1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
package CharClass::Matcher;
use strict;
use 5.008;
use warnings;
use warnings FATAL => 'all';
use Text::Wrap qw(wrap);
use Data::Dumper;
$Data::Dumper::Useqq= 1;
our $hex_fmt= "0x%02X";
sub ASCII_PLATFORM { (ord('A') == 65) }
require 'regen/regen_lib.pl';
=head1 NAME
CharClass::Matcher -- Generate C macros that match character classes efficiently
=head1 SYNOPSIS
perl Porting/regcharclass.pl
=head1 DESCRIPTION
Dynamically generates macros for detecting special charclasses
in latin-1, utf8, and codepoint forms. Macros can be set to return
the length (in bytes) of the matched codepoint, and/or the codepoint itself.
To regenerate F<regcharclass.h>, run this script from perl-root. No arguments
are necessary.
Using WHATEVER as an example the following macros can be produced, depending
on the input parameters (how to get each is described by internal comments at
the C<__DATA__> line):
=over 4
=item C<is_WHATEVER(s,is_utf8)>
=item C<is_WHATEVER_safe(s,e,is_utf8)>
Do a lookup as appropriate based on the C<is_utf8> flag. When possible
comparisons involving octect<128 are done before checking the C<is_utf8>
flag, hopefully saving time.
The version without the C<_safe> suffix should be used only when the input is
known to be well-formed.
=item C<is_WHATEVER_utf8(s)>
=item C<is_WHATEVER_utf8_safe(s,e)>
Do a lookup assuming the string is encoded in (normalized) UTF8.
The version without the C<_safe> suffix should be used only when the input is
known to be well-formed.
=item C<is_WHATEVER_latin1(s)>
=item C<is_WHATEVER_latin1_safe(s,e)>
Do a lookup assuming the string is encoded in latin-1 (aka plan octets).
The version without the C<_safe> suffix should be used only when it is known
that C<s> contains at least one character.
=item C<is_WHATEVER_cp(cp)>
Check to see if the string matches a given codepoint (hypothetically a
U32). The condition is constructed as as to "break out" as early as
possible if the codepoint is out of range of the condition.
IOW:
(cp==X || (cp>X && (cp==Y || (cp>Y && ...))))
Thus if the character is X+1 only two comparisons will be done. Making
matching lookups slower, but non-matching faster.
=item C<what_len_WHATEVER_FOO(arg1, ..., len)>
A variant form of each of the macro types described above can be generated, in
which the code point is returned by the macro, and an extra parameter (in the
final position) is added, which is a pointer for the macro to set the byte
length of the returned code point.
These forms all have a C<what_len> prefix instead of the C<is_>, for example
C<what_len_WHATEVER_safe(s,e,is_utf8,len)> and
C<what_len_WHATEVER_utf8(s,len)>.
These forms should not be used I<except> on small sets of mostly widely
separated code points; otherwise the code generated is inefficient. For these
cases, it is best to use the C<is_> forms, and then find the code point with
C<utf8_to_uvchr_buf>(). This program can fail with a "deep recursion"
message on the worst of the inappropriate sets. Examine the generated macro
to see if it is acceptable.
=item C<what_WHATEVER_FOO(arg1, ...)>
A variant form of each of the C<is_> macro types described above can be generated, in
which the code point and not the length is returned by the macro. These have
the same caveat as L</what_len_WHATEVER_FOO(arg1, ..., len)>, plus they should
not be used where the set contains a NULL, as 0 is returned for two different
cases: a) the set doesn't include the input code point; b) the set does
include it, and it is a NULL.
=back
=head2 CODE FORMAT
perltidy -st -bt=1 -bbt=0 -pt=0 -sbt=1 -ce -nwls== "%f"
=head1 AUTHOR
Author: Yves Orton (demerphq) 2007. Maintained by Perl5 Porters.
=head1 BUGS
No tests directly here (although the regex engine will fail tests
if this code is broken). Insufficient documentation and no Getopts
handler for using the module as a script.
=head1 LICENSE
You may distribute under the terms of either the GNU General Public
License or the Artistic License, as specified in the README file.
=cut
# Sub naming convention:
# __func : private subroutine, can not be called as a method
# _func : private method, not meant for external use
# func : public method.
# private subs
#-------------------------------------------------------------------------------
#
# ($cp,$n,$l,$u)=__uni_latin($str);
#
# Return a list of arrays, each of which when interpreted correctly
# represent the string in some given encoding with specific conditions.
#
# $cp - list of codepoints that make up the string.
# $n - list of octets that make up the string if all codepoints are invariant
# regardless of if the string is in UTF-8 or not.
# $l - list of octets that make up the string in latin1 encoding if all
# codepoints < 256, and at least one codepoint is UTF-8 variant.
# $u - list of octets that make up the string in utf8 if any codepoint is
# UTF-8 variant
#
# High CP | Defined
#-----------+----------
# 0 - 127 : $n (127/128 are the values for ASCII platforms)
# 128 - 255 : $l, $u
# 256 - ... : $u
#
sub __uni_latin1 {
my $str= shift;
my $max= 0;
my @cp;
my $only_has_invariants = 1;
for my $ch ( split //, $str ) {
my $cp= ord $ch;
push @cp, $cp;
$max= $cp if $max < $cp;
if (! ASCII_PLATFORM && $only_has_invariants) {
if ($cp > 255) {
$only_has_invariants = 0;
}
else {
my $temp = chr($cp);
utf8::upgrade($temp);
my @utf8 = unpack "U0C*", $temp;
$only_has_invariants = (@utf8 == 1 && $utf8[0] == $cp);
}
}
}
my ( $n, $l, $u );
$only_has_invariants = $max < 128 if ASCII_PLATFORM;
if ($only_has_invariants) {
$n= [@cp];
} else {
$l= [@cp] if $max && $max < 256;
$u= $str;
utf8::upgrade($u);
$u= [ unpack "U0C*", $u ] if defined $u;
}
return ( \@cp, $n, $l, $u );
}
#
# $clean= __clean($expr);
#
# Cleanup a ternary expression, removing unnecessary parens and apply some
# simplifications using regexes.
#
sub __clean {
my ( $expr )= @_;
our $parens;
$parens= qr/ (?> \( (?> (?: (?> [^()]+ ) | (??{ $parens }) )* ) \) ) /x;
#print "$parens\n$expr\n";
1 while $expr =~ s/ \( \s* ( $parens ) \s* \) /$1/gx;
1 while $expr =~ s/ \( \s* ($parens) \s* \? \s*
\( \s* ($parens) \s* \? \s* ($parens|[^:]+?) \s* : \s* ($parens|[^)]+?) \s* \)
\s* : \s* \4 \s* \)/( ( $1 && $2 ) ? $3 : 0 )/gx;
return $expr;
}
#
# $text= __macro(@args);
# Join args together by newlines, and then neatly add backslashes to the end
# of every line as expected by the C pre-processor for #define's.
#
sub __macro {
my $str= join "\n", @_;
$str =~ s/\s*$//;
my @lines= map { s/\s+$//; s/\t/ /g; $_ } split /\n/, $str;
my $last= pop @lines;
$str= join "\n", ( map { sprintf "%-76s\\", $_ } @lines ), $last;
1 while $str =~ s/^(\t*) {8}/$1\t/gm;
return $str . "\n";
}
#
# my $op=__incrdepth($op);
#
# take an 'op' hashref and add one to it and all its childrens depths.
#
sub __incrdepth {
my $op= shift;
return unless ref $op;
$op->{depth} += 1;
__incrdepth( $op->{yes} );
__incrdepth( $op->{no} );
return $op;
}
# join two branches of an opcode together with a condition, incrementing
# the depth on the yes branch when we do so.
# returns the new root opcode of the tree.
sub __cond_join {
my ( $cond, $yes, $no )= @_;
return {
test => $cond,
yes => __incrdepth( $yes ),
no => $no,
depth => 0,
};
}
# Methods
# constructor
#
# my $obj=CLASS->new(op=>'SOMENAME',title=>'blah',txt=>[..]);
#
# Create a new CharClass::Matcher object by parsing the text in
# the txt array. Currently applies the following rules:
#
# Element starts with C<0x>, line is evaled the result treated as
# a number which is passed to chr().
#
# Element starts with C<">, line is evaled and the result treated
# as a string.
#
# Each string is then stored in the 'strs' subhash as a hash record
# made up of the results of __uni_latin1, using the keynames
# 'low','latin1','utf8', as well as the synthesized 'LATIN1' and
# 'UTF8' which hold a merge of 'low' and their lowercase equivelents.
#
# Size data is tracked per type in the 'size' subhash.
#
# Return an object
#
sub new {
my $class= shift;
my %opt= @_;
for ( qw(op txt) ) {
die "in " . __PACKAGE__ . " constructor '$_;' is a mandatory field"
if !exists $opt{$_};
}
my $self= bless {
op => $opt{op},
title => $opt{title} || '',
}, $class;
foreach my $txt ( @{ $opt{txt} } ) {
my $str= $txt;
if ( $str =~ /^[""]/ ) {
$str= eval $str;
} elsif ($str =~ / - /x ) { # A range: Replace this element on the
# list with its expansion
my ($lower, $upper) = $str =~ / 0x (.+?) \s* - \s* 0x (.+) /x;
die "Format must be like '0xDEAD - 0xBEAF'; instead was '$str'" if ! defined $lower || ! defined $upper;
foreach my $cp (hex $lower .. hex $upper) {
push @{$opt{txt}}, sprintf "0x%X", $cp;
}
next;
} elsif ($str =~ s/ ^ N (?= 0x ) //x ) {
# Otherwise undocumented, a leading N means is already in the
# native character set; don't convert.
$str= chr eval $str;
} elsif ( $str =~ /^0x/ ) {
$str= eval $str;
# Convert from Unicode/ASCII to native, if necessary
$str = utf8::unicode_to_native($str) if ! ASCII_PLATFORM
&& $str <= 0xFF;
$str = chr $str;
} elsif ( $str =~ / \s* \\p \{ ( .*? ) \} /x) {
my $property = $1;
use Unicode::UCD qw(prop_invlist);
my @invlist = prop_invlist($property, '_perl_core_internal_ok');
if (! @invlist) {
# An empty return could mean an unknown property, or merely
# that it is empty. Call in scalar context to differentiate
my $count = prop_invlist($property, '_perl_core_internal_ok');
die "$property not found" unless defined $count;
}
# Replace this element on the list with the property's expansion
for (my $i = 0; $i < @invlist; $i += 2) {
foreach my $cp ($invlist[$i] .. $invlist[$i+1] - 1) {
# prop_invlist() returns native values; add leading 'N'
# to indicate that.
push @{$opt{txt}}, sprintf "N0x%X", $cp;
}
}
next;
} else {
die "Unparsable line: $txt\n";
}
my ( $cp, $low, $latin1, $utf8 )= __uni_latin1( $str );
my $UTF8= $low || $utf8;
my $LATIN1= $low || $latin1;
#die Dumper($txt,$cp,$low,$latin1,$utf8)
# if $txt=~/NEL/ or $utf8 and @$utf8>3;
@{ $self->{strs}{$str} }{qw( str txt low utf8 latin1 cp UTF8 LATIN1 )}=
( $str, $txt, $low, $utf8, $latin1, $cp, $UTF8, $LATIN1 );
my $rec= $self->{strs}{$str};
foreach my $key ( qw(low utf8 latin1 cp UTF8 LATIN1) ) {
$self->{size}{$key}{ 0 + @{ $self->{strs}{$str}{$key} } }++
if $self->{strs}{$str}{$key};
}
$self->{has_multi} ||= @$cp > 1;
$self->{has_ascii} ||= $latin1 && @$latin1;
$self->{has_low} ||= $low && @$low;
$self->{has_high} ||= !$low && !$latin1;
}
$self->{val_fmt}= $hex_fmt;
$self->{count}= 0 + keys %{ $self->{strs} };
return $self;
}
# my $trie = make_trie($type,$maxlen);
#
# using the data stored in the object build a trie of a specific type,
# and with specific maximum depth. The trie is made up the elements of
# the given types array for each string in the object (assuming it is
# not too long.)
#
# returns the trie, or undef if there was no relevant data in the object.
#
sub make_trie {
my ( $self, $type, $maxlen )= @_;
my $strs= $self->{strs};
my %trie;
foreach my $rec ( values %$strs ) {
die "panic: unknown type '$type'"
if !exists $rec->{$type};
my $dat= $rec->{$type};
next unless $dat;
next if $maxlen && @$dat > $maxlen;
my $node= \%trie;
foreach my $elem ( @$dat ) {
$node->{$elem} ||= {};
$node= $node->{$elem};
}
$node->{''}= $rec->{str};
}
return 0 + keys( %trie ) ? \%trie : undef;
}
# my $optree= _optree()
#
# recursively convert a trie to an optree where every node represents
# an if else branch.
#
#
sub _optree {
my ( $self, $trie, $test_type, $ret_type, $else, $depth )= @_;
return unless defined $trie;
if ( $self->{has_multi} and $ret_type =~ /cp|both/ ) {
die "Can't do 'cp' optree from multi-codepoint strings";
}
$ret_type ||= 'len';
$else= 0 unless defined $else;
$depth= 0 unless defined $depth;
my @conds= sort { $a <=> $b } grep { length $_ } keys %$trie;
if (exists $trie->{''} ) {
if ( $ret_type eq 'cp' ) {
$else= $self->{strs}{ $trie->{''} }{cp}[0];
$else= sprintf "$self->{val_fmt}", $else if $else > 9;
} elsif ( $ret_type eq 'len' ) {
$else= $depth;
} elsif ( $ret_type eq 'both') {
$else= $self->{strs}{ $trie->{''} }{cp}[0];
$else= sprintf "$self->{val_fmt}", $else if $else > 9;
$else= "len=$depth, $else";
}
}
return $else if !@conds;
my $node= {};
my $root= $node;
my ( $yes_res, $as_code, @cond );
my $test= $test_type eq 'cp' ? "cp" : "((U8*)s)[$depth]";
my $Update= sub {
$node->{vals}= [@cond];
$node->{test}= $test;
$node->{yes}= $yes_res;
$node->{depth}= $depth;
$node->{no}= shift;
};
while ( @conds ) {
my $cond= shift @conds;
my $res=
$self->_optree( $trie->{$cond}, $test_type, $ret_type, $else,
$depth + 1 );
my $res_code= Dumper( $res );
if ( !$yes_res || $res_code ne $as_code ) {
if ( $yes_res ) {
$Update->( {} );
$node= $node->{no};
}
( $yes_res, $as_code )= ( $res, $res_code );
@cond= ( $cond );
} else {
push @cond, $cond;
}
}
$Update->( $else );
return $root;
}
# my $optree= optree(%opts);
#
# Convert a trie to an optree, wrapper for _optree
sub optree {
my $self= shift;
my %opt= @_;
my $trie= $self->make_trie( $opt{type}, $opt{max_depth} );
$opt{ret_type} ||= 'len';
my $test_type= $opt{type} eq 'cp' ? 'cp' : 'depth';
return $self->_optree( $trie, $test_type, $opt{ret_type}, $opt{else}, 0 );
}
# my $optree= generic_optree(%opts);
#
# build a "generic" optree out of the three 'low', 'latin1', 'utf8'
# sets of strings, including a branch for handling the string type check.
#
sub generic_optree {
my $self= shift;
my %opt= @_;
$opt{ret_type} ||= 'len';
my $test_type= 'depth';
my $else= $opt{else} || 0;
my $latin1= $self->make_trie( 'latin1', $opt{max_depth} );
my $utf8= $self->make_trie( 'utf8', $opt{max_depth} );
$_= $self->_optree( $_, $test_type, $opt{ret_type}, $else, 0 )
for $latin1, $utf8;
if ( $utf8 ) {
$else= __cond_join( "( is_utf8 )", $utf8, $latin1 || $else );
} elsif ( $latin1 ) {
$else= __cond_join( "!( is_utf8 )", $latin1, $else );
}
my $low= $self->make_trie( 'low', $opt{max_depth} );
if ( $low ) {
$else= $self->_optree( $low, $test_type, $opt{ret_type}, $else, 0 );
}
return $else;
}
# length_optree()
#
# create a string length guarded optree.
#
sub length_optree {
my $self= shift;
my %opt= @_;
my $type= $opt{type};
die "Can't do a length_optree on type 'cp', makes no sense."
if $type eq 'cp';
my ( @size, $method );
if ( $type eq 'generic' ) {
$method= 'generic_optree';
my %sizes= (
%{ $self->{size}{low} || {} },
%{ $self->{size}{latin1} || {} },
%{ $self->{size}{utf8} || {} }
);
@size= sort { $a <=> $b } keys %sizes;
} else {
$method= 'optree';
@size= sort { $a <=> $b } keys %{ $self->{size}{$type} };
}
my $else= ( $opt{else} ||= 0 );
for my $size ( @size ) {
my $optree= $self->$method( %opt, type => $type, max_depth => $size );
my $cond= "((e)-(s) > " . ( $size - 1 ).")";
$else= __cond_join( $cond, $optree, $else );
}
return $else;
}
# _cond_as_str
# turn a list of conditions into a text expression
# - merges ranges of conditions, and joins the result with ||
sub _cond_as_str {
my ( $self, $op, $combine )= @_;
my $cond= $op->{vals};
my $test= $op->{test};
return "( $test )" if !defined $cond;
# rangify the list
my @ranges;
my $Update= sub {
if ( @ranges ) {
if ( $ranges[-1][0] == $ranges[-1][1] ) {
$ranges[-1]= $ranges[-1][0];
} elsif ( $ranges[-1][0] + 1 == $ranges[-1][1] ) {
$ranges[-1]= $ranges[-1][0];
push @ranges, $ranges[-1] + 1;
}
}
};
for my $cond ( @$cond ) {
if ( !@ranges || $cond != $ranges[-1][1] + 1 ) {
$Update->();
push @ranges, [ $cond, $cond ];
} else {
$ranges[-1][1]++;
}
}
$Update->();
return $self->_combine( $test, @ranges )
if $combine;
@ranges= map {
ref $_
? sprintf(
"( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )",
@$_ )
: sprintf( "$self->{val_fmt} == $test", $_ );
} @ranges;
return "( " . join( " || ", @ranges ) . " )";
}
# _combine
# recursively turn a list of conditions into a fast break-out condition
# used by _cond_as_str() for 'cp' type macros.
sub _combine {
my ( $self, $test, @cond )= @_;
return if !@cond;
my $item= shift @cond;
my ( $cstr, $gtv );
if ( ref $item ) {
$cstr=
sprintf( "( $self->{val_fmt} <= $test && $test <= $self->{val_fmt} )",
@$item );
$gtv= sprintf "$self->{val_fmt}", $item->[1];
} else {
$cstr= sprintf( "$self->{val_fmt} == $test", $item );
$gtv= sprintf "$self->{val_fmt}", $item;
}
if ( @cond ) {
return "( $cstr || ( $gtv < $test &&\n"
. $self->_combine( $test, @cond ) . " ) )";
} else {
return $cstr;
}
}
# _render()
# recursively convert an optree to text with reasonably neat formatting
sub _render {
my ( $self, $op, $combine, $brace )= @_;
return 0 if ! defined $op; # The set is empty
if ( !ref $op ) {
return $op;
}
my $cond= $self->_cond_as_str( $op, $combine );
#no warnings 'recursion'; # This would allow really really inefficient
# code to be generated. See pod
my $yes= $self->_render( $op->{yes}, $combine, 1 );
my $no= $self->_render( $op->{no}, $combine, 0 );
return "( $cond )" if $yes eq '1' and $no eq '0';
my ( $lb, $rb )= $brace ? ( "( ", " )" ) : ( "", "" );
return "$lb$cond ? $yes : $no$rb"
if !ref( $op->{yes} ) && !ref( $op->{no} );
my $ind1= " " x 4;
my $ind= "\n" . ( $ind1 x $op->{depth} );
if ( ref $op->{yes} ) {
$yes= $ind . $ind1 . $yes;
} else {
$yes= " " . $yes;
}
return "$lb$cond ?$yes$ind: $no$rb";
}
# $expr=render($op,$combine)
#
# convert an optree to text with reasonably neat formatting. If $combine
# is true then the condition is created using "fast breakouts" which
# produce uglier expressions that are more efficient for common case,
# longer lists such as that resulting from type 'cp' output.
# Currently only used for type 'cp' macros.
sub render {
my ( $self, $op, $combine )= @_;
my $str= "( " . $self->_render( $op, $combine ) . " )";
return __clean( $str );
}
# make_macro
# make a macro of a given type.
# calls into make_trie and (generic_|length_)optree as needed
# Opts are:
# type : 'cp','generic','low','latin1','utf8','LATIN1','UTF8'
# ret_type : 'cp' or 'len'
# safe : add length guards to macro
#
# type defaults to 'generic', and ret_type to 'len' unless type is 'cp'
# in which case it defaults to 'cp' as well.
#
# it is illegal to do a type 'cp' macro on a pattern with multi-codepoint
# sequences in it, as the generated macro will accept only a single codepoint
# as an argument.
#
# returns the macro.
sub make_macro {
my $self= shift;
my %opts= @_;
my $type= $opts{type} || 'generic';
die "Can't do a 'cp' on multi-codepoint character class '$self->{op}'"
if $type eq 'cp'
and $self->{has_multi};
my $ret_type= $opts{ret_type} || ( $opts{type} eq 'cp' ? 'cp' : 'len' );
my $method;
if ( $opts{safe} ) {
$method= 'length_optree';
} elsif ( $type eq 'generic' ) {
$method= 'generic_optree';
} else {
$method= 'optree';
}
my $optree= $self->$method( %opts, type => $type, ret_type => $ret_type );
my $text= $self->render( $optree, $type eq 'cp' );
my @args= $type eq 'cp' ? 'cp' : 's';
push @args, "e" if $opts{safe};
push @args, "is_utf8" if $type eq 'generic';
push @args, "len" if $ret_type eq 'both';
my $pfx= $ret_type eq 'both' ? 'what_len_' :
$ret_type eq 'cp' ? 'what_' : 'is_';
my $ext= $type eq 'generic' ? '' : '_' . lc( $type );
$ext .= "_safe" if $opts{safe};
my $argstr= join ",", @args;
return "/*** GENERATED CODE ***/\n"
. __macro( "#define $pfx$self->{op}$ext($argstr)\n$text" );
}
# if we arent being used as a module (highly likely) then process
# the __DATA__ below and produce macros in regcharclass.h
# if an argument is provided to the script then it is assumed to
# be the path of the file to output to, if the arg is '-' outputs
# to STDOUT.
if ( !caller ) {
$|++;
my $path= shift @ARGV || "regcharclass.h";
my $out_fh;
if ( $path eq '-' ) {
$out_fh= \*STDOUT;
} else {
$out_fh = open_new( $path );
}
print $out_fh read_only_top( lang => 'C', by => $0,
file => 'regcharclass.h', style => '*',
copyright => [2007, 2011] );
print $out_fh "\n#ifndef H_REGCHARCLASS /* Guard against nested #includes */\n#define H_REGCHARCLASS 1\n\n";
my ( $op, $title, @txt, @types, %mods );
my $doit= sub {
return unless $op;
print $out_fh "/*\n\t$op: $title\n\n";
print $out_fh join "\n", ( map { "\t$_" } @txt ), "*/", "";
my $obj= __PACKAGE__->new( op => $op, title => $title, txt => \@txt );
#die Dumper(\@types,\%mods);
my @mods;
push @mods, 'safe' if delete $mods{safe};
unshift @mods, 'fast' if delete $mods{fast} || ! @mods; # Default to 'fast'
# do this one
# first, as
# traditional
if (%mods) {
die "Unknown modifiers: ", join ", ", map { "'$_'" } keys %mods;
}
foreach my $type_spec ( @types ) {
my ( $type, $ret )= split /-/, $type_spec;
$ret ||= 'len';
foreach my $mod ( @mods ) {
next if $mod eq 'safe' and $type eq 'cp';
delete $mods{$mod};
my $macro= $obj->make_macro(
type => $type,
ret_type => $ret,
safe => $mod eq 'safe'
);
print $out_fh $macro, "\n";
}
}
};
while ( <DATA> ) {
s/^ \s* (?: \# .* ) ? $ //x; # squeeze out comment and blanks
next unless /\S/;
chomp;
if ( /^([A-Z]+)/ ) {
$doit->(); # This starts a new definition; do the previous one
( $op, $title )= split /\s*:\s*/, $_, 2;
@txt= ();
} elsif ( s/^=>// ) {
my ( $type, $modifier )= split /:/, $_;
@types= split ' ', $type;
undef %mods;
map { $mods{$_} = 1 } split ' ', $modifier;
} else {
push @txt, "$_";
}
}
$doit->();
print $out_fh "\n#endif /* H_REGCHARCLASS */\n";
if($path eq '-') {
print $out_fh "/* ex: set ro: */\n";
} else {
read_only_bottom_close_and_rename($out_fh)
}
}
# The form of the input is a series of definitions to make macros for.
# The first line gives the base name of the macro, followed by a colon, and
# then text to be used in comments associated with the macro that are its
# title or description. In all cases the first (perhaps only) parameter to
# the macro is a pointer to the first byte of the code point it is to test to
# see if it is in the class determined by the macro. In the case of non-UTF8,
# the code point consists only of a single byte.
#
# The second line must begin with a '=>' and be followed by the types of
# macro(s) to be generated; these are specified below. A colon follows the
# types, followed by the modifiers, also specified below. At least one
# modifier is required.
#
# The subsequent lines give what code points go into the class defined by the
# macro. Multiple characters may be specified via a string like "\x0D\x0A",
# enclosed in quotes. Otherwise the lines consist of single Unicode code
# point, prefaced by 0x; or a single range of Unicode code points separated by
# a minus (and optional space); or a single Unicode property specified in the
# standard Perl form "\p{...}".
#
# A blank line or one whose first non-blank character is '#' is a comment.
# The definition of the macro is terminated by a line unlike those described.
#
# Valid types:
# low generate a macro whose name is 'is_BASE_low' and defines a
# class that includes only ASCII-range chars. (BASE is the
# input macro base name.)
# latin1 generate a macro whose name is 'is_BASE_latin1' and defines a
# class that includes only upper-Latin1-range chars. It is not
# designed to take a UTF-8 input parameter.
# utf8 generate a macro whose name is 'is_BASE_utf8' and defines a
# class that includes all relevant characters that aren't ASCII.
# It is designed to take only an input UTF-8 parameter.
# LATIN1 generate a macro whose name is 'is_BASE_latin1' and defines a
# class that includes both ASCII and upper-Latin1-range chars.
# It is not designed to take a UTF-8 input parameter.
# UTF8 generate a macro whose name is 'is_BASE_utf8' and defines a
# class that can include any code point, adding the 'low' ones
# to what 'utf8' works on. It is designed to take only an input
# UTF-8 parameter.
# generic generate a macro whose name is 'is_BASE". It has a 2nd,
# boolean, parameter which indicates if the first one points to
# a UTF-8 string or not. Thus it works in all circumstances.
# cp generate a macro whose name is 'is_BASE_cp' and defines a
# class that returns true if the UV parameter is a member of the
# class; false if not.
# A macro of the given type is generated for each type listed in the input.
# The default return value is the number of octets read to generate the match.
# Append "-cp" to the type to have it instead return the matched codepoint.
# The macro name is changed to 'what_BASE...'. See pod for
# caveats
# Appending '-both" instead adds an extra parameter to the end of the argument
# list, which is a pointer as to where to store the number of
# bytes matched, while also returning the code point. The macro
# name is changed to 'what_len_BASE...'. See pod for caveats
#
# Valid modifiers:
# safe The input string is not necessarily valid UTF-8. In
# particular an extra parameter (always the 2nd) to the macro is
# required, which points to one beyond the end of the string.
# The macro will make sure not to read off the end of the
# string. In the case of non-UTF8, it makes sure that the
# string has at least one byte in it. The macro name has
# '_safe' appended to it.
# fast The input string is valid UTF-8. No bounds checking is done,
# and the macro can make assumptions that lead to faster
# execution.
# No modifier need be specified; fast is assumed for this case. If both
# 'fast', and 'safe' are specified, two macros will be created for each
# 'type'.
#
# If run on a non-ASCII platform will automatically convert the Unicode input
# to native. The documentation above is slightly wrong in this case. 'low'
# actually refers to code points whose UTF-8 representation is the same as the
# non-UTF-8 version (invariants); and 'latin1' refers to all the rest of the
# code points less than 256.
1; # in the unlikely case we are being used as a module
__DATA__
# This is no longer used, but retained in case it is needed some day.
# TRICKYFOLD: Problematic fold case letters. When adding to this list, also should add them to regcomp.c and fold_grind.t
# => generic cp generic-cp generic-both :fast safe
# 0x00DF # LATIN SMALL LETTER SHARP S
# 0x0390 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
# 0x03B0 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
# 0x1E9E # LATIN CAPITAL LETTER SHARP S, because maps to same as 00DF
# 0x1FD3 # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA; maps same as 0390
# 0x1FE3 # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA; maps same as 03B0
LNBREAK: Line Break: \R
=> generic UTF8 LATIN1 :fast safe
"\x0D\x0A" # CRLF - Network (Windows) line ending
\p{VertSpace}
HORIZWS: Horizontal Whitespace: \h \H
=> generic UTF8 LATIN1 cp :fast safe
\p{HorizSpace}
VERTWS: Vertical Whitespace: \v \V
=> generic UTF8 LATIN1 cp :fast safe
\p{VertSpace}
GCB_L: Grapheme_Cluster_Break=L
=> UTF8 :fast
\p{_X_GCB_L}
GCB_LV_LVT_V: Grapheme_Cluster_Break=(LV or LVT or V)
=> UTF8 :fast
\p{_X_LV_LVT_V}
GCB_Prepend: Grapheme_Cluster_Break=Prepend
=> UTF8 :fast
\p{_X_GCB_Prepend}
GCB_RI: Grapheme_Cluster_Break=RI
=> UTF8 :fast
\p{_X_RI}
GCB_SPECIAL_BEGIN: Grapheme_Cluster_Break=special_begins
=> UTF8 :fast
\p{_X_Special_Begin}
GCB_T: Grapheme_Cluster_Break=T
=> UTF8 :fast
\p{_X_GCB_T}
GCB_V: Grapheme_Cluster_Break=V
=> UTF8 :fast
\p{_X_GCB_V}
|