ? pos_in_brackets[3] : open;

                if (    i >= name_len
                    ||  name[name_len-1] != close
                    || (escaped && name[name_len-2] != '\\')
                        /* Also make sure that there are enough characters.
                         * e.g., '\\\' would show up incorrectly as legal even
                         * though it is too short */
                    || (SSize_t) (name_len - i - 1 - escaped) < 0)
                {
                    sv_catpvs(msg, "Unicode property wildcard not terminated");
                    goto append_name_to_msg;
                }

                Perl_ck_warner_d(aTHX_
                    packWARN(WARN_EXPERIMENTAL__UNIPROP_WILDCARDS),
                    "The Unicode property wildcards feature is experimental");

                if (special_property) {
                    const char * error_msg;
                    const char * revised_name = name + i;
                    Size_t revised_name_len = name_len - (i + 1 + escaped);

                    /* Currently, the only 'special_property' is name, which we
                     * lookup in _charnames.pm */

                    if (! load_charnames(newSVpvs("placeholder"),
                                         revised_name, revised_name_len,
                                         &error_msg))
                    {
                        sv_catpv(msg, error_msg);
                        goto append_name_to_msg;
                    }

                    /* Farm this out to a function just to make the current
                     * function less unwieldy */
                    if (handle_names_wildcard(revised_name, revised_name_len,
                                              &prop_definition,
                                              strings))
                    {
                        return prop_definition;
                    }

                    goto failed;
                }

                prop_values = get_prop_values(table_index);

                /* Now create and compile the wildcard subpattern.  Use /i
                 * because the property values are supposed to match with case
                 * ignored. */
                subpattern_re = compile_wildcard(name + i,
                                                 name_len - i - 1 - escaped,
                                                 TRUE /* /i */
                                                );

                /* For each legal property value, see if the supplied pattern
                 * matches it. */
                while (*prop_values) {
                    const char * const entry = *prop_values;
                    const Size_t len = strlen(entry);
                    SV* entry_sv = newSVpvn_flags(entry, len, SVs_TEMP);

                    if (execute_wildcard(subpattern_re,
                                 (char *) entry,
                                 (char *) entry + len,
                                 (char *) entry, 0,
                                 entry_sv,
                                 0))
                    { /* Here, matched.  Add to the returned list */
                        Size_t total_len = j + len;
                        SV * sub_invlist = NULL;
                        char * this_string;

                        /* We know this is a legal \p{property=value}.  Call
                         * the function to return the list of code points that
                         * match it */
                        Newxz(this_string, total_len + 1, char);
                        Copy(lookup_name, this_string, j, char);
                        my_strlcat(this_string, entry, total_len + 1);
                        SAVEFREEPV(this_string);
                        sub_invlist = parse_uniprop_string(this_string,
                                                           total_len,
                                                           is_utf8,
                                                           to_fold,
                                                           runtime,
                                                           deferrable,
                                                           NULL,
                                                           user_defined_ptr,
                                                           msg,
                                                           level + 1);
                        _invlist_union(prop_definition, sub_invlist,
                                       &prop_definition);
                    }

                    prop_values++;  /* Next iteration, look at next propvalue */
                } /* End of looking through property values; (the data
                     structure is terminated by a NULL ptr) */

                SvREFCNT_dec_NN(subpattern_re);

                if (prop_definition) {
                    return prop_definition;
                }

                sv_catpvs(msg, "No Unicode property value wildcard matches:");
                goto append_name_to_msg;
            }

            /* Here's how khw thinks we should proceed to handle the properties
             * not yet done:    Bidi Mirroring Glyph        can map to ""
                                Bidi Paired Bracket         can map to ""
                                Case Folding  (both full and simple)
                                            Shouldn't /i be good enough for Full
                                Decomposition Mapping
                                Equivalent Unified Ideograph    can map to ""
                                Lowercase Mapping  (both full and simple)
                                NFKC Case Fold                  can map to ""
                                Titlecase Mapping  (both full and simple)
                                Uppercase Mapping  (both full and simple)
             * Handle these the same way Name is done, using say, _wild.pm, but
             * having both loose and full, like in charclass_invlists.h.
             * Perhaps move block and script to that as they are somewhat large
             * in charclass_invlists.h.
             * For properties where the default is the code point itself, such
             * as any of the case changing mappings, the string would otherwise
             * consist of all Unicode code points in UTF-8 strung together.
             * This would be impractical.  So instead, examine their compiled
             * pattern, looking at the ssc.  If none, reject the pattern as an
             * error.  Otherwise run the pattern against every code point in
             * the ssc.  The ssc is kind of like tr18's 3.9 Possible Match Sets
             * And it might be good to create an API to return the ssc.
             * Or handle them like the algorithmic names are done
             */
        } /* End of is a wildcard subppattern */

        /* \p{name=...} is handled specially.  Instead of using the normal
         * mechanism involving charclass_invlists.h, it uses _charnames.pm
         * which has the necessary (huge) data accessible to it, and which
         * doesn't get loaded unless necessary.  The legal syntax for names is
         * somewhat different than other properties due both to the vagaries of
         * a few outlier official names, and the fact that only a few ASCII
         * characters are permitted in them */
        if (   memEQs(lookup_name, j - 1, "name")
            || memEQs(lookup_name, j - 1, "na"))
        {
            dSP;
            HV * table;
            SV * character;
            const char * error_msg;
            CV* lookup_loose;
            SV * character_name;
            STRLEN character_len;
            UV cp;

            stricter = As_Is;

            /* Since the RHS (after skipping initial space) is passed unchanged
             * to charnames, and there are different criteria for what are
             * legal characters in the name, just parse it here.  A character
             * name must begin with an ASCII alphabetic */
            if (! isALPHA(name[i])) {
                goto failed;
            }
            lookup_name[j++] = name[i];

            for (++i; i < name_len; i++) {
                /* Official names can only be in the ASCII range, and only
                 * certain characters */
                if (! isASCII(name[i]) || ! isCHARNAME_CONT(name[i])) {
                    goto failed;
                }
                lookup_name[j++] = name[i];
            }

            /* Finished parsing, save the name into an SV */
            character_name = newSVpvn(lookup_name + equals_pos, j - equals_pos);

            /* Make sure _charnames is loaded.  (The parameters give context
             * for any errors generated */
            table = load_charnames(character_name, name, name_len, &error_msg);
            if (table == NULL) {
                sv_catpv(msg, error_msg);
                goto append_name_to_msg;
            }

            lookup_loose = get_cvs("_charnames::_loose_regcomp_lookup", 0);
            if (! lookup_loose) {
                Perl_croak(aTHX_
                       "panic: Can't find '_charnames::_loose_regcomp_lookup");
            }

            PUSHSTACKi(PERLSI_REGCOMP);
            ENTER ;
            SAVETMPS;
            save_re_context();

            PUSHMARK(SP) ;
            XPUSHs(character_name);
            PUTBACK;
            call_sv(MUTABLE_SV(lookup_loose), G_SCALAR);

            SPAGAIN ;

            character = POPs;
            SvREFCNT_inc_simple_void_NN(character);

            PUTBACK ;
            FREETMPS ;
            LEAVE ;
            POPSTACK;

            if (! SvOK(character)) {
                goto failed;
            }

            cp = valid_utf8_to_uvchr((U8 *) SvPVX(character), &character_len);
            if (character_len == SvCUR(character)) {
                prop_definition = add_cp_to_invlist(NULL, cp);
            }
            else {
                AV * this_string;

                /* First of the remaining characters in the string. */
                char * remaining = SvPVX(character) + character_len;

                if (strings == NULL) {
                    goto failed;    /* XXX Perhaps a specific msg instead, like
                                       'not available here' */
                }

                if (*strings == NULL) {
                    *strings = newAV();
                }

                this_string = newAV();
                av_push(this_string, newSVuv(cp));

                do {
                    cp = valid_utf8_to_uvchr((U8 *) remaining, &character_len);
                    av_push(this_string, newSVuv(cp));
                    remaining += character_len;
                } while (remaining < SvEND(character));

                av_push(*strings, (SV *) this_string);
            }

            return prop_definition;
        }

        /* Certain properties whose values are numeric need special handling.
         * They may optionally be prefixed by 'is'.  Ignore that prefix for the
         * purposes of checking if this is one of those properties */
        if (memBEGINPs(lookup_name, j, "is")) {
            lookup_offset = 2;
        }

        /* Then check if it is one of these specially-handled properties.  The
         * possibilities are hard-coded because easier this way, and the list
         * is unlikely to change.
         *
         * All numeric value type properties are of this ilk, and are also
         * special in a different way later on.  So find those first.  There
         * are several numeric value type properties in the Unihan DB (which is
         * unlikely to be compiled with perl, but we handle it here in case it
         * does get compiled).  They all end with 'numeric'.  The interiors
         * aren't checked for the precise property.  This would stop working if
         * a cjk property were to be created that ended with 'numeric' and
         * wasn't a numeric type */
        is_nv_type = memEQs(lookup_name + lookup_offset,
                       j - 1 - lookup_offset, "numericvalue")
                  || memEQs(lookup_name + lookup_offset,
                      j - 1 - lookup_offset, "nv")
                  || (   memENDPs(lookup_name + lookup_offset,
                            j - 1 - lookup_offset, "numeric")
                      && (   memBEGINPs(lookup_name + lookup_offset,
                                      j - 1 - lookup_offset, "cjk")
                          || memBEGINPs(lookup_name + lookup_offset,
                                      j - 1 - lookup_offset, "k")));
        if (   is_nv_type
            || memEQs(lookup_name + lookup_offset,
                      j - 1 - lookup_offset, "canonicalcombiningclass")
            || memEQs(lookup_name + lookup_offset,
                      j - 1 - lookup_offset, "ccc")
            || memEQs(lookup_name + lookup_offset,
                      j - 1 - lookup_offset, "age")
            || memEQs(lookup_name + lookup_offset,
                      j - 1 - lookup_offset, "in")
            || memEQs(lookup_name + lookup_offset,
                      j - 1 - lookup_offset, "presentin"))
        {
            unsigned int k;

            /* Since the stuff after the '=' is a number, we can't throw away
             * '-' willy-nilly, as those could be a minus sign.  Other stricter
             * rules also apply.  However, these properties all can have the
             * rhs not be a number, in which case they contain at least one
             * alphabetic.  In those cases, the stricter rules don't apply.
             * But the numeric type properties can have the alphas [Ee] to
             * signify an exponent, and it is still a number with stricter
             * rules.  So look for an alpha that signifies not-strict */
            stricter = Strict;
            for (k = i; k < name_len; k++) {
                if (   isALPHA_A(name[k])
                    && (! is_nv_type || ! isALPHA_FOLD_EQ(name[k], 'E')))
                {
                    stricter = Not_Strict;
                    break;
                }
            }
        }

        if (stricter) {

            /* A number may have a leading '+' or '-'.  The latter is retained
             * */
            if (name[i] == '+') {
                i++;
            }
            else if (name[i] == '-') {
                lookup_name[j++] = '-';
                i++;
            }

            /* Skip leading zeros including single underscores separating the
             * zeros, or between the final leading zero and the first other
             * digit */
            for (; i < name_len - 1; i++) {
                if (    name[i] != '0'
                    && (name[i] != '_' || ! isDIGIT_A(name[i+1])))
                {
                    break;
                }
            }
        }
    }
    else {  /* No '=' */

       /* Only a few properties without an '=' should be parsed with stricter
        * rules.  The list is unlikely to change. */
        if (   memBEGINPs(lookup_name, j, "perl")
            && memNEs(lookup_name + 4, j - 4, "space")
            && memNEs(lookup_name + 4, j - 4, "word"))
        {
            stricter = Strict;

            /* We set the inputs back to 0 and the code below will reparse,
             * using strict */
            i = j = 0;
        }
    }

    /* Here, we have either finished the property, or are positioned to parse
     * the remainder, and we know if stricter rules apply.  Finish out, if not
     * already done */
    for (; i < name_len; i++) {
        char cur = name[i];

        /* In all instances, case differences are ignored, and we normalize to
         * lowercase */
        if (isUPPER_A(cur)) {
            lookup_name[j++] = toLOWER(cur);
            continue;
        }

        /* An underscore is skipped, but not under strict rules unless it
         * separates two digits */
        if (cur == '_') {
            if (    stricter
                && (     i == 0 || (int) i == equals_pos || i == name_len- 1
                    || ! isDIGIT_A(name[i-1]) || ! isDIGIT_A(name[i+1])))
            {
                lookup_name[j++] = '_';
            }
            continue;
        }

        /* Hyphens are skipped except under strict */
        if (cur == '-' && ! stricter) {
            continue;
        }

        /* XXX Bug in documentation.  It says white space skipped adjacent to
         * non-word char.  Maybe we should, but shouldn't skip it next to a dot
         * in a number */
        if (isSPACE_A(cur) && ! stricter) {
            continue;
        }

        lookup_name[j++] = cur;

        /* Unless this is a non-trailing slash, we are done with it */
        if (i >= name_len - 1 || cur != '/') {
            continue;
        }

        slash_pos = j;

        /* A slash in the 'numeric value' property indicates that what follows
         * is a denominator.  It can have a leading '+' and '0's that should be
         * skipped.  But we have never allowed a negative denominator, so treat
         * a minus like every other character.  (No need to rule out a second
         * '/', as that won't match anything anyway */
        if (is_nv_type) {
            i++;
            if (i < name_len && name[i] == '+') {
                i++;
            }

            /* Skip leading zeros including underscores separating digits */
            for (; i < name_len - 1; i++) {
                if (   name[i] != '0'
                    && (name[i] != '_' || ! isDIGIT_A(name[i+1])))
                {
                    break;
                }
            }

            /* Store the first real character in the denominator */
            if (i < name_len) {
                lookup_name[j++] = name[i];
            }
        }
    }

    /* Here are completely done parsing the input 'name', and 'lookup_name'
     * contains a copy, normalized.
     *
     * This special case is grandfathered in: 'L_' and 'GC=L_' are accepted and
     * different from without the underscores.  */
    if (  (   UNLIKELY(memEQs(lookup_name, j, "l"))
           || UNLIKELY(memEQs(lookup_name, j, "gc=l")))
        && UNLIKELY(name[name_len-1] == '_'))
    {
        lookup_name[j++] = '&';
    }

    /* If the original input began with 'In' or 'Is', it could be a subroutine
     * call to a user-defined property instead of a Unicode property name. */
    if (    name_len - non_pkg_begin > 2
        &&  name[non_pkg_begin+0] == 'I'
        && (name[non_pkg_begin+1] == 'n' || name[non_pkg_begin+1] == 's'))
    {
        /* Names that start with In have different characterstics than those
         * that start with Is */
        if (name[non_pkg_begin+1] == 's') {
            starts_with_Is = TRUE;
        }
    }
    else {
        could_be_user_defined = FALSE;
    }

    if (could_be_user_defined) {
        CV* user_sub;

        /* If the user defined property returns the empty string, it could
         * easily be because the pattern is being compiled before the data it
         * actually needs to compile is available.  This could be argued to be
         * a bug in the perl code, but this is a change of behavior for Perl,
         * so we handle it.  This means that intentionally returning nothing
         * will not be resolved until runtime */
        bool empty_return = FALSE;

        /* Here, the name could be for a user defined property, which are
         * implemented as subs. */
        user_sub = get_cvn_flags(name, name_len, 0);
        if (! user_sub) {

            /* Here, the property name could be a user-defined one, but there
             * is no subroutine to handle it (as of now).   Defer handling it
             * until runtime.  Otherwise, a block defined by Unicode in a later
             * release would get the synonym InFoo added for it, and existing
             * code that used that name would suddenly break if it referred to
             * the property before the sub was declared.  See [perl #134146] */
            if (deferrable) {
                goto definition_deferred;
            }

            /* Here, we are at runtime, and didn't find the user property.  It
             * could be an official property, but only if no package was
             * specified, or just the utf8:: package. */
            if (could_be_deferred_official) {
                lookup_name += lun_non_pkg_begin;
                j -= lun_non_pkg_begin;
            }
            else if (! stripped_utf8_pkg) {
                goto unknown_user_defined;
            }

            /* Drop down to look up in the official properties */
        }
        else {
            const char insecure[] = "Insecure user-defined property";

            /* Here, there is a sub by the correct name.  Normally we call it
             * to get the property definition */
            dSP;
            SV * user_sub_sv = MUTABLE_SV(user_sub);
            SV * error;     /* Any error returned by calling 'user_sub' */
            SV * key;       /* The key into the hash of user defined sub names
                             */
            SV * placeholder;
            SV ** saved_user_prop_ptr;      /* Hash entry for this property */

            /* How many times to retry when another thread is in the middle of
             * expanding the same definition we want */
            PERL_INT_FAST8_T retry_countdown = 10;

            DECLARATION_FOR_GLOBAL_CONTEXT;

            /* If we get here, we know this property is user-defined */
            *user_defined_ptr = TRUE;

            /* We refuse to call a potentially tainted subroutine; returning an
             * error instead */
            if (TAINT_get) {
                if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                sv_catpvn(msg, insecure, sizeof(insecure) - 1);
                goto append_name_to_msg;
            }

            /* In principal, we only call each subroutine property definition
             * once during the life of the program.  This guarantees that the
             * property definition never changes.  The results of the single
             * sub call are stored in a hash, which is used instead for future
             * references to this property.  The property definition is thus
             * immutable.  But, to allow the user to have a /i-dependent
             * definition, we call the sub once for non-/i, and once for /i,
             * should the need arise, passing the /i status as a parameter.
             *
             * We start by constructing the hash key name, consisting of the
             * fully qualified subroutine name, preceded by the /i status, so
             * that there is a key for /i and a different key for non-/i */
            key = newSVpvn(((to_fold) ? "1" : "0"), 1);
            fq_name = S_get_fq_name(aTHX_ name, name_len, is_utf8,
                                          non_pkg_begin != 0);
            sv_catsv(key, fq_name);
            sv_2mortal(key);

            /* We only call the sub once throughout the life of the program
             * (with the /i, non-/i exception noted above).  That means the
             * hash must be global and accessible to all threads.  It is
             * created at program start-up, before any threads are created, so
             * is accessible to all children.  But this creates some
             * complications.
             *
             * 1) The keys can't be shared, or else problems arise; sharing is
             *    turned off at hash creation time
             * 2) All SVs in it are there for the remainder of the life of the
             *    program, and must be created in the same interpreter context
             *    as the hash, or else they will be freed from the wrong pool
             *    at global destruction time.  This is handled by switching to
             *    the hash's context to create each SV going into it, and then
             *    immediately switching back
             * 3) All accesses to the hash must be controlled by a mutex, to
             *    prevent two threads from getting an unstable state should
             *    they simultaneously be accessing it.  The code below is
             *    crafted so that the mutex is locked whenever there is an
             *    access and unlocked only when the next stable state is
             *    achieved.
             *
             * The hash stores either the definition of the property if it was
             * valid, or, if invalid, the error message that was raised.  We
             * use the type of SV to distinguish.
             *
             * There's also the need to guard against the definition expansion
             * from infinitely recursing.  This is handled by storing the aTHX
             * of the expanding thread during the expansion.  Again the SV type
             * is used to distinguish this from the other two cases.  If we
             * come to here and the hash entry for this property is our aTHX,
             * it means we have recursed, and the code assumes that we would
             * infinitely recurse, so instead stops and raises an error.
             * (Any recursion has always been treated as infinite recursion in
             * this feature.)
             *
             * If instead, the entry is for a different aTHX, it means that
             * that thread has gotten here first, and hasn't finished expanding
             * the definition yet.  We just have to wait until it is done.  We
             * sleep and retry a few times, returning an error if the other
             * thread doesn't complete. */

          re_fetch:
            USER_PROP_MUTEX_LOCK;

            /* If we have an entry for this key, the subroutine has already
             * been called once with this /i status. */
            saved_user_prop_ptr = hv_fetch(PL_user_def_props,
                                                   SvPVX(key), SvCUR(key), 0);
            if (saved_user_prop_ptr) {

                /* If the saved result is an inversion list, it is the valid
                 * definition of this property */
                if (is_invlist(*saved_user_prop_ptr)) {
                    prop_definition = *saved_user_prop_ptr;

                    /* The SV in the hash won't be removed until global
                     * destruction, so it is stable and we can unlock */
                    USER_PROP_MUTEX_UNLOCK;

                    /* The caller shouldn't try to free this SV */
                    return prop_definition;
                }

                /* Otherwise, if it is a string, it is the error message
                 * that was returned when we first tried to evaluate this
                 * property.  Fail, and append the message */
                if (SvPOK(*saved_user_prop_ptr)) {
                    if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                    sv_catsv(msg, *saved_user_prop_ptr);

                    /* The SV in the hash won't be removed until global
                     * destruction, so it is stable and we can unlock */
                    USER_PROP_MUTEX_UNLOCK;

                    return NULL;
                }

                assert(SvIOK(*saved_user_prop_ptr));

                /* Here, we have an unstable entry in the hash.  Either another
                 * thread is in the middle of expanding the property's
                 * definition, or we are ourselves recursing.  We use the aTHX
                 * in it to distinguish */
                if (SvIV(*saved_user_prop_ptr) != PTR2IV(CUR_CONTEXT)) {

                    /* Here, it's another thread doing the expanding.  We've
                     * looked as much as we are going to at the contents of the
                     * hash entry.  It's safe to unlock. */
                    USER_PROP_MUTEX_UNLOCK;

                    /* Retry a few times */
                    if (retry_countdown-- > 0) {
                        PerlProc_sleep(1);
                        goto re_fetch;
                    }

                    if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                    sv_catpvs(msg, "Timeout waiting for another thread to "
                                   "define");
                    goto append_name_to_msg;
                }

                /* Here, we are recursing; don't dig any deeper */
                USER_PROP_MUTEX_UNLOCK;

                if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                sv_catpvs(msg,
                          "Infinite recursion in user-defined property");
                goto append_name_to_msg;
            }

            /* Here, this thread has exclusive control, and there is no entry
             * for this property in the hash.  So we have the go ahead to
             * expand the definition ourselves. */

            PUSHSTACKi(PERLSI_REGCOMP);
            ENTER;

            /* Create a temporary placeholder in the hash to detect recursion
             * */
            SWITCH_TO_GLOBAL_CONTEXT;
            placeholder= newSVuv(PTR2IV(ORIGINAL_CONTEXT));
            (void) hv_store_ent(PL_user_def_props, key, placeholder, 0);
            RESTORE_CONTEXT;

            /* Now that we have a placeholder, we can let other threads
             * continue */
            USER_PROP_MUTEX_UNLOCK;

            /* Make sure the placeholder always gets destroyed */
            SAVEDESTRUCTOR_X(S_delete_recursion_entry, SvPVX(key));

            PUSHMARK(SP);
            SAVETMPS;

            /* Call the user's function, with the /i status as a parameter.
             * Note that we have gone to a lot of trouble to keep this call
             * from being within the locked mutex region. */
            XPUSHs(boolSV(to_fold));
            PUTBACK;

            /* The following block was taken from swash_init().  Presumably
             * they apply to here as well, though we no longer use a swash --
             * khw */
            SAVEHINTS();
            save_re_context();
            /* We might get here via a subroutine signature which uses a utf8
             * parameter name, at which point PL_subname will have been set
             * but not yet used. */
            save_item(PL_subname);

            /* G_SCALAR guarantees a single return value */
            (void) call_sv(user_sub_sv, G_EVAL|G_SCALAR);

            SPAGAIN;

            error = ERRSV;
            if (TAINT_get || SvTRUE(error)) {
                if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                if (SvTRUE(error)) {
                    sv_catpvs(msg, "Error \"");
                    sv_catsv(msg, error);
                    sv_catpvs(msg, "\"");
                }
                if (TAINT_get) {
                    if (SvTRUE(error)) sv_catpvs(msg, "; ");
                    sv_catpvn(msg, insecure, sizeof(insecure) - 1);
                }

                if (name_len > 0) {
                    sv_catpvs(msg, " in expansion of ");
                    Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8,
                                                                  name_len,
                                                                  name));
                }

                (void) POPs;
                prop_definition = NULL;
            }
            else {
                SV * contents = POPs;

                /* The contents is supposed to be the expansion of the property
                 * definition.  If the definition is deferrable, and we got an
                 * empty string back, set a flag to later defer it (after clean
                 * up below). */
                if (      deferrable
                    && (! SvPOK(contents) || SvCUR(contents) == 0))
                {
                        empty_return = TRUE;
                }
                else { /* Otherwise, call a function to check for valid syntax,
                          and handle it */

                    prop_definition = handle_user_defined_property(
                                                    name, name_len,
                                                    is_utf8, to_fold, runtime,
                                                    deferrable,
                                                    contents, user_defined_ptr,
                                                    msg,
                                                    level);
                }
            }

            /* Here, we have the results of the expansion.  Delete the
             * placeholder, and if the definition is now known, replace it with
             * that definition.  We need exclusive access to the hash, and we
             * can't let anyone else in, between when we delete the placeholder
             * and add the permanent entry */
            USER_PROP_MUTEX_LOCK;

            S_delete_recursion_entry(aTHX_ SvPVX(key));

            if (    ! empty_return
                && (! prop_definition || is_invlist(prop_definition)))
            {
                /* If we got success we use the inversion list defining the
                 * property; otherwise use the error message */
                SWITCH_TO_GLOBAL_CONTEXT;
                (void) hv_store_ent(PL_user_def_props,
                                    key,
                                    ((prop_definition)
                                     ? newSVsv(prop_definition)
                                     : newSVsv(msg)),
                                    0);
                RESTORE_CONTEXT;
            }

            /* All done, and the hash now has a permanent entry for this
             * property.  Give up exclusive control */
            USER_PROP_MUTEX_UNLOCK;

            FREETMPS;
            LEAVE;
            POPSTACK;

            if (empty_return) {
                goto definition_deferred;
            }

            if (prop_definition) {

                /* If the definition is for something not known at this time,
                 * we toss it, and go return the main property name, as that's
                 * the one the user will be aware of */
                if (! is_invlist(prop_definition)) {
                    SvREFCNT_dec_NN(prop_definition);
                    goto definition_deferred;
                }

                sv_2mortal(prop_definition);
            }

            /* And return */
            return prop_definition;

        }   /* End of calling the subroutine for the user-defined property */
    }       /* End of it could be a user-defined property */

    /* Here it wasn't a user-defined property that is known at this time.  See
     * if it is a Unicode property */

    lookup_len = j;     /* This is a more mnemonic name than 'j' */

    /* Get the index into our pointer table of the inversion list corresponding
     * to the property */
    table_index = do_uniprop_match(lookup_name, lookup_len);

    /* If it didn't find the property ... */
    if (table_index == 0) {

        /* Try again stripping off any initial 'Is'.  This is because we
         * promise that an initial Is is optional.  The same isn't true of
         * names that start with 'In'.  Those can match only blocks, and the
         * lookup table already has those accounted for.  The lookup table also
         * has already accounted for Perl extensions (without and = sign)
         * starting with 'i's'. */
        if (starts_with_Is && equals_pos >= 0) {
            lookup_name += 2;
            lookup_len -= 2;
            equals_pos -= 2;
            slash_pos -= 2;

            table_index = do_uniprop_match(lookup_name, lookup_len);
        }

        if (table_index == 0) {
            char * canonical;

            /* Here, we didn't find it.  If not a numeric type property, and
             * can't be a user-defined one, it isn't a legal property */
            if (! is_nv_type) {
                if (! could_be_user_defined) {
                    goto failed;
                }

                /* Here, the property name is legal as a user-defined one.   At
                 * compile time, it might just be that the subroutine for that
                 * property hasn't been encountered yet, but at runtime, it's
                 * an error to try to use an undefined one */
                if (! deferrable) {
                    goto unknown_user_defined;;
                }

                goto definition_deferred;
            } /* End of isn't a numeric type property */

            /* The numeric type properties need more work to decide.  What we
             * do is make sure we have the number in canonical form and look
             * that up. */

            if (slash_pos < 0) {    /* No slash */

                /* When it isn't a rational, take the input, convert it to a
                 * NV, then create a canonical string representation of that
                 * NV. */

                NV value;
                SSize_t value_len = lookup_len - equals_pos;

                /* Get the value */
                if (   value_len <= 0
                    || my_atof3(lookup_name + equals_pos, &value,
                                value_len)
                          != lookup_name + lookup_len)
                {
                    goto failed;
                }

                /* If the value is an integer, the canonical value is integral
                 * */
                if (Perl_ceil(value) == value) {
                    canonical = Perl_form(aTHX_ "%.*s%.0" NVff,
                                            equals_pos, lookup_name, value);
                }
                else {  /* Otherwise, it is %e with a known precision */
                    char * exp_ptr;

                    canonical = Perl_form(aTHX_ "%.*s%.*" NVef,
                                                equals_pos, lookup_name,
                                                PL_E_FORMAT_PRECISION, value);

                    /* The exponent generated is expecting two digits, whereas
                     * %e on some systems will generate three.  Remove leading
                     * zeros in excess of 2 from the exponent.  We start
                     * looking for them after the '=' */
                    exp_ptr = strchr(canonical + equals_pos, 'e');
                    if (exp_ptr) {
                        char * cur_ptr = exp_ptr + 2; /* past the 'e[+-]' */
                        SSize_t excess_exponent_len = strlen(cur_ptr) - 2;

                        assert(*(cur_ptr - 1) == '-' || *(cur_ptr - 1) == '+');

                        if (excess_exponent_len > 0) {
                            SSize_t leading_zeros = strspn(cur_ptr, "0");
                            SSize_t excess_leading_zeros
                                    = MIN(leading_zeros, excess_exponent_len);
                            if (excess_leading_zeros > 0) {
                                Move(cur_ptr + excess_leading_zeros,
                                     cur_ptr,
                                     strlen(cur_ptr) - excess_leading_zeros
                                       + 1,  /* Copy the NUL as well */
                                     char);
                            }
                        }
                    }
                }
            }
            else {  /* Has a slash.  Create a rational in canonical form  */
                UV numerator, denominator, gcd, trial;
                const char * end_ptr;
                const char * sign = "";

                /* We can't just find the numerator, denominator, and do the
                 * division, then use the method above, because that is
                 * inexact.  And the input could be a rational that is within
                 * epsilon (given our precision) of a valid rational, and would
                 * then incorrectly compare valid.
                 *
                 * We're only interested in the part after the '=' */
                const char * this_lookup_name = lookup_name + equals_pos;
                lookup_len -= equals_pos;
                slash_pos -= equals_pos;

                /* Handle any leading minus */
                if (this_lookup_name[0] == '-') {
                    sign = "-";
                    this_lookup_name++;
                    lookup_len--;
                    slash_pos--;
                }

                /* Convert the numerator to numeric */
                end_ptr = this_lookup_name + slash_pos;
                if (! grok_atoUV(this_lookup_name, &numerator, &end_ptr)) {
                    goto failed;
                }

                /* It better have included all characters before the slash */
                if (*end_ptr != '/') {
                    goto failed;
                }

                /* Set to look at just the denominator */
                this_lookup_name += slash_pos;
                lookup_len -= slash_pos;
                end_ptr = this_lookup_name + lookup_len;

                /* Convert the denominator to numeric */
                if (! grok_atoUV(this_lookup_name, &denominator, &end_ptr)) {
                    goto failed;
                }

                /* It better be the rest of the characters, and don't divide by
                 * 0 */
                if (   end_ptr != this_lookup_name + lookup_len
                    || denominator == 0)
                {
                    goto failed;
                }

                /* Get the greatest common denominator using
                   http://en.wikipedia.org/wiki/Euclidean_algorithm */
                gcd = numerator;
                trial = denominator;
                while (trial != 0) {
                    UV temp = trial;
                    trial = gcd % trial;
                    gcd = temp;
                }

                /* If already in lowest possible terms, we have already tried
                 * looking this up */
                if (gcd == 1) {
                    goto failed;
                }

                /* Reduce the rational, which should put it in canonical form
                 * */
                numerator /= gcd;
                denominator /= gcd;

                canonical = Perl_form(aTHX_ "%.*s%s%" UVuf "/%" UVuf,
                        equals_pos, lookup_name, sign, numerator, denominator);
            }

            /* Here, we have the number in canonical form.  Try that */
            table_index = do_uniprop_match(canonical, strlen(canonical));
            if (table_index == 0) {
                goto failed;
            }
        }   /* End of still didn't find the property in our table */
    }       /* End of       didn't find the property in our table */

    /* Here, we have a non-zero return, which is an index into a table of ptrs.
     * A negative return signifies that the real index is the absolute value,
     * but the result needs to be inverted */
    if (table_index < 0) {
        invert_return = TRUE;
        table_index = -table_index;
    }

    /* Out-of band indices indicate a deprecated property.  The proper index is
     * modulo it with the table size.  And dividing by the table size yields
     * an offset into a table constructed by regen/mk_invlists.pl to contain
     * the corresponding warning message */
    if (table_index > MAX_UNI_KEYWORD_INDEX) {
        Size_t warning_offset = table_index / MAX_UNI_KEYWORD_INDEX;
        table_index %= MAX_UNI_KEYWORD_INDEX;
        Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),
                "Use of '%.*s' in \\p{} or \\P{} is deprecated because: %s",
                (int) name_len, name,
                get_deprecated_property_msg(warning_offset));
    }

    /* In a few properties, a different property is used under /i.  These are
     * unlikely to change, so are hard-coded here. */
    if (to_fold) {
        if (   table_index == UNI_XPOSIXUPPER
            || table_index == UNI_XPOSIXLOWER
            || table_index == UNI_TITLE)
        {
            table_index = UNI_CASED;
        }
        else if (   table_index == UNI_UPPERCASELETTER
                 || table_index == UNI_LOWERCASELETTER
#  ifdef UNI_TITLECASELETTER   /* Missing from early Unicodes */
                 || table_index == UNI_TITLECASELETTER
#  endif
        ) {
            table_index = UNI_CASEDLETTER;
        }
        else if (  table_index == UNI_POSIXUPPER
                || table_index == UNI_POSIXLOWER)
        {
            table_index = UNI_POSIXALPHA;
        }
    }

    /* Create and return the inversion list */
    prop_definition = get_prop_definition(table_index);
    sv_2mortal(prop_definition);

    /* See if there is a private use override to add to this definition */
    {
        COPHH * hinthash = (IN_PERL_COMPILETIME)
                           ? CopHINTHASH_get(&PL_compiling)
                           : CopHINTHASH_get(PL_curcop);
        SV * pu_overrides = cophh_fetch_pv(hinthash, "private_use", 0, 0);

        if (UNLIKELY(pu_overrides && SvPOK(pu_overrides))) {

            /* See if there is an element in the hints hash for this table */
            SV * pu_lookup = Perl_newSVpvf(aTHX_ "%d=", table_index);
            const char * pos = strstr(SvPVX(pu_overrides), SvPVX(pu_lookup));

            if (pos) {
                bool dummy;
                SV * pu_definition;
                SV * pu_invlist;
                SV * expanded_prop_definition =
                            sv_2mortal(invlist_clone(prop_definition, NULL));

                /* If so, it's definition is the string from here to the next
                 * \a character.  And its format is the same as a user-defined
                 * property */
                pos += SvCUR(pu_lookup);
                pu_definition = newSVpvn(pos, strchr(pos, '\a') - pos);
                pu_invlist = handle_user_defined_property(lookup_name,
                                                          lookup_len,
                                                          0, /* Not UTF-8 */
                                                          0, /* Not folded */
                                                          runtime,
                                                          deferrable,
                                                          pu_definition,
                                                          &dummy,
                                                          msg,
                                                          level);
                if (TAINT_get) {
                    if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
                    sv_catpvs(msg, "Insecure private-use override");
                    goto append_name_to_msg;
                }

                /* For now, as a safety measure, make sure that it doesn't
                 * override non-private use code points */
                _invlist_intersection(pu_invlist, PL_Private_Use, &pu_invlist);

                /* Add it to the list to be returned */
                _invlist_union(prop_definition, pu_invlist,
                               &expanded_prop_definition);
                prop_definition = expanded_prop_definition;
                Perl_ck_warner_d(aTHX_ packWARN(WARN_EXPERIMENTAL__PRIVATE_USE), "The private_use feature is experimental");
            }
        }
    }

    if (invert_return) {
        _invlist_invert(prop_definition);
    }
    return prop_definition;

  unknown_user_defined:
    if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
    sv_catpvs(msg, "Unknown user-defined property name");
    goto append_name_to_msg;

  failed:
    if (non_pkg_begin != 0) {
        if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
        sv_catpvs(msg, "Illegal user-defined property name");
    }
    else {
        if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
        sv_catpvs(msg, "Can't find Unicode property definition");
    }
    /* FALLTHROUGH */

  append_name_to_msg:
    {
        const char * prefix = (runtime && level == 0) ?  " \\p{" : " \"";
        const char * suffix = (runtime && level == 0) ?  "}" : "\"";

        sv_catpv(msg, prefix);
        Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8, name_len, name));
        sv_catpv(msg, suffix);
    }

    return NULL;

  definition_deferred:

    {
        bool is_qualified = non_pkg_begin != 0;  /* If has "::" */

        /* Here it could yet to be defined, so defer evaluation of this until
         * its needed at runtime.  We need the fully qualified property name to
         * avoid ambiguity */
        if (! fq_name) {
            fq_name = S_get_fq_name(aTHX_ name, name_len, is_utf8,
                                                                is_qualified);
        }

        /* If it didn't come with a package, or the package is utf8::, this
         * actually could be an official Unicode property whose inclusion we
         * are deferring until runtime to make sure that it isn't overridden by
         * a user-defined property of the same name (which we haven't
         * encountered yet).  Add a marker to indicate this possibility, for
         * use at such time when we first need the definition during pattern
         * matching execution */
        if (! is_qualified || memBEGINPs(name, non_pkg_begin, "utf8::")) {
            sv_catpvs(fq_name, DEFERRED_COULD_BE_OFFICIAL_MARKERs);
        }

        /* We also need a trailing newline */
        sv_catpvs(fq_name, "\n");

        *user_defined_ptr = TRUE;
        return fq_name;
    }
}

STATIC bool
S_handle_names_wildcard(pTHX_ const char * wname, /* wildcard name to match */
                              const STRLEN wname_len, /* Its length */
                              SV ** prop_definition,
                              AV ** strings)
{
    /* Deal with Name property wildcard subpatterns; returns TRUE if there were
     * any matches, adding them to prop_definition */

    dSP;

    CV * get_names_info;        /* entry to charnames.pm to get info we need */
    SV * names_string;          /* Contains all character names, except algo */
    SV * algorithmic_names;     /* Contains info about algorithmically
                                   generated character names */
    REGEXP * subpattern_re;     /* The user's pattern to match with */
    struct regexp * prog;       /* The compiled pattern */
    char * all_names_start;     /* lib/unicore/Name.pl string of every
                                   (non-algorithmic) character name */
    char * cur_pos;             /* We match, effectively using /gc; this is
                                   where we are now */
    bool found_matches = FALSE; /* Did any name match so far? */
    SV * empty;                 /* For matching zero length names */
    SV * must_sv;               /* Contains the substring, if any, that must be
                                   in a name for the subpattern to match */
    const char * must;          /* The PV of 'must' */
    STRLEN must_len;            /* And its length */
    SV * syllable_name = NULL;  /* For Hangul syllables */
    const char hangul_prefix[] = "HANGUL SYLLABLE ";
    const STRLEN hangul_prefix_len = sizeof(hangul_prefix) - 1;

    /* By inspection, there are a maximum of 7 bytes in the suffix of a hangul
     * syllable name, and these are immutable and guaranteed by the Unicode
     * standard to never be extended */
    const STRLEN syl_max_len = hangul_prefix_len + 7;

    IV i;

    PERL_ARGS_ASSERT_HANDLE_NAMES_WILDCARD;

    /* Make sure _charnames is loaded.  (The parameters give context
     * for any errors generated */
    get_names_info = get_cv("_charnames::_get_names_info", 0);
    if (! get_names_info) {
        Perl_croak(aTHX_ "panic: Can't find '_charnames::_get_names_info");
    }

    /* Get the charnames data */
    PUSHSTACKi(PERLSI_REGCOMP);
    ENTER ;
    SAVETMPS;
    save_re_context();

    PUSHMARK(SP) ;
    PUTBACK;

    /* Special _charnames entry point that returns the info this routine
     * requires */
    call_sv(MUTABLE_SV(get_names_info), G_LIST);

    SPAGAIN ;

    /* Data structure for names which end in their very own code points */
    algorithmic_names = POPs;
    SvREFCNT_inc_simple_void_NN(algorithmic_names);

    /* The lib/unicore/Name.pl string */
    names_string = POPs;
    SvREFCNT_inc_simple_void_NN(names_string);

    PUTBACK ;
    FREETMPS ;
    LEAVE ;
    POPSTACK;

    if (   ! SvROK(names_string)
        || ! SvROK(algorithmic_names))
    {   /* Perhaps should panic instead XXX */
        SvREFCNT_dec(names_string);
        SvREFCNT_dec(algorithmic_names);
        return FALSE;
    }

    names_string = sv_2mortal(SvRV(names_string));
    all_names_start = SvPVX(names_string);
    cur_pos = all_names_start;

    algorithmic_names= sv_2mortal(SvRV(algorithmic_names));

    /* Compile the subpattern consisting of the name being looked for */
    subpattern_re = compile_wildcard(wname, wname_len, FALSE /* /-i */ );

    must_sv = re_intuit_string(subpattern_re);
    if (must_sv) {
        /* regexec.c can free the re_intuit_string() return. GH #17734 */
        must_sv = sv_2mortal(newSVsv(must_sv));
        must = SvPV(must_sv, must_len);
    }
    else {
        must = "";
        must_len = 0;
    }

    /* (Note: 'must' could contain a NUL.  And yet we use strspn() below on it.
     * This works because the NUL causes the function to return early, thus
     * showing that there are characters in it other than the acceptable ones,
     * which is our desired result.) */

    prog = ReANY(subpattern_re);

    /* If only nothing is matched, skip to where empty names are looked for */
    if (prog->maxlen == 0) {
        goto check_empty;
    }

    /* And match against the string of all names /gc.  Don't even try if it
     * must match a character not found in any name. */
    if (strspn(must, "\n -0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ()") == must_len)
    {
        while (execute_wildcard(subpattern_re,
                                cur_pos,
                                SvEND(names_string),
                                all_names_start, 0,
                                names_string,
                                0))
        { /* Here, matched. */

            /* Note the string entries look like
             *      00001\nSTART OF HEADING\n\n
             * so we could match anywhere in that string.  We have to rule out
             * matching a code point line */
            char * this_name_start = all_names_start
                                                + RX_OFFS(subpattern_re)->start;
            char * this_name_end   = all_names_start
                                                + RX_OFFS(subpattern_re)->end;
            char * cp_start;
            char * cp_end;
            UV cp = 0;      /* Silences some compilers */
            AV * this_string = NULL;
            bool is_multi = FALSE;

            /* If matched nothing, advance to next possible match */
            if (this_name_start == this_name_end) {
                cur_pos = (char *) memchr(this_name_end + 1, '\n',
                                          SvEND(names_string) - this_name_end);
                if (cur_pos == NULL) {
                    break;
                }
            }
            else {
                /* Position the next match to start beyond the current returned
                 * entry */
                cur_pos = (char *) memchr(this_name_end, '\n',
                                          SvEND(names_string) - this_name_end);
            }

            /* Back up to the \n just before the beginning of the character. */
            cp_end = (char *) my_memrchr(all_names_start,
                                         '\n',
                                         this_name_start - all_names_start);

            /* If we didn't find a \n, it means it matched somewhere in the
             * initial '00000' in the string, so isn't a real match */
            if (cp_end == NULL) {
                continue;
            }

            this_name_start = cp_end + 1;   /* The name starts just after */
            cp_end--;                       /* the \n, and the code point */
                                            /* ends just before it */

            /* All code points are 5 digits long */
            cp_start = cp_end - 4;

            /* This shouldn't happen, as we found a \n, and the first \n is
             * further along than what we subtracted */
            assert(cp_start >= all_names_start);

            if (cp_start == all_names_start) {
                *prop_definition = add_cp_to_invlist(*prop_definition, 0);
                continue;
            }

            /* If the character is a blank, we either have a named sequence, or
             * something is wrong */
            if (*(cp_start - 1) == ' ') {
                cp_start = (char *) my_memrchr(all_names_start,
                                               '\n',
                                               cp_start - all_names_start);
                cp_start++;
            }

            assert(cp_start != NULL && cp_start >= all_names_start + 2);

            /* Except for the first line in the string, the sequence before the
             * code point is \n\n.  If that isn't the case here, we didn't
             * match the name of a character.  (We could have matched a named
             * sequence, not currently handled */
            if (*(cp_start - 1) != '\n' || *(cp_start - 2) != '\n') {
                continue;
            }

            /* We matched!  Add this to the list */
            found_matches = TRUE;

            /* Loop through all the code points in the sequence */
            while (cp_start < cp_end) {

                /* Calculate this code point from its 5 digits */
                cp = (XDIGIT_VALUE(cp_start[0]) << 16)
                   + (XDIGIT_VALUE(cp_start[1]) << 12)
                   + (XDIGIT_VALUE(cp_start[2]) << 8)
                   + (XDIGIT_VALUE(cp_start[3]) << 4)
                   +  XDIGIT_VALUE(cp_start[4]);

                cp_start += 6;  /* Go past any blank */

                if (cp_start < cp_end || is_multi) {
                    if (this_string == NULL) {
                        this_string = newAV();
                    }

                    is_multi = TRUE;
                    av_push(this_string, newSVuv(cp));
                }
            }

            if (is_multi) { /* Was more than one code point */
                if (*strings == NULL) {
                    *strings = newAV();
                }

                av_push(*strings, (SV *) this_string);
            }
            else {  /* Only a single code point */
                *prop_definition = add_cp_to_invlist(*prop_definition, cp);
            }
        } /* End of loop through the non-algorithmic names string */
    }

    /* There are also character names not in 'names_string'.  These are
     * algorithmically generatable.  Try this pattern on each possible one.
     * (khw originally planned to leave this out given the large number of
     * matches attempted; but the speed turned out to be quite acceptable
     *
     * There are plenty of opportunities to optimize to skip many of the tests.
     * beyond the rudimentary ones already here */

    /* First see if the subpattern matches any of the algorithmic generatable
     * Hangul syllable names.
     *
     * We know none of these syllable names will match if the input pattern
     * requires more bytes than any syllable has, or if the input pattern only
     * matches an empty name, or if the pattern has something it must match and
     * one of the characters in that isn't in any Hangul syllable. */
    if (    prog->minlen <= (SSize_t) syl_max_len
        &&  prog->maxlen > 0
        && (strspn(must, "\n ABCDEGHIJKLMNOPRSTUWY") == must_len))
    {
        /* These constants, names, values, and algorithm are adapted from the
         * Unicode standard, version 5.1, section 3.12, and should never
         * change. */
        const char * JamoL[] = {
            "G", "GG", "N", "D", "DD", "R", "M", "B", "BB",
            "S", "SS", "", "J", "JJ", "C", "K", "T", "P", "H"
        };
        const int LCount = C_ARRAY_LENGTH(JamoL);

        const char * JamoV[] = {
            "A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O", "WA",
            "WAE", "OE", "YO", "U", "WEO", "WE", "WI", "YU", "EU", "YI",
            "I"
        };
        const int VCount = C_ARRAY_LENGTH(JamoV);

        const char * JamoT[] = {
            "", "G", "GG", "GS", "N", "NJ", "NH", "D", "L",
            "LG", "LM", "LB", "LS", "LT", "LP", "LH", "M", "B",
            "BS", "S", "SS", "NG", "J", "C", "K", "T", "P", "H"
        };
        const int TCount = C_ARRAY_LENGTH(JamoT);

        int L, V, T;

        /* This is the initial Hangul syllable code point; each time through the
         * inner loop, it maps to the next higher code point.  For more info,
         * see the Hangul syllable section of the Unicode standard. */
        int cp = 0xAC00;

        syllable_name = sv_2mortal(newSV(syl_max_len));
        sv_setpvn(syllable_name, hangul_prefix, hangul_prefix_len);

        for (L = 0; L < LCount; L++) {
            for (V = 0; V < VCount; V++) {
                for (T = 0; T < TCount; T++) {

                    /* Truncate back to the prefix, which is unvarying */
                    SvCUR_set(syllable_name, hangul_prefix_len);

                    sv_catpv(syllable_name, JamoL[L]);
                    sv_catpv(syllable_name, JamoV[V]);
                    sv_catpv(syllable_name, JamoT[T]);

                    if (execute_wildcard(subpattern_re,
                                SvPVX(syllable_name),
                                SvEND(syllable_name),
                                SvPVX(syllable_name), 0,
                                syllable_name,
                                0))
                    {
                        *prop_definition = add_cp_to_invlist(*prop_definition,
                                                             cp);
                        found_matches = TRUE;
                    }

                    cp++;
                }
            }
        }
    }

    /* The rest of the algorithmically generatable names are of the form
     * "PREFIX-code_point".  The prefixes and the code point limits of each
     * were returned to us in the array 'algorithmic_names' from data in
     * lib/unicore/Name.pm.  'code_point' in the name is expressed in hex. */
    for (i = 0; i <= av_top_index((AV *) algorithmic_names); i++) {
        IV j;

        /* Each element of the array is a hash, giving the details for the
         * series of names it covers.  There is the base name of the characters
         * in the series, and the low and high code points in the series.  And,
         * for optimization purposes a string containing all the legal
         * characters that could possibly be in a name in this series. */
        HV * this_series = (HV *) SvRV(* av_fetch((AV *) algorithmic_names, i, 0));
        SV * prefix = * hv_fetchs(this_series, "name", 0);
        IV low = SvIV(* hv_fetchs(this_series, "low", 0));
        IV high = SvIV(* hv_fetchs(this_series, "high", 0));
        char * legal = SvPVX(* hv_fetchs(this_series, "legal", 0));

        /* Pre-allocate an SV with enough space */
        SV * algo_name = sv_2mortal(Perl_newSVpvf(aTHX_ "%s-0000",
                                                        SvPVX(prefix)));
        if (high >= 0x10000) {
            sv_catpvs(algo_name, "0");
        }

        /* This series can be skipped entirely if the pattern requires
         * something longer than any name in the series, or can only match an
         * empty name, or contains a character not found in any name in the
         * series */
        if (    prog->minlen <= (SSize_t) SvCUR(algo_name)
            &&  prog->maxlen > 0
            && (strspn(must, legal) == must_len))
        {
            for (j = low; j <= high; j++) { /* For each code point in the series */

                /* Get its name, and see if it matches the subpattern */
                Perl_sv_setpvf(aTHX_ algo_name, "%s-%X", SvPVX(prefix),
                                     (unsigned) j);

                if (execute_wildcard(subpattern_re,
                                    SvPVX(algo_name),
                                    SvEND(algo_name),
                                    SvPVX(algo_name), 0,
                                    algo_name,
                                    0))
                {
                    *prop_definition = add_cp_to_invlist(*prop_definition, j);
                    found_matches = TRUE;
                }
            }
        }
    }

  check_empty:
    /* Finally, see if the subpattern matches an empty string */
    empty = newSVpvs("");
    if (execute_wildcard(subpattern_re,
                         SvPVX(empty),
                         SvEND(empty),
                         SvPVX(empty), 0,
                         empty,
                         0))
    {
        /* Many code points have empty names.  Currently these are the \p{GC=C}
         * ones, minus CC and CF */

        SV * empty_names_ref = get_prop_definition(UNI_C);
        SV * empty_names = invlist_clone(empty_names_ref, NULL);

        SV * subtract = get_prop_definition(UNI_CC);

        _invlist_subtract(empty_names, subtract, &empty_names);
        SvREFCNT_dec_NN(empty_names_ref);
        SvREFCNT_dec_NN(subtract);

        subtract = get_prop_definition(UNI_CF);
        _invlist_subtract(empty_names, subtract, &empty_names);
        SvREFCNT_dec_NN(subtract);

        _invlist_union(*prop_definition, empty_names, prop_definition);
        found_matches = TRUE;
        SvREFCNT_dec_NN(empty_names);
    }
    SvREFCNT_dec_NN(empty);

#if 0
    /* If we ever were to accept aliases for, say private use names, we would
     * need to do something fancier to find empty names.  The code below works
     * (at the time it was written), and is slower than the above */
    const char empties_pat[] = "^.";
    if (strNE(name, empties_pat)) {
        SV * empty = newSVpvs("");
        if (execute_wildcard(subpattern_re,
                    SvPVX(empty),
                    SvEND(empty),
                    SvPVX(empty), 0,
                    empty,
                    0))
        {
            SV * empties = NULL;

            (void) handle_names_wildcard(empties_pat, strlen(empties_pat), &empties);

            _invlist_union_complement_2nd(*prop_definition, empties, prop_definition);
            SvREFCNT_dec_NN(empties);

            found_matches = TRUE;
        }
        SvREFCNT_dec_NN(empty);
    }
#endif

    SvREFCNT_dec_NN(subpattern_re);
    return found_matches;
}

/*
 * ex: set ts=8 sts=4 sw=4 et:
 */