1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
# regcomp.sym
#
# File has two sections, divided by a line of dashes '-'.
#
# Empty rows after #-comment are removed from input are ignored
#
# First section is for regops, second sectionis for regmatch-states
#
# Note that the order in this file is important.
#
# Format for first section:
# NAME \t TYPE, arg-description [num-args] [longjump-len] \t DESCRIPTION
#
#
# run perl regen.pl after editing this file
#* Exit points (0,1)
END END, no End of program.
SUCCEED END, no Return from a subroutine, basically.
#* Anchors: (2..13)
BOL BOL, no Match "" at beginning of line.
MBOL BOL, no Same, assuming multiline.
SBOL BOL, no Same, assuming singleline.
EOS EOL, no Match "" at end of string.
EOL EOL, no Match "" at end of line.
MEOL EOL, no Same, assuming multiline.
SEOL EOL, no Same, assuming singleline.
BOUND BOUND, no Match "" at any word boundary
BOUNDL BOUND, no Match "" at any word boundary
NBOUND NBOUND, no Match "" at any word non-boundary
NBOUNDL NBOUND, no Match "" at any word non-boundary
GPOS GPOS, no Matches where last m//g left off.
#* [Special] alternatives: (14..30)
REG_ANY REG_ANY, no Match any one character (except newline).
SANY REG_ANY, no Match any one character.
CANY REG_ANY, no Match any one byte.
ANYOF ANYOF, sv Match character in (or not in) this class.
ALNUM ALNUM, no Match any alphanumeric character
ALNUML ALNUM, no Match any alphanumeric char in locale
NALNUM NALNUM, no Match any non-alphanumeric character
NALNUML NALNUM, no Match any non-alphanumeric char in locale
SPACE SPACE, no Match any whitespace character
SPACEL SPACE, no Match any whitespace char in locale
NSPACE NSPACE, no Match any non-whitespace character
NSPACEL NSPACE, no Match any non-whitespace char in locale
DIGIT DIGIT, no Match any numeric character
DIGITL DIGIT, no Match any numeric character in locale
NDIGIT NDIGIT, no Match any non-numeric character
NDIGITL NDIGIT, no Match any non-numeric character in locale
CLUMP CLUMP, no Match any combining character sequence
#* Alternation (31)
# BRANCH The set of branches constituting a single choice are hooked
# together with their "next" pointers, since precedence prevents
# anything being concatenated to any individual branch. The
# "next" pointer of the last BRANCH in a choice points to the
# thing following the whole choice. This is also where the
# final "next" pointer of each individual branch points; each
# branch starts with the operand node of a BRANCH node.
#
BRANCH BRANCH, node Match this alternative, or the next...
#*Back pointer (32)
# BACK Normal "next" pointers all implicitly point forward; BACK
# exists to make loop structures possible.
# not used
BACK BACK, no Match "", "next" ptr points backward.
#*Literals (33..35)
EXACT EXACT, str Match this string (preceded by length).
EXACTF EXACT, str Match this string, folded (prec. by length).
EXACTFL EXACT, str Match this string, folded in locale (w/len).
#*Do nothing types (36..37)
NOTHING NOTHING,no Match empty string.
# A variant of above which delimits a group, thus stops optimizations
TAIL NOTHING,no Match empty string. Can jump here from outside.
#*Loops (38..44)
# STAR,PLUS '?', and complex '*' and '+', are implemented as circular
# BRANCH structures using BACK. Simple cases (one character
# per match) are implemented with STAR and PLUS for speed
# and to minimize recursive plunges.
#
STAR STAR, node Match this (simple) thing 0 or more times.
PLUS PLUS, node Match this (simple) thing 1 or more times.
CURLY CURLY, sv 2 Match this simple thing {n,m} times.
CURLYN CURLY, no 2 Capture next-after-this simple thing
CURLYM CURLY, no 2 Capture this medium-complex thing {n,m} times.
CURLYX CURLY, sv 2 Match this complex thing {n,m} times.
# This terminator creates a loop structure for CURLYX
WHILEM WHILEM, no Do curly processing and see if rest matches.
#*Buffer related (45..49)
# OPEN,CLOSE,GROUPP ...are numbered at compile time.
OPEN OPEN, num 1 Mark this point in input as start of #n.
CLOSE CLOSE, num 1 Analogous to OPEN.
REF REF, num 1 Match some already matched string
REFF REF, num 1 Match already matched string, folded
REFFL REF, num 1 Match already matched string, folded in loc.
#*Grouping assertions (50..54)
IFMATCH BRANCHJ,off 1 2 Succeeds if the following matches.
UNLESSM BRANCHJ,off 1 2 Fails if the following matches.
SUSPEND BRANCHJ,off 1 1 "Independent" sub-RE.
IFTHEN BRANCHJ,off 1 1 Switch, should be preceeded by switcher .
GROUPP GROUPP, num 1 Whether the group matched.
#*Support for long RE (55..56)
LONGJMP LONGJMP,off 1 1 Jump far away.
BRANCHJ BRANCHJ,off 1 1 BRANCH with long offset.
#*The heavy worker (57..58)
EVAL EVAL, evl 1 Execute some Perl code.
#*Modifiers (59..60)
MINMOD MINMOD, no Next operator is not greedy.
LOGICAL LOGICAL,no Next opcode should set the flag only.
# This is not used yet (61)
RENUM BRANCHJ,off 1 1 Group with independently numbered parens.
#*Trie Related (62..64)
# Behave the same as A|LIST|OF|WORDS would. The '..C' variants have
# inline charclass data (ascii only), the 'C' store it in the structure.
# NOTE: the relative order of the TRIE-like regops is signifigant
TRIE TRIE, trie 1 Match many EXACT(FL?)? at once. flags==type
TRIEC TRIE, trie charclass Same as TRIE, but with embedded charclass data
# For start classes, contains an added fail table.
AHOCORASICK TRIE, trie 1 Aho Corasick stclass. flags==type
AHOCORASICKC TRIE, trie charclass Same as AHOCORASICK, but with embedded charclass data
#*Regex Subroutines (65..66)
GOSUB GOSUB, num/ofs 2L recurse to paren arg1 at (signed) ofs arg2
GOSTART GOSTART, no recurse to start of pattern
#*Named references (67..69)
NREF NREF, no-sv 1 Match some already matched string
NREFF NREF, no-sv 1 Match already matched string, folded
NREFFL NREF, no-sv 1 Match already matched string, folded in loc.
#*Special conditionals (70..72)
NGROUPP NGROUPP, no-sv 1 Whether the group matched.
INSUBP INSUBP, num 1 Whether we are in a specific recurse.
DEFINEP DEFINEP, none 1 Never execute directly.
#*Bactracking
OPFAIL OPFAIL, none Same as (?!)
# NEW STUFF ABOVE THIS LINE -- Please update counts below.
################################################################################
#*SPECIAL REGOPS
# This is not really a node, but an optimized away piece of a "long" node.
# To simplify debugging output, we mark it as if it were a node
OPTIMIZED NOTHING,off Placeholder for dump.
# Special opcode with the property that no opcode in a compiled program
# will ever be of this type. Thus it can be used as a flag value that
# no other opcode has been seen. END is used similarly, in that an END
# node cant be optimized. So END implies "unoptimizable" and PSEUDO mean
# "not seen anything to optimize yet".
PSEUDO PSEUDO,off Pseudo opcode for internal use.
-------------------------------------------------------------------------------
# Format for second section:
# REGOP \t typelist [ \t typelist] [# Comment]
# typelist= namelist
# = namelist:FAIL
# = name:count
# Anything below is a state
#
#
TRIE next:FAIL
EVAL AB:FAIL
CURLYX end:FAIL
WHILEM A_pre,A_min,A_max,B_min,B_max:FAIL
BRANCH next:FAIL
CURLYM A,B:FAIL
IFMATCH A:FAIL
CURLY B_min_known,B_min,B_max:FAIL
|