/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** The code in this file implements the Virtual Database Engine (VDBE) ** ** The SQL parser generates a program which is then executed by ** the VDBE to do the work of the SQL statement. VDBE programs are ** similar in form to assembly language. The program consists of ** a linear sequence of operations. Each operation has an opcode ** and 3 operands. Operands P1 and P2 are integers. Operand P3 ** is a null-terminated string. The P2 operand must be non-negative. ** Opcodes will typically ignore one or more operands. Many opcodes ** ignore all three operands. ** ** Computation results are stored on a stack. Each entry on the ** stack is either an integer, a null-terminated string, a floating point ** number, or the SQL "NULL" value. An inplicit conversion from one ** type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id$ */ #include "sqliteInt.h" #include /* ** The makefile scans this source file and creates the following ** array of string constants which are the names of all VDBE opcodes. ** This array is defined in a separate source code file named opcode.c ** which is automatically generated by the makefile. */ extern char *sqliteOpcodeNames[]; /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_MoveTo or the OP_Next opcode. The test ** procedures use this information to make sure that indices are ** working correctly. This variable has no function other than to ** help verify the correct operation of the library. */ int sqlite_search_count = 0; /* ** SQL is translated into a sequence of instructions to be ** executed by a virtual machine. Each instruction is an instance ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned char Bool; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** ** Every cursor that the virtual machine has open is represented by an ** instance of the following structure. ** ** If the Cursor.isTriggerRow flag is set it means that this cursor is ** really a single row that represents the NEW or OLD pseudo-table of ** a row trigger. The data for the row is stored in Cursor.pData and ** the rowid is in Cursor.iKey. */ struct Cursor { BtCursor *pCursor; /* The cursor structure of the backend */ int lastRecno; /* Last recno from a Next or NextIdx operation */ int nextRowid; /* Next rowid returned by OP_NewRowid */ Bool recnoIsValid; /* True if lastRecno is valid */ Bool keyAsData; /* The OP_Column command works on key instead of data */ Bool atFirst; /* True if pointing to first entry */ Bool useRandomRowid; /* Generate new record numbers semi-randomly */ Bool nullRow; /* True if pointing to a row with no data */ Bool nextRowidValid; /* True if the nextRowid field is valid */ Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */ Btree *pBt; /* Separate file holding temporary table */ int nData; /* Number of bytes in pData */ char *pData; /* Data for a NEW or OLD pseudo-table */ int iKey; /* Key for the NEW or OLD pseudo-table row */ }; typedef struct Cursor Cursor; /* ** A sorter builds a list of elements to be sorted. Each element of ** the list is an instance of the following structure. */ typedef struct Sorter Sorter; struct Sorter { int nKey; /* Number of bytes in the key */ char *zKey; /* The key by which we will sort */ int nData; /* Number of bytes in the data */ char *pData; /* The data associated with this key */ Sorter *pNext; /* Next in the list */ }; /* ** Number of buckets used for merge-sort. */ #define NSORT 30 /* ** Number of bytes of string storage space available to each stack ** layer without having to malloc. NBFS is short for Number of Bytes ** For Strings. */ #define NBFS 32 /* ** A single level of the stack is an instance of the following ** structure. Except, string values are stored on a separate ** list of of pointers to character. The reason for storing ** strings separately is so that they can be easily passed ** to the callback function. */ struct Stack { int i; /* Integer value */ int n; /* Number of characters in string value, including '\0' */ int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */ double r; /* Real value */ char z[NBFS]; /* Space for short strings */ }; typedef struct Stack Stack; /* ** Memory cells use the same structure as the stack except that space ** for an arbitrary string is added. */ struct Mem { Stack s; /* All values of the memory cell besides string */ char *z; /* String value for this memory cell */ }; typedef struct Mem Mem; /* ** Allowed values for Stack.flags */ #define STK_Null 0x0001 /* Value is NULL */ #define STK_Str 0x0002 /* Value is a string */ #define STK_Int 0x0004 /* Value is an integer */ #define STK_Real 0x0008 /* Value is a real number */ #define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[] */ #define STK_Static 0x0020 /* zStack[] points to a static string */ #define STK_Ephem 0x0040 /* zStack[] points to an ephemeral string */ /* The following STK_ value appears only in AggElem.aMem.s.flag fields. ** It indicates that the corresponding AggElem.aMem.z points to a ** aggregate function context that needs to be finalized. */ #define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */ /* ** The "context" argument for a installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, ** even the public interface to SQLite, can use a pointer to this structure. ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbe.c because it uses substructures ** (Stack) which are only defined there. */ struct sqlite_func { FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ Stack s; /* Small strings, ints, and double values go here */ char *z; /* Space for holding dynamic string results */ void *pAgg; /* Aggregate context */ u8 isError; /* Set to true for an error */ u8 isStep; /* Current in the step function */ int cnt; /* Number of times that the step function has been called */ }; /* ** An Agg structure describes an Aggregator. Each Agg consists of ** zero or more Aggregator elements (AggElem). Each AggElem contains ** a key and one or more values. The values are used in processing ** aggregate functions in a SELECT. The key is used to implement ** the GROUP BY clause of a select. */ typedef struct Agg Agg; typedef struct AggElem AggElem; struct Agg { int nMem; /* Number of values stored in each AggElem */ AggElem *pCurrent; /* The AggElem currently in focus */ HashElem *pSearch; /* The hash element for pCurrent */ Hash hash; /* Hash table of all aggregate elements */ FuncDef **apFunc; /* Information about aggregate functions */ }; struct AggElem { char *zKey; /* The key to this AggElem */ int nKey; /* Number of bytes in the key, including '\0' at end */ Mem aMem[1]; /* The values for this AggElem */ }; /* ** A Set structure is used for quick testing to see if a value ** is part of a small set. Sets are used to implement code like ** this: ** x.y IN ('hi','hoo','hum') */ typedef struct Set Set; struct Set { Hash hash; /* A set is just a hash table */ HashElem *prev; /* Previously accessed hash elemen */ }; /* ** A Keylist is a bunch of keys into a table. The keylist can ** grow without bound. The keylist stores the ROWIDs of database ** records that need to be deleted or updated. */ typedef struct Keylist Keylist; struct Keylist { int nKey; /* Number of slots in aKey[] */ int nUsed; /* Next unwritten slot in aKey[] */ int nRead; /* Next unread slot in aKey[] */ Keylist *pNext; /* Next block of keys */ int aKey[1]; /* One or more keys. Extra space allocated as needed */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite_vm" structure pointer that is returned by sqlite_compile() ** is really a pointer to an instance of this structure. */ struct Vdbe { sqlite *db; /* The whole database */ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */ FILE *trace; /* Write an execution trace here, if not NULL */ int nOp; /* Number of instructions in the program */ int nOpAlloc; /* Number of slots allocated for aOp[] */ Op *aOp; /* Space to hold the virtual machine's program */ int nLabel; /* Number of labels used */ int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ int tos; /* Index of top of stack */ Stack *aStack; /* The operand stack, except string values */ char **zStack; /* Text or binary values of the stack */ char **azColName; /* Becomes the 4th parameter to callbacks */ int nCursor; /* Number of slots in aCsr[] */ Cursor *aCsr; /* One element of this array for each open cursor */ Sorter *pSort; /* A linked list of objects to be sorted */ FILE *pFile; /* At most one open file handler */ int nField; /* Number of file fields */ char **azField; /* Data for each file field */ char *zLine; /* A single line from the input file */ int magic; /* Magic number for sanity checking */ int nLineAlloc; /* Number of spaces allocated for zLine */ int nMem; /* Number of memory locations currently allocated */ Mem *aMem; /* The memory locations */ Agg agg; /* Aggregate information */ int nSet; /* Number of sets allocated */ Set *aSet; /* An array of sets */ int nCallback; /* Number of callbacks invoked so far */ Keylist *pList; /* A list of ROWIDs */ int keylistStackDepth; /* The size of the "keylist" stack */ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */ int pc; /* The program counter */ int rc; /* Value to return */ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */ int errorAction; /* Recovery action to do in case of an error */ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */ int inTempTrans; /* True if temp database is transactioned */ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */ int returnDepth; /* Next unused element in returnStack[] */ int nResColumn; /* Number of columns in one row of the result set */ char **azResColumn; /* Values for one row of result */ int (*xCallback)(void*,int,char**,char**); /* Callback for SELECT results */ void *pCbArg; /* First argument to xCallback() */ int popStack; /* Pop the stack this much on entry to VdbeExec() */ char *zErrMsg; /* Error message written here */ u8 explain; /* True if EXPLAIN present on SQL command */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ #define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */ #define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */ /* ** When debugging the code generator in a symbolic debugger, one can ** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed ** as they are added to the instruction stream. */ #ifndef NDEBUG int sqlite_vdbe_addop_trace = 0; static void vdbePrintOp(FILE*, int, Op*); #endif /* ** Create a new virtual database engine. */ Vdbe *sqliteVdbeCreate(sqlite *db){ Vdbe *p; p = sqliteMalloc( sizeof(Vdbe) ); if( p==0 ) return 0; p->db = db; if( db->pVdbe ){ db->pVdbe->pPrev = p; } p->pNext = db->pVdbe; p->pPrev = 0; db->pVdbe = p; p->magic = VDBE_MAGIC_INIT; return p; } /* ** Turn tracing on or off */ void sqliteVdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2 First two of the three possible operands. ** ** Use the sqliteVdbeResolveLabel() function to fix an address and ** the sqliteVdbeChangeP3() function to change the value of the P3 ** operand. */ int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){ int i; i = p->nOp; p->nOp++; assert( p->magic==VDBE_MAGIC_INIT ); if( i>=p->nOpAlloc ){ int oldSize = p->nOpAlloc; Op *aNew; p->nOpAlloc = p->nOpAlloc*2 + 100; aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op)); if( aNew==0 ){ p->nOpAlloc = oldSize; return 0; } p->aOp = aNew; memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op)); } p->aOp[i].opcode = op; p->aOp[i].p1 = p1; if( p2<0 && (-1-p2)nLabel && p->aLabel[-1-p2]>=0 ){ p2 = p->aLabel[-1-p2]; } p->aOp[i].p2 = p2; p->aOp[i].p3 = 0; p->aOp[i].p3type = P3_NOTUSED; #ifndef NDEBUG if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i, &p->aOp[i]); #endif return i; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. */ int sqliteVdbeMakeLabel(Vdbe *p){ int i; i = p->nLabel++; assert( p->magic==VDBE_MAGIC_INIT ); if( i>=p->nLabelAlloc ){ int *aNew; p->nLabelAlloc = p->nLabelAlloc*2 + 10; aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0])); if( aNew==0 ){ sqliteFree(p->aLabel); } p->aLabel = aNew; } if( p->aLabel==0 ){ p->nLabel = 0; p->nLabelAlloc = 0; return 0; } p->aLabel[i] = -1; return -1-i; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqliteVdbeMakeLabel(). */ void sqliteVdbeResolveLabel(Vdbe *p, int x){ int j; assert( p->magic==VDBE_MAGIC_INIT ); if( x<0 && (-x)<=p->nLabel && p->aOp ){ if( p->aLabel[-1-x]==p->nOp ) return; assert( p->aLabel[-1-x]<0 ); p->aLabel[-1-x] = p->nOp; for(j=0; jnOp; j++){ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp; } } } /* ** Return the address of the next instruction to be inserted. */ int sqliteVdbeCurrentAddr(Vdbe *p){ assert( p->magic==VDBE_MAGIC_INIT ); return p->nOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){ int addr; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOp + nOp >= p->nOpAlloc ){ int oldSize = p->nOpAlloc; Op *aNew; p->nOpAlloc = p->nOpAlloc*2 + nOp + 10; aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op)); if( aNew==0 ){ p->nOpAlloc = oldSize; return 0; } p->aOp = aNew; memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op)); } addr = p->nOp; if( nOp>0 ){ int i; for(i=0; iaOp[i+addr] = aOp[i]; if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2); p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED; #ifndef NDEBUG if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i+addr, &p->aOp[i+addr]); #endif } p->nOp += nOp; } return addr; } #if 0 /* NOT USED */ /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. */ void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){ assert( p->magic==VDBE_MAGIC_INIT ); if( p && addr>=0 && p->nOp>addr && p->aOp ){ p->aOp[addr].p1 = val; } } #endif /* NOT USED */ /* ** Change the value of the P2 operand for a specific instruction. ** This routine is useful for setting a jump destination. */ void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){ assert( val>=0 ); assert( p->magic==VDBE_MAGIC_INIT ); if( p && addr>=0 && p->nOp>addr && p->aOp ){ p->aOp[addr].p2 = val; } } /* ** Change the value of the P3 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P3 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqliteMalloc(). ** A value of n==0 means copy bytes of zP3 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP3. ** ** If n==P3_STATIC it means that zP3 is a pointer to a constant static ** string and we can just copy the pointer. n==P3_POINTER means zP3 is ** a pointer to some object other than a string. ** ** If addr<0 then change P3 on the most recently inserted instruction. */ void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){ Op *pOp; assert( p->magic==VDBE_MAGIC_INIT ); if( p==0 || p->aOp==0 ) return; if( addr<0 || addr>=p->nOp ){ addr = p->nOp - 1; if( addr<0 ) return; } pOp = &p->aOp[addr]; if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){ sqliteFree(pOp->p3); pOp->p3 = 0; } if( zP3==0 ){ pOp->p3 = 0; pOp->p3type = P3_NOTUSED; }else if( n<0 ){ pOp->p3 = (char*)zP3; pOp->p3type = n; }else{ sqliteSetNString(&pOp->p3, zP3, n, 0); pOp->p3type = P3_DYNAMIC; } } /* ** If the P3 operand to the specified instruction appears ** to be a quoted string token, then this procedure removes ** the quotes. ** ** The quoting operator can be either a grave ascent (ASCII 0x27) ** or a double quote character (ASCII 0x22). Two quotes in a row ** resolve to be a single actual quote character within the string. */ void sqliteVdbeDequoteP3(Vdbe *p, int addr){ Op *pOp; assert( p->magic==VDBE_MAGIC_INIT ); if( p->aOp==0 || addr<0 || addr>=p->nOp ) return; pOp = &p->aOp[addr]; if( pOp->p3==0 || pOp->p3[0]==0 ) return; if( pOp->p3type==P3_POINTER ) return; if( pOp->p3type!=P3_DYNAMIC ){ pOp->p3 = sqliteStrDup(pOp->p3); pOp->p3type = P3_DYNAMIC; } sqliteDequote(pOp->p3); } /* ** On the P3 argument of the given instruction, change all ** strings of whitespace characters into a single space and ** delete leading and trailing whitespace. */ void sqliteVdbeCompressSpace(Vdbe *p, int addr){ char *z; int i, j; Op *pOp; assert( p->magic==VDBE_MAGIC_INIT ); if( p->aOp==0 || addr<0 || addr>=p->nOp ) return; pOp = &p->aOp[addr]; if( pOp->p3type==P3_POINTER ){ return; } if( pOp->p3type!=P3_DYNAMIC ){ pOp->p3 = sqliteStrDup(pOp->p3); pOp->p3type = P3_DYNAMIC; } z = pOp->p3; if( z==0 ) return; i = j = 0; while( isspace(z[i]) ){ i++; } while( z[i] ){ if( isspace(z[i]) ){ z[j++] = ' '; while( isspace(z[++i]) ){} }else{ z[j++] = z[i++]; } } while( j>0 && isspace(z[j-1]) ){ j--; } z[j] = 0; } /* ** Search for the current program for the given opcode and P2 ** value. Return the address plus 1 if found and 0 if not found. */ int sqliteVdbeFindOp(Vdbe *p, int op, int p2){ int i; assert( p->magic==VDBE_MAGIC_INIT ); for(i=0; inOp; i++){ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1; } return 0; } /* ** Return the opcode for a given address. */ VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){ assert( p->magic==VDBE_MAGIC_INIT ); assert( addr>=0 && addrnOp ); return &p->aOp[addr]; } /* ** The following group or routines are employed by installable functions ** to return their results. ** ** The sqlite_set_result_string() routine can be used to return a string ** value or to return a NULL. To return a NULL, pass in NULL for zResult. ** A copy is made of the string before this routine returns so it is safe ** to pass in an ephemeral string. ** ** sqlite_set_result_error() works like sqlite_set_result_string() except ** that it signals a fatal error. The string argument, if any, is the ** error message. If the argument is NULL a generic substitute error message ** is used. ** ** The sqlite_set_result_int() and sqlite_set_result_double() set the return ** value of the user function to an integer or a double. ** ** These routines are defined here in vdbe.c because they depend on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){ assert( !p->isStep ); if( p->s.flags & STK_Dyn ){ sqliteFree(p->z); } if( zResult==0 ){ p->s.flags = STK_Null; n = 0; p->z = 0; p->s.n = 0; }else{ if( n<0 ) n = strlen(zResult); if( ns.z, zResult, n); p->s.z[n] = 0; p->s.flags = STK_Str; p->z = p->s.z; }else{ p->z = sqliteMallocRaw( n+1 ); if( p->z ){ memcpy(p->z, zResult, n); p->z[n] = 0; } p->s.flags = STK_Str | STK_Dyn; } p->s.n = n+1; } return p->z; } void sqlite_set_result_int(sqlite_func *p, int iResult){ assert( !p->isStep ); if( p->s.flags & STK_Dyn ){ sqliteFree(p->z); } p->s.i = iResult; p->s.flags = STK_Int; } void sqlite_set_result_double(sqlite_func *p, double rResult){ assert( !p->isStep ); if( p->s.flags & STK_Dyn ){ sqliteFree(p->z); } p->s.r = rResult; p->s.flags = STK_Real; } void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){ assert( !p->isStep ); sqlite_set_result_string(p, zMsg, n); p->isError = 1; } /* ** Extract the user data from a sqlite_func structure and return a ** pointer to it. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ void *sqlite_user_data(sqlite_func *p){ assert( p && p->pFunc ); return p->pFunc->pUserData; } /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ void *sqlite_aggregate_context(sqlite_func *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); if( p->pAgg==0 ){ if( nByte<=NBFS ){ p->pAgg = (void*)p->z; }else{ p->pAgg = sqliteMalloc( nByte ); } } return p->pAgg; } /* ** Return the number of times the Step function of a aggregate has been ** called. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ int sqlite_aggregate_count(sqlite_func *p){ assert( p && p->pFunc && p->pFunc->xStep ); return p->cnt; } /* ** Advance the virtual machine to the next output row. ** ** The return vale will be either SQLITE_BUSY, SQLITE_DONE, ** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE. ** ** SQLITE_BUSY means that the virtual machine attempted to open ** a locked database and there is no busy callback registered. ** Call sqlite_step() again to retry the open. *pN is set to 0 ** and *pazColName and *pazValue are both set to NULL. ** ** SQLITE_DONE means that the virtual machine has finished ** executing. sqlite_step() should not be called again on this ** virtual machine. *pN and *pazColName are set appropriately ** but *pazValue is set to NULL. ** ** SQLITE_ROW means that the virtual machine has generated another ** row of the result set. *pN is set to the number of columns in ** the row. *pazColName is set to the names of the columns followed ** by the column datatypes. *pazValue is set to the values of each ** column in the row. The value of the i-th column is (*pazValue)[i]. ** The name of the i-th column is (*pazColName)[i] and the datatype ** of the i-th column is (*pazColName)[i+*pN]. ** ** SQLITE_ERROR means that a run-time error (such as a constraint ** violation) has occurred. The details of the error will be returned ** by the next call to sqlite_finalize(). sqlite_step() should not ** be called again on the VM. ** ** SQLITE_MISUSE means that the this routine was called inappropriately. ** Perhaps it was called on a virtual machine that had already been ** finalized or on one that had previously returned SQLITE_ERROR or ** SQLITE_DONE. Or it could be the case the the same database connection ** is being used simulataneously by two or more threads. */ int sqlite_step( sqlite_vm *pVm, /* The virtual machine to execute */ int *pN, /* OUT: Number of columns in result */ const char ***pazValue, /* OUT: Column data */ const char ***pazColName /* OUT: Column names and datatypes */ ){ Vdbe *p = (Vdbe*)pVm; sqlite *db; int rc; if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_MISUSE; } db = p->db; if( sqliteSafetyOn(db) ){ return SQLITE_MISUSE; } if( p->explain ){ rc = sqliteVdbeList(p); }else{ rc = sqliteVdbeExec(p); } if( rc==SQLITE_DONE || rc==SQLITE_ROW ){ *pazColName = (const char**)p->azColName; *pN = p->nResColumn; }else{ *pN = 0; *pazColName = 0; } if( rc==SQLITE_ROW ){ *pazValue = (const char**)p->azResColumn; }else{ *pazValue = 0; } if( sqliteSafetyOff(db) ){ return SQLITE_MISUSE; } return rc; } /* ** Reset an Agg structure. Delete all its contents. ** ** For installable aggregate functions, if the step function has been ** called, make sure the finalizer function has also been called. The ** finalizer might need to free memory that was allocated as part of its ** private context. If the finalizer has not been called yet, call it ** now. */ static void AggReset(Agg *pAgg){ int i; HashElem *p; for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){ AggElem *pElem = sqliteHashData(p); assert( pAgg->apFunc!=0 ); for(i=0; inMem; i++){ Mem *pMem = &pElem->aMem[i]; if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){ sqlite_func ctx; ctx.pFunc = pAgg->apFunc[i]; ctx.s.flags = STK_Null; ctx.z = 0; ctx.pAgg = pMem->z; ctx.cnt = pMem->s.i; ctx.isStep = 0; ctx.isError = 0; (*pAgg->apFunc[i]->xFinalize)(&ctx); if( pMem->z!=0 && pMem->z!=pMem->s.z ){ sqliteFree(pMem->z); } }else if( pMem->s.flags & STK_Dyn ){ sqliteFree(pMem->z); } } sqliteFree(pElem); } sqliteHashClear(&pAgg->hash); sqliteFree(pAgg->apFunc); pAgg->apFunc = 0; pAgg->pCurrent = 0; pAgg->pSearch = 0; pAgg->nMem = 0; } /* ** Insert a new aggregate element and make it the element that ** has focus. ** ** Return 0 on success and 1 if memory is exhausted. */ static int AggInsert(Agg *p, char *zKey, int nKey){ AggElem *pElem, *pOld; int i; pElem = sqliteMalloc( sizeof(AggElem) + nKey + (p->nMem-1)*sizeof(pElem->aMem[0]) ); if( pElem==0 ) return 1; pElem->zKey = (char*)&pElem->aMem[p->nMem]; memcpy(pElem->zKey, zKey, nKey); pElem->nKey = nKey; pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); if( pOld!=0 ){ assert( pOld==pElem ); /* Malloc failed on insert */ sqliteFree(pOld); return 0; } for(i=0; inMem; i++){ pElem->aMem[i].s.flags = STK_Null; } p->pCurrent = pElem; return 0; } /* ** Get the AggElem currently in focus */ #define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) static AggElem *_AggInFocus(Agg *p){ HashElem *pElem = sqliteHashFirst(&p->hash); if( pElem==0 ){ AggInsert(p,"",1); pElem = sqliteHashFirst(&p->hash); } return pElem ? sqliteHashData(pElem) : 0; } /* ** Convert the given stack entity into a string if it isn't one ** already. */ #define Stringify(P,I) if((aStack[I].flags & STK_Str)==0){hardStringify(P,I);} static int hardStringify(Vdbe *p, int i){ Stack *pStack = &p->aStack[i]; int fg = pStack->flags; if( fg & STK_Real ){ sprintf(pStack->z,"%.15g",pStack->r); }else if( fg & STK_Int ){ sprintf(pStack->z,"%d",pStack->i); }else{ pStack->z[0] = 0; } p->zStack[i] = pStack->z; pStack->n = strlen(pStack->z)+1; pStack->flags = STK_Str; return 0; } /* ** Convert the given stack entity into a string that has been obtained ** from sqliteMalloc(). This is different from Stringify() above in that ** Stringify() will use the NBFS bytes of static string space if the string ** will fit but this routine always mallocs for space. ** Return non-zero if we run out of memory. */ #define Dynamicify(P,I) ((aStack[I].flags & STK_Dyn)==0 ? hardDynamicify(P,I):0) static int hardDynamicify(Vdbe *p, int i){ Stack *pStack = &p->aStack[i]; int fg = pStack->flags; char *z; if( (fg & STK_Str)==0 ){ hardStringify(p, i); } assert( (fg & STK_Dyn)==0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, p->zStack[i], pStack->n); p->zStack[i] = z; pStack->flags |= STK_Dyn; return 0; } /* ** An ephemeral string value (signified by the STK_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the stack entry ** does not control the string, it might be deleted without the stack ** entry knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the stack entry itself controls. In other words, it ** converts an STK_Ephem string into an STK_Dyn string. */ #define Deephemeralize(P,I) \ if( ((P)->aStack[I].flags&STK_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;} static int hardDeephem(Vdbe *p, int i){ Stack *pStack = &p->aStack[i]; char **pzStack = &p->zStack[i]; char *z; assert( (pStack->flags & STK_Ephem)!=0 ); z = sqliteMallocRaw( pStack->n ); if( z==0 ) return 1; memcpy(z, *pzStack, pStack->n); *pzStack = z; return 0; } /* ** Release the memory associated with the given stack level */ #define Release(P,I) if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); } static void hardRelease(Vdbe *p, int i){ sqliteFree(p->zStack[i]); p->zStack[i] = 0; p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static|STK_Ephem); } /* ** Return TRUE if zNum is an integer and write ** the value of the integer into *pNum. ** ** Under Linux (RedHat 7.2) this routine is much faster than atoi() ** for converting strings into integers. */ static int toInt(const char *zNum, int *pNum){ int v = 0; int neg; if( *zNum=='-' ){ neg = 1; zNum++; }else if( *zNum=='+' ){ neg = 0; zNum++; }else{ neg = 0; } if( *zNum==0 ) return 0; while( isdigit(*zNum) ){ v = v*10 + *zNum - '0'; zNum++; } *pNum = neg ? -v : v; return *zNum==0; } /* ** Convert the given stack entity into a integer if it isn't one ** already. ** ** Any prior string or real representation is invalidated. ** NULLs are converted into 0. */ #define Integerify(P,I) \ if(((P)->aStack[(I)].flags&STK_Int)==0){ hardIntegerify(P,I); } static void hardIntegerify(Vdbe *p, int i){ if( p->aStack[i].flags & STK_Real ){ p->aStack[i].i = (int)p->aStack[i].r; Release(p, i); }else if( p->aStack[i].flags & STK_Str ){ toInt(p->zStack[i], &p->aStack[i].i); Release(p, i); }else{ p->aStack[i].i = 0; } p->aStack[i].flags = STK_Int; } /* ** Get a valid Real representation for the given stack element. ** ** Any prior string or integer representation is retained. ** NULLs are converted into 0.0. */ #define Realify(P,I) \ if(((P)->aStack[(I)].flags&STK_Real)==0){ hardRealify(P,I); } static void hardRealify(Vdbe *p, int i){ if( p->aStack[i].flags & STK_Str ){ p->aStack[i].r = atof(p->zStack[i]); }else if( p->aStack[i].flags & STK_Int ){ p->aStack[i].r = p->aStack[i].i; }else{ p->aStack[i].r = 0.0; } p->aStack[i].flags |= STK_Real; } /* ** Pop the stack N times. Free any memory associated with the ** popped stack elements. */ static void PopStack(Vdbe *p, int N){ assert( N>=0 ); if( p->zStack==0 ) return; assert( p->aStack || sqlite_malloc_failed ); if( p->aStack==0 ) return; while( N-- > 0 ){ if( p->aStack[p->tos].flags & STK_Dyn ){ sqliteFree(p->zStack[p->tos]); } p->aStack[p->tos].flags = 0; p->zStack[p->tos] = 0; p->tos--; } } /* ** Here is a macro to handle the common case of popping the stack ** once. This macro only works from within the sqliteVdbeExec() ** function. */ #define POPSTACK \ assert(p->tos>=0); \ if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \ p->tos--; /* ** Delete a keylist */ static void KeylistFree(Keylist *p){ while( p ){ Keylist *pNext = p->pNext; sqliteFree(p); p = pNext; } } /* ** Close a cursor and release all the resources that cursor happens ** to hold. */ static void cleanupCursor(Cursor *pCx){ if( pCx->pCursor ){ sqliteBtreeCloseCursor(pCx->pCursor); } if( pCx->pBt ){ sqliteBtreeClose(pCx->pBt); } sqliteFree(pCx->pData); memset(pCx, 0, sizeof(Cursor)); } /* ** Close all cursors */ static void closeAllCursors(Vdbe *p){ int i; for(i=0; inCursor; i++){ cleanupCursor(&p->aCsr[i]); } sqliteFree(p->aCsr); p->aCsr = 0; p->nCursor = 0; } /* ** Remove any elements that remain on the sorter for the VDBE given. */ static void SorterReset(Vdbe *p){ while( p->pSort ){ Sorter *pSorter = p->pSort; p->pSort = pSorter->pNext; sqliteFree(pSorter->zKey); sqliteFree(pSorter->pData); sqliteFree(pSorter); } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. */ static void Cleanup(Vdbe *p){ int i; PopStack(p, p->tos+1); closeAllCursors(p); if( p->aMem ){ for(i=0; inMem; i++){ if( p->aMem[i].s.flags & STK_Dyn ){ sqliteFree(p->aMem[i].z); } } } sqliteFree(p->aMem); p->aMem = 0; p->nMem = 0; if( p->pList ){ KeylistFree(p->pList); p->pList = 0; } SorterReset(p); if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( p->azField ){ sqliteFree(p->azField); p->azField = 0; } p->nField = 0; if( p->zLine ){ sqliteFree(p->zLine); p->zLine = 0; } p->nLineAlloc = 0; AggReset(&p->agg); if( p->aSet ){ for(i=0; inSet; i++){ sqliteHashClear(&p->aSet[i].hash); } } sqliteFree(p->aSet); p->aSet = 0; p->nSet = 0; if( p->keylistStack ){ int ii; for(ii = 0; ii < p->keylistStackDepth; ii++){ KeylistFree(p->keylistStack[ii]); } sqliteFree(p->keylistStack); p->keylistStackDepth = 0; p->keylistStack = 0; } sqliteFree(p->zErrMsg); p->zErrMsg = 0; p->magic = VDBE_MAGIC_DEAD; } /* ** Delete an entire VDBE. */ void sqliteVdbeDelete(Vdbe *p){ int i; if( p==0 ) return; Cleanup(p); if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( p->db->pVdbe==p ); p->db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } p->pPrev = p->pNext = 0; if( p->nOpAlloc==0 ){ p->aOp = 0; p->nOp = 0; } for(i=0; inOp; i++){ if( p->aOp[i].p3type==P3_DYNAMIC ){ sqliteFree(p->aOp[i].p3); } } sqliteFree(p->aOp); sqliteFree(p->aLabel); sqliteFree(p->aStack); sqliteFree(p); } /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqliteVdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". */ int sqliteVdbeList( Vdbe *p /* The VDBE */ ){ sqlite *db = p->db; int i; static char *azColumnNames[] = { "addr", "opcode", "p1", "p2", "p3", "int", "text", "int", "int", "text", 0 }; assert( p->popStack==0 ); assert( p->explain ); p->azColName = azColumnNames; p->azResColumn = p->zStack; for(i=0; i<5; i++) p->zStack[i] = p->aStack[i].z; p->rc = SQLITE_OK; for(i=p->pc; p->rc==SQLITE_OK && inOp; i++){ if( db->flags & SQLITE_Interrupt ){ db->flags &= ~SQLITE_Interrupt; if( db->magic!=SQLITE_MAGIC_BUSY ){ p->rc = SQLITE_MISUSE; }else{ p->rc = SQLITE_INTERRUPT; } sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), 0); break; } sprintf(p->zStack[0],"%d",i); sprintf(p->zStack[2],"%d", p->aOp[i].p1); sprintf(p->zStack[3],"%d", p->aOp[i].p2); if( p->aOp[i].p3type==P3_POINTER ){ sprintf(p->aStack[4].z, "ptr(%p)", p->aOp[i].p3); p->zStack[4] = p->aStack[4].z; }else{ p->zStack[4] = p->aOp[i].p3; } p->zStack[1] = sqliteOpcodeNames[p->aOp[i].opcode]; if( p->xCallback==0 ){ p->pc = i+1; p->azResColumn = p->zStack; p->nResColumn = 5; return SQLITE_ROW; } if( sqliteSafetyOff(db) ){ p->rc = SQLITE_MISUSE; break; } if( p->xCallback(p->pCbArg, 5, p->zStack, p->azColName) ){ p->rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ){ p->rc = SQLITE_MISUSE; } } return p->rc==SQLITE_OK ? SQLITE_DONE : SQLITE_ERROR; } /* ** The parameters are pointers to the head of two sorted lists ** of Sorter structures. Merge these two lists together and return ** a single sorted list. This routine forms the core of the merge-sort ** algorithm. ** ** In the case of a tie, left sorts in front of right. */ static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ Sorter sHead; Sorter *pTail; pTail = &sHead; pTail->pNext = 0; while( pLeft && pRight ){ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); if( c<=0 ){ pTail->pNext = pLeft; pLeft = pLeft->pNext; }else{ pTail->pNext = pRight; pRight = pRight->pNext; } pTail = pTail->pNext; } if( pLeft ){ pTail->pNext = pLeft; }else if( pRight ){ pTail->pNext = pRight; } return sHead.pNext; } /* ** Convert an integer in between the native integer format and ** the bigEndian format used as the record number for tables. ** ** The bigEndian format (most significant byte first) is used for ** record numbers so that records will sort into the correct order ** even though memcmp() is used to compare the keys. On machines ** whose native integer format is little endian (ex: i486) the ** order of bytes is reversed. On native big-endian machines ** (ex: Alpha, Sparc, Motorola) the byte order is the same. ** ** This function is its own inverse. In other words ** ** X == byteSwap(byteSwap(X)) */ static int byteSwap(int x){ union { char zBuf[sizeof(int)]; int i; } ux; ux.zBuf[3] = x&0xff; ux.zBuf[2] = (x>>8)&0xff; ux.zBuf[1] = (x>>16)&0xff; ux.zBuf[0] = (x>>24)&0xff; return ux.i; } /* ** When converting from the native format to the key format and back ** again, in addition to changing the byte order we invert the high-order ** bit of the most significant byte. This causes negative numbers to ** sort before positive numbers in the memcmp() function. */ #define keyToInt(X) (byteSwap(X) ^ 0x80000000) #define intToKey(X) (byteSwap((X) ^ 0x80000000)) /* ** Code contained within the VERIFY() macro is not needed for correct ** execution. It is there only to catch errors. So when we compile ** with NDEBUG=1, the VERIFY() code is omitted. */ #ifdef NDEBUG # define VERIFY(X) #else # define VERIFY(X) X #endif /* ** The following routine works like a replacement for the standard ** library routine fgets(). The difference is in how end-of-line (EOL) ** is handled. Standard fgets() uses LF for EOL under unix, CRLF ** under windows, and CR under mac. This routine accepts any of these ** character sequences as an EOL mark. The EOL mark is replaced by ** a single LF character in zBuf. */ static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){ int i, c; for(i=0; i0 ? zBuf : 0; } #if !defined(NDEBUG) || defined(VDBE_PROFILE) /* ** Print a single opcode. This routine is used for debugging only. */ static void vdbePrintOp(FILE *pOut, int pc, Op *pOp){ char *zP3; char zPtr[40]; if( pOp->p3type==P3_POINTER ){ sprintf(zPtr, "ptr(%#x)", (int)pOp->p3); zP3 = zPtr; }else{ zP3 = pOp->p3; } if( pOut==0 ) pOut = stdout; fprintf(pOut,"%4d %-12s %4d %4d %s\n", pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : ""); fflush(pOut); } #endif /* ** Make sure there is space in the Vdbe structure to hold at least ** mxCursor cursors. If there is not currently enough space, then ** allocate more. ** ** If a memory allocation error occurs, return 1. Return 0 if ** everything works. */ static int expandCursorArraySize(Vdbe *p, int mxCursor){ if( mxCursor>=p->nCursor ){ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) ); if( aCsr==0 ) return 1; p->aCsr = aCsr; memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor)); p->nCursor = mxCursor+1; } return 0; } #ifdef VDBE_PROFILE /* ** The following routine only works on pentium-class processors. ** It uses the RDTSC opcode to read cycle count value out of the ** processor and returns that value. This can be used for high-res ** profiling. */ __inline__ unsigned long long int hwtime(void){ unsigned long long int x; __asm__("rdtsc\n\t" "mov %%edx, %%ecx\n\t" :"=A" (x)); return x; } #endif /* ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the ** sqlite_interrupt() routine has been called. If it has been, then ** processing of the VDBE program is interrupted. ** ** This macro added to every instruction that does a jump in order to ** implement a loop. This test used to be on every single instruction, ** but that meant we more testing that we needed. By only testing the ** flag on jump instructions, we get a (small) speed improvement. */ #define CHECK_FOR_INTERRUPT \ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; /* ** Prepare a virtual machine for execution. This involves things such ** as allocating stack space and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqliteVdbeExec(). ** ** The behavior of sqliteVdbeExec() is influenced by the parameters to ** this routine. If xCallback is NULL, then sqliteVdbeExec() will return ** with SQLITE_ROW whenever there is a row of the result set ready ** to be delivered. p->azResColumn will point to the row and ** p->nResColumn gives the number of columns in the row. If xCallback ** is not NULL, then the xCallback() routine is invoked to process each ** row in the result set. */ void sqliteVdbeMakeReady( Vdbe *p, /* The VDBE */ sqlite_callback xCallback, /* Result callback */ void *pCallbackArg, /* 1st argument to xCallback() */ int isExplain /* True if the EXPLAIN keywords is present */ ){ int n; #ifdef MEMORY_DEBUG extern int access(const char*,int); #endif assert( p!=0 ); assert( p->aStack==0 ); assert( p->magic==VDBE_MAGIC_INIT ); /* Add a HALT instruction to the very end of the program. */ sqliteVdbeAddOp(p, OP_Halt, 0, 0); /* No instruction ever pushes more than a single element onto the ** stack. And the stack never grows on successive executions of the ** same loop. So the total number of instructions is an upper bound ** on the maximum stack depth required. ** ** Allocation all the stack space we will ever need. */ n = isExplain ? 10 : p->nOp; p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) ); p->zStack = (char**)&p->aStack[n]; p->azColName = (char**)&p->zStack[n]; sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0); p->agg.pSearch = 0; #ifdef MEMORY_DEBUG if( access("vdbe_trace",0)==0 ){ p->trace = stdout; } #endif p->tos = -1; p->pc = 0; p->rc = SQLITE_OK; p->uniqueCnt = 0; p->returnDepth = 0; p->errorAction = OE_Abort; p->undoTransOnError = 0; p->xCallback = xCallback; p->pCbArg = pCallbackArg; p->popStack = 0; p->explain = isExplain; p->magic = VDBE_MAGIC_RUN; #ifdef VDBE_PROFILE for(i=0; inOp; i++){ p->aOp[i].cnt = 0; p->aOp[i].cycles = 0; } #endif } /* ** Execute as much of a VDBE program as we can then return. ** ** sqliteVdbeMakeReady() must be called before this routine in order to ** close the program with a final OP_Halt and to set up the callbacks ** and the error message pointer. ** ** Whenever a row or result data is available, this routine will either ** invoke the result callback (if there is one) or return with ** SQLITE_ROW. ** ** If an attempt is made to open a locked database, then this routine ** will either invoke the busy callback (if there is one) or it will ** return SQLITE_BUSY. ** ** If an error occurs, an error message is written to memory obtained ** from sqliteMalloc() and p->zErrMsg is made to point to that memory. ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. ** ** If the callback ever returns non-zero, then the program exits ** immediately. There will be no error message but the p->rc field is ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. ** ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this ** routine to return SQLITE_ERROR. ** ** Other fatal errors return SQLITE_ERROR. ** ** After this routine has finished, sqliteVdbeFinalize() should be ** used to clean up the mess that was left behind. */ int sqliteVdbeExec( Vdbe *p /* The VDBE */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite *db = p->db; /* The database */ char **zStack = p->zStack; /* Text stack */ Stack *aStack = p->aStack; /* Additional stack information */ char zBuf[100]; /* Space to sprintf() an integer */ #ifdef VDBE_PROFILE unsigned long long start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; assert( db->magic==SQLITE_MAGIC_BUSY ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); p->rc = SQLITE_OK; assert( p->explain==0 ); if( sqlite_malloc_failed ) goto no_mem; if( p->popStack ){ PopStack(p, p->popStack); p->popStack = 0; } for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pcnOp ); #ifdef VDBE_PROFILE origPc = pc; start = hwtime(); #endif pOp = &p->aOp[pc]; /* Only allow tracing if NDEBUG is not defined. */ #ifndef NDEBUG if( p->trace ){ vdbePrintOp(p->trace, pc, pOp); } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. ** ** The formatting of each case is important. The makefile for SQLite ** generates two C files "opcodes.h" and "opcodes.c" by scanning this ** file looking for lines that begin with "case OP_". The opcodes.h files ** will be filled with #defines that give unique integer values to each ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. ** ** Documentation about VDBE opcodes is generated by scanning this file ** for lines of that contain "Opcode:". That line and all subsequent ** comment lines are used in the generation of the opcode.html documentation ** file. ** ** SUMMARY: ** ** Formatting is important to scripts that scan this file. ** Do not deviate from the formatting style currently in use. ** *****************************************************************************/ /* Opcode: Goto * P2 * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { CHECK_FOR_INTERRUPT; pc = pOp->p2 - 1; break; } /* Opcode: Gosub * P2 * ** ** Push the current address plus 1 onto the return address stack ** and then jump to address P2. ** ** The return address stack is of limited depth. If too many ** OP_Gosub operations occur without intervening OP_Returns, then ** the return address stack will fill up and processing will abort ** with a fatal error. */ case OP_Gosub: { if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){ sqliteSetString(&p->zErrMsg, "return address stack overflow", 0); p->rc = SQLITE_INTERNAL; return SQLITE_ERROR; } p->returnStack[p->returnDepth++] = pc+1; pc = pOp->p2 - 1; break; } /* Opcode: Return * * * ** ** Jump immediately to the next instruction after the last unreturned ** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then ** processing aborts with a fatal error. */ case OP_Return: { if( p->returnDepth<=0 ){ sqliteSetString(&p->zErrMsg, "return address stack underflow", 0); p->rc = SQLITE_INTERNAL; return SQLITE_ERROR; } p->returnDepth--; pc = p->returnStack[p->returnDepth] - 1; break; } /* Opcode: Halt P1 P2 * ** ** Exit immediately. All open cursors, Lists, Sorts, etc are closed ** automatically. ** ** P1 is the result code returned by sqlite_exec(). For a normal ** halt, this should be SQLITE_OK (0). For errors, it can be some ** other value. If P1!=0 then P2 will determine whether or not to ** rollback the current transaction. Do not rollback if P2==OE_Fail. ** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back ** out all changes that have occurred during this execution of the ** VDBE, but do not rollback the transaction. ** ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { p->magic = VDBE_MAGIC_HALT; if( pOp->p1!=SQLITE_OK ){ p->rc = pOp->p1; p->errorAction = pOp->p2; if( pOp->p3 ){ sqliteSetString(&p->zErrMsg, pOp->p3, 0); } return SQLITE_ERROR; }else{ p->rc = SQLITE_OK; return SQLITE_DONE; } } /* Opcode: Integer P1 * P3 ** ** The integer value P1 is pushed onto the stack. If P3 is not zero ** then it is assumed to be a string representation of the same integer. */ case OP_Integer: { int i = ++p->tos; aStack[i].i = pOp->p1; aStack[i].flags = STK_Int; if( pOp->p3 ){ zStack[i] = pOp->p3; aStack[i].flags |= STK_Str | STK_Static; aStack[i].n = strlen(pOp->p3)+1; } break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. If P3==0 then a ** NULL is pushed onto the stack. */ case OP_String: { int i = ++p->tos; char *z; z = pOp->p3; if( z==0 ){ zStack[i] = 0; aStack[i].n = 0; aStack[i].flags = STK_Null; }else{ zStack[i] = z; aStack[i].n = strlen(z) + 1; aStack[i].flags = STK_Str | STK_Static; } break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. */ case OP_Pop: { assert( p->tos+1>=pOp->p1 ); PopStack(p, pOp->p1); break; } /* Opcode: Dup P1 P2 * ** ** A copy of the P1-th element of the stack ** is made and pushed onto the top of the stack. ** The top of the stack is element 0. So the ** instruction "Dup 0 0 0" will make a copy of the ** top of the stack. ** ** If the content of the P1-th element is a dynamically ** allocated string, then a new copy of that string ** is made if P2==0. If P2!=0, then just a pointer ** to the string is copied. ** ** Also see the Pull instruction. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS); if( aStack[j].flags & STK_Str ){ int isStatic = (aStack[j].flags & STK_Static)!=0; if( pOp->p2 || isStatic ){ zStack[j] = zStack[i]; aStack[j].flags &= ~STK_Dyn; if( !isStatic ) aStack[j].flags |= STK_Ephem; }else if( aStack[i].n<=NBFS ){ memcpy(aStack[j].z, zStack[i], aStack[j].n); zStack[j] = aStack[j].z; aStack[j].flags &= ~(STK_Static|STK_Dyn|STK_Ephem); }else{ zStack[j] = sqliteMallocRaw( aStack[j].n ); if( zStack[j]==0 ) goto no_mem; memcpy(zStack[j], zStack[i], aStack[j].n); aStack[j].flags &= ~(STK_Static|STK_Ephem); aStack[j].flags |= STK_Dyn; } } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. "Pull 1 0 0" swaps the top two elements of ** the stack. ** ** See also the Dup instruction. */ case OP_Pull: { int from = p->tos - pOp->p1; int to = p->tos; int i; Stack ts; char *tz; VERIFY( if( from<0 ) goto not_enough_stack; ) ts = aStack[from]; tz = zStack[from]; Deephemeralize(p, to); for(i=from; itos; int to = p->tos - pOp->p1; VERIFY( if( to<0 ) goto not_enough_stack; ) if( aStack[to].flags & STK_Dyn ){ sqliteFree(zStack[to]); } Deephemeralize(p, from); aStack[to] = aStack[from]; if( aStack[to].flags & (STK_Dyn|STK_Static|STK_Ephem) ){ zStack[to] = zStack[from]; }else{ zStack[to] = aStack[to].z; } aStack[from].flags = 0; p->tos--; break; } /* Opcode: ColumnName P1 * P3 ** ** P3 becomes the P1-th column name (first is 0). An array of pointers ** to all column names is passed as the 4th parameter to the callback. */ case OP_ColumnName: { assert( pOp->p1>=0 && pOp->p1nOp ); p->azColName[pOp->p1] = pOp->p3; p->nCallback = 0; break; } /* Opcode: Callback P1 * * ** ** Pop P1 values off the stack and form them into an array. Then ** invoke the callback function using the newly formed array as the ** 3rd parameter. */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) for(j=i; j<=p->tos; j++){ if( aStack[j].flags & STK_Null ){ zStack[j] = 0; }else{ Stringify(p, j); } } zStack[p->tos+1] = 0; if( p->xCallback==0 ){ p->azResColumn = &zStack[i]; p->nResColumn = pOp->p1; p->popStack = pOp->p1; p->pc = pc + 1; return SQLITE_ROW; } if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, &zStack[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; PopStack(p, pOp->p1); if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: NullCallback P1 * * ** ** Invoke the callback function once with the 2nd argument (the ** number of columns) equal to P1 and with the 4th argument (the ** names of the columns) set according to prior OP_ColumnName ** instructions. This is all like the regular ** OP_Callback or OP_SortCallback opcodes. But the 3rd argument ** which normally contains a pointer to an array of pointers to ** data is NULL. ** ** The callback is only invoked if there have been no prior calls ** to OP_Callback or OP_SortCallback. ** ** This opcode is used to report the number and names of columns ** in cases where the result set is empty. */ case OP_NullCallback: { if( p->nCallback==0 && p->xCallback!=0 ){ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, 0, p->azColName)!=0 ){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; if( sqlite_malloc_failed ) goto no_mem; } p->nResColumn = pOp->p1; break; } /* Opcode: Concat P1 P2 P3 ** ** Look at the first P1 elements of the stack. Append them all ** together with the lowest element first. Use P3 as a separator. ** Put the result on the top of the stack. The original P1 elements ** are popped from the stack if P2==0 and retained if P2==1. If ** any element of the stack is NULL, then the result is NULL. ** ** If P3 is NULL, then use no separator. When P1==1, this routine ** makes a copy of the top stack element into memory obtained ** from sqliteMalloc(). */ case OP_Concat: { char *zNew; int nByte; int nField; int i, j; char *zSep; int nSep; nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte = -1; break; }else{ Stringify(p, i); nByte += aStack[i].n - 1 + nSep; } } if( nByte<0 ){ if( pOp->p2==0 ) PopStack(p, nField); p->tos++; aStack[p->tos].flags = STK_Null; zStack[p->tos] = 0; break; } zNew = sqliteMallocRaw( nByte ); if( zNew==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNew[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( nSep>0 && itos ){ memcpy(&zNew[j], zSep, nSep); j += nSep; } } zNew[j] = 0; if( pOp->p2==0 ) PopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the addition. ** If either operand is NULL, the result is NULL. */ /* Opcode: Multiply * * * ** ** Pop the top two elements from the stack, multiply them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the multiplication. ** If either operand is NULL, the result is NULL. */ /* Opcode: Subtract * * * ** ** Pop the top two elements from the stack, subtract the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the subtraction. ** If either operand is NULL, the result is NULL. */ /* Opcode: Divide * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. ** If either operand is NULL, the result is NULL. */ /* Opcode: Remainder * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the remainder after division onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. ** If either operand is NULL, the result is NULL. */ case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: case OP_Remainder: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( ((aStack[tos].flags | aStack[nos].flags) & STK_Null)!=0 ){ POPSTACK; Release(p, nos); aStack[nos].flags = STK_Null; }else if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){ int a, b; a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0 ) goto divide_by_zero; b /= a; break; } default: { if( a==0 ) goto divide_by_zero; b %= a; break; } } POPSTACK; Release(p, nos); aStack[nos].i = b; aStack[nos].flags = STK_Int; }else{ double a, b; Realify(p, tos); Realify(p, nos); a = aStack[tos].r; b = aStack[nos].r; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; case OP_Divide: { if( a==0.0 ) goto divide_by_zero; b /= a; break; } default: { int ia = (int)a; int ib = (int)b; if( ia==0.0 ) goto divide_by_zero; b = ib % ia; break; } } POPSTACK; Release(p, nos); aStack[nos].r = b; aStack[nos].flags = STK_Real; } break; divide_by_zero: PopStack(p, 2); p->tos = nos; aStack[nos].flags = STK_Null; break; } /* Opcode: Function P1 * P3 ** ** Invoke a user function (P3 is a pointer to a Function structure that ** defines the function) with P1 string arguments taken from the stack. ** Pop all arguments from the stack and push back the result. ** ** See also: AggFunc */ case OP_Function: { int n, i; sqlite_func ctx; n = pOp->p1; VERIFY( if( n<0 ) goto bad_instruction; ) VERIFY( if( p->tos+1tos-n+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ zStack[i] = 0; }else{ Stringify(p, i); } } ctx.pFunc = (FuncDef*)pOp->p3; ctx.s.flags = STK_Null; ctx.z = 0; ctx.isError = 0; ctx.isStep = 0; (*ctx.pFunc->xFunc)(&ctx, n, (const char**)&zStack[p->tos-n+1]); PopStack(p, n); p->tos++; aStack[p->tos] = ctx.s; if( ctx.s.flags & STK_Dyn ){ zStack[p->tos] = ctx.z; }else if( ctx.s.flags & STK_Str ){ zStack[p->tos] = aStack[p->tos].z; }else{ zStack[p->tos] = 0; } if( ctx.isError ){ sqliteSetString(&p->zErrMsg, zStack[p->tos] ? zStack[p->tos] : "user function error", 0); rc = SQLITE_ERROR; } break; } /* Opcode: BitAnd * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise AND of the ** two elements. ** If either operand is NULL, the result is NULL. */ /* Opcode: BitOr * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the bit-wise OR of the ** two elements. ** If either operand is NULL, the result is NULL. */ /* Opcode: ShiftLeft * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the top element shifted ** left by N bits where N is the second element on the stack. ** If either operand is NULL, the result is NULL. */ /* Opcode: ShiftRight * * * ** ** Pop the top two elements from the stack. Convert both elements ** to integers. Push back onto the stack the top element shifted ** right by N bits where N is the second element on the stack. ** If either operand is NULL, the result is NULL. */ case OP_BitAnd: case OP_BitOr: case OP_ShiftLeft: case OP_ShiftRight: { int tos = p->tos; int nos = tos - 1; int a, b; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[tos].flags | aStack[nos].flags) & STK_Null ){ POPSTACK; Release(p,nos); aStack[nos].flags = STK_Null; break; } Integerify(p, tos); Integerify(p, nos); a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; case OP_ShiftRight: a >>= b; break; default: /* CANT HAPPEN */ break; } POPSTACK; Release(p, nos); aStack[nos].i = a; aStack[nos].flags = STK_Int; break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. The result ** is always an integer. ** ** To force the top of the stack to be an integer, just add 0. */ case OP_AddImm: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Integerify(p, tos); aStack[tos].i += pOp->p1; break; } /* Opcode: MustBeInt P1 P2 * ** ** Force the top of the stack to be an integer. If the top of the ** stack is not an integer and cannot be converted into an integer ** with out data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. ** ** If the top of the stack is not an integer and P2 is not zero and ** P1 is 1, then the stack is popped. In all other cases, the depth ** of the stack is unchanged. */ case OP_MustBeInt: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Int ){ /* Do nothing */ }else if( aStack[tos].flags & STK_Real ){ int i = aStack[tos].r; double r = (double)i; if( r!=aStack[tos].r ){ goto mismatch; } aStack[tos].i = i; }else if( aStack[tos].flags & STK_Str ){ int v; if( !toInt(zStack[tos], &v) ){ goto mismatch; } p->aStack[tos].i = v; }else{ goto mismatch; } Release(p, tos); p->aStack[tos].flags = STK_Int; break; mismatch: if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ if( pOp->p1 ) POPSTACK; pc = pOp->p2 - 1; } break; } /* Opcode: Eq P1 P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared for equality that way. Otherwise the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrEq. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: Ne P1 P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared in that format. Otherwise the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrNe. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: Lt P1 P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than the first (the top of stack), then ** jump to instruction P2. Otherwise, continue to the next instruction. ** In other words, jump if NOSTOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared in that format. Numeric values are always less than ** non-numeric values. If both operands are non-numeric, the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrGt. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: Ge P1 P2 * ** ** Pop the top two elements from the stack. If second element (the next ** on stack) is greater than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>=TOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** If both values are numeric, they are converted to doubles using atof() ** and compared in that format. Numeric values are always less than ** non-numeric values. If both operands are non-numeric, the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrGe. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { int tos = p->tos; int nos = tos - 1; int c, v; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( (ft | fn) & STK_Null ){ POPSTACK; POPSTACK; if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = STK_Null; } break; }else if( (ft & fn & STK_Int)==STK_Int ){ c = aStack[nos].i - aStack[tos].i; }else if( (ft & STK_Int)!=0 && (fn & STK_Str)!=0 && toInt(zStack[nos],&v) ){ Release(p, nos); aStack[nos].i = v; aStack[nos].flags = STK_Int; c = aStack[nos].i - aStack[tos].i; }else if( (fn & STK_Int)!=0 && (ft & STK_Str)!=0 && toInt(zStack[tos],&v) ){ Release(p, tos); aStack[tos].i = v; aStack[tos].flags = STK_Int; c = aStack[nos].i - aStack[tos].i; }else{ Stringify(p, tos); Stringify(p, nos); c = sqliteCompare(zStack[nos], zStack[tos]); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; default: c = c>=0; break; } POPSTACK; POPSTACK; if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = STK_Int; aStack[nos].i = c; } break; } /* INSERT NO CODE HERE! ** ** The opcode numbers are extracted from this source file by doing ** ** grep '^case OP_' vdbe.c | ... >opcodes.h ** ** The opcodes are numbered in the order that they appear in this file. ** But in order for the expression generating code to work right, the ** string comparison operators that follow must be numbered exactly 6 ** greater than the numeric comparison opcodes above. So no other ** cases can appear between the two. */ /* Opcode: StrEq P1 P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Eq. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: StrNe P1 P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Ne. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: StrLt P1 P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than the first (the top of stack), then ** jump to instruction P2. Otherwise, continue to the next instruction. ** In other words, jump if NOSTOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Gt. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ /* Opcode: StrGe P1 P2 * ** ** Pop the top two elements from the stack. If second element (the next ** on stack) is greater than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>=TOS. ** ** If either operand is NULL (and thus if the result is unknown) then ** take the jump if P1 is true. ** ** The strcmp() library routine is used for the comparison. For a ** numeric comparison, use OP_Ge. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ case OP_StrEq: case OP_StrNe: case OP_StrLt: case OP_StrLe: case OP_StrGt: case OP_StrGe: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[nos].flags | aStack[tos].flags) & STK_Null ){ POPSTACK; POPSTACK; if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = STK_Null; } break; }else{ Stringify(p, tos); Stringify(p, nos); c = strcmp(zStack[nos], zStack[tos]); } /* The asserts on each case of the following switch are there to verify ** that string comparison opcodes are always exactly 6 greater than the ** corresponding numeric comparison opcodes. The code generator depends ** on this fact. */ switch( pOp->opcode ){ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; } POPSTACK; POPSTACK; if( pOp->p2 ){ if( c ) pc = pOp->p2-1; }else{ p->tos++; aStack[nos].flags = STK_Int; aStack[nos].i = c; } break; } /* Opcode: And * * * ** ** Pop two values off the stack. Take the logical AND of the ** two values and push the resulting boolean value back onto the ** stack. */ /* Opcode: Or * * * ** ** Pop two values off the stack. Take the logical OR of the ** two values and push the resulting boolean value back onto the ** stack. */ case OP_And: case OP_Or: { int tos = p->tos; int nos = tos - 1; int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ VERIFY( if( nos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Null ){ v1 = 2; }else{ Integerify(p, tos); v1 = aStack[tos].i==0; } if( aStack[nos].flags & STK_Null ){ v2 = 2; }else{ Integerify(p, nos); v2 = aStack[nos].i==0; } if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = or_logic[v1*3+v2]; } POPSTACK; Release(p, nos); if( v1==2 ){ aStack[nos].flags = STK_Null; }else{ aStack[nos].i = v1==0; aStack[nos].flags = STK_Int; } break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. If the top of the stack is NULL ** its value is unchanged. */ /* Opcode: AbsValue * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its absolute value. If the top of the stack is NULL ** its value is unchanged. */ case OP_Negative: case OP_AbsValue: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Real ){ Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){ aStack[tos].r = -aStack[tos].r; } aStack[tos].flags = STK_Real; }else if( aStack[tos].flags & STK_Int ){ Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){ aStack[tos].i = -aStack[tos].i; } aStack[tos].flags = STK_Int; }else if( aStack[tos].flags & STK_Null ){ /* Do nothing */ }else{ Realify(p, tos); Release(p, tos); if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){ aStack[tos].r = -aStack[tos].r; } aStack[tos].flags = STK_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. If the top of the stack is NULL its value ** is unchanged. */ case OP_Not: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */ Integerify(p, tos); Release(p, tos); aStack[tos].i = !aStack[tos].i; aStack[tos].flags = STK_Int; break; } /* Opcode: BitNot * * * ** ** Interpret the top of the stack as an value. Replace it ** with its ones-complement. If the top of the stack is NULL its ** value is unchanged. */ case OP_BitNot: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */ Integerify(p, tos); Release(p, tos); aStack[tos].i = ~aStack[tos].i; aStack[tos].flags = STK_Int; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ case OP_Noop: { break; } /* Opcode: If P1 P2 * ** ** Pop a single boolean from the stack. If the boolean popped is ** true, then jump to p2. Otherwise continue to the next instruction. ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. ** ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ /* Opcode: IfNot P1 P2 * ** ** Pop a single boolean from the stack. If the boolean popped is ** false, then jump to p2. Otherwise continue to the next instruction. ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. ** ** If the value popped of the stack is NULL, then take the jump if P1 ** is true and fall through if P1 is false. */ case OP_If: case OP_IfNot: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( aStack[p->tos].flags & STK_Null ){ c = pOp->p1; }else{ Integerify(p, p->tos); c = aStack[p->tos].i; if( pOp->opcode==OP_IfNot ) c = !c; } POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: IsNull P1 P2 * ** ** If any of the top abs(P1) values on the stack are NULL, then jump ** to P2. The stack is popped P1 times if P1>0. If P1<0 then all values ** are left unchanged on the stack. */ case OP_IsNull: { int i, cnt; cnt = pOp->p1; if( cnt<0 ) cnt = -cnt; VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; ) for(i=0; itos-i].flags & STK_Null ){ pc = pOp->p2-1; break; } } if( pOp->p1>0 ) PopStack(p, cnt); break; } /* Opcode: NotNull P1 P2 * ** ** Jump to P2 if the top value on the stack is not NULL. Pop the ** stack if P1 is greater than zero. If P1 is less than or equal to ** zero then leave the value on the stack. */ case OP_NotNull: { VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( (aStack[p->tos].flags & STK_Null)==0 ) pc = pOp->p2-1; if( pOp->p1>0 ){ POPSTACK; } break; } /* Opcode: MakeRecord P1 P2 * ** ** Convert the top P1 entries of the stack into a single entry ** suitable for use as a data record in a database table. The ** details of the format are irrelavant as long as the OP_Column ** opcode can decode the record later. Refer to source code ** comments for the details of the record format. ** ** If P2 is true (non-zero) and one or more of the P1 entries ** that go into building the record is NULL, then add some extra ** bytes to the record to make it distinct for other entries created ** during the same run of the VDBE. The extra bytes added are a ** counter that is reset with each run of the VDBE, so records ** created this way will not necessarily be distinct across runs. ** But they should be distinct for transient tables (created using ** OP_OpenTemp) which is what they are intended for. ** ** (Later:) The P2==1 option was intended to make NULLs distinct ** for the UNION operator. But I have since discovered that NULLs ** are indistinct for UNION. So this option is never used. */ case OP_MakeRecord: { char *zNewRecord; int nByte; int nField; int i, j; int idxWidth; u32 addr; int addUnique = 0; /* True to cause bytes to be added to make the ** generated record distinct */ char zTemp[NBFS]; /* Temp space for small records */ /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------- ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | ** ------------------------------------------------------------------- ** ** All data fields are converted to strings before being stored and ** are stored with their null terminators. NULL entries omit the ** null terminator. Thus an empty string uses 1 byte and a NULL uses ** zero bytes. Data(0) is taken from the lowest element of the stack ** and data(N-1) is the top of the stack. ** ** Each of the idx() entries is either 1, 2, or 3 bytes depending on ** how big the total record is. Idx(0) contains the offset to the start ** of data(0). Idx(k) contains the offset to the start of data(k). ** Idx(N) contains the total number of bytes in the record. */ nField = pOp->p1; VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null) ){ addUnique = pOp->p2; }else{ Stringify(p, i); nByte += aStack[i].n; } } if( addUnique ) nByte += sizeof(p->uniqueCnt); if( nByte + nField + 1 < 256 ){ idxWidth = 1; }else if( nByte + 2*nField + 2 < 65536 ){ idxWidth = 2; }else{ idxWidth = 3; } nByte += idxWidth*(nField + 1); if( nByte>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( nByte<=NBFS ){ zNewRecord = zTemp; }else{ zNewRecord = sqliteMallocRaw( nByte ); if( zNewRecord==0 ) goto no_mem; } j = 0; addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); for(i=p->tos-nField+1; i<=p->tos; i++){ zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( (aStack[i].flags & STK_Null)==0 ){ addr += aStack[i].n; } } zNewRecord[j++] = addr & 0xff; if( idxWidth>1 ){ zNewRecord[j++] = (addr>>8)&0xff; if( idxWidth>2 ){ zNewRecord[j++] = (addr>>16)&0xff; } } if( addUnique ){ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); p->uniqueCnt++; j += sizeof(p->uniqueCnt); } for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewRecord[j], zStack[i], aStack[i].n); j += aStack[i].n; } } PopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; if( nByte<=NBFS ){ assert( zNewRecord==zTemp ); memcpy(aStack[p->tos].z, zTemp, nByte); zStack[p->tos] = aStack[p->tos].z; aStack[p->tos].flags = STK_Str; }else{ assert( zNewRecord!=zTemp ); aStack[p->tos].flags = STK_Str | STK_Dyn; zStack[p->tos] = zNewRecord; } break; } /* Opcode: MakeKey P1 P2 P3 ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. The top P1 records are ** converted to strings and merged. The null-terminators ** are retained and used as separators. ** The lowest entry in the stack is the first field and the top of the ** stack becomes the last. ** ** If P2 is not zero, then the original entries remain on the stack ** and the new key is pushed on top. If P2 is zero, the original ** data is popped off the stack first then the new key is pushed ** back in its place. ** ** P3 is a string that is P1 characters long. Each character is either ** an 'n' or a 't' to indicates if the argument should be numeric or ** text. The first character corresponds to the lowest element on the ** stack. If P3 is NULL then all arguments are assumed to be numeric. ** ** The key is a concatenation of fields. Each field is terminated by ** a single 0x00 character. A NULL field is introduced by an 'a' and ** is followed immediately by its 0x00 terminator. A numeric field is ** introduced by a single character 'b' and is followed by a sequence ** of characters that represent the number such that a comparison of ** the character string using memcpy() sorts the numbers in numerical ** order. The character strings for numbers are generated using the ** sqliteRealToSortable() function. A text field is introduced by a ** 'c' character and is followed by the exact text of the field. The ** use of an 'a', 'b', or 'c' character at the beginning of each field ** guarantees that NULL sort before numbers and that numbers sort ** before text. 0x00 characters do not occur except as separators ** between fields. ** ** See also: MakeIdxKey, SortMakeKey */ /* Opcode: MakeIdxKey P1 P2 P3 ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. In addition, take one additional integer ** off of the stack, treat that integer as a four-byte record number, and ** append the four bytes to the key. Thus a total of P1+1 entries are ** popped from the stack for this instruction and a single entry is pushed ** back. The first P1 entries that are popped are strings and the last ** entry (the lowest on the stack) is an integer record number. ** ** The converstion of the first P1 string entries occurs just like in ** MakeKey. Each entry is separated from the others by a null. ** The entire concatenation is null-terminated. The lowest entry ** in the stack is the first field and the top of the stack becomes the ** last. ** ** If P2 is not zero and one or more of the P1 entries that go into the ** generated key is NULL, then jump to P2 after the new key has been ** pushed on the stack. In other words, jump to P2 if the key is ** guaranteed to be unique. This jump can be used to skip a subsequent ** uniqueness test. ** ** P3 is a string that is P1 characters long. Each character is either ** an 'n' or a 't' to indicates if the argument should be numeric or ** text. The first character corresponds to the lowest element on the ** stack. If P3 is null then all arguments are assumed to be numeric. ** ** See also: MakeKey, SortMakeKey */ case OP_MakeIdxKey: case OP_MakeKey: { char *zNewKey; int nByte; int nField; int addRowid; int i, j; int containsNull = 0; char zTemp[NBFS]; addRowid = pOp->opcode==OP_MakeIdxKey; nField = pOp->p1; VERIFY( if( p->tos+1+addRowidtos-nField+1; i<=p->tos; i++, j++){ int flags = aStack[i].flags; int len; char *z; if( flags & STK_Null ){ nByte += 2; containsNull = 1; }else if( pOp->p3 && pOp->p3[j]=='t' ){ Stringify(p, i); aStack[i].flags &= ~(STK_Int|STK_Real); nByte += aStack[i].n+1; }else if( (flags & (STK_Real|STK_Int))!=0 || sqliteIsNumber(zStack[i]) ){ if( (flags & (STK_Real|STK_Int))==STK_Int ){ aStack[i].r = aStack[i].i; }else if( (flags & (STK_Real|STK_Int))==0 ){ aStack[i].r = atof(zStack[i]); } Release(p, i); z = aStack[i].z; sqliteRealToSortable(aStack[i].r, z); len = strlen(z); zStack[i] = 0; aStack[i].flags = STK_Real; aStack[i].n = len+1; nByte += aStack[i].n+1; }else{ nByte += aStack[i].n+1; } } if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ rc = SQLITE_TOOBIG; goto abort_due_to_error; } if( addRowid ) nByte += sizeof(u32); if( nByte<=NBFS ){ zNewKey = zTemp; }else{ zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; } j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ zNewKey[j++] = 'a'; zNewKey[j++] = 0; }else{ if( aStack[i].flags & (STK_Int|STK_Real) ){ zNewKey[j++] = 'b'; }else{ zNewKey[j++] = 'c'; } memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n); j += aStack[i].n; } } if( addRowid ){ u32 iKey; Integerify(p, p->tos-nField); iKey = intToKey(aStack[p->tos-nField].i); memcpy(&zNewKey[j], &iKey, sizeof(u32)); PopStack(p, nField+1); if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; }else{ if( pOp->p2==0 ) PopStack(p, nField+addRowid); } p->tos++; aStack[p->tos].n = nByte; if( nByte<=NBFS ){ assert( zNewKey==zTemp ); zStack[p->tos] = aStack[p->tos].z; memcpy(zStack[p->tos], zTemp, nByte); aStack[p->tos].flags = STK_Str; }else{ aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; } break; } /* Opcode: IncrKey * * * ** ** The top of the stack should contain an index key generated by ** The MakeKey opcode. This routine increases the least significant ** byte of that key by one. This is used so that the MoveTo opcode ** will move to the first entry greater than the key rather than to ** the key itself. */ case OP_IncrKey: { int tos = p->tos; VERIFY( if( tos<0 ) goto bad_instruction ); Stringify(p, tos); if( aStack[tos].flags & (STK_Static|STK_Ephem) ){ /* CANT HAPPEN. The IncrKey opcode is only applied to keys ** generated by MakeKey or MakeIdxKey and the results of those ** operands are always dynamic strings. */ goto abort_due_to_error; } zStack[tos][aStack[tos].n-1]++; break; } /* Opcode: Checkpoint P1 * * ** ** Begin a checkpoint. A checkpoint is the beginning of a operation that ** is part of a larger transaction but which might need to be rolled back ** itself without effecting the containing transaction. A checkpoint will ** be automatically committed or rollback when the VDBE halts. ** ** The checkpoint is begun on the database file with index P1. The main ** database file has an index of 0 and the file used for temporary tables ** has an index of 1. */ case OP_Checkpoint: { int i = pOp->p1; if( i>=0 && inDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){ rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt); if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2; } break; } /* Opcode: Transaction P1 * * ** ** Begin a transaction. The transaction ends when a Commit or Rollback ** opcode is encountered. Depending on the ON CONFLICT setting, the ** transaction might also be rolled back if an error is encountered. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. ** ** A write lock is obtained on the database file when a transaction is ** started. No other process can read or write the file while the ** transaction is underway. Starting a transaction also creates a ** rollback journal. A transaction must be started before any changes ** can be made to the database. */ case OP_Transaction: { int busy = 1; int i = pOp->p1; assert( i>=0 && inDb ); if( db->aDb[i].inTrans ) break; while( db->aDb[i].pBt!=0 && busy ){ rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->undoTransOnError = 1; p->rc = SQLITE_BUSY; return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0); busy = 0; } break; } case SQLITE_READONLY: { rc = SQLITE_OK; /* Fall thru into the next case */ } case SQLITE_OK: { p->inTempTrans = 0; busy = 0; break; } default: { goto abort_due_to_error; } } } db->aDb[i].inTrans = 1; p->undoTransOnError = 1; break; } /* Opcode: Commit * * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to actually take effect. No additional modifications ** are allowed until another transaction is started. The Commit instruction ** deletes the journal file and releases the write lock on the database. ** A read lock continues to be held if there are still cursors open. */ case OP_Commit: { int i; for(i=0; rc==SQLITE_OK && inDb; i++){ if( db->aDb[i].inTrans ){ rc = sqliteBtreeCommit(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } if( rc==SQLITE_OK ){ sqliteCommitInternalChanges(db); }else{ sqliteRollbackAll(db); } break; } /* Opcode: Rollback P1 * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to be undone. The database is restored to its state ** before the Transaction opcode was executed. No additional modifications ** are allowed until another transaction is started. ** ** P1 is the index of the database file that is committed. An index of 0 ** is used for the main database and an index of 1 is used for the file used ** to hold temporary tables. ** ** This instruction automatically closes all cursors and releases both ** the read and write locks on the indicated database. */ case OP_Rollback: { sqliteRollbackAll(db); break; } /* Opcode: ReadCookie P1 P2 * ** ** Read cookie number P2 from database P1 and push it onto the stack. ** P2==0 is the schema version. P2==1 is the database format. ** P2==2 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { int i = ++p->tos; int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); aStack[i].i = aMeta[1+pOp->p2]; aStack[i].flags = STK_Int; break; } /* Opcode: SetCookie P1 P2 * ** ** Write the top of the stack into cookie number P2 of database P1. ** P2==0 is the schema version. P2==1 is the database format. ** P2==2 is the recommended pager cache size, and so forth. P1==0 is ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p2p1>=0 && pOp->p1nDb ); assert( db->aDb[pOp->p1].pBt!=0 ); VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos) rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); if( rc==SQLITE_OK ){ aMeta[1+pOp->p2] = aStack[p->tos].i; rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); } POPSTACK; break; } /* Opcode: VerifyCookie P1 P2 * ** ** Check the value of global database parameter number 0 (the ** schema version) and make sure it is equal to P2. ** P1 is the database number which is 0 for the main database file ** and 1 for the file holding temporary tables and some higher number ** for auxiliary databases. ** ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. ** ** Either a transaction needs to have been started or an OP_Open needs ** to be executed (to establish a read lock) before this opcode is ** invoked. */ case OP_VerifyCookie: { int aMeta[SQLITE_N_BTREE_META]; assert( pOp->p1>=0 && pOp->p1nDb ); rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){ sqliteSetString(&p->zErrMsg, "database schema has changed", 0); rc = SQLITE_SCHEMA; } break; } /* Opcode: OpenRead P1 P2 P3 ** ** Open a read-only cursor for the database table whose root page is ** P2 in a database file. The database file is determined by an ** integer from the top of the stack. 0 means the main database and ** 1 means the database used for temporary tables. Give the new ** cursor an identifier of P1. The P1 values need not be contiguous ** but all P1 values should be small integers. It is an error for ** P1 to be negative. ** ** If P2==0 then take the root page number from the next of the stack. ** ** There will be a read lock on the database whenever there is an ** open cursor. If the database was unlocked prior to this instruction ** then a read lock is acquired as part of this instruction. A read ** lock allows other processes to read the database but prohibits ** any other process from modifying the database. The read lock is ** released when all cursors are closed. If this instruction attempts ** to get a read lock but fails, the script terminates with an ** SQLITE_BUSY error code. ** ** The P3 value is the name of the table or index being opened. ** The P3 value is not actually used by this opcode and may be ** omitted. But the code generator usually inserts the index or ** table name into P3 to make the code easier to read. ** ** See also OpenWrite. */ /* Opcode: OpenWrite P1 P2 P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2. If P2==0 then take the root page number from the stack. ** ** The P3 value is the name of the table or index being opened. ** The P3 value is not actually used by this opcode and may be ** omitted. But the code generator usually inserts the index or ** table name into P3 to make the code easier to read. ** ** This instruction works just like OpenRead except that it opens the cursor ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { int busy = 0; int i = pOp->p1; int tos = p->tos; int p2 = pOp->p2; int wrFlag; Btree *pX; int iDb; VERIFY( if( tos<0 ) goto not_enough_stack; ); Integerify(p, tos); iDb = p->aStack[tos].i; tos--; VERIFY( if( iDb<0 || iDb>=db->nDb ) goto bad_instruction; ); VERIFY( if( db->aDb[iDb].pBt==0 ) goto bad_instruction; ); pX = db->aDb[iDb].pBt; wrFlag = pOp->opcode==OP_OpenWrite; if( p2<=0 ){ VERIFY( if( tos<0 ) goto not_enough_stack; ); Integerify(p, tos); p2 = p->aStack[tos].i; POPSTACK; if( p2<2 ){ sqliteSetString(&p->zErrMsg, "root page number less than 2", 0); rc = SQLITE_INTERNAL; break; } } VERIFY( if( i<0 ) goto bad_instruction; ) if( expandCursorArraySize(p, i) ) goto no_mem; cleanupCursor(&p->aCsr[i]); memset(&p->aCsr[i], 0, sizeof(Cursor)); p->aCsr[i].nullRow = 1; if( pX==0 ) break; do{ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); switch( rc ){ case SQLITE_BUSY: { if( db->xBusyCallback==0 ){ p->pc = pc; p->rc = SQLITE_BUSY; return SQLITE_BUSY; }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0); busy = 0; } break; } case SQLITE_OK: { busy = 0; break; } default: { goto abort_due_to_error; } } }while( busy ); if( p2<=0 ){ POPSTACK; } POPSTACK; break; } /* Opcode: OpenTemp P1 P2 * ** ** Open a new cursor to a transient table. ** The transient cursor is always opened read/write even if ** the main database is read-only. The transient table is deleted ** automatically when the cursor is closed. ** ** The cursor points to a BTree table if P2==0 and to a BTree index ** if P2==1. A BTree table must have an integer key and can have arbitrary ** data. A BTree index has no data but can have an arbitrary key. ** ** This opcode is used for tables that exist for the duration of a single ** SQL statement only. Tables created using CREATE TEMPORARY TABLE ** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the ** context of this opcode means for the duration of a single SQL statement ** whereas "Temporary" in the context of CREATE TABLE means for the duration ** of the connection to the database. Same word; different meanings. */ case OP_OpenTemp: { int i = pOp->p1; Cursor *pCx; VERIFY( if( i<0 ) goto bad_instruction; ) if( expandCursorArraySize(p, i) ) goto no_mem; pCx = &p->aCsr[i]; cleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); pCx->nullRow = 1; rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); if( rc==SQLITE_OK ){ rc = sqliteBtreeBeginTrans(pCx->pBt); } if( rc==SQLITE_OK ){ if( pOp->p2 ){ int pgno; rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); if( rc==SQLITE_OK ){ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); } }else{ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); } } break; } /* Opcode: OpenPseudo P1 * * ** ** Open a new cursor that points to a fake table that contains a single ** row of data. Any attempt to write a second row of data causes the ** first row to be deleted. All data is deleted when the cursor is ** closed. ** ** A pseudo-table created by this opcode is useful for holding the ** NEW or OLD tables in a trigger. */ case OP_OpenPseudo: { int i = pOp->p1; Cursor *pCx; VERIFY( if( i<0 ) goto bad_instruction; ) if( expandCursorArraySize(p, i) ) goto no_mem; pCx = &p->aCsr[i]; cleanupCursor(pCx); memset(pCx, 0, sizeof(*pCx)); pCx->nullRow = 1; pCx->pseudoTable = 1; break; } /* Opcode: Close P1 * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { int i = pOp->p1; if( i>=0 && inCursor ){ cleanupCursor(&p->aCsr[i]); } break; } /* Opcode: MoveTo P1 P2 * ** ** Pop the top of the stack and use its value as a key. Reposition ** cursor P1 so that it points to an entry with a matching key. If ** the table contains no record with a matching key, then the cursor ** is left pointing at the first record that is greater than the key. ** If there are no records greater than the key and P2 is not zero, ** then an immediate jump to P2 is made. ** ** See also: Found, NotFound, Distinct, MoveLt */ /* Opcode: MoveLt P1 P2 * ** ** Pop the top of the stack and use its value as a key. Reposition ** cursor P1 so that it points to the entry with the largest key that is ** less than the key popped from the stack. ** If there are no records less than than the key and P2 ** is not zero then an immediate jump to P2 is made. ** ** See also: MoveTo */ case OP_MoveLt: case OP_MoveTo: { int i = pOp->p1; int tos = p->tos; Cursor *pC; VERIFY( if( tos<0 ) goto not_enough_stack; ) assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ int res, oc; if( aStack[tos].flags & STK_Int ){ int iKey = intToKey(aStack[tos].i); sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); pC->lastRecno = aStack[tos].i; pC->recnoIsValid = res==0; }else{ Stringify(p, tos); sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res); pC->recnoIsValid = 0; } pC->nullRow = 0; sqlite_search_count++; oc = pOp->opcode; if( oc==OP_MoveTo && res<0 ){ sqliteBtreeNext(pC->pCursor, &res); pC->recnoIsValid = 0; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } }else if( oc==OP_MoveLt ){ if( res>=0 ){ sqliteBtreePrevious(pC->pCursor, &res); pC->recnoIsValid = 0; }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ int keysize; res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; } if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } } } POPSTACK; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key does ** not exist in the table of cursor P1, then jump to P2. If the record ** does already exist, then fall thru. The cursor is left pointing ** at the record if it exists. The key is not popped from the stack. ** ** This operation is similar to NotFound except that this operation ** does not pop the key from the stack. ** ** See also: Found, NotFound, MoveTo, IsUnique, NotExists */ /* Opcode: Found P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key ** does exist in table of P1, then jump to P2. If the record ** does not exist, then fall thru. The cursor is left pointing ** to the record if it exists. The key is popped from the stack. ** ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists */ /* Opcode: NotFound P1 P2 * ** ** Use the top of the stack as a string key. If a record with that key ** does not exist in table of P1, then jump to P2. If the record ** does exist, then fall thru. The cursor is left pointing to the ** record if it exists. The key is popped from the stack. ** ** The difference between this operation and Distinct is that ** Distinct does not pop the key from the stack. ** ** See also: Distinct, Found, MoveTo, NotExists, IsUnique */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; int tos = p->tos; int alreadyExists = 0; Cursor *pC; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){ int res, rx; Stringify(p, tos); rx = sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res); alreadyExists = rx==SQLITE_OK && res==0; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode!=OP_Distinct ){ POPSTACK; } break; } /* Opcode: IsUnique P1 P2 * ** ** The top of the stack is an integer record number. Call this ** record number R. The next on the stack is an index key created ** using MakeIdxKey. Call it K. This instruction pops R from the ** stack but it leaves K unchanged. ** ** P1 is an index. So all but the last four bytes of K are an ** index string. The last four bytes of K are a record number. ** ** This instruction asks if there is an entry in P1 where the ** index string matches K but the record number is different ** from R. If there is no such entry, then there is an immediate ** jump to P2. If any entry does exist where the index string ** matches K but the record number is not R, then the record ** number for that entry is pushed onto the stack and control ** falls through to the next instruction. ** ** See also: Distinct, NotFound, NotExists, Found */ case OP_IsUnique: { int i = pOp->p1; int tos = p->tos; int nos = tos-1; BtCursor *pCrsr; int R; /* Pop the value R off the top of the stack */ VERIFY( if( nos<0 ) goto not_enough_stack; ) Integerify(p, tos); R = aStack[tos].i; POPSTACK; if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; int v; /* The record number on the P1 entry that matches K */ char *zKey; /* The value of K */ int nKey; /* Number of bytes in K */ /* Make sure K is a string and make zKey point to K */ Stringify(p, nos); zKey = zStack[nos]; nKey = aStack[nos].n; assert( nKey >= 4 ); /* Search for an entry in P1 where all but the last four bytes match K. ** If there is no such entry, jump immediately to P2. */ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; if( res<0 ){ rc = sqliteBtreeNext(pCrsr, &res); if( res ){ pc = pOp->p2 - 1; break; } } rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; if( res>0 ){ pc = pOp->p2 - 1; break; } /* At this point, pCrsr is pointing to an entry in P1 where all but ** the last for bytes of the key match K. Check to see if the last ** four bytes of the key are different from R. If the last four ** bytes equal R then jump immediately to P2. */ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v); v = keyToInt(v); if( v==R ){ pc = pOp->p2 - 1; break; } /* The last four bytes of the key are different from R. Convert the ** last four bytes of the key into an integer and push it onto the ** stack. (These bytes are the record number of an entry that ** violates a UNIQUE constraint.) */ p->tos++; aStack[tos].i = v; aStack[tos].flags = STK_Int; } break; } /* Opcode: NotExists P1 P2 * ** ** Use the top of the stack as a integer key. If a record with that key ** does not exist in table of P1, then jump to P2. If the record ** does exist, then fall thru. The cursor is left pointing to the ** record if it exists. The integer key is popped from the stack. ** ** The difference between this operation and NotFound is that this ** operation assumes the key is an integer and NotFound assumes it ** is a string. ** ** See also: Distinct, Found, MoveTo, NotFound, IsUnique */ case OP_NotExists: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rx, iKey; assert( aStack[tos].flags & STK_Int ); iKey = intToKey(aStack[tos].i); rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); p->aCsr[i].lastRecno = aStack[tos].i; p->aCsr[i].recnoIsValid = res==0; p->aCsr[i].nullRow = 0; if( rx!=SQLITE_OK || res!=0 ){ pc = pOp->p2 - 1; p->aCsr[i].recnoIsValid = 0; } } POPSTACK; break; } /* Opcode: NewRecno P1 * * ** ** Get a new integer record number used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is pushed ** onto the stack. */ case OP_NewRecno: { int i = pOp->p1; int v = 0; Cursor *pC; if( VERIFY( i<0 || i>=p->nCursor || ) (pC = &p->aCsr[i])->pCursor==0 ){ v = 0; }else{ /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one ** to that. But if the largest existing rowid is already the maximum ** positive integer, we have to fall through to the second ** probabilistic algorithm ** ** The second algorithm is to select a rowid at random and see if ** it already exists in the table. If it does not exist, we have ** succeeded. If the random rowid does exist, we select a new one ** and try again, up to 1000 times. ** ** For a table with less than 2 billion entries, the probability ** of not finding a unused rowid is about 1.0e-300. This is a ** non-zero probability, but it is still vanishingly small and should ** never cause a problem. You are much, much more likely to have a ** hardware failure than for this algorithm to fail. ** ** The analysis in the previous paragraph assumes that you have a good ** source of random numbers. Is a library function like lrand48() ** good enough? Maybe. Maybe not. It's hard to know whether there ** might be subtle bugs is some implementations of lrand48() that ** could cause problems. To avoid uncertainty, SQLite uses its own ** random number generator based on the RC4 algorithm. ** ** To promote locality of reference for repetitive inserts, the ** first few attempts at chosing a random rowid pick values just a little ** larger than the previous rowid. This has been shown experimentally ** to double the speed of the COPY operation. */ int res, rx, cnt, x; cnt = 0; if( !pC->useRandomRowid ){ if( pC->nextRowidValid ){ v = pC->nextRowid; }else{ rx = sqliteBtreeLast(pC->pCursor, &res); if( res ){ v = 1; }else{ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v); v = keyToInt(v); if( v==0x7fffffff ){ pC->useRandomRowid = 1; }else{ v++; } } } if( v<0x7fffffff ){ pC->nextRowidValid = 1; pC->nextRowid = v+1; }else{ pC->nextRowidValid = 0; } } if( pC->useRandomRowid ){ v = db->priorNewRowid; cnt = 0; do{ if( v==0 || cnt>2 ){ v = sqliteRandomInteger(); if( cnt<5 ) v &= 0xffffff; }else{ v += sqliteRandomByte() + 1; } if( v==0 ) continue; x = intToKey(v); rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); cnt++; }while( cnt<1000 && rx==SQLITE_OK && res==0 ); db->priorNewRowid = v; if( rx==SQLITE_OK && res==0 ){ rc = SQLITE_FULL; goto abort_due_to_error; } } pC->recnoIsValid = 0; } p->tos++; aStack[p->tos].i = v; aStack[p->tos].flags = STK_Int; break; } /* Opcode: PutIntKey P1 P2 * ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The key must ** be an integer. The stack is popped twice by this instruction. ** ** If P2==1 then the row change count is incremented. If P2==0 the ** row change count is unmodified. The rowid is stored for subsequent ** return by the sqlite_last_insert_rowid() function if P2 is 1. */ /* Opcode: PutStrKey P1 * * ** ** Write an entry into the table of cursor P1. A new entry is ** created if it doesn't already exist or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The key must ** be a string. The stack is popped twice by this instruction. ** ** P1 may not be a pseudo-table opened using the OpenPseudo opcode. */ case OP_PutIntKey: case OP_PutStrKey: { int tos = p->tos; int nos = p->tos-1; int i = pOp->p1; Cursor *pC; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ char *zKey; int nKey, iKey; if( pOp->opcode==OP_PutStrKey ){ Stringify(p, nos); nKey = aStack[nos].n; zKey = zStack[nos]; }else{ assert( aStack[nos].flags & STK_Int ); nKey = sizeof(int); iKey = intToKey(aStack[nos].i); zKey = (char*)&iKey; if( pOp->p2 ){ db->nChange++; db->lastRowid = aStack[nos].i; } if( pC->nextRowidValid && aStack[nos].i>=pC->nextRowid ){ pC->nextRowidValid = 0; } } if( pC->pseudoTable ){ /* PutStrKey does not work for pseudo-tables. ** The following assert makes sure we are not trying to use ** PutStrKey on a pseudo-table */ assert( pOp->opcode==OP_PutIntKey ); sqliteFree(pC->pData); pC->iKey = iKey; pC->nData = aStack[tos].n; if( aStack[tos].flags & STK_Dyn ){ pC->pData = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = STK_Null; }else{ pC->pData = sqliteMallocRaw( pC->nData ); if( pC->pData ){ memcpy(pC->pData, zStack[tos], pC->nData); } } pC->nullRow = 0; }else{ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, zStack[tos], aStack[tos].n); } pC->recnoIsValid = 0; } POPSTACK; POPSTACK; break; } /* Opcode: Delete P1 P2 * ** ** Delete the record at which the P1 cursor is currently pointing. ** ** The cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. Hence it is OK to delete ** a record from within an Next loop. ** ** The row change counter is incremented if P2==1 and is unmodified ** if P2==0. ** ** If P1 is a pseudo-table, then this instruction is a no-op. */ case OP_Delete: { int i = pOp->p1; Cursor *pC; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( pC->pCursor!=0 ){ rc = sqliteBtreeDelete(pC->pCursor); pC->nextRowidValid = 0; } if( pOp->p2 ) db->nChange++; break; } /* Opcode: KeyAsData P1 P2 * ** ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or ** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls ** data off of the key rather than the data. This is used for ** processing compound selects. */ case OP_KeyAsData: { int i = pOp->p1; assert( i>=0 && inCursor ); p->aCsr[i].keyAsData = pOp->p2; break; } /* Opcode: RowData P1 * * ** ** Push onto the stack the complete row data for cursor P1. ** There is no interpretation of the data. It is just copied ** onto the stack exactly as it is found in the database file. ** ** If the cursor is not pointing to a valid row, a NULL is pushed ** onto the stack. */ case OP_RowData: { int i = pOp->p1; int tos = ++p->tos; Cursor *pC; int n; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( pC->nullRow ){ aStack[tos].flags = STK_Null; }else if( pC->pCursor!=0 ){ BtCursor *pCrsr = pC->pCursor; if( pC->nullRow ){ aStack[tos].flags = STK_Null; break; }else if( pC->keyAsData ){ sqliteBtreeKeySize(pCrsr, &n); }else{ sqliteBtreeDataSize(pCrsr, &n); } aStack[tos].n = n; if( n<=NBFS ){ aStack[tos].flags = STK_Str; zStack[tos] = aStack[tos].z; }else{ char *z = sqliteMallocRaw( n ); if( z==0 ) goto no_mem; aStack[tos].flags = STK_Str | STK_Dyn; zStack[tos] = z; } if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, 0, n, zStack[tos]); }else{ sqliteBtreeData(pCrsr, 0, n, zStack[tos]); } }else if( pC->pseudoTable ){ aStack[tos].n = pC->nData; zStack[tos] = pC->pData; aStack[tos].flags = STK_Str|STK_Ephem; }else{ aStack[tos].flags = STK_Null; } break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as ** a structure built using the MakeRecord instruction. ** (See the MakeRecord opcode for additional information about ** the format of the data.) ** Push onto the stack the value of the P2-th column contained ** in the data. ** ** If the KeyAsData opcode has previously executed on this cursor, ** then the field might be extracted from the key rather than the ** data. ** ** If P1 is negative, then the record is stored on the stack rather ** than in a table. For P1==-1, the top of the stack is used. ** For P1==-2, the next on the stack is used. And so forth. The ** value pushed is always just a pointer into the record which is ** stored further down on the stack. The column value is not copied. */ case OP_Column: { int amt, offset, end, payloadSize; int i = pOp->p1; int p2 = pOp->p2; int tos = p->tos+1; Cursor *pC; char *zRec; BtCursor *pCrsr; int idxWidth; unsigned char aHdr[10]; assert( inCursor ); if( i<0 ){ VERIFY( if( tos+i<0 ) goto bad_instruction; ) VERIFY( if( (aStack[tos+i].flags & STK_Str)==0 ) goto bad_instruction; ) zRec = zStack[tos+i]; payloadSize = aStack[tos+i].n; }else if( (pC = &p->aCsr[i])->pCursor!=0 ){ zRec = 0; pCrsr = pC->pCursor; if( pC->nullRow ){ payloadSize = 0; }else if( pC->keyAsData ){ sqliteBtreeKeySize(pCrsr, &payloadSize); }else{ sqliteBtreeDataSize(pCrsr, &payloadSize); } }else if( pC->pseudoTable ){ payloadSize = pC->nData; zRec = pC->pData; assert( payloadSize==0 || zRec!=0 ); }else{ payloadSize = 0; } /* Figure out how many bytes in the column data and where the column ** data begins. */ if( payloadSize==0 ){ aStack[tos].flags = STK_Null; p->tos = tos; break; }else if( payloadSize<256 ){ idxWidth = 1; }else if( payloadSize<65536 ){ idxWidth = 2; }else{ idxWidth = 3; } /* Figure out where the requested column is stored and how big it is. */ if( payloadSize < idxWidth*(p2+1) ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( zRec ){ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2); }else if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); }else{ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); } offset = aHdr[0]; end = aHdr[idxWidth]; if( idxWidth>1 ){ offset |= aHdr[1]<<8; end |= aHdr[idxWidth+1]<<8; if( idxWidth>2 ){ offset |= aHdr[2]<<16; end |= aHdr[idxWidth+2]<<16; } } amt = end - offset; if( amt<0 || offset<0 || end>payloadSize ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } /* amt and offset now hold the offset to the start of data and the ** amount of data. Go get the data and put it on the stack. */ if( amt==0 ){ aStack[tos].flags = STK_Null; }else if( zRec ){ aStack[tos].flags = STK_Str | STK_Ephem; aStack[tos].n = amt; zStack[tos] = &zRec[offset]; }else{ if( amt<=NBFS ){ aStack[tos].flags = STK_Str; zStack[tos] = aStack[tos].z; aStack[tos].n = amt; }else{ char *z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; aStack[tos].flags = STK_Str | STK_Dyn; zStack[tos] = z; aStack[tos].n = amt; } if( pC->keyAsData ){ sqliteBtreeKey(pCrsr, offset, amt, zStack[tos]); }else{ sqliteBtreeData(pCrsr, offset, amt, zStack[tos]); } } p->tos = tos; break; } /* Opcode: Recno P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Recno: { int i = pOp->p1; int tos = ++p->tos; Cursor *pC; int v; assert( i>=0 && inCursor ); if( (pC = &p->aCsr[i])->recnoIsValid ){ v = pC->lastRecno; }else if( pC->nullRow ){ aStack[tos].flags = STK_Null; break; }else if( pC->pseudoTable ){ v = keyToInt(pC->iKey); }else{ assert( pC->pCursor!=0 ); sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); v = keyToInt(v); } aStack[tos].i = v; aStack[tos].flags = STK_Int; break; } /* Opcode: FullKey P1 * * ** ** Extract the complete key from the record that cursor P1 is currently ** pointing to and push the key onto the stack as a string. ** ** Compare this opcode to Recno. The Recno opcode extracts the first ** 4 bytes of the key and pushes those bytes onto the stack as an ** integer. This instruction pushes the entire key as a string. ** ** This opcode may not be used on a pseudo-table. */ case OP_FullKey: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; ) VERIFY( if( p->aCsr[i].pseudoTable ) goto bad_instruction; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int amt; char *z; sqliteBtreeKeySize(pCrsr, &amt); if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt>NBFS ){ z = sqliteMallocRaw( amt ); if( z==0 ) goto no_mem; aStack[tos].flags = STK_Str | STK_Dyn; }else{ z = aStack[tos].z; aStack[tos].flags = STK_Str; } sqliteBtreeKey(pCrsr, 0, amt, z); zStack[tos] = z; aStack[tos].n = amt; } break; } /* Opcode: NullRow P1 * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always push ** a NULL onto the stack. */ case OP_NullRow: { int i = pOp->p1; assert( i>=0 && inCursor ); p->aCsr[i].nullRow = 1; p->aCsr[i].recnoIsValid = 0; break; } /* Opcode: Last P1 P2 * ** ** The next use of the Recno or Column or Next instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Last: { int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( (pCrsr = pC->pCursor)!=0 ){ int res; rc = sqliteBtreeLast(pCrsr, &res); p->aCsr[i].nullRow = res; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } }else{ pC->nullRow = 0; } break; } /* Opcode: Rewind P1 P2 * ** ** The next use of the Recno or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; assert( i>=0 && inCursor ); pC = &p->aCsr[i]; if( (pCrsr = pC->pCursor)!=0 ){ int res; rc = sqliteBtreeFirst(pCrsr, &res); pC->atFirst = res==0; pC->nullRow = res; if( res && pOp->p2>0 ){ pc = pOp->p2 - 1; } }else{ pC->nullRow = 0; } break; } /* Opcode: Next P1 P2 * ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through ** to the following instruction. But if the cursor advance was successful, ** jump immediately to P2. ** ** See also: Prev */ /* Opcode: Prev P1 P2 * ** ** Back up cursor P1 so that it points to the previous key/data pair in its ** table or index. If there is no previous key/value pairs then fall through ** to the following instruction. But if the cursor backup was successful, ** jump immediately to P2. */ case OP_Prev: case OP_Next: { Cursor *pC; BtCursor *pCrsr; CHECK_FOR_INTERRUPT; assert( pOp->p1>=0 && pOp->p1nCursor ); pC = &p->aCsr[pOp->p1]; if( (pCrsr = pC->pCursor)!=0 ){ int res; if( pC->nullRow ){ res = 1; }else{ rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) : sqliteBtreePrevious(pCrsr, &res); pC->nullRow = res; } if( res==0 ){ pc = pOp->p2 - 1; sqlite_search_count++; } }else{ pC->nullRow = 1; } pC->recnoIsValid = 0; break; } /* Opcode: IdxPut P1 P2 P3 ** ** The top of the stack holds a SQL index key made using the ** MakeIdxKey instruction. This opcode writes that key into the ** index P1. Data for the entry is nil. ** ** If P2==1, then the key must be unique. If the key is not unique, ** the program aborts with a SQLITE_CONSTRAINT error and the database ** is rolled back. If P3 is not null, then it becomes part of the ** error message returned with the SQLITE_CONSTRAINT. */ case OP_IdxPut: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int nKey = aStack[tos].n; const char *zKey = zStack[tos]; if( pOp->p2 ){ int res, n; assert( aStack[tos].n >= 4 ); rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; while( res!=0 ){ int c; sqliteBtreeKeySize(pCrsr, &n); if( n==nKey && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK && c==0 ){ rc = SQLITE_CONSTRAINT; if( pOp->p3 && pOp->p3[0] ){ sqliteSetString(&p->zErrMsg, pOp->p3, 0); } goto abort_due_to_error; } if( res<0 ){ sqliteBtreeNext(pCrsr, &res); res = +1; }else{ break; } } } rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); } POPSTACK; break; } /* Opcode: IdxDelete P1 * * ** ** The top of the stack is an index key built using the MakeIdxKey opcode. ** This opcode removes that entry from the index. */ case OP_IdxDelete: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; rx = sqliteBtreeMoveto(pCrsr, zStack[tos], aStack[tos].n, &res); if( rx==SQLITE_OK && res==0 ){ rc = sqliteBtreeDelete(pCrsr); } } POPSTACK; break; } /* Opcode: IdxRecno P1 * * ** ** Push onto the stack an integer which is the last 4 bytes of the ** the key to the current entry in index P1. These 4 bytes should ** be the record number of the table entry to which this index entry ** points. ** ** See also: Recno, MakeIdxKey. */ case OP_IdxRecno: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; int sz; sqliteBtreeKeySize(pCrsr, &sz); if( szp1; int tos = p->tos; BtCursor *pCrsr; if( VERIFY( i>=0 && inCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res, rc; Stringify(p, tos); rc = sqliteBtreeKeyCompare(pCrsr, zStack[tos], aStack[tos].n, 4, &res); if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; }else if( pOp->opcode==OP_IdxGE ){ res++; } if( res>0 ){ pc = pOp->p2 - 1 ; } } POPSTACK; break; } /* Opcode: Destroy P1 P2 * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** See also: Clear */ case OP_Destroy: { rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); break; } /* Opcode: Clear P1 P2 * ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being clear is in the main database file if P2==0. If ** P2==1 then the table to be clear is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** See also: Destroy */ case OP_Clear: { rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); break; } /* Opcode: CreateTable * P2 P3 ** ** Allocate a new table in the main database file if P2==0 or in the ** auxiliary database file if P2==1. Push the page number ** for the root page of the new table onto the stack. ** ** The root page number is also written to a memory location that P3 ** points to. This is the mechanism is used to write the root page ** number into the parser's internal data structures that describe the ** new table. ** ** The difference between a table and an index is this: A table must ** have a 4-byte integer key and can have arbitrary data. An index ** has an arbitrary key but no data. ** ** See also: CreateIndex */ /* Opcode: CreateIndex * P2 P3 ** ** Allocate a new index in the main database file if P2==0 or in the ** auxiliary database file if P2==1. Push the page number of the ** root page of the new index onto the stack. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: case OP_CreateTable: { int i = ++p->tos; int pgno; assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); assert( pOp->p2>=0 && pOp->p2nDb ); assert( db->aDb[pOp->p2].pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); }else{ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); } if( rc==SQLITE_OK ){ aStack[i].i = pgno; aStack[i].flags = STK_Int; *(u32*)pOp->p3 = pgno; pOp->p3 = 0; } break; } /* Opcode: IntegrityCk P1 P2 * ** ** Do an analysis of the currently open database. Push onto the ** stack the text of an error message describing any problems. ** If there are no errors, push a "ok" onto the stack. ** ** P1 is the index of a set that contains the root page numbers ** for all tables and indices in the main database file. ** ** If P2 is not zero, the check is done on the auxiliary database ** file, not the main database file. ** ** This opcode is used for testing purposes only. */ case OP_IntegrityCk: { int nRoot; int *aRoot; int tos = ++p->tos; int iSet = pOp->p1; Set *pSet; int j; HashElem *i; char *z; VERIFY( if( iSet<0 || iSet>=p->nSet ) goto bad_instruction; ) pSet = &p->aSet[iSet]; nRoot = sqliteHashCount(&pSet->hash); aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); if( aRoot==0 ) goto no_mem; for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ toInt((char*)sqliteHashKey(i), &aRoot[j]); } aRoot[j] = 0; z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); if( z==0 || z[0]==0 ){ if( z ) sqliteFree(z); zStack[tos] = "ok"; aStack[tos].n = 3; aStack[tos].flags = STK_Str | STK_Static; }else{ zStack[tos] = z; aStack[tos].n = strlen(z) + 1; aStack[tos].flags = STK_Str | STK_Dyn; } sqliteFree(aRoot); break; } /* Opcode: ListWrite * * * ** ** Write the integer on the top of the stack ** into the temporary storage list. */ case OP_ListWrite: { Keylist *pKeylist; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) pKeylist = p->pList; if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); if( pKeylist==0 ) goto no_mem; pKeylist->nKey = 1000; pKeylist->nRead = 0; pKeylist->nUsed = 0; pKeylist->pNext = p->pList; p->pList = pKeylist; } Integerify(p, p->tos); pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i; POPSTACK; break; } /* Opcode: ListRewind * * * ** ** Rewind the temporary buffer back to the beginning. This is ** now a no-op. */ case OP_ListRewind: { /* This is now a no-op */ break; } /* Opcode: ListRead * P2 * ** ** Attempt to read an integer from the temporary storage buffer ** and push it onto the stack. If the storage buffer is empty, ** push nothing but instead jump to P2. */ case OP_ListRead: { Keylist *pKeylist; CHECK_FOR_INTERRUPT; pKeylist = p->pList; if( pKeylist!=0 ){ VERIFY( if( pKeylist->nRead<0 || pKeylist->nRead>=pKeylist->nUsed || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction; ) p->tos++; aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++]; aStack[p->tos].flags = STK_Int; zStack[p->tos] = 0; if( pKeylist->nRead>=pKeylist->nUsed ){ p->pList = pKeylist->pNext; sqliteFree(pKeylist); } }else{ pc = pOp->p2 - 1; } break; } /* Opcode: ListReset * * * ** ** Reset the temporary storage buffer so that it holds nothing. */ case OP_ListReset: { if( p->pList ){ KeylistFree(p->pList); p->pList = 0; } break; } /* Opcode: ListPush * * * ** ** Save the current Vdbe list such that it can be restored by a ListPop ** opcode. The list is empty after this is executed. */ case OP_ListPush: { p->keylistStackDepth++; assert(p->keylistStackDepth > 0); p->keylistStack = sqliteRealloc(p->keylistStack, sizeof(Keylist *) * p->keylistStackDepth); if( p->keylistStack==0 ) goto no_mem; p->keylistStack[p->keylistStackDepth - 1] = p->pList; p->pList = 0; break; } /* Opcode: ListPop * * * ** ** Restore the Vdbe list to the state it was in when ListPush was last ** executed. */ case OP_ListPop: { assert(p->keylistStackDepth > 0); p->keylistStackDepth--; KeylistFree(p->pList); p->pList = p->keylistStack[p->keylistStackDepth]; p->keylistStack[p->keylistStackDepth] = 0; if( p->keylistStackDepth == 0 ){ sqliteFree(p->keylistStack); p->keylistStack = 0; } break; } /* Opcode: SortPut * * * ** ** The TOS is the key and the NOS is the data. Pop both from the stack ** and put them on the sorter. The key and data should have been ** made using SortMakeKey and SortMakeRec, respectively. */ case OP_SortPut: { int tos = p->tos; int nos = tos - 1; Sorter *pSorter; VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem; pSorter = sqliteMallocRaw( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->pSort; p->pSort = pSorter; assert( aStack[tos].flags & STK_Dyn ); pSorter->nKey = aStack[tos].n; pSorter->zKey = zStack[tos]; pSorter->nData = aStack[nos].n; if( aStack[nos].flags & STK_Dyn ){ pSorter->pData = zStack[nos]; }else{ pSorter->pData = sqliteStrDup(zStack[nos]); } aStack[tos].flags = 0; aStack[nos].flags = 0; zStack[tos] = 0; zStack[nos] = 0; p->tos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these ** elements into a single data entry that can be stored on a sorter ** using SortPut and later fed to a callback using SortCallback. */ case OP_SortMakeRec: { char *z; char **azArg; int nByte; int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ Stringify(p, i); nByte += aStack[i].n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMallocRaw( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ if( aStack[i].flags & STK_Null ){ azArg[j] = 0; }else{ azArg[j] = z; strcpy(z, zStack[i]); z += aStack[i].n; } } PopStack(p, nField); p->tos++; aStack[p->tos].n = nByte; zStack[p->tos] = (char*)azArg; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* Opcode: SortMakeKey * * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in ** the string P3. One character from P3 is prepended to each entry. ** The first character of P3 is prepended to the element lowest in ** the stack and the last character of P3 is prepended to the top of ** the stack. All stack entries are separated by a \000 character ** in the result. The whole key is terminated by two \000 characters ** in a row. ** ** "N" is substituted in place of the P3 character for NULL values. ** ** See also the MakeKey and MakeIdxKey opcodes. */ case OP_SortMakeKey: { char *zNewKey; int nByte; int nField; int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)!=0 ){ nByte += 2; }else{ Stringify(p, i); nByte += aStack[i].n+2; } } zNewKey = sqliteMallocRaw( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)!=0 ){ zNewKey[j++] = 'N'; zNewKey[j++] = 0; k++; }else{ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; zNewKey[j++] = 0; } } zNewKey[j] = 0; assert( jtos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: Sort * * * ** ** Sort all elements on the sorter. The algorithm is a ** mergesort. */ case OP_Sort: { int i; Sorter *pElem; Sorter *apSorter[NSORT]; for(i=0; ipSort ){ pElem = p->pSort; p->pSort = pElem->pNext; pElem->pNext = 0; for(i=0; i=NSORT-1 ){ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); } } pElem = 0; for(i=0; ipSort = pElem; break; } /* Opcode: SortNext * P2 * ** ** Push the data for the topmost element in the sorter onto the ** stack, then remove the element from the sorter. If the sorter ** is empty, push nothing on the stack and instead jump immediately ** to instruction P2. */ case OP_SortNext: { Sorter *pSorter = p->pSort; CHECK_FOR_INTERRUPT; if( pSorter!=0 ){ p->pSort = pSorter->pNext; p->tos++; zStack[p->tos] = pSorter->pData; aStack[p->tos].n = pSorter->nData; aStack[p->tos].flags = STK_Str|STK_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortCallback P1 * * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. */ case OP_SortCallback: { int i = p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) if( p->xCallback==0 ){ p->pc = pc+1; p->azResColumn = (char**)zStack[i]; p->nResColumn = pOp->p1; p->popStack = 1; return SQLITE_ROW; }else{ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; if( p->xCallback(p->pCbArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; p->nCallback++; } POPSTACK; if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SortReset * * * ** ** Remove any elements that remain on the sorter. */ case OP_SortReset: { SorterReset(p); break; } /* Opcode: FileOpen * * P3 ** ** Open the file named by P3 for reading using the FileRead opcode. ** If P3 is "stdin" then open standard input for reading. */ case OP_FileOpen: { VERIFY( if( pOp->p3==0 ) goto bad_instruction; ) if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ p->pFile = stdin; }else{ p->pFile = fopen(pOp->p3, "r"); } if( p->pFile==0 ){ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, 0); rc = SQLITE_ERROR; } break; } /* Opcode: FileRead P1 P2 P3 ** ** Read a single line of input from the open file (the file opened using ** FileOpen). If we reach end-of-file, jump immediately to P2. If ** we are able to get another line, split the line apart using P3 as ** a delimiter. There should be P1 fields. If the input line contains ** more than P1 fields, ignore the excess. If the input line contains ** fewer than P1 fields, assume the remaining fields contain NULLs. ** ** Input ends if a line consists of just "\.". A field containing only ** "\N" is a null field. The backslash \ character can be used be used ** to escape newlines or the delimiter. */ case OP_FileRead: { int n, eol, nField, i, c, nDelim; char *zDelim, *z; CHECK_FOR_INTERRUPT; if( p->pFile==0 ) goto fileread_jump; nField = pOp->p1; if( nField<=0 ) goto fileread_jump; if( nField!=p->nField || p->azField==0 ){ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); if( azField==0 ){ goto no_mem; } p->azField = azField; p->nField = nField; } n = 0; eol = 0; while( eol==0 ){ if( p->zLine==0 || n+200>p->nLineAlloc ){ char *zLine; p->nLineAlloc = p->nLineAlloc*2 + 300; zLine = sqliteRealloc(p->zLine, p->nLineAlloc); if( zLine==0 ){ p->nLineAlloc = 0; sqliteFree(p->zLine); p->zLine = 0; goto no_mem; } p->zLine = zLine; } if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ eol = 1; p->zLine[n] = 0; }else{ int c; while( (c = p->zLine[n])!=0 ){ if( c=='\\' ){ if( p->zLine[n+1]==0 ) break; n += 2; }else if( c=='\n' ){ p->zLine[n] = 0; eol = 1; break; }else{ n++; } } } } if( n==0 ) goto fileread_jump; z = p->zLine; if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ goto fileread_jump; } zDelim = pOp->p3; if( zDelim==0 ) zDelim = "\t"; c = zDelim[0]; nDelim = strlen(zDelim); p->azField[0] = z; for(i=1; *z!=0 && i<=nField; i++){ int from, to; from = to = 0; if( z[0]=='\\' && z[1]=='N' && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){ if( i<=nField ) p->azField[i-1] = 0; z += 2 + nDelim; if( iazField[i] = z; continue; } while( z[from] ){ if( z[from]=='\\' && z[from+1]!=0 ){ z[to++] = z[from+1]; from += 2; continue; } if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; z[to++] = z[from++]; } if( z[from] ){ z[to] = 0; z += from + nDelim; if( iazField[i] = z; }else{ z[to] = 0; z = ""; } } while( iazField[i++] = 0; } break; /* If we reach end-of-file, or if anything goes wrong, jump here. ** This code will cause a jump to P2 */ fileread_jump: pc = pOp->p2 - 1; break; } /* Opcode: FileColumn P1 * * ** ** Push onto the stack the P1-th column of the most recently read line ** from the input file. */ case OP_FileColumn: { int i = pOp->p1; char *z; if( VERIFY( i>=0 && inField && ) p->azField ){ z = p->azField[i]; }else{ z = 0; } p->tos++; if( z ){ aStack[p->tos].n = strlen(z) + 1; zStack[p->tos] = z; aStack[p->tos].flags = STK_Str; }else{ aStack[p->tos].n = 0; zStack[p->tos] = 0; aStack[p->tos].flags = STK_Null; } break; } /* Opcode: MemStore P1 P2 * ** ** Write the top of the stack into memory location P1. ** P1 should be a small integer since space is allocated ** for all memory locations between 0 and P1 inclusive. ** ** After the data is stored in the memory location, the ** stack is popped once if P2 is 1. If P2 is zero, then ** the original data remains on the stack. */ case OP_MemStore: { int i = pOp->p1; int tos = p->tos; char *zOld; Mem *pMem; int flags; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=p->nMem ){ int nOld = p->nMem; Mem *aMem; p->nMem = i + 5; aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( aMem==0 ) goto no_mem; if( aMem!=p->aMem ){ int j; for(j=0; jaMem[j].s.z ){ aMem[j].z = aMem[j].s.z; } } } p->aMem = aMem; if( nOldnMem ){ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); } } pMem = &p->aMem[i]; flags = pMem->s.flags; if( flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; flags = pMem->s.flags; if( flags & (STK_Static|STK_Dyn|STK_Ephem) ){ if( (flags & STK_Static)!=0 || (pOp->p2 && (flags & STK_Dyn)!=0) ){ pMem->z = zStack[tos]; }else if( flags & STK_Str ){ pMem->z = sqliteMallocRaw( pMem->s.n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, zStack[tos], pMem->s.n); pMem->s.flags |= STK_Dyn; pMem->s.flags &= ~(STK_Static|STK_Ephem); } }else{ pMem->z = pMem->s.z; } if( zOld ) sqliteFree(zOld); if( pOp->p2 ){ zStack[tos] = 0; aStack[tos].flags = 0; POPSTACK; } break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. ** ** If the value is a string, then the value pushed is a pointer to ** the string that is stored in the memory location. If the memory ** location is subsequently changed (using OP_MemStore) then the ** value pushed onto the stack will change too. */ case OP_MemLoad: { int tos = ++p->tos; int i = pOp->p1; VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; ) memcpy(&aStack[tos], &p->aMem[i].s, sizeof(aStack[tos])-NBFS);; if( aStack[tos].flags & STK_Str ){ zStack[tos] = p->aMem[i].z; aStack[tos].flags |= STK_Ephem; aStack[tos].flags &= ~(STK_Dyn|STK_Static); } break; } /* Opcode: MemIncr P1 P2 * ** ** Increment the integer valued memory cell P1 by 1. If P2 is not zero ** and the result after the increment is greater than zero, then jump ** to P2. ** ** This instruction throws an error if the memory cell is not initially ** an integer. */ case OP_MemIncr: { int i = pOp->p1; Mem *pMem; VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; ) pMem = &p->aMem[i]; VERIFY( if( pMem->s.flags != STK_Int ) goto bad_instruction; ) pMem->s.i++; if( pOp->p2>0 && pMem->s.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggReset * P2 * ** ** Reset the aggregator so that it no longer contains any data. ** Future aggregator elements will contain P2 values each. */ case OP_AggReset: { AggReset(&p->agg); p->agg.nMem = pOp->p2; p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); if( p->agg.apFunc==0 ) goto no_mem; break; } /* Opcode: AggInit * P2 P3 ** ** Initialize the function parameters for an aggregate function. ** The aggregate will operate out of aggregate column P2. ** P3 is a pointer to the FuncDef structure for the function. */ case OP_AggInit: { int i = pOp->p2; VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; ) p->agg.apFunc[i] = (FuncDef*)pOp->p3; break; } /* Opcode: AggFunc * P2 P3 ** ** Execute the step function for an aggregate. The ** function has P2 arguments. P3 is a pointer to the FuncDef ** structure that specifies the function. ** ** The top of the stack must be an integer which is the index of ** the aggregate column that corresponds to this aggregate function. ** Ideally, this index would be another parameter, but there are ** no free parameters left. The integer is popped from the stack. */ case OP_AggFunc: { int n = pOp->p2; int i; Mem *pMem; sqlite_func ctx; VERIFY( if( n<0 ) goto bad_instruction; ) VERIFY( if( p->tos+1tos].flags!=STK_Int ) goto bad_instruction; ) for(i=p->tos-n; itos; i++){ if( aStack[i].flags & STK_Null ){ zStack[i] = 0; }else{ Stringify(p, i); } } i = aStack[p->tos].i; VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; ) ctx.pFunc = (FuncDef*)pOp->p3; pMem = &p->agg.pCurrent->aMem[i]; ctx.z = pMem->s.z; ctx.pAgg = pMem->z; ctx.cnt = ++pMem->s.i; ctx.isError = 0; ctx.isStep = 1; (ctx.pFunc->xStep)(&ctx, n, (const char**)&zStack[p->tos-n]); pMem->z = ctx.pAgg; pMem->s.flags = STK_AggCtx; PopStack(p, n+1); if( ctx.isError ){ rc = SQLITE_ERROR; } break; } /* Opcode: AggFocus * P2 * ** ** Pop the top of the stack and use that as an aggregator key. If ** an aggregator with that same key already exists, then make the ** aggregator the current aggregator and jump to P2. If no aggregator ** with the given key exists, create one and make it current but ** do not jump. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggFocus: { int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); zKey = zStack[tos]; nKey = aStack[tos].n; pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); if( pElem ){ p->agg.pCurrent = pElem; pc = pOp->p2 - 1; }else{ AggInsert(&p->agg, zKey, nKey); if( sqlite_malloc_failed ) goto no_mem; } POPSTACK; break; } /* Opcode: AggSet * P2 * ** ** Move the top of the stack into the P2-th field of the current ** aggregate. String values are duplicated into new memory. */ case OP_AggSet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) iagg.nMem ){ Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } Deephemeralize(p, tos); pMem->s = aStack[tos]; if( pMem->s.flags & STK_Dyn ){ pMem->z = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = 0; }else if( pMem->s.flags & (STK_Static|STK_AggCtx) ){ pMem->z = zStack[tos]; }else if( pMem->s.flags & STK_Str ){ pMem->z = pMem->s.z; } if( zOld ) sqliteFree(zOld); } POPSTACK; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field ** of the current aggregate. Strings are not duplicated so ** string values will be ephemeral. */ case OP_AggGet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = ++p->tos; if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) iagg.nMem ){ Mem *pMem = &pFocus->aMem[i]; aStack[tos] = pMem->s; zStack[tos] = pMem->z; aStack[tos].flags &= ~STK_Dyn; aStack[tos].flags |= STK_Ephem; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior ** aggregate is deleted. If all aggregate values have been consumed, ** jump to P2. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggNext: { CHECK_FOR_INTERRUPT; if( p->agg.pSearch==0 ){ p->agg.pSearch = sqliteHashFirst(&p->agg.hash); }else{ p->agg.pSearch = sqliteHashNext(p->agg.pSearch); } if( p->agg.pSearch==0 ){ pc = pOp->p2 - 1; } else { int i; sqlite_func ctx; Mem *aMem; p->agg.pCurrent = sqliteHashData(p->agg.pSearch); aMem = p->agg.pCurrent->aMem; for(i=0; iagg.nMem; i++){ int freeCtx; if( p->agg.apFunc[i]==0 ) continue; if( p->agg.apFunc[i]->xFinalize==0 ) continue; ctx.s.flags = STK_Null; ctx.z = 0; ctx.pAgg = (void*)aMem[i].z; freeCtx = aMem[i].z && aMem[i].z!=aMem[i].s.z; ctx.cnt = aMem[i].s.i; ctx.isStep = 0; ctx.pFunc = p->agg.apFunc[i]; (*p->agg.apFunc[i]->xFinalize)(&ctx); if( freeCtx ){ sqliteFree( aMem[i].z ); } aMem[i].s = ctx.s; aMem[i].z = ctx.z; if( (aMem[i].s.flags & STK_Str) && (aMem[i].s.flags & (STK_Dyn|STK_Static|STK_Ephem))==0 ){ aMem[i].z = aMem[i].s.z; } } } break; } /* Opcode: SetInsert P1 * P3 ** ** If Set P1 does not exist then create it. Then insert value ** P3 into that set. If P3 is NULL, then insert the top of the ** stack into the set. */ case OP_SetInsert: { int i = pOp->p1; if( p->nSet<=i ){ int k; Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); if( aSet==0 ) goto no_mem; p->aSet = aSet; for(k=p->nSet; k<=i; k++){ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); } p->nSet = i+1; } if( pOp->p3 ){ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; Stringify(p, tos); sqliteHashInsert(&p->aSet[i].hash, zStack[tos], aStack[tos].n, p); POPSTACK; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); if( i>=0 && inSet && sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); if( i<0 || i>=p->nSet || sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)==0 ){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: SetFirst P1 P2 * ** ** Read the first element from set P1 and push it onto the stack. If the ** set is empty, push nothing and jump immediately to P2. This opcode is ** used in combination with OP_SetNext to loop over all elements of a set. */ /* Opcode: SetNext P1 P2 * ** ** Read the next element from set P1 and push it onto the stack. If there ** are no more elements in the set, do not do the push and fall through. ** Otherwise, jump to P2 after pushing the next set element. */ case OP_SetFirst: case OP_SetNext: { Set *pSet; int tos; CHECK_FOR_INTERRUPT; if( pOp->p1<0 || pOp->p1>=p->nSet ){ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; break; } pSet = &p->aSet[pOp->p1]; if( pOp->opcode==OP_SetFirst ){ pSet->prev = sqliteHashFirst(&pSet->hash); if( pSet->prev==0 ){ pc = pOp->p2 - 1; break; } }else{ VERIFY( if( pSet->prev==0 ) goto bad_instruction; ) pSet->prev = sqliteHashNext(pSet->prev); if( pSet->prev==0 ){ break; }else{ pc = pOp->p2 - 1; } } tos = ++p->tos; zStack[tos] = sqliteHashKey(pSet->prev); aStack[tos].n = sqliteHashKeysize(pSet->prev); aStack[tos].flags = STK_Str | STK_Ephem; break; } /* An other opcode is illegal... */ default: { sprintf(zBuf,"%d",pOp->opcode); sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, 0); rc = SQLITE_INTERNAL; break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } #ifdef VDBE_PROFILE { long long elapse = hwtime() - start; pOp->cycles += elapse; pOp->cnt++; #if 0 fprintf(stdout, "%10lld ", elapse); vdbePrintOp(stdout, origPc, &p->aOp[origPc]); #endif } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG if( pc<-1 || pc>=p->nOp ){ sqliteSetString(&p->zErrMsg, "jump destination out of range", 0); rc = SQLITE_INTERNAL; } if( p->trace && p->tos>=0 ){ int i; fprintf(p->trace, "Stack:"); for(i=p->tos; i>=0 && i>p->tos-5; i--){ if( aStack[i].flags & STK_Null ){ fprintf(p->trace, " NULL"); }else if( (aStack[i].flags & (STK_Int|STK_Str))==(STK_Int|STK_Str) ){ fprintf(p->trace, " si:%d", aStack[i].i); }else if( aStack[i].flags & STK_Int ){ fprintf(p->trace, " i:%d", aStack[i].i); }else if( aStack[i].flags & STK_Real ){ fprintf(p->trace, " r:%g", aStack[i].r); }else if( aStack[i].flags & STK_Str ){ int j, k; char zBuf[100]; zBuf[0] = ' '; if( aStack[i].flags & STK_Dyn ){ zBuf[1] = 'z'; assert( (aStack[i].flags & (STK_Static|STK_Ephem))==0 ); }else if( aStack[i].flags & STK_Static ){ zBuf[1] = 't'; assert( (aStack[i].flags & (STK_Dyn|STK_Ephem))==0 ); }else if( aStack[i].flags & STK_Ephem ){ zBuf[1] = 'e'; assert( (aStack[i].flags & (STK_Static|STK_Dyn))==0 ); }else{ zBuf[1] = 's'; } zBuf[2] = '['; k = 3; for(j=0; j<20 && jtrace, "%s", zBuf); }else{ fprintf(p->trace, " ???"); } } if( rc!=0 ) fprintf(p->trace," rc=%d",rc); fprintf(p->trace,"\n"); } #endif } /* The end of the for(;;) loop the loops through opcodes */ /* If we reach this point, it means that execution is finished. */ vdbe_halt: if( rc ){ p->rc = rc; rc = SQLITE_ERROR; }else{ rc = SQLITE_DONE; } p->magic = VDBE_MAGIC_HALT; return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: sqliteSetString(&p->zErrMsg, "out of memory", 0); rc = SQLITE_NOMEM; goto vdbe_halt; /* Jump to here for an SQLITE_MISUSE error. */ abort_due_to_misuse: rc = SQLITE_MISUSE; /* Fall thru into abort_due_to_error */ /* Jump to here for any other kind of fatal error. The "rc" variable ** should hold the error number. */ abort_due_to_error: if( p->zErrMsg==0 ){ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0); } goto vdbe_halt; /* Jump to here if the sqlite_interrupt() API sets the interrupt ** flag. */ abort_due_to_interrupt: assert( db->flags & SQLITE_Interrupt ); db->flags &= ~SQLITE_Interrupt; if( db->magic!=SQLITE_MAGIC_BUSY ){ rc = SQLITE_MISUSE; }else{ rc = SQLITE_INTERRUPT; } sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0); goto vdbe_halt; /* Jump to here if a operator is encountered that requires more stack ** operands than are currently available on the stack. */ not_enough_stack: sprintf(zBuf,"%d",pc); sqliteSetString(&p->zErrMsg, "too few operands on stack at ", zBuf, 0); rc = SQLITE_INTERNAL; goto vdbe_halt; /* Jump here if an illegal or illformed instruction is executed. */ VERIFY( bad_instruction: sprintf(zBuf,"%d",pc); sqliteSetString(&p->zErrMsg, "illegal operation at ", zBuf, 0); rc = SQLITE_INTERNAL; goto vdbe_halt; ) } /* ** Clean up the VDBE after execution. Return an integer which is the ** result code. */ int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){ sqlite *db = p->db; int i, rc; if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0); return SQLITE_MISUSE; } if( p->zErrMsg ){ if( pzErrMsg && *pzErrMsg==0 ){ *pzErrMsg = p->zErrMsg; }else{ sqliteFree(p->zErrMsg); } p->zErrMsg = 0; } Cleanup(p); if( p->rc!=SQLITE_OK ){ switch( p->errorAction ){ case OE_Abort: { if( !p->undoTransOnError ){ for(i=0; inDb; i++){ if( db->aDb[i].pBt ){ sqliteBtreeRollbackCkpt(db->aDb[i].pBt); } } break; } /* Fall through to ROLLBACK */ } case OE_Rollback: { sqliteRollbackAll(db); db->flags &= ~SQLITE_InTrans; db->onError = OE_Default; break; } default: { if( p->undoTransOnError ){ sqliteRollbackAll(db); db->flags &= ~SQLITE_InTrans; db->onError = OE_Default; } break; } } sqliteRollbackInternalChanges(db); } for(i=0; inDb; i++){ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){ sqliteBtreeCommitCkpt(db->aDb[i].pBt); db->aDb[i].inTrans = 1; } } assert( p->tospc || sqlite_malloc_failed==1 ); #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ int i; fprintf(out, "---- "); for(i=0; inOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); for(i=0; inOp; i++){ fprintf(out, "%6d %10lld %8lld ", p->aOp[i].cnt, p->aOp[i].cycles, p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 ); vdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif rc = p->rc; sqliteVdbeDelete(p); if( db->want_to_close && db->pVdbe==0 ){ sqlite_close(db); } return rc; }