summaryrefslogtreecommitdiff
path: root/ext/standard/rand.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/standard/rand.c')
-rw-r--r--ext/standard/rand.c325
1 files changed, 11 insertions, 314 deletions
diff --git a/ext/standard/rand.c b/ext/standard/rand.c
index 708e0c376e..0b804fa5aa 100644
--- a/ext/standard/rand.c
+++ b/ext/standard/rand.c
@@ -25,35 +25,15 @@
*/
/* $Id$ */
-#include <stdlib.h>
-
#include "php.h"
-#include "php_math.h"
#include "php_rand.h"
-
-#include "basic_functions.h"
-
-
-/* SYSTEM RAND FUNCTIONS */
+#include "php_mt_rand.h"
/* {{{ php_srand
*/
PHPAPI void php_srand(zend_long seed)
{
-#ifdef ZTS
- BG(rand_seed) = (unsigned int) seed;
-#else
-# if defined(HAVE_SRANDOM)
- srandom((unsigned int) seed);
-# elif defined(HAVE_SRAND48)
- srand48(seed);
-# else
- srand((unsigned int) seed);
-# endif
-#endif
-
- /* Seed only once */
- BG(rand_is_seeded) = 1;
+ php_mt_srand(seed);
}
/* }}} */
@@ -61,314 +41,31 @@ PHPAPI void php_srand(zend_long seed)
*/
PHPAPI zend_long php_rand(void)
{
- zend_long ret;
-
- if (!BG(rand_is_seeded)) {
- php_srand(GENERATE_SEED());
- }
-
-#ifdef ZTS
- ret = php_rand_r(&BG(rand_seed));
-#else
-# if defined(HAVE_RANDOM)
- ret = random();
-# elif defined(HAVE_LRAND48)
- ret = lrand48();
-# else
- ret = rand();
-# endif
-#endif
-
- return ret;
-}
-/* }}} */
-
-
-/* MT RAND FUNCTIONS */
-
-/*
- The following php_mt_...() functions are based on a C++ class MTRand by
- Richard J. Wagner. For more information see the web page at
- http://www-personal.engin.umich.edu/~wagnerr/MersenneTwister.html
-
- Mersenne Twister random number generator -- a C++ class MTRand
- Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
- Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com
-
- The Mersenne Twister is an algorithm for generating random numbers. It
- was designed with consideration of the flaws in various other generators.
- The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
- are far greater. The generator is also fast; it avoids multiplication and
- division, and it benefits from caches and pipelines. For more information
- see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
-
- Reference
- M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
- Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
- Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
-
- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
- Copyright (C) 2000 - 2003, Richard J. Wagner
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. The names of its contributors may not be used to endorse or promote
- products derived from this software without specific prior written
- permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-
-#define N MT_N /* length of state vector */
-#define M (397) /* a period parameter */
-#define hiBit(u) ((u) & 0x80000000U) /* mask all but highest bit of u */
-#define loBit(u) ((u) & 0x00000001U) /* mask all but lowest bit of u */
-#define loBits(u) ((u) & 0x7FFFFFFFU) /* mask the highest bit of u */
-#define mixBits(u, v) (hiBit(u)|loBits(v)) /* move hi bit of u to hi bit of v */
-
-#define twist(m,u,v) (m ^ (mixBits(u,v)>>1) ^ ((php_uint32)(-(php_int32)(loBit(u))) & 0x9908b0dfU))
-
-/* {{{ php_mt_initialize
- */
-static inline void php_mt_initialize(php_uint32 seed, php_uint32 *state)
-{
- /* Initialize generator state with seed
- See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
- In previous versions, most significant bits (MSBs) of the seed affect
- only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto. */
-
- register php_uint32 *s = state;
- register php_uint32 *r = state;
- register int i = 1;
-
- *s++ = seed & 0xffffffffU;
- for( ; i < N; ++i ) {
- *s++ = ( 1812433253U * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffU;
- r++;
- }
-}
-/* }}} */
-
-/* {{{ php_mt_reload
- */
-static inline void php_mt_reload(void)
-{
- /* Generate N new values in state
- Made clearer and faster by Matthew Bellew (matthew.bellew@home.com) */
-
- register php_uint32 *state = BG(state);
- register php_uint32 *p = state;
- register int i;
-
- for (i = N - M; i--; ++p)
- *p = twist(p[M], p[0], p[1]);
- for (i = M; --i; ++p)
- *p = twist(p[M-N], p[0], p[1]);
- *p = twist(p[M-N], p[0], state[0]);
- BG(left) = N;
- BG(next) = state;
-}
-/* }}} */
-
-/* {{{ php_mt_srand
- */
-PHPAPI void php_mt_srand(php_uint32 seed)
-{
- /* Seed the generator with a simple uint32 */
- php_mt_initialize(seed, BG(state));
- php_mt_reload();
-
- /* Seed only once */
- BG(mt_rand_is_seeded) = 1;
-}
-/* }}} */
-
-/* {{{ php_mt_rand
- */
-PHPAPI php_uint32 php_mt_rand(void)
-{
- /* Pull a 32-bit integer from the generator state
- Every other access function simply transforms the numbers extracted here */
-
- register php_uint32 s1;
-
- if (BG(left) == 0) {
- php_mt_reload();
- }
- --BG(left);
-
- s1 = *BG(next)++;
- s1 ^= (s1 >> 11);
- s1 ^= (s1 << 7) & 0x9d2c5680U;
- s1 ^= (s1 << 15) & 0xefc60000U;
- return ( s1 ^ (s1 >> 18) );
-}
-/* }}} */
-
-/* {{{ proto void srand([int seed])
- Seeds random number generator */
-PHP_FUNCTION(srand)
-{
- zend_long seed = 0;
-
- if (zend_parse_parameters(ZEND_NUM_ARGS(), "|l", &seed) == FAILURE)
- return;
-
- if (ZEND_NUM_ARGS() == 0)
- seed = GENERATE_SEED();
-
- php_srand(seed);
-}
-/* }}} */
-
-/* {{{ proto void mt_srand([int seed])
- Seeds Mersenne Twister random number generator */
-PHP_FUNCTION(mt_srand)
-{
- zend_long seed = 0;
-
- if (zend_parse_parameters(ZEND_NUM_ARGS(), "|l", &seed) == FAILURE)
- return;
-
- if (ZEND_NUM_ARGS() == 0)
- seed = GENERATE_SEED();
-
- php_mt_srand(seed);
-}
-/* }}} */
-
-
-/*
- * A bit of tricky math here. We want to avoid using a modulus because
- * that simply tosses the high-order bits and might skew the distribution
- * of random values over the range. Instead we map the range directly.
- *
- * We need to map the range from 0...M evenly to the range a...b
- * Let n = the random number and n' = the mapped random number
- *
- * Then we have: n' = a + n(b-a)/M
- *
- * We have a problem here in that only n==M will get mapped to b which
- # means the chances of getting b is much much less than getting any of
- # the other values in the range. We can fix this by increasing our range
- # artificially and using:
- #
- # n' = a + n(b-a+1)/M
- *
- # Now we only have a problem if n==M which would cause us to produce a
- # number of b+1 which would be bad. So we bump M up by one to make sure
- # this will never happen, and the final algorithm looks like this:
- #
- # n' = a + n(b-a+1)/(M+1)
- *
- * -RL
- */
-
-/* {{{ proto int rand([int min, int max])
- Returns a random number */
-PHP_FUNCTION(rand)
-{
- zend_long min;
- zend_long max;
- zend_long number;
- int argc = ZEND_NUM_ARGS();
-
- if (argc != 0 && zend_parse_parameters(argc, "ll", &min, &max) == FAILURE)
- return;
-
- number = php_rand();
- if (argc == 2) {
- RAND_RANGE(number, min, max, PHP_RAND_MAX);
- }
-
- RETURN_LONG(number);
+ return php_mt_rand();
}
/* }}} */
/* {{{ proto int mt_rand([int min, int max])
Returns a random number from Mersenne Twister */
-PHP_FUNCTION(mt_rand)
+PHP_FUNCTION(rand)
{
zend_long min;
zend_long max;
- zend_long number;
- int argc = ZEND_NUM_ARGS();
+ int argc = ZEND_NUM_ARGS();
- if (argc != 0) {
- if (zend_parse_parameters(argc, "ll", &min, &max) == FAILURE) {
- return;
- } else if (max < min) {
- php_error_docref(NULL, E_WARNING, "max(" ZEND_LONG_FMT ") is smaller than min(" ZEND_LONG_FMT ")", max, min);
- RETURN_FALSE;
- }
+ if (argc == 0) {
+ RETURN_LONG(php_mt_rand() >> 1);
}
- if (!BG(mt_rand_is_seeded)) {
- php_mt_srand(GENERATE_SEED());
- }
-
- /*
- * Melo: hmms.. randomMT() returns 32 random bits...
- * Yet, the previous php_rand only returns 31 at most.
- * So I put a right shift to loose the lsb. It *seems*
- * better than clearing the msb.
- * Update:
- * I talked with Cokus via email and it won't ruin the algorithm
- */
- number = (zend_long) (php_mt_rand() >> 1);
- if (argc == 2) {
- RAND_RANGE(number, min, max, PHP_MT_RAND_MAX);
- }
-
- RETURN_LONG(number);
-}
-/* }}} */
-
-/* {{{ proto int getrandmax(void)
- Returns the maximum value a random number can have */
-PHP_FUNCTION(getrandmax)
-{
- if (zend_parse_parameters_none() == FAILURE) {
+ if (zend_parse_parameters(argc, "ll", &min, &max) == FAILURE) {
return;
}
- RETURN_LONG(PHP_RAND_MAX);
-}
-/* }}} */
-
-/* {{{ proto int mt_getrandmax(void)
- Returns the maximum value a random number from Mersenne Twister can have */
-PHP_FUNCTION(mt_getrandmax)
-{
- if (zend_parse_parameters_none() == FAILURE) {
- return;
+ if (max < min) {
+ RETURN_LONG(php_mt_rand_common(max, min));
}
- /*
- * Melo: it could be 2^^32 but we only use 2^^31 to maintain
- * compatibility with the previous php_rand
- */
- RETURN_LONG(PHP_MT_RAND_MAX); /* 2^^31 */
+ RETURN_LONG(php_mt_rand_common(min, max));
}
/* }}} */