1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
/* $selId: julian.c,v 2.0 1995/10/24 01:13:06 lees Exp $
* Copyright 1993-1995, Scott E. Lee, all rights reserved.
* Permission granted to use, copy, modify, distribute and sell so long as
* the above copyright and this permission statement are retained in all
* copies. THERE IS NO WARRANTY - USE AT YOUR OWN RISK.
*/
/**************************************************************************
*
* These are the externally visible components of this file:
*
* void
* SdnToJulian(
* long int sdn,
* int *pYear,
* int *pMonth,
* int *pDay);
*
* Convert a SDN to a Julian calendar date. If the input SDN is less than
* 1, the three output values will all be set to zero, otherwise *pYear
* will be >= -4713 and != 0; *pMonth will be in the range 1 to 12
* inclusive; *pDay will be in the range 1 to 31 inclusive.
*
* long int
* JulianToSdn(
* int inputYear,
* int inputMonth,
* int inputDay);
*
* Convert a Julian calendar date to a SDN. Zero is returned when the
* input date is detected as invalid or out of the supported range. The
* return value will be > 0 for all valid, supported dates, but there are
* some invalid dates that will return a positive value. To verify that a
* date is valid, convert it to SDN and then back and compare with the
* original.
*
* VALID RANGE
*
* 4713 B.C. to at least 10000 A.D.
*
* Although this software can handle dates all the way back to 4713
* B.C., such use may not be meaningful. The calendar was created in
* 46 B.C., but the details did not stabilize until at least 8 A.D.,
* and perhaps as late at the 4th century. Also, the beginning of a
* year varied from one culture to another - not all accepted January
* as the first month.
*
* CALENDAR OVERVIEW
*
* Julias Ceasar created the calendar in 46 B.C. as a modified form of
* the old Roman republican calendar which was based on lunar cycles.
* The new Julian calendar set fixed lengths for the months, abandoning
* the lunar cycle. It also specified that there would be exactly 12
* months per year and 365.25 days per year with every 4th year being a
* leap year.
*
* Note that the current accepted value for the tropical year is
* 365.242199 days, not 365.25. This lead to an 11 day shift in the
* calendar with respect to the seasons by the 16th century when the
* Gregorian calendar was created to replace the Julian calendar.
*
* The difference between the Julian and today's Gregorian calendar is
* that the Gregorian does not make centennial years leap years unless
* they are a multiple of 400, which leads to a year of 365.2425 days.
* In other words, in the Gregorian calendar, 1700, 1800 and 1900 are
* not leap years, but 2000 is. All centennial years are leap years in
* the Julian calendar.
*
* The details are unknown, but the lengths of the months were adjusted
* until they finally stablized in 8 A.D. with their current lengths:
*
* January 31
* February 28/29
* March 31
* April 30
* May 31
* June 30
* Quintilis/July 31
* Sextilis/August 31
* September 30
* October 31
* November 30
* December 31
*
* In the early days of the calendar, the days of the month were not
* numbered as we do today. The numbers ran backwards (decreasing) and
* were counted from the Ides (15th of the month - which in the old
* Roman republican lunar calendar would have been the full moon) or
* from the Nonae (9th day before the Ides) or from the beginning of
* the next month.
*
* In the early years, the beginning of the year varied, sometimes
* based on the ascension of rulers. It was not always the first of
* January.
*
* Also, today's epoch, 1 A.D. or the birth of Jesus Christ, did not
* come into use until several centuries later when Christianity became
* a dominant religion.
*
* ALGORITHMS
*
* The calculations are based on two different cycles: a 4 year cycle
* of leap years and a 5 month cycle of month lengths.
*
* The 5 month cycle is used to account for the varying lengths of
* months. You will notice that the lengths alternate between 30 and
* 31 days, except for three anomalies: both July and August have 31
* days, both December and January have 31, and February is less than
* 30. Starting with March, the lengths are in a cycle of 5 months
* (31, 30, 31, 30, 31):
*
* Mar 31 days \
* Apr 30 days |
* May 31 days > First cycle
* Jun 30 days |
* Jul 31 days /
*
* Aug 31 days \
* Sep 30 days |
* Oct 31 days > Second cycle
* Nov 30 days |
* Dec 31 days /
*
* Jan 31 days \
* Feb 28/9 days |
* > Third cycle (incomplete)
*
* For this reason the calculations (internally) assume that the year
* starts with March 1.
*
* TESTING
*
* This algorithm has been tested from the year 4713 B.C. to 10000 A.D.
* The source code of the verification program is included in this
* package.
*
* REFERENCES
*
* Conversions Between Calendar Date and Julian Day Number by Robert J.
* Tantzen, Communications of the Association for Computing Machinery
* August 1963. (Also published in Collected Algorithms from CACM,
* algorithm number 199). [Note: the published algorithm is for the
* Gregorian calendar, but was adjusted to use the Julian calendar's
* simpler leap year rule.]
*
**************************************************************************/
#include "sdncal.h"
#define JULIAN_SDN_OFFSET 32083
#define DAYS_PER_5_MONTHS 153
#define DAYS_PER_4_YEARS 1461
void SdnToJulian(
long int sdn,
int *pYear,
int *pMonth,
int *pDay)
{
int year;
int month;
int day;
long int temp;
int dayOfYear;
if (sdn <= 0) {
*pYear = 0;
*pMonth = 0;
*pDay = 0;
return;
}
temp = (sdn + JULIAN_SDN_OFFSET) * 4 - 1;
/* Calculate the year and day of year (1 <= dayOfYear <= 366). */
year = temp / DAYS_PER_4_YEARS;
dayOfYear = (temp % DAYS_PER_4_YEARS) / 4 + 1;
/* Calculate the month and day of month. */
temp = dayOfYear * 5 - 3;
month = temp / DAYS_PER_5_MONTHS;
day = (temp % DAYS_PER_5_MONTHS) / 5 + 1;
/* Convert to the normal beginning of the year. */
if (month < 10) {
month += 3;
} else {
year += 1;
month -= 9;
}
/* Adjust to the B.C./A.D. type numbering. */
year -= 4800;
if (year <= 0)
year--;
*pYear = year;
*pMonth = month;
*pDay = day;
}
long int JulianToSdn(
int inputYear,
int inputMonth,
int inputDay)
{
int year;
int month;
/* check for invalid dates */
if (inputYear == 0 || inputYear < -4713 ||
inputMonth <= 0 || inputMonth > 12 ||
inputDay <= 0 || inputDay > 31) {
return (0);
}
/* check for dates before SDN 1 (Jan 2, 4713 B.C.) */
if (inputYear == -4713) {
if (inputMonth == 1 && inputDay == 1) {
return (0);
}
}
/* Make year always a positive number. */
if (inputYear < 0) {
year = inputYear + 4801;
} else {
year = inputYear + 4800;
}
/* Adjust the start of the year. */
if (inputMonth > 2) {
month = inputMonth - 3;
} else {
month = inputMonth + 9;
year--;
}
return ((year * DAYS_PER_4_YEARS) / 4
+ (month * DAYS_PER_5_MONTHS + 2) / 5
+ inputDay
- JULIAN_SDN_OFFSET);
}
/*
* Local variables:
* tab-width: 4
* c-basic-offset: 4
* End:
* vim600: sw=4 ts=4 fdm=marker
* vim<600: sw=4 ts=4
*/
|