summaryrefslogtreecommitdiff
path: root/ext/sqlite3/libsqlite/sqlite3.h
diff options
context:
space:
mode:
authorIlia Alshanetsky <iliaa@php.net>2010-10-20 19:27:34 +0000
committerIlia Alshanetsky <iliaa@php.net>2010-10-20 19:27:34 +0000
commit96c769f602cfbdc6fdb21195b1067af497d07bac (patch)
treed9511846526b1848740c25dcb2074c7901ecd2da /ext/sqlite3/libsqlite/sqlite3.h
parent0e24a7c400bc1d1803ce04bea3d8a07e2b997f88 (diff)
downloadphp-git-96c769f602cfbdc6fdb21195b1067af497d07bac.tar.gz
Upgraded bundled sqlite to version 3.7.3
Diffstat (limited to 'ext/sqlite3/libsqlite/sqlite3.h')
-rw-r--r--ext/sqlite3/libsqlite/sqlite3.h796
1 files changed, 531 insertions, 265 deletions
diff --git a/ext/sqlite3/libsqlite/sqlite3.h b/ext/sqlite3/libsqlite/sqlite3.h
index 3d02c7cca6..d78ae39b88 100644
--- a/ext/sqlite3/libsqlite/sqlite3.h
+++ b/ext/sqlite3/libsqlite/sqlite3.h
@@ -97,7 +97,7 @@ extern "C" {
**
** Since version 3.6.18, SQLite source code has been stored in the
** <a href="http://www.fossil-scm.org/">Fossil configuration management
-** system</a>. ^The SQLITE_SOURCE_ID macro evalutes to
+** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
** a string which identifies a particular check-in of SQLite
** within its configuration management system. ^The SQLITE_SOURCE_ID
** string contains the date and time of the check-in (UTC) and an SHA1
@@ -107,9 +107,9 @@ extern "C" {
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
-#define SQLITE_VERSION "3.7.0.1"
-#define SQLITE_VERSION_NUMBER 3007000
-#define SQLITE_SOURCE_ID "2010-08-04 12:31:11 042a1abb030a0711386add7eb6e10832cc8b0f57"
+#define SQLITE_VERSION "3.7.3"
+#define SQLITE_VERSION_NUMBER 3007003
+#define SQLITE_SOURCE_ID "2010-10-08 02:34:02 2677848087c9c090efb17c1893e77d6136a9111d"
/*
** CAPI3REF: Run-Time Library Version Numbers
@@ -154,7 +154,7 @@ SQLITE_API int sqlite3_libversion_number(void);
** compile time. ^The SQLITE_ prefix may be omitted from the
** option name passed to sqlite3_compileoption_used().
**
-** ^The sqlite3_compileoption_get() function allows interating
+** ^The sqlite3_compileoption_get() function allows iterating
** over the list of options that were defined at compile time by
** returning the N-th compile time option string. ^If N is out of range,
** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
@@ -162,7 +162,7 @@ SQLITE_API int sqlite3_libversion_number(void);
** sqlite3_compileoption_get().
**
** ^Support for the diagnostic functions sqlite3_compileoption_used()
-** and sqlite3_compileoption_get() may be omitted by specifing the
+** and sqlite3_compileoption_get() may be omitted by specifying the
** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
**
** See also: SQL functions [sqlite_compileoption_used()] and
@@ -268,7 +268,7 @@ typedef sqlite_uint64 sqlite3_uint64;
**
** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
-** successfullly destroyed and all associated resources are deallocated.
+** successfully destroyed and all associated resources are deallocated.
**
** Applications must [sqlite3_finalize | finalize] all [prepared statements]
** and [sqlite3_blob_close | close] all [BLOB handles] associated with
@@ -695,12 +695,21 @@ struct sqlite3_io_methods {
** is often close. The underlying VFS might choose to preallocate database
** file space based on this hint in order to help writes to the database
** file run faster.
+**
+** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
+** extends and truncates the database file in chunks of a size specified
+** by the user. The fourth argument to [sqlite3_file_control()] should
+** point to an integer (type int) containing the new chunk-size to use
+** for the nominated database. Allocating database file space in large
+** chunks (say 1MB at a time), may reduce file-system fragmentation and
+** improve performance on some systems.
*/
#define SQLITE_FCNTL_LOCKSTATE 1
#define SQLITE_GET_LOCKPROXYFILE 2
#define SQLITE_SET_LOCKPROXYFILE 3
#define SQLITE_LAST_ERRNO 4
#define SQLITE_FCNTL_SIZE_HINT 5
+#define SQLITE_FCNTL_CHUNK_SIZE 6
/*
** CAPI3REF: Mutex Handle
@@ -748,15 +757,19 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** The zName field holds the name of the VFS module. The name must
** be unique across all VFS modules.
**
-** SQLite will guarantee that the zFilename parameter to xOpen
+** ^SQLite guarantees that the zFilename parameter to xOpen
** is either a NULL pointer or string obtained
-** from xFullPathname(). SQLite further guarantees that
+** from xFullPathname() with an optional suffix added.
+** ^If a suffix is added to the zFilename parameter, it will
+** consist of a single "-" character followed by no more than
+** 10 alphanumeric and/or "-" characters.
+** ^SQLite further guarantees that
** the string will be valid and unchanged until xClose() is
** called. Because of the previous sentence,
** the [sqlite3_file] can safely store a pointer to the
** filename if it needs to remember the filename for some reason.
-** If the zFilename parameter is xOpen is a NULL pointer then xOpen
-** must invent its own temporary name for the file. Whenever the
+** If the zFilename parameter to xOpen is a NULL pointer then xOpen
+** must invent its own temporary name for the file. ^Whenever the
** xFilename parameter is NULL it will also be the case that the
** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
**
@@ -767,7 +780,7 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** If xOpen() opens a file read-only then it sets *pOutFlags to
** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
**
-** SQLite will also add one of the following flags to the xOpen()
+** ^(SQLite will also add one of the following flags to the xOpen()
** call, depending on the object being opened:
**
** <ul>
@@ -778,7 +791,8 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** <li> [SQLITE_OPEN_TRANSIENT_DB]
** <li> [SQLITE_OPEN_SUBJOURNAL]
** <li> [SQLITE_OPEN_MASTER_JOURNAL]
-** </ul>
+** <li> [SQLITE_OPEN_WAL]
+** </ul>)^
**
** The file I/O implementation can use the object type flags to
** change the way it deals with files. For example, an application
@@ -797,10 +811,11 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** </ul>
**
** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed. The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases, journals and for subjournals.
+** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases and their journals, transient
+** databases, and subjournals.
**
-** The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
+** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
** with the [SQLITE_OPEN_CREATE] flag, which are both directly
** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
@@ -809,7 +824,7 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** It is <i>not</i> used to indicate the file should be opened
** for exclusive access.
**
-** At least szOsFile bytes of memory are allocated by SQLite
+** ^At least szOsFile bytes of memory are allocated by SQLite
** to hold the [sqlite3_file] structure passed as the third
** argument to xOpen. The xOpen method does not have to
** allocate the structure; it should just fill it in. Note that
@@ -819,13 +834,13 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** element will be valid after xOpen returns regardless of the success
** or failure of the xOpen call.
**
-** The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
** to test whether a file is at least readable. The file can be a
** directory.
**
-** SQLite will always allocate at least mxPathname+1 bytes for the
+** ^SQLite will always allocate at least mxPathname+1 bytes for the
** output buffer xFullPathname. The exact size of the output buffer
** is also passed as a parameter to both methods. If the output buffer
** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
@@ -839,10 +854,10 @@ typedef struct sqlite3_mutex sqlite3_mutex;
** of good-quality randomness into zOut. The return value is
** the actual number of bytes of randomness obtained.
** The xSleep() method causes the calling thread to sleep for at
-** least the number of microseconds given. The xCurrentTime()
+** least the number of microseconds given. ^The xCurrentTime()
** method returns a Julian Day Number for the current date and time as
** a floating point value.
-** The xCurrentTimeInt64() method returns, as an integer, the Julian
+** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
** Day Number multipled by 86400000 (the number of milliseconds in
** a 24-hour day).
** ^SQLite will use the xCurrentTimeInt64() method to get the current
@@ -1239,7 +1254,7 @@ struct sqlite3_mem_methods {
** <ul>
** <li> [sqlite3_memory_used()]
** <li> [sqlite3_memory_highwater()]
-** <li> [sqlite3_soft_heap_limit()]
+** <li> [sqlite3_soft_heap_limit64()]
** <li> [sqlite3_status()]
** </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
@@ -1253,15 +1268,14 @@ struct sqlite3_mem_methods {
** aligned memory buffer from which the scrach allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N). The sz
-** argument must be a multiple of 16. The sz parameter should be a few bytes
-** larger than the actual scratch space required due to internal overhead.
+** argument must be a multiple of 16.
** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
-** ^SQLite will use no more than one scratch buffer per thread. So
-** N should be set to the expected maximum number of threads. ^SQLite will
-** never require a scratch buffer that is more than 6 times the database
-** page size. ^If SQLite needs needs additional scratch memory beyond
-** what is provided by this configuration option, then
+** ^SQLite will use no more than two scratch buffers per thread. So
+** N should be set to twice the expected maximum number of threads.
+** ^SQLite will never require a scratch buffer that is more than 6
+** times the database page size. ^If SQLite needs needs additional
+** scratch memory beyond what is provided by this configuration option, then
** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>
**
** <dt>SQLITE_CONFIG_PAGECACHE</dt>
@@ -1281,8 +1295,7 @@ struct sqlite3_mem_methods {
** memory needs for the first N pages that it adds to cache. ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
-** ^The implementation might use one or more of the N buffers to hold
-** memory accounting information. The pointer in the first argument must
+** The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
@@ -1411,8 +1424,14 @@ struct sqlite3_mem_methods {
** or equal to the product of the second and third arguments. The buffer
** must be aligned to an 8-byte boundary. ^If the second argument to
** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
-** rounded down to the next smaller
-** multiple of 8. See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
+** rounded down to the next smaller multiple of 8. ^(The lookaside memory
+** configuration for a database connection can only be changed when that
+** connection is not currently using lookaside memory, or in other words
+** when the "current value" returned by
+** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
+** Any attempt to change the lookaside memory configuration when lookaside
+** memory is in use leaves the configuration unchanged and returns
+** [SQLITE_BUSY].)^</dd>
**
** </dl>
*/
@@ -1717,6 +1736,9 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
/*
** CAPI3REF: Convenience Routines For Running Queries
**
+** This is a legacy interface that is preserved for backwards compatibility.
+** Use of this interface is not recommended.
+**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface. A result table records the
** complete query results from one or more queries.
@@ -1737,7 +1759,7 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
** It is not safe to pass a result table directly to [sqlite3_free()].
** A result table should be deallocated using [sqlite3_free_table()].
**
-** As an example of the result table format, suppose a query result
+** ^(As an example of the result table format, suppose a query result
** is as follows:
**
** <blockquote><pre>
@@ -1761,7 +1783,7 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
** azResult&#91;5] = "28";
** azResult&#91;6] = "Cindy";
** azResult&#91;7] = "21";
-** </pre></blockquote>
+** </pre></blockquote>)^
**
** ^The sqlite3_get_table() function evaluates one or more
** semicolon-separated SQL statements in the zero-terminated UTF-8
@@ -1769,19 +1791,19 @@ SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
** pointer given in its 3rd parameter.
**
** After the application has finished with the result from sqlite3_get_table(),
-** it should pass the result table pointer to sqlite3_free_table() in order to
+** it must pass the result table pointer to sqlite3_free_table() in order to
** release the memory that was malloced. Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
** function must not try to call [sqlite3_free()] directly. Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
-** ^(The sqlite3_get_table() interface is implemented as a wrapper around
+** The sqlite3_get_table() interface is implemented as a wrapper around
** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite. It uses only the public
** interface defined here. As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].)^
+** [sqlite3_errmsg()].
*/
SQLITE_API int sqlite3_get_table(
sqlite3 *db, /* An open database */
@@ -1933,7 +1955,9 @@ SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
** is not freed.
**
** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
-** is always aligned to at least an 8 byte boundary.
+** is always aligned to at least an 8 byte boundary, or to a
+** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
+** option is used.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
@@ -2176,7 +2200,13 @@ SQLITE_API int sqlite3_set_authorizer(
** ^The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes. ^The profile callback contains
** the original statement text and an estimate of wall-clock time
-** of how long that statement took to run.
+** of how long that statement took to run. ^The profile callback
+** time is in units of nanoseconds, however the current implementation
+** is only capable of millisecond resolution so the six least significant
+** digits in the time are meaningless. Future versions of SQLite
+** might provide greater resolution on the profiler callback. The
+** sqlite3_profile() function is considered experimental and is
+** subject to change in future versions of SQLite.
*/
SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
@@ -2185,17 +2215,28 @@ SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
/*
** CAPI3REF: Query Progress Callbacks
**
-** ^This routine configures a callback function - the
-** progress callback - that is invoked periodically during long
-** running calls to [sqlite3_exec()], [sqlite3_step()] and
-** [sqlite3_get_table()]. An example use for this
+** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
+** function X to be invoked periodically during long running calls to
+** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
+** database connection D. An example use for this
** interface is to keep a GUI updated during a large query.
**
+** ^The parameter P is passed through as the only parameter to the
+** callback function X. ^The parameter N is the number of
+** [virtual machine instructions] that are evaluated between successive
+** invocations of the callback X.
+**
+** ^Only a single progress handler may be defined at one time per
+** [database connection]; setting a new progress handler cancels the
+** old one. ^Setting parameter X to NULL disables the progress handler.
+** ^The progress handler is also disabled by setting N to a value less
+** than 1.
+**
** ^If the progress callback returns non-zero, the operation is
** interrupted. This feature can be used to implement a
** "Cancel" button on a GUI progress dialog box.
**
-** The progress handler must not do anything that will modify
+** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
@@ -2254,7 +2295,7 @@ SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
-** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
+** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_PRIVATECACHE] flags,
** then the behavior is undefined.
**
** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
@@ -2379,17 +2420,22 @@ typedef struct sqlite3_stmt sqlite3_stmt;
** [database connection] whose limit is to be set or queried. The
** second parameter is one of the [limit categories] that define a
** class of constructs to be size limited. The third parameter is the
-** new limit for that construct. The function returns the old limit.)^
+** new limit for that construct.)^
**
** ^If the new limit is a negative number, the limit is unchanged.
-** ^(For the limit category of SQLITE_LIMIT_XYZ there is a
+** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
** [limits | hard upper bound]
-** set by a compile-time C preprocessor macro named
-** [limits | SQLITE_MAX_XYZ].
+** set at compile-time by a C preprocessor macro called
+** [limits | SQLITE_MAX_<i>NAME</i>].
** (The "_LIMIT_" in the name is changed to "_MAX_".))^
** ^Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper bound.
**
+** ^Regardless of whether or not the limit was changed, the
+** [sqlite3_limit()] interface returns the prior value of the limit.
+** ^Hence, to find the current value of a limit without changing it,
+** simply invoke this interface with the third parameter set to -1.
+**
** Run-time limits are intended for use in applications that manage
** both their own internal database and also databases that are controlled
** by untrusted external sources. An example application might be a
@@ -2418,7 +2464,7 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
**
** <dl>
** ^(<dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any string or BLOB or table row.<dd>)^
+** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
**
** ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
@@ -2436,7 +2482,9 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
**
** ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
** <dd>The maximum number of instructions in a virtual machine program
-** used to implement an SQL statement.</dd>)^
+** used to implement an SQL statement. This limit is not currently
+** enforced, though that might be added in some future release of
+** SQLite.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
** <dd>The maximum number of arguments on a function.</dd>)^
@@ -2449,8 +2497,7 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
** [GLOB] operators.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
-** <dd>The maximum number of variables in an SQL statement that can
-** be bound.</dd>)^
+** <dd>The maximum index number of any [parameter] in an SQL statement.)^
**
** ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
** <dd>The maximum depth of recursion for triggers.</dd>)^
@@ -2522,12 +2569,7 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
** <li>
** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
** always used to do, [sqlite3_step()] will automatically recompile the SQL
-** statement and try to run it again. ^If the schema has changed in
-** a way that makes the statement no longer valid, [sqlite3_step()] will still
-** return [SQLITE_SCHEMA]. But unlike the legacy behavior, [SQLITE_SCHEMA] is
-** now a fatal error. Calling [sqlite3_prepare_v2()] again will not make the
-** error go away. Note: use [sqlite3_errmsg()] to find the text
-** of the parsing error that results in an [SQLITE_SCHEMA] return.
+** statement and try to run it again.
** </li>
**
** <li>
@@ -2540,11 +2582,16 @@ SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
** </li>
**
** <li>
-** ^If the value of a [parameter | host parameter] in the WHERE clause might
-** change the query plan for a statement, then the statement may be
-** automatically recompiled (as if there had been a schema change) on the first
-** [sqlite3_step()] call following any change to the
-** [sqlite3_bind_text | bindings] of the [parameter].
+** ^If the specific value bound to [parameter | host parameter] in the
+** WHERE clause might influence the choice of query plan for a statement,
+** then the statement will be automatically recompiled, as if there had been
+** a schema change, on the first [sqlite3_step()] call following any change
+** to the [sqlite3_bind_text | bindings] of that [parameter].
+** ^The specific value of WHERE-clause [parameter] might influence the
+** choice of query plan if the parameter is the left-hand side of a [LIKE]
+** or [GLOB] operator or if the parameter is compared to an indexed column
+** and the [SQLITE_ENABLE_STAT2] compile-time option is enabled.
+** the
** </li>
** </ol>
*/
@@ -2611,7 +2658,7 @@ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
** then there is no distinction between protected and unprotected
** sqlite3_value objects and they can be used interchangeably. However,
** for maximum code portability it is recommended that applications
-** still make the distinction between between protected and unprotected
+** still make the distinction between protected and unprotected
** sqlite3_value objects even when not strictly required.
**
** ^The sqlite3_value objects that are passed as parameters into the
@@ -2657,7 +2704,7 @@ typedef struct sqlite3_context sqlite3_context;
** </ul>
**
** In the templates above, NNN represents an integer literal,
-** and VVV represents an alphanumeric identifer.)^ ^The values of these
+** and VVV represents an alphanumeric identifier.)^ ^The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
@@ -2806,6 +2853,8 @@ SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
+**
+** See also: [sqlite3_data_count()]
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
@@ -2996,8 +3045,14 @@ SQLITE_API int sqlite3_step(sqlite3_stmt*);
/*
** CAPI3REF: Number of columns in a result set
**
-** ^The sqlite3_data_count(P) the number of columns in the
-** of the result set of [prepared statement] P.
+** ^The sqlite3_data_count(P) interface returns the number of columns in the
+** current row of the result set of [prepared statement] P.
+** ^If prepared statement P does not have results ready to return
+** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
+** interfaces) then sqlite3_data_count(P) returns 0.
+** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
+**
+** See also: [sqlite3_column_count()]
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
@@ -3077,18 +3132,26 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
** ^If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
** the number of bytes in that string.
-** ^The value returned does not include the zero terminator at the end
-** of the string. ^For clarity: the value returned is the number of
+** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
+**
+** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
+** routine returns the number of bytes in that BLOB or string.
+** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
+** the string to UTF-16 and then returns the number of bytes.
+** ^If the result is a numeric value then sqlite3_column_bytes16() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
+** the number of bytes in that string.
+** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
+**
+** ^The values returned by [sqlite3_column_bytes()] and
+** [sqlite3_column_bytes16()] do not include the zero terminators at the end
+** of the string. ^For clarity: the values returned by
+** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
** bytes in the string, not the number of characters.
**
** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated. ^The return
-** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
-** pointer, possibly even a NULL pointer.
-**
-** ^The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
-** but leaves the result in UTF-16 in native byte order instead of UTF-8.
-** ^The zero terminator is not included in this count.
+** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
**
** ^The object returned by [sqlite3_column_value()] is an
** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
@@ -3133,10 +3196,10 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
** used in the table for brevity and because they are familiar to most
** C programmers.
**
-** ^Note that when type conversions occur, pointers returned by prior
+** Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
** sqlite3_column_text16() may be invalidated.
-** ^(Type conversions and pointer invalidations might occur
+** Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
@@ -3149,22 +3212,22 @@ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
** sqlite3_column_text() is called. The content must be converted
** to UTF-8.</li>
-** </ul>)^
+** </ul>
**
** ^Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
-** that the prior pointer points to will have been modified. Other kinds
+** that the prior pointer references will have been modified. Other kinds
** of conversion are done in place when it is possible, but sometimes they
** are not possible and in those cases prior pointers are invalidated.
**
-** ^(The safest and easiest to remember policy is to invoke these routines
+** The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
** <ul>
** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>)^
+** </ul>
**
** In other words, you should call sqlite3_column_text(),
** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
@@ -3202,17 +3265,26 @@ SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
-** ^If the statement was executed successfully or not executed at all, then
-** SQLITE_OK is returned. ^If execution of the statement failed then an
-** [error code] or [extended error code] is returned.
-**
-** ^This routine can be called at any point during the execution of the
-** [prepared statement]. ^If the virtual machine has not
-** completed execution when this routine is called, that is like
-** encountering an error or an [sqlite3_interrupt | interrupt].
-** ^Incomplete updates may be rolled back and transactions canceled,
-** depending on the circumstances, and the
-** [error code] returned will be [SQLITE_ABORT].
+** ^If the most recent evaluation of the statement encountered no errors or
+** or if the statement is never been evaluated, then sqlite3_finalize() returns
+** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
+** sqlite3_finalize(S) returns the appropriate [error code] or
+** [extended error code].
+**
+** ^The sqlite3_finalize(S) routine can be called at any point during
+** the life cycle of [prepared statement] S:
+** before statement S is ever evaluated, after
+** one or more calls to [sqlite3_reset()], or after any call
+** to [sqlite3_step()] regardless of whether or not the statement has
+** completed execution.
+**
+** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
+**
+** The application must finalize every [prepared statement] in order to avoid
+** resource leaks. It is a grievous error for the application to try to use
+** a prepared statement after it has been finalized. Any use of a prepared
+** statement after it has been finalized can result in undefined and
+** undesirable behavior such as segfaults and heap corruption.
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
@@ -3248,23 +3320,25 @@ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**
-** ^These two functions (collectively known as "function creation routines")
+** ^These functions (collectively known as "function creation routines")
** are used to add SQL functions or aggregates or to redefine the behavior
-** of existing SQL functions or aggregates. The only difference between the
-** two is that the second parameter, the name of the (scalar) function or
-** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
-** for sqlite3_create_function16().
+** of existing SQL functions or aggregates. The only differences between
+** these routines are the text encoding expected for
+** the the second parameter (the name of the function being created)
+** and the presence or absence of a destructor callback for
+** the application data pointer.
**
** ^The first parameter is the [database connection] to which the SQL
** function is to be added. ^If an application uses more than one database
** connection then application-defined SQL functions must be added
** to each database connection separately.
**
-** The second parameter is the name of the SQL function to be created or
-** redefined. ^The length of the name is limited to 255 bytes, exclusive of
-** the zero-terminator. Note that the name length limit is in bytes, not
-** characters. ^Any attempt to create a function with a longer name
-** will result in [SQLITE_ERROR] being returned.
+** ^The second parameter is the name of the SQL function to be created or
+** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
+** representation, exclusive of the zero-terminator. ^Note that the name
+** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
+** ^Any attempt to create a function with a longer name
+** will result in [SQLITE_MISUSE] being returned.
**
** ^The third parameter (nArg)
** is the number of arguments that the SQL function or
@@ -3274,10 +3348,10 @@ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
-** The fourth parameter, eTextRep, specifies what
+** ^The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
-** its parameters. Any SQL function implementation should be able to work
-** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** its parameters. Every SQL function implementation must be able to work
+** with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
** more efficient with one encoding than another. ^An application may
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
@@ -3289,13 +3363,21 @@ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
** ^(The fifth parameter is an arbitrary pointer. The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
-** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
+** ^The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or
** aggregate. ^A scalar SQL function requires an implementation of the xFunc
-** callback only; NULL pointers should be passed as the xStep and xFinal
+** callback only; NULL pointers must be passed as the xStep and xFinal
** parameters. ^An aggregate SQL function requires an implementation of xStep
-** and xFinal and NULL should be passed for xFunc. ^To delete an existing
-** SQL function or aggregate, pass NULL for all three function callbacks.
+** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
+** SQL function or aggregate, pass NULL poiners for all three function
+** callbacks.
+**
+** ^If the tenth parameter to sqlite3_create_function_v2() is not NULL,
+** then it is invoked when the function is deleted, either by being
+** overloaded or when the database connection closes.
+** ^When the destructure callback of the tenth parameter is invoked, it
+** is passed a single argument which is a copy of the pointer which was
+** the fifth parameter to sqlite3_create_function_v2().
**
** ^It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
@@ -3311,11 +3393,6 @@ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
** between UTF8 and UTF16.
**
** ^Built-in functions may be overloaded by new application-defined functions.
-** ^The first application-defined function with a given name overrides all
-** built-in functions in the same [database connection] with the same name.
-** ^Subsequent application-defined functions of the same name only override
-** prior application-defined functions that are an exact match for the
-** number of parameters and preferred encoding.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces. However, such calls must not
@@ -3342,6 +3419,17 @@ SQLITE_API int sqlite3_create_function16(
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
+SQLITE_API int sqlite3_create_function_v2(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*),
+ void(*xDestroy)(void*)
+);
/*
** CAPI3REF: Text Encodings
@@ -3436,7 +3524,7 @@ SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
/*
** CAPI3REF: Obtain Aggregate Function Context
**
-** Implementions of aggregate SQL functions use this
+** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**
** ^The first time the sqlite3_aggregate_context(C,N) routine is called
@@ -3688,46 +3776,70 @@ SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
/*
** CAPI3REF: Define New Collating Sequences
**
-** These functions are used to add new collation sequences to the
-** [database connection] specified as the first argument.
+** ^These functions add, remove, or modify a [collation] associated
+** with the [database connection] specified as the first argument.
**
-** ^The name of the new collation sequence is specified as a UTF-8 string
+** ^The name of the collation is a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
-** and a UTF-16 string for sqlite3_create_collation16(). ^In all cases
-** the name is passed as the second function argument.
-**
-** ^The third argument may be one of the constants [SQLITE_UTF8],
-** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
-** routine expects to be passed pointers to strings encoded using UTF-8,
-** UTF-16 little-endian, or UTF-16 big-endian, respectively. ^The
-** third argument might also be [SQLITE_UTF16] to indicate that the routine
-** expects pointers to be UTF-16 strings in the native byte order, or the
-** argument can be [SQLITE_UTF16_ALIGNED] if the
-** the routine expects pointers to 16-bit word aligned strings
-** of UTF-16 in the native byte order.
-**
-** A pointer to the user supplied routine must be passed as the fifth
-** argument. ^If it is NULL, this is the same as deleting the collation
-** sequence (so that SQLite cannot call it anymore).
-** ^Each time the application supplied function is invoked, it is passed
-** as its first parameter a copy of the void* passed as the fourth argument
-** to sqlite3_create_collation() or sqlite3_create_collation16().
-**
-** ^The remaining arguments to the application-supplied routine are two strings,
-** each represented by a (length, data) pair and encoded in the encoding
-** that was passed as the third argument when the collation sequence was
-** registered. The application defined collation routine should
-** return negative, zero or positive if the first string is less than,
-** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
+** and a UTF-16 string in native byte order for sqlite3_create_collation16().
+** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
+** considered to be the same name.
+**
+** ^(The third argument (eTextRep) must be one of the constants:
+** <ul>
+** <li> [SQLITE_UTF8],
+** <li> [SQLITE_UTF16LE],
+** <li> [SQLITE_UTF16BE],
+** <li> [SQLITE_UTF16], or
+** <li> [SQLITE_UTF16_ALIGNED].
+** </ul>)^
+** ^The eTextRep argument determines the encoding of strings passed
+** to the collating function callback, xCallback.
+** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
+** force strings to be UTF16 with native byte order.
+** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
+** on an even byte address.
+**
+** ^The fourth argument, pArg, is a application data pointer that is passed
+** through as the first argument to the collating function callback.
+**
+** ^The fifth argument, xCallback, is a pointer to the collating function.
+** ^Multiple collating functions can be registered using the same name but
+** with different eTextRep parameters and SQLite will use whichever
+** function requires the least amount of data transformation.
+** ^If the xCallback argument is NULL then the collating function is
+** deleted. ^When all collating functions having the same name are deleted,
+** that collation is no longer usable.
+**
+** ^The collating function callback is invoked with a copy of the pArg
+** application data pointer and with two strings in the encoding specified
+** by the eTextRep argument. The collating function must return an
+** integer that is negative, zero, or positive
+** if the first string is less than, equal to, or greater than the second,
+** respectively. A collating function must alway return the same answer
+** given the same inputs. If two or more collating functions are registered
+** to the same collation name (using different eTextRep values) then all
+** must give an equivalent answer when invoked with equivalent strings.
+** The collating function must obey the following properties for all
+** strings A, B, and C:
+**
+** <ol>
+** <li> If A==B then B==A.
+** <li> If A==B and B==C then A==C.
+** <li> If A&lt;B THEN B&gt;A.
+** <li> If A&lt;B and B&lt;C then A&lt;C.
+** </ol>
+**
+** If a collating function fails any of the above constraints and that
+** collating function is registered and used, then the behavior of SQLite
+** is undefined.
**
** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** except that it takes an extra argument which is a destructor for
-** the collation. ^The destructor is called when the collation is
-** destroyed and is passed a copy of the fourth parameter void* pointer
-** of the sqlite3_create_collation_v2().
-** ^Collations are destroyed when they are overridden by later calls to the
-** collation creation functions or when the [database connection] is closed
-** using [sqlite3_close()].
+** with the addition that the xDestroy callback is invoked on pArg when
+** the collating function is deleted.
+** ^Collating functions are deleted when they are overridden by later
+** calls to the collation creation functions or when the
+** [database connection] is closed using [sqlite3_close()].
**
** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
*/
@@ -3735,14 +3847,14 @@ SQLITE_API int sqlite3_create_collation(
sqlite3*,
const char *zName,
int eTextRep,
- void*,
+ void *pArg,
int(*xCompare)(void*,int,const void*,int,const void*)
);
SQLITE_API int sqlite3_create_collation_v2(
sqlite3*,
const char *zName,
int eTextRep,
- void*,
+ void *pArg,
int(*xCompare)(void*,int,const void*,int,const void*),
void(*xDestroy)(void*)
);
@@ -3750,7 +3862,7 @@ SQLITE_API int sqlite3_create_collation16(
sqlite3*,
const void *zName,
int eTextRep,
- void*,
+ void *pArg,
int(*xCompare)(void*,int,const void*,int,const void*)
);
@@ -3839,16 +3951,19 @@ SQLITE_API void sqlite3_activate_cerod(
/*
** CAPI3REF: Suspend Execution For A Short Time
**
-** ^The sqlite3_sleep() function causes the current thread to suspend execution
+** The sqlite3_sleep() function causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
-** ^If the operating system does not support sleep requests with
+** If the operating system does not support sleep requests with
** millisecond time resolution, then the time will be rounded up to
-** the nearest second. ^The number of milliseconds of sleep actually
+** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** ^SQLite implements this interface by calling the xSleep()
-** method of the default [sqlite3_vfs] object.
+** method of the default [sqlite3_vfs] object. If the xSleep() method
+** of the default VFS is not implemented correctly, or not implemented at
+** all, then the behavior of sqlite3_sleep() may deviate from the description
+** in the previous paragraphs.
*/
SQLITE_API int sqlite3_sleep(int);
@@ -4070,40 +4185,73 @@ SQLITE_API int sqlite3_enable_shared_cache(int);
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
+** ^The sqlite3_release_memory() routine is a no-op returning zero
+** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
*/
SQLITE_API int sqlite3_release_memory(int);
/*
** CAPI3REF: Impose A Limit On Heap Size
**
-** ^The sqlite3_soft_heap_limit() interface places a "soft" limit
-** on the amount of heap memory that may be allocated by SQLite.
-** ^If an internal allocation is requested that would exceed the
-** soft heap limit, [sqlite3_release_memory()] is invoked one or
-** more times to free up some space before the allocation is performed.
+** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
+** soft limit on the amount of heap memory that may be allocated by SQLite.
+** ^SQLite strives to keep heap memory utilization below the soft heap
+** limit by reducing the number of pages held in the page cache
+** as heap memory usages approaches the limit.
+** ^The soft heap limit is "soft" because even though SQLite strives to stay
+** below the limit, it will exceed the limit rather than generate
+** an [SQLITE_NOMEM] error. In other words, the soft heap limit
+** is advisory only.
**
-** ^The limit is called "soft" because if [sqlite3_release_memory()]
-** cannot free sufficient memory to prevent the limit from being exceeded,
-** the memory is allocated anyway and the current operation proceeds.
+** ^The return value from sqlite3_soft_heap_limit64() is the size of
+** the soft heap limit prior to the call. ^If the argument N is negative
+** then no change is made to the soft heap limit. Hence, the current
+** size of the soft heap limit can be determined by invoking
+** sqlite3_soft_heap_limit64() with a negative argument.
**
-** ^A negative or zero value for N means that there is no soft heap limit and
-** [sqlite3_release_memory()] will only be called when memory is exhausted.
-** ^The default value for the soft heap limit is zero.
+** ^If the argument N is zero then the soft heap limit is disabled.
**
-** ^(SQLite makes a best effort to honor the soft heap limit.
-** But if the soft heap limit cannot be honored, execution will
-** continue without error or notification.)^ This is why the limit is
-** called a "soft" limit. It is advisory only.
+** ^(The soft heap limit is not enforced in the current implementation
+** if one or more of following conditions are true:
**
-** Prior to SQLite version 3.5.0, this routine only constrained the memory
-** allocated by a single thread - the same thread in which this routine
-** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
-** applied to all threads. The value specified for the soft heap limit
-** is an upper bound on the total memory allocation for all threads. In
-** version 3.5.0 there is no mechanism for limiting the heap usage for
-** individual threads.
+** <ul>
+** <li> The soft heap limit is set to zero.
+** <li> Memory accounting is disabled using a combination of the
+** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
+** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
+** <li> An alternative page cache implementation is specifed using
+** [sqlite3_config]([SQLITE_CONFIG_PCACHE],...).
+** <li> The page cache allocates from its own memory pool supplied
+** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
+** from the heap.
+** </ul>)^
+**
+** Beginning with SQLite version 3.7.3, the soft heap limit is enforced
+** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT]
+** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT],
+** the soft heap limit is enforced on every memory allocation. Without
+** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced
+** when memory is allocated by the page cache. Testing suggests that because
+** the page cache is the predominate memory user in SQLite, most
+** applications will achieve adequate soft heap limit enforcement without
+** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
+**
+** The circumstances under which SQLite will enforce the soft heap limit may
+** changes in future releases of SQLite.
*/
-SQLITE_API void sqlite3_soft_heap_limit(int);
+SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
+
+/*
+** CAPI3REF: Deprecated Soft Heap Limit Interface
+** DEPRECATED
+**
+** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
+** interface. This routine is provided for historical compatibility
+** only. All new applications should use the
+** [sqlite3_soft_heap_limit64()] interface rather than this one.
+*/
+SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
+
/*
** CAPI3REF: Extract Metadata About A Column Of A Table
@@ -4227,34 +4375,47 @@ SQLITE_API int sqlite3_load_extension(
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
/*
-** CAPI3REF: Automatically Load An Extensions
+** CAPI3REF: Automatically Load Statically Linked Extensions
+**
+** ^This interface causes the xEntryPoint() function to be invoked for
+** each new [database connection] that is created. The idea here is that
+** xEntryPoint() is the entry point for a statically linked SQLite extension
+** that is to be automatically loaded into all new database connections.
**
-** ^This API can be invoked at program startup in order to register
-** one or more statically linked extensions that will be available
-** to all new [database connections].
+** ^(Even though the function prototype shows that xEntryPoint() takes
+** no arguments and returns void, SQLite invokes xEntryPoint() with three
+** arguments and expects and integer result as if the signature of the
+** entry point where as follows:
**
-** ^(This routine stores a pointer to the extension entry point
-** in an array that is obtained from [sqlite3_malloc()]. That memory
-** is deallocated by [sqlite3_reset_auto_extension()].)^
+** <blockquote><pre>
+** &nbsp; int xEntryPoint(
+** &nbsp; sqlite3 *db,
+** &nbsp; const char **pzErrMsg,
+** &nbsp; const struct sqlite3_api_routines *pThunk
+** &nbsp; );
+** </pre></blockquote>)^
+**
+** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
+** point to an appropriate error message (obtained from [sqlite3_mprintf()])
+** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
+** is NULL before calling the xEntryPoint(). ^SQLite will invoke
+** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
+** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
+**
+** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
+** on the list of automatic extensions is a harmless no-op. ^No entry point
+** will be called more than once for each database connection that is opened.
**
-** ^This function registers an extension entry point that is
-** automatically invoked whenever a new [database connection]
-** is opened using [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()].
-** ^Duplicate extensions are detected so calling this routine
-** multiple times with the same extension is harmless.
-** ^Automatic extensions apply across all threads.
+** See also: [sqlite3_reset_auto_extension()].
*/
SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
/*
** CAPI3REF: Reset Automatic Extension Loading
**
-** ^(This function disables all previously registered automatic
-** extensions. It undoes the effect of all prior
-** [sqlite3_auto_extension()] calls.)^
-**
-** ^This function disables automatic extensions in all threads.
+** ^This interface disables all automatic extensions previously
+** registered using [sqlite3_auto_extension()].
*/
SQLITE_API void sqlite3_reset_auto_extension(void);
@@ -4325,7 +4486,8 @@ struct sqlite3_module {
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
**
-** The sqlite3_index_info structure and its substructures is used to
+** The sqlite3_index_info structure and its substructures is used as part
+** of the [virtual table] interface to
** pass information into and receive the reply from the [xBestIndex]
** method of a [virtual table module]. The fields under **Inputs** are the
** inputs to xBestIndex and are read-only. xBestIndex inserts its
@@ -4333,10 +4495,12 @@ struct sqlite3_module {
**
** ^(The aConstraint[] array records WHERE clause constraints of the form:
**
-** <pre>column OP expr</pre>
+** <blockquote>column OP expr</blockquote>
**
** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
-** stored in aConstraint[].op.)^ ^(The index of the column is stored in
+** stored in aConstraint[].op using one of the
+** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
+** ^(The index of the column is stored in
** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.)^
@@ -4396,6 +4560,15 @@ struct sqlite3_index_info {
int orderByConsumed; /* True if output is already ordered */
double estimatedCost; /* Estimated cost of using this index */
};
+
+/*
+** CAPI3REF: Virtual Table Constraint Operator Codes
+**
+** These macros defined the allowed values for the
+** [sqlite3_index_info].aConstraint[].op field. Each value represents
+** an operator that is part of a constraint term in the wHERE clause of
+** a query that uses a [virtual table].
+*/
#define SQLITE_INDEX_CONSTRAINT_EQ 2
#define SQLITE_INDEX_CONSTRAINT_GT 4
#define SQLITE_INDEX_CONSTRAINT_LE 8
@@ -4881,7 +5054,7 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
**
** ^The xMutexInit method defined by this structure is invoked as
** part of system initialization by the sqlite3_initialize() function.
-** ^The xMutexInit routine is calle by SQLite exactly once for each
+** ^The xMutexInit routine is called by SQLite exactly once for each
** effective call to [sqlite3_initialize()].
**
** ^The xMutexEnd method defined by this structure is invoked as
@@ -4914,7 +5087,7 @@ SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe. ^It must be harmless to
-** invoke xMutexInit() mutiple times within the same process and without
+** invoke xMutexInit() multiple times within the same process and without
** intervening calls to xMutexEnd(). Second and subsequent calls to
** xMutexInit() must be no-ops.
**
@@ -5078,13 +5251,14 @@ SQLITE_API int sqlite3_test_control(int op, ...);
#define SQLITE_TESTCTRL_OPTIMIZATIONS 15
#define SQLITE_TESTCTRL_ISKEYWORD 16
#define SQLITE_TESTCTRL_PGHDRSZ 17
-#define SQLITE_TESTCTRL_LAST 17
+#define SQLITE_TESTCTRL_SCRATCHMALLOC 18
+#define SQLITE_TESTCTRL_LAST 18
/*
** CAPI3REF: SQLite Runtime Status
**
** ^This interface is used to retrieve runtime status information
-** about the preformance of SQLite, and optionally to reset various
+** about the performance of SQLite, and optionally to reset various
** highwater marks. ^The first argument is an integer code for
** the specific parameter to measure. ^(Recognized integer codes
** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^
@@ -5097,7 +5271,7 @@ SQLITE_API int sqlite3_test_control(int op, ...);
** ^(Other parameters record only the highwater mark and not the current
** value. For these latter parameters nothing is written into *pCurrent.)^
**
-** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** ^The sqlite3_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** This routine is threadsafe but is not atomic. This routine can be
@@ -5136,6 +5310,9 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetF
** *pHighwater parameter to [sqlite3_status()] is of interest.
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
+** ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
+** <dd>This parameter records the number of separate memory allocations.</dd>)^
+**
** ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
** <dd>This parameter returns the number of pages used out of the
** [pagecache memory allocator] that was configured using
@@ -5144,7 +5321,7 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetF
**
** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of page cache
-** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
+** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
** buffer and where forced to overflow to [sqlite3_malloc()]. The
** returned value includes allocations that overflowed because they
** where too large (they were larger than the "sz" parameter to
@@ -5167,7 +5344,7 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetF
**
** ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of scratch memory
-** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
+** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH]
** buffer and where forced to overflow to [sqlite3_malloc()]. The values
** returned include overflows because the requested allocation was too
** larger (that is, because the requested allocation was larger than the
@@ -5197,6 +5374,7 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetF
#define SQLITE_STATUS_PARSER_STACK 6
#define SQLITE_STATUS_PAGECACHE_SIZE 7
#define SQLITE_STATUS_SCRATCH_SIZE 8
+#define SQLITE_STATUS_MALLOC_COUNT 9
/*
** CAPI3REF: Database Connection Status
@@ -5206,7 +5384,7 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetF
** database connection object to be interrogated. ^The second argument
** is an integer constant, taken from the set of
** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros, that
-** determiness the parameter to interrogate. The set of
+** determines the parameter to interrogate. The set of
** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros is likely
** to grow in future releases of SQLite.
**
@@ -5215,6 +5393,9 @@ SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetF
** the resetFlg is true, then the highest instantaneous value is
** reset back down to the current value.
**
+** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
+** non-zero [error code] on failure.
+**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
@@ -5236,16 +5417,33 @@ SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int r
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>)^
**
-** <dt>SQLITE_DBSTATUS_CACHE_USED</dt>
-** <dd>^This parameter returns the approximate number of of bytes of heap
-** memory used by all pager caches associated with the database connection.
+** ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
+** <dd>This parameter returns the approximate number of of bytes of heap
+** memory used by all pager caches associated with the database connection.)^
** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
+**
+** ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
+** <dd>This parameter returns the approximate number of of bytes of heap
+** memory used to store the schema for all databases associated
+** with the connection - main, temp, and any [ATTACH]-ed databases.)^
+** ^The full amount of memory used by the schemas is reported, even if the
+** schema memory is shared with other database connections due to
+** [shared cache mode] being enabled.
+** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
+**
+** ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
+** <dd>This parameter returns the approximate number of of bytes of heap
+** and lookaside memory used by all prepared statements associated with
+** the database connection.)^
+** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
** </dd>
** </dl>
*/
#define SQLITE_DBSTATUS_LOOKASIDE_USED 0
#define SQLITE_DBSTATUS_CACHE_USED 1
-#define SQLITE_DBSTATUS_MAX 1 /* Largest defined DBSTATUS */
+#define SQLITE_DBSTATUS_SCHEMA_USED 2
+#define SQLITE_DBSTATUS_STMT_USED 3
+#define SQLITE_DBSTATUS_MAX 3 /* Largest defined DBSTATUS */
/*
@@ -5324,32 +5522,42 @@ typedef struct sqlite3_pcache sqlite3_pcache;
**
** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an
-** instance of the sqlite3_pcache_methods structure.)^ The majority of the
-** heap memory used by SQLite is used by the page cache to cache data read
-** from, or ready to be written to, the database file. By implementing a
-** custom page cache using this API, an application can control more
-** precisely the amount of memory consumed by SQLite, the way in which
+** instance of the sqlite3_pcache_methods structure.)^
+** In many applications, most of the heap memory allocated by
+** SQLite is used for the page cache.
+** By implementing a
+** custom page cache using this API, an application can better control
+** the amount of memory consumed by SQLite, the way in which
** that memory is allocated and released, and the policies used to
** determine exactly which parts of a database file are cached and for
** how long.
**
+** The alternative page cache mechanism is an
+** extreme measure that is only needed by the most demanding applications.
+** The built-in page cache is recommended for most uses.
+**
** ^(The contents of the sqlite3_pcache_methods structure are copied to an
** internal buffer by SQLite within the call to [sqlite3_config]. Hence
** the application may discard the parameter after the call to
** [sqlite3_config()] returns.)^
**
-** ^The xInit() method is called once for each call to [sqlite3_initialize()]
+** ^(The xInit() method is called once for each effective
+** call to [sqlite3_initialize()])^
** (usually only once during the lifetime of the process). ^(The xInit()
** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^
-** ^The xInit() method can set up up global structures and/or any mutexes
+** The intent of the xInit() method is to set up global data structures
** required by the custom page cache implementation.
+** ^(If the xInit() method is NULL, then the
+** built-in default page cache is used instead of the application defined
+** page cache.)^
**
-** ^The xShutdown() method is called from within [sqlite3_shutdown()],
-** if the application invokes this API. It can be used to clean up
+** ^The xShutdown() method is called by [sqlite3_shutdown()].
+** It can be used to clean up
** any outstanding resources before process shutdown, if required.
+** ^The xShutdown() method may be NULL.
**
-** ^SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
-** the xInit method, so the xInit method need not be threadsafe. ^The
+** ^SQLite automatically serializes calls to the xInit method,
+** so the xInit method need not be threadsafe. ^The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either. All other methods must be threadsafe
** in multithreaded applications.
@@ -5357,47 +5565,50 @@ typedef struct sqlite3_pcache sqlite3_pcache;
** ^SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
**
-** ^The xCreate() method is used to construct a new cache instance. SQLite
-** will typically create one cache instance for each open database file,
+** ^SQLite invokes the xCreate() method to construct a new cache instance.
+** SQLite will typically create one cache instance for each open database file,
** though this is not guaranteed. ^The
** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache. ^szPage will not be a power of two. ^szPage
** will the page size of the database file that is to be cached plus an
-** increment (here called "R") of about 100 or 200. ^SQLite will use the
+** increment (here called "R") of about 100 or 200. SQLite will use the
** extra R bytes on each page to store metadata about the underlying
** database page on disk. The value of R depends
** on the SQLite version, the target platform, and how SQLite was compiled.
** ^R is constant for a particular build of SQLite. ^The second argument to
** xCreate(), bPurgeable, is true if the cache being created will
** be used to cache database pages of a file stored on disk, or
-** false if it is used for an in-memory database. ^The cache implementation
+** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based with the value of bPurgeable;
** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
** never invoke xUnpin() except to deliberately delete a page.
-** ^In other words, a cache created with bPurgeable set to false will
+** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
+** false will always have the "discard" flag set to true.
+** ^Hence, a cache created with bPurgeable false will
** never contain any unpinned pages.
**
** ^(The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
-** the SQLite "[PRAGMA cache_size]" command.)^ ^As with the bPurgeable
+** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
** parameter, the implementation is not required to do anything with this
** value; it is advisory only.
**
-** ^The xPagecount() method should return the number of pages currently
-** stored in the cache.
+** The xPagecount() method must return the number of pages currently
+** stored in the cache, both pinned and unpinned.
**
-** ^The xFetch() method is used to fetch a page and return a pointer to it.
-** ^A 'page', in this context, is a buffer of szPage bytes aligned at an
-** 8-byte boundary. ^The page to be fetched is determined by the key. ^The
-** mimimum key value is 1. After it has been retrieved using xFetch, the page
+** The xFetch() method locates a page in the cache and returns a pointer to
+** the page, or a NULL pointer.
+** A "page", in this context, means a buffer of szPage bytes aligned at an
+** 8-byte boundary. The page to be fetched is determined by the key. ^The
+** mimimum key value is 1. After it has been retrieved using xFetch, the page
** is considered to be "pinned".
**
-** ^If the requested page is already in the page cache, then the page cache
+** If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
-** intact. ^(If the requested page is not already in the cache, then the
-** behavior of the cache implementation is determined by the value of the
-** createFlag parameter passed to xFetch, according to the following table:
+** intact. If the requested page is not already in the cache, then the
+** behavior of the cache implementation should use the value of the createFlag
+** parameter to help it determined what action to take:
**
** <table border=1 width=85% align=center>
** <tr><th> createFlag <th> Behaviour when page is not already in cache
@@ -5406,36 +5617,35 @@ typedef struct sqlite3_pcache sqlite3_pcache;
** Otherwise return NULL.
** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
** NULL if allocating a new page is effectively impossible.
-** </table>)^
+** </table>
**
-** SQLite will normally invoke xFetch() with a createFlag of 0 or 1. If
-** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
+** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
+** will only use a createFlag of 2 after a prior call with a createFlag of 1
+** failed.)^ In between the to xFetch() calls, SQLite may
** attempt to unpin one or more cache pages by spilling the content of
-** pinned pages to disk and synching the operating system disk cache. After
-** attempting to unpin pages, the xFetch() method will be invoked again with
-** a createFlag of 2.
+** pinned pages to disk and synching the operating system disk cache.
**
** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
-** as its second argument. ^(If the third parameter, discard, is non-zero,
-** then the page should be evicted from the cache. In this case SQLite
-** assumes that the next time the page is retrieved from the cache using
-** the xFetch() method, it will be zeroed.)^ ^If the discard parameter is
-** zero, then the page is considered to be unpinned. ^The cache implementation
+** as its second argument. If the third parameter, discard, is non-zero,
+** then the page must be evicted from the cache.
+** ^If the discard parameter is
+** zero, then the page may be discarded or retained at the discretion of
+** page cache implementation. ^The page cache implementation
** may choose to evict unpinned pages at any time.
**
-** ^(The cache is not required to perform any reference counting. A single
+** The cache must not perform any reference counting. A single
** call to xUnpin() unpins the page regardless of the number of prior calls
-** to xFetch().)^
+** to xFetch().
**
-** ^The xRekey() method is used to change the key value associated with the
-** page passed as the second argument from oldKey to newKey. ^If the cache
-** previously contains an entry associated with newKey, it should be
+** The xRekey() method is used to change the key value associated with the
+** page passed as the second argument. If the cache
+** previously contains an entry associated with newKey, it must be
** discarded. ^Any prior cache entry associated with newKey is guaranteed not
** to be pinned.
**
-** ^When SQLite calls the xTruncate() method, the cache must discard all
+** When SQLite calls the xTruncate() method, the cache must discard all
** existing cache entries with page numbers (keys) greater than or equal
-** to the value of the iLimit parameter passed to xTruncate(). ^If any
+** to the value of the iLimit parameter passed to xTruncate(). If any
** of these pages are pinned, they are implicitly unpinned, meaning that
** they can be safely discarded.
**
@@ -5611,7 +5821,7 @@ typedef struct sqlite3_backup sqlite3_backup;
**
** ^Each call to sqlite3_backup_step() sets two values inside
** the [sqlite3_backup] object: the number of pages still to be backed
-** up and the total number of pages in the source databae file.
+** up and the total number of pages in the source database file.
** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
@@ -5707,7 +5917,7 @@ SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
** blocked connection already has a registered unlock-notify callback,
** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
** called with a NULL pointer as its second argument, then any existing
-** unlock-notify callback is cancelled. ^The blocked connections
+** unlock-notify callback is canceled. ^The blocked connections
** unlock-notify callback may also be canceled by closing the blocked
** connection using [sqlite3_close()].
**
@@ -5789,7 +5999,7 @@ SQLITE_API int sqlite3_unlock_notify(
**
** ^The [sqlite3_strnicmp()] API allows applications and extensions to
** compare the contents of two buffers containing UTF-8 strings in a
-** case-indendent fashion, using the same definition of case independence
+** case-independent fashion, using the same definition of case independence
** that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
@@ -5913,3 +6123,59 @@ SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
#endif
#endif
+/*
+** 2010 August 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*/
+
+#ifndef _SQLITE3RTREE_H_
+#define _SQLITE3RTREE_H_
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
+
+/*
+** Register a geometry callback named zGeom that can be used as part of an
+** R-Tree geometry query as follows:
+**
+** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
+*/
+SQLITE_API int sqlite3_rtree_geometry_callback(
+ sqlite3 *db,
+ const char *zGeom,
+ int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),
+ void *pContext
+);
+
+
+/*
+** A pointer to a structure of the following type is passed as the first
+** argument to callbacks registered using rtree_geometry_callback().
+*/
+struct sqlite3_rtree_geometry {
+ void *pContext; /* Copy of pContext passed to s_r_g_c() */
+ int nParam; /* Size of array aParam[] */
+ double *aParam; /* Parameters passed to SQL geom function */
+ void *pUser; /* Callback implementation user data */
+ void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
+};
+
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* ifndef _SQLITE3RTREE_H_ */
+