1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
|
/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SLJIT_LIR_H_
#define _SLJIT_LIR_H_
/*
------------------------------------------------------------------------
Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
------------------------------------------------------------------------
Short description
Advantages:
- The execution can be continued from any LIR instruction. In other
words, it is possible to jump to any label from anywhere, even from
a code fragment, which is compiled later, if both compiled code
shares the same context. See sljit_emit_enter for more details
- Supports self modifying code: target of (conditional) jump and call
instructions and some constant values can be dynamically modified
during runtime
- although it is not suggested to do it frequently
- can be used for inline caching: save an important value once
in the instruction stream
- since this feature limits the optimization possibilities, a
special flag must be passed at compile time when these
instructions are emitted
- A fixed stack space can be allocated for local variables
- The compiler is thread-safe
- The compiler is highly configurable through preprocessor macros.
You can disable unneeded features (multithreading in single
threaded applications), and you can use your own system functions
(including memory allocators). See sljitConfig.h
Disadvantages:
- No automatic register allocation, and temporary results are
not stored on the stack. (hence the name comes)
In practice:
- This approach is very effective for interpreters
- One of the saved registers typically points to a stack interface
- It can jump to any exception handler anytime (even if it belongs
to another function)
- Hot paths can be modified during runtime reflecting the changes
of the fastest execution path of the dynamic language
- SLJIT supports complex memory addressing modes
- mainly position and context independent code (except some cases)
For valgrind users:
- pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
*/
#if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
#include "sljitConfig.h"
#endif
/* The following header file defines useful macros for fine tuning
sljit based code generators. They are listed in the beginning
of sljitConfigInternal.h */
#include "sljitConfigInternal.h"
/* --------------------------------------------------------------------- */
/* Error codes */
/* --------------------------------------------------------------------- */
/* Indicates no error. */
#define SLJIT_SUCCESS 0
/* After the call of sljit_generate_code(), the error code of the compiler
is set to this value to avoid future sljit calls (in debug mode at least).
The complier should be freed after sljit_generate_code(). */
#define SLJIT_ERR_COMPILED 1
/* Cannot allocate non executable memory. */
#define SLJIT_ERR_ALLOC_FAILED 2
/* Cannot allocate executable memory.
Only for sljit_generate_code() */
#define SLJIT_ERR_EX_ALLOC_FAILED 3
/* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
#define SLJIT_ERR_UNSUPPORTED 4
/* An ivalid argument is passed to any SLJIT function. */
#define SLJIT_ERR_BAD_ARGUMENT 5
/* --------------------------------------------------------------------- */
/* Registers */
/* --------------------------------------------------------------------- */
/*
Scratch (R) registers: registers whose may not preserve their values
across function calls.
Saved (S) registers: registers whose preserve their values across
function calls.
The scratch and saved register sets are overlap. The last scratch register
is the first saved register, the one before the last is the second saved
register, and so on.
If an architecture provides two scratch and three saved registers,
its scratch and saved register sets are the following:
R0 | [S4] | R0 and S4 represent the same physical register
R1 | [S3] | R1 and S3 represent the same physical register
[R2] | S2 | R2 and S2 represent the same physical register
[R3] | S1 | R3 and S1 represent the same physical register
[R4] | S0 | R4 and S0 represent the same physical register
Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
are virtual on x86-32. See below.
The purpose of this definition is convenience. Although a register
is either scratch register or saved register, SLJIT allows accessing
them from the other set. For example, four registers can be used as
scratch registers and the fifth one as saved register on the architecture
above. Of course the last two scratch registers (R2 and R3) from this
four will be saved on the stack, because they are defined as saved
registers in the application binary interface. Still R2 and R3 can be
used for referencing to these registers instead of S2 and S1, which
makes easier to write platform independent code. Scratch registers
can be saved registers in a similar way, but these extra saved
registers will not be preserved across function calls! Hence the
application must save them on those platforms, where the number of
saved registers is too low. This can be done by copy them onto
the stack and restore them after a function call.
Note: To emphasize that registers assigned to R2-R4 are saved
registers, they are enclosed by square brackets. S3-S4
are marked in a similar way.
Note: sljit_emit_enter and sljit_set_context defines whether a register
is S or R register. E.g: when 3 scratches and 1 saved is mapped
by sljit_emit_enter, the allowed register set will be: R0-R2 and
S0. Although S2 is mapped to the same position as R2, it does not
available in the current configuration. Furthermore the R3 (S1)
register does not available as well.
*/
/* When SLJIT_UNUSED is specified as destination, the result is discarded. */
#define SLJIT_UNUSED 0
/* Scratch registers. */
#define SLJIT_R0 1
#define SLJIT_R1 2
#define SLJIT_R2 3
/* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
are allocated on the stack). These registers are called virtual
and cannot be used for memory addressing (cannot be part of
any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
limitation on other CPUs. See sljit_get_register_index(). */
#define SLJIT_R3 4
#define SLJIT_R4 5
#define SLJIT_R5 6
#define SLJIT_R6 7
#define SLJIT_R7 8
#define SLJIT_R8 9
#define SLJIT_R9 10
/* All R registers provided by the architecture can be accessed by SLJIT_R(i)
The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
#define SLJIT_R(i) (1 + (i))
/* Saved registers. */
#define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
#define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
#define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
/* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
are allocated on the stack). These registers are called virtual
and cannot be used for memory addressing (cannot be part of
any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
limitation on other CPUs. See sljit_get_register_index(). */
#define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
#define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
#define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
#define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
#define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
#define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
#define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
/* All S registers provided by the architecture can be accessed by SLJIT_S(i)
The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
#define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
/* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
#define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
/* The SLJIT_SP provides direct access to the linear stack space allocated by
sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
The immediate offset is extended by the relative stack offset automatically.
The sljit_get_local_base can be used to obtain the absolute offset. */
#define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
/* Return with machine word. */
#define SLJIT_RETURN_REG SLJIT_R0
/* x86 prefers specific registers for special purposes. In case of shift
by register it supports only SLJIT_R2 for shift argument
(which is the src2 argument of sljit_emit_op2). If another register is
used, sljit must exchange data between registers which cause a minor
slowdown. Other architectures has no such limitation. */
#define SLJIT_PREF_SHIFT_REG SLJIT_R2
/* --------------------------------------------------------------------- */
/* Floating point registers */
/* --------------------------------------------------------------------- */
/* Each floating point register can store a double or single precision
value. The FR and FS register sets are overlap in the same way as R
and S register sets. See above. */
/* Note: SLJIT_UNUSED as destination is not valid for floating point
operations, since they cannot be used for setting flags. */
/* Floating point scratch registers. */
#define SLJIT_FR0 1
#define SLJIT_FR1 2
#define SLJIT_FR2 3
#define SLJIT_FR3 4
#define SLJIT_FR4 5
#define SLJIT_FR5 6
/* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
#define SLJIT_FR(i) (1 + (i))
/* Floating point saved registers. */
#define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
#define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
#define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
#define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
#define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
#define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
/* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
#define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
/* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
#define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
/* --------------------------------------------------------------------- */
/* Main structures and functions */
/* --------------------------------------------------------------------- */
/*
The following structures are private, and can be changed in the
future. Keeping them here allows code inlining.
*/
struct sljit_memory_fragment {
struct sljit_memory_fragment *next;
sljit_uw used_size;
/* Must be aligned to sljit_sw. */
sljit_ub memory[1];
};
struct sljit_label {
struct sljit_label *next;
sljit_uw addr;
/* The maximum size difference. */
sljit_uw size;
};
struct sljit_jump {
struct sljit_jump *next;
sljit_uw addr;
sljit_sw flags;
union {
sljit_uw target;
struct sljit_label* label;
} u;
};
struct sljit_const {
struct sljit_const *next;
sljit_uw addr;
};
struct sljit_compiler {
sljit_si error;
sljit_si options;
struct sljit_label *labels;
struct sljit_jump *jumps;
struct sljit_const *consts;
struct sljit_label *last_label;
struct sljit_jump *last_jump;
struct sljit_const *last_const;
void *allocator_data;
struct sljit_memory_fragment *buf;
struct sljit_memory_fragment *abuf;
/* Used scratch registers. */
sljit_si scratches;
/* Used saved registers. */
sljit_si saveds;
/* Used float scratch registers. */
sljit_si fscratches;
/* Used float saved registers. */
sljit_si fsaveds;
/* Local stack size. */
sljit_si local_size;
/* Code size. */
sljit_uw size;
/* For statistical purposes. */
sljit_uw executable_size;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_si args;
#endif
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_si mode32;
#endif
#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
sljit_si flags_saved;
#endif
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
/* Constant pool handling. */
sljit_uw *cpool;
sljit_ub *cpool_unique;
sljit_uw cpool_diff;
sljit_uw cpool_fill;
/* Other members. */
/* Contains pointer, "ldr pc, [...]" pairs. */
sljit_uw patches;
#endif
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
/* Temporary fields. */
sljit_uw shift_imm;
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
sljit_sw imm;
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
sljit_si delay_slot;
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
sljit_si delay_slot;
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
sljit_si cache_arg;
sljit_sw cache_argw;
#endif
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
FILE* verbose;
#endif
#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
/* Local size passed to the functions. */
sljit_si logical_local_size;
#endif
#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
sljit_si skip_checks;
#endif
};
/* --------------------------------------------------------------------- */
/* Main functions */
/* --------------------------------------------------------------------- */
/* Creates an sljit compiler. The allocator_data is required by some
custom memory managers. This pointer is passed to SLJIT_MALLOC
and SLJIT_FREE macros. Most allocators (including the default
one) ignores this value, and it is recommended to pass NULL
as a dummy value for allocator_data.
Returns NULL if failed. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
/* Frees everything except the compiled machine code. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
/* Returns the current error code. If an error is occurred, future sljit
calls which uses the same compiler argument returns early with the same
error code. Thus there is no need for checking the error after every
call, it is enough to do it before the code is compiled. Removing
these checks increases the performance of the compiling process. */
static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
/* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
if an error was detected before. After the error code is set
the compiler behaves as if the allocation failure happened
during an sljit function call. This can greatly simplify error
checking, since only the compiler status needs to be checked
after the compilation. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
/*
Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
and <= 128 bytes on 64 bit architectures. The memory area is owned by the
compiler, and freed by sljit_free_compiler. The returned pointer is
sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
the compiling, and no need to worry about freeing them. The size is
enough to contain at most 16 pointers. If the size is outside of the range,
the function will return with NULL. However, this return value does not
indicate that there is no more memory (does not set the current error code
of the compiler to out-of-memory status).
*/
SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
/* Passing NULL disables verbose. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
#endif
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
/*
After the machine code generation is finished we can retrieve the allocated
executable memory size, although this area may not be fully filled with
instructions depending on some optimizations. This function is useful only
for statistical purposes.
Before a successful code generation, this function returns with 0.
*/
static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
/* Instruction generation. Returns with any error code. If there is no
error, they return with SLJIT_SUCCESS. */
/*
The executable code is a function call from the viewpoint of the C
language. The function calls must obey to the ABI (Application
Binary Interface) of the platform, which specify the purpose of
all machine registers and stack handling among other things. The
sljit_emit_enter function emits the necessary instructions for
setting up a new context for the executable code and moves function
arguments to the saved registers. Furthermore the options argument
can be used to pass configuration options to the compiler. The
available options are listed before sljit_emit_enter.
The number of sljit_sw arguments passed to the generated function
are specified in the "args" parameter. The number of arguments must
be less than or equal to 3. The first argument goes to SLJIT_S0,
the second goes to SLJIT_S1 and so on. The register set used by
the function must be declared as well. The number of scratch and
saved registers used by the function must be passed to sljit_emit_enter.
Only R registers between R0 and "scratches" argument can be used
later. E.g. if "scratches" is set to 2, the register set will be
limited to R0 and R1. The S registers and the floating point
registers ("fscratches" and "fsaveds") are specified in a similar
way. The sljit_emit_enter is also capable of allocating a stack
space for local variables. The "local_size" argument contains the
size in bytes of this local area and its staring address is stored
in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
SLJIT_SP + local_size (exclusive) can be modified freely until
the function returns. The stack space is not initialized.
Note: the following conditions must met:
0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
Note: every call of sljit_emit_enter and sljit_set_context
overwrites the previous context.
*/
/* The absolute address returned by sljit_get_local_base with
offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
#define SLJIT_DOUBLE_ALIGNMENT 0x00000001
/* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
#define SLJIT_MAX_LOCAL_SIZE 65536
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
/* The machine code has a context (which contains the local stack space size,
number of used registers, etc.) which initialized by sljit_emit_enter. Several
functions (like sljit_emit_return) requres this context to be able to generate
the appropriate code. However, some code fragments (like inline cache) may have
no normal entry point so their context is unknown for the compiler. Their context
can be provided to the compiler by the sljit_set_context function.
Note: every call of sljit_emit_enter and sljit_set_context overwrites
the previous context. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
/* Return from machine code. The op argument can be SLJIT_UNUSED which means the
function does not return with anything or any opcode between SLJIT_MOV and
SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
is SLJIT_UNUSED, otherwise see below the description about source and
destination arguments. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
sljit_si src, sljit_sw srcw);
/* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
even the stack frame is passed to the callee. The return address is preserved in
dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
/* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
instructions are needed. Excellent for small uility functions, where saving registers
and setting up a new stack frame would cost too much performance. However, it is still
possible to return to the address of the caller (or anywhere else). */
/* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
/* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
since many architectures do clever branch prediction on call / return instruction pairs. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
/*
Source and destination values for arithmetical instructions
imm - a simple immediate value (cannot be used as a destination)
reg - any of the registers (immediate argument must be 0)
[imm] - absolute immediate memory address
[reg+imm] - indirect memory address
[reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
useful for (byte, half, int, sljit_sw) array access
(fully supported by both x86 and ARM architectures, and cheap operation on others)
*/
/*
IMPORATNT NOTE: memory access MUST be naturally aligned except
SLJIT_UNALIGNED macro is defined and its value is 1.
length | alignment
---------+-----------
byte | 1 byte (any physical_address is accepted)
half | 2 byte (physical_address & 0x1 == 0)
int | 4 byte (physical_address & 0x3 == 0)
word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
| 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
| on 64 bit machines)
Note: Different architectures have different addressing limitations.
A single instruction is enough for the following addressing
modes. Other adrressing modes are emulated by instruction
sequences. This information could help to improve those code
generators which focuses only a few architectures.
x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
[reg+(reg<<imm)] is supported
[imm], -2^32+1 <= imm <= 2^32-1 is supported
Write-back is not supported
arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
bytes, any halfs or floating point values)
[reg+(reg<<imm)] is supported
Write-back is supported
arm-t2: [reg+imm], -255 <= imm <= 4095
[reg+(reg<<imm)] is supported
Write back is supported only for [reg+imm], where -255 <= imm <= 255
ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
signed load on 64 bit requires immediates divisible by 4.
[reg+imm] is not supported for signed 8 bit values.
[reg+reg] is supported
Write-back is supported except for one instruction: 32 bit signed
load with [reg+imm] addressing mode on 64 bit.
mips: [reg+imm], -65536 <= imm <= 65535
sparc: [reg+imm], -4096 <= imm <= 4095
[reg+reg] is supported
*/
/* Register output: simply the name of the register.
For destination, you can use SLJIT_UNUSED as well. */
#define SLJIT_MEM 0x80
#define SLJIT_MEM0() (SLJIT_MEM)
#define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
#define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
#define SLJIT_IMM 0x40
/* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
lower 32 bit of the input register(s), and set the CPU status flags according
to the 32 bit result. The higher 32 bits are undefined for both the input and
output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
expects it to be the sign extension of the lower 32 bit. All 32 bit operations
are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
is specified, all register arguments must be the result of other operations with
the same SLJIT_INT_OP flag. In other words, although a register can hold either
a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
which can convert any source argument to SLJIT_INT_OP compatible result. This
conversion might be unnecessary on some CPUs like x86-64, since the upper 32
bit is always ignored. In this case SLJIT is clever enough to not generate any
instructions if the source and destination operands are the same registers.
Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
#define SLJIT_INT_OP 0x100
/* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
it applies to floating point registers (it is even the same bit). When
this flag is passed, the CPU performs single precision floating point
operations. Similar to SLJIT_INT_OP, all register arguments must be the
result of other floating point operations with this flag. Affects
sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
#define SLJIT_SINGLE_OP 0x100
/* Common CPU status flags for all architectures (x86, ARM, PPC)
- carry flag
- overflow flag
- zero flag
- negative/positive flag (depends on arc)
On mips, these flags are emulated by software. */
/* By default, the instructions may, or may not set the CPU status flags.
Forcing to set or keep status flags can be done with the following flags: */
/* Note: sljit tries to emit the minimum number of instructions. Using these
flags can increase them, so use them wisely to avoid unnecessary code generation. */
/* Set Equal (Zero) status flag (E). */
#define SLJIT_SET_E 0x0200
/* Set unsigned status flag (U). */
#define SLJIT_SET_U 0x0400
/* Set signed status flag (S). */
#define SLJIT_SET_S 0x0800
/* Set signed overflow flag (O). */
#define SLJIT_SET_O 0x1000
/* Set carry flag (C).
Note: Kinda unsigned overflow, but behaves differently on various cpus. */
#define SLJIT_SET_C 0x2000
/* Do not modify the flags (K).
Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
#define SLJIT_KEEP_FLAGS 0x4000
/* Notes:
- you cannot postpone conditional jump instructions except if noted that
the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
- flag combinations: '|' means 'logical or'. */
/* Starting index of opcodes for sljit_emit_op0. */
#define SLJIT_OP0_BASE 0
/* Flags: - (never set any flags)
Note: breakpoint instruction is not supported by all architectures (namely ppc)
It falls back to SLJIT_NOP in those cases. */
#define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
/* Flags: - (never set any flags)
Note: may or may not cause an extra cycle wait
it can even decrease the runtime in a few cases. */
#define SLJIT_NOP (SLJIT_OP0_BASE + 1)
/* Flags: - (may destroy flags)
Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
#define SLJIT_LUMUL (SLJIT_OP0_BASE + 2)
/* Flags: - (may destroy flags)
Signed multiplication of SLJIT_R0 and SLJIT_R1.
Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
#define SLJIT_LSMUL (SLJIT_OP0_BASE + 3)
/* Flags: I - (may destroy flags)
Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
#define SLJIT_LUDIV (SLJIT_OP0_BASE + 4)
#define SLJIT_ILUDIV (SLJIT_LUDIV | SLJIT_INT_OP)
/* Flags: I - (may destroy flags)
Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
#define SLJIT_LSDIV (SLJIT_OP0_BASE + 5)
#define SLJIT_ILSDIV (SLJIT_LSDIV | SLJIT_INT_OP)
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
/* Starting index of opcodes for sljit_emit_op1. */
#define SLJIT_OP1_BASE 32
/* Notes for MOV instructions:
U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
UB = unsigned byte (8 bit)
SB = signed byte (8 bit)
UH = unsigned half (16 bit)
SH = signed half (16 bit)
UI = unsigned int (32 bit)
SI = signed int (32 bit)
P = pointer (sljit_p) size */
/* Flags: - (never set any flags) */
#define SLJIT_MOV (SLJIT_OP1_BASE + 0)
/* Flags: I - (never set any flags) */
#define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
#define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
/* Flags: I - (never set any flags) */
#define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
#define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
/* Flags: I - (never set any flags) */
#define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
#define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
/* Flags: I - (never set any flags) */
#define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
#define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
/* Flags: I - (never set any flags)
Note: see SLJIT_INT_OP for further details. */
#define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
/* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
/* Flags: I - (never set any flags)
Note: see SLJIT_INT_OP for further details. */
#define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
#define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
/* Flags: - (never set any flags) */
#define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
/* Flags: - (never set any flags) */
#define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
/* Flags: I - (never set any flags) */
#define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
#define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
/* Flags: I - (never set any flags) */
#define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
#define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
/* Flags: I - (never set any flags) */
#define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
#define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
/* Flags: I - (never set any flags) */
#define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
#define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
/* Flags: I - (never set any flags)
Note: see SLJIT_INT_OP for further details. */
#define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
/* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
/* Flags: I - (never set any flags)
Note: see SLJIT_INT_OP for further details. */
#define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
#define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
/* Flags: - (never set any flags) */
#define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
/* Flags: I | E | K */
#define SLJIT_NOT (SLJIT_OP1_BASE + 16)
#define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
/* Flags: I | E | O | K */
#define SLJIT_NEG (SLJIT_OP1_BASE + 17)
#define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
/* Count leading zeroes
Flags: I | E | K
Important note! Sparc 32 does not support K flag, since
the required popc instruction is introduced only in sparc 64. */
#define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
#define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw);
/* Starting index of opcodes for sljit_emit_op2. */
#define SLJIT_OP2_BASE 96
/* Flags: I | E | O | C | K */
#define SLJIT_ADD (SLJIT_OP2_BASE + 0)
#define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
/* Flags: I | C | K */
#define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
#define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
/* Flags: I | E | U | S | O | C | K */
#define SLJIT_SUB (SLJIT_OP2_BASE + 2)
#define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
/* Flags: I | C | K */
#define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
#define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
/* Note: integer mul
Flags: I | O (see SLJIT_C_MUL_*) | K */
#define SLJIT_MUL (SLJIT_OP2_BASE + 4)
#define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
/* Flags: I | E | K */
#define SLJIT_AND (SLJIT_OP2_BASE + 5)
#define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
/* Flags: I | E | K */
#define SLJIT_OR (SLJIT_OP2_BASE + 6)
#define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
/* Flags: I | E | K */
#define SLJIT_XOR (SLJIT_OP2_BASE + 7)
#define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
/* Flags: I | E | K
Let bit_length be the length of the shift operation: 32 or 64.
If src2 is immediate, src2w is masked by (bit_length - 1).
Otherwise, if the content of src2 is outside the range from 0
to bit_length - 1, the result is undefined. */
#define SLJIT_SHL (SLJIT_OP2_BASE + 8)
#define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
/* Flags: I | E | K
Let bit_length be the length of the shift operation: 32 or 64.
If src2 is immediate, src2w is masked by (bit_length - 1).
Otherwise, if the content of src2 is outside the range from 0
to bit_length - 1, the result is undefined. */
#define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
#define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
/* Flags: I | E | K
Let bit_length be the length of the shift operation: 32 or 64.
If src2 is immediate, src2w is masked by (bit_length - 1).
Otherwise, if the content of src2 is outside the range from 0
to bit_length - 1, the result is undefined. */
#define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
#define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w);
/* The following function is a helper function for sljit_emit_op_custom.
It returns with the real machine register index ( >=0 ) of any SLJIT_R,
SLJIT_S and SLJIT_SP registers.
Note: it returns with -1 for virtual registers (only on x86-32). */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
/* The following function is a helper function for sljit_emit_op_custom.
It returns with the real machine register index of any SLJIT_FLOAT register.
Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
/* Any instruction can be inserted into the instruction stream by
sljit_emit_op_custom. It has a similar purpose as inline assembly.
The size parameter must match to the instruction size of the target
architecture:
x86: 0 < size <= 15. The instruction argument can be byte aligned.
Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
if size == 4, the instruction argument must be 4 byte aligned.
Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size);
/* Returns with non-zero if fpu is available. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
/* Starting index of opcodes for sljit_emit_fop1. */
#define SLJIT_FOP1_BASE 128
/* Flags: SP - (never set any flags) */
#define SLJIT_DMOV (SLJIT_FOP1_BASE + 0)
#define SLJIT_SMOV (SLJIT_DMOV | SLJIT_SINGLE_OP)
/* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
Rounding mode when the destination is W or I: round towards zero. */
/* Flags: SP - (never set any flags) */
#define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
#define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
#define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
#define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
#define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
#define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
/* Note: dst is the left and src is the right operand for SLJIT_CMPD.
Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
is set, the comparison result is unpredictable.
Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
#define SLJIT_DCMP (SLJIT_FOP1_BASE + 6)
#define SLJIT_SCMP (SLJIT_DCMP | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_DNEG (SLJIT_FOP1_BASE + 7)
#define SLJIT_SNEG (SLJIT_DNEG | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_DABS (SLJIT_FOP1_BASE + 8)
#define SLJIT_SABS (SLJIT_DABS | SLJIT_SINGLE_OP)
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw);
/* Starting index of opcodes for sljit_emit_fop2. */
#define SLJIT_FOP2_BASE 160
/* Flags: SP - (never set any flags) */
#define SLJIT_DADD (SLJIT_FOP2_BASE + 0)
#define SLJIT_SADD (SLJIT_DADD | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_DSUB (SLJIT_FOP2_BASE + 1)
#define SLJIT_SSUB (SLJIT_DSUB | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_DMUL (SLJIT_FOP2_BASE + 2)
#define SLJIT_SMUL (SLJIT_DMUL | SLJIT_SINGLE_OP)
/* Flags: SP - (never set any flags) */
#define SLJIT_DDIV (SLJIT_FOP2_BASE + 3)
#define SLJIT_SDIV (SLJIT_DDIV | SLJIT_SINGLE_OP)
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w);
/* Label and jump instructions. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
/* Invert (negate) conditional type: xor (^) with 0x1 */
/* Integer comparison types. */
#define SLJIT_EQUAL 0
#define SLJIT_I_EQUAL (SLJIT_EQUAL | SLJIT_INT_OP)
#define SLJIT_ZERO 0
#define SLJIT_I_ZERO (SLJIT_ZERO | SLJIT_INT_OP)
#define SLJIT_NOT_EQUAL 1
#define SLJIT_I_NOT_EQUAL (SLJIT_NOT_EQUAL | SLJIT_INT_OP)
#define SLJIT_NOT_ZERO 1
#define SLJIT_I_NOT_ZERO (SLJIT_NOT_ZERO | SLJIT_INT_OP)
#define SLJIT_LESS 2
#define SLJIT_I_LESS (SLJIT_LESS | SLJIT_INT_OP)
#define SLJIT_GREATER_EQUAL 3
#define SLJIT_I_GREATER_EQUAL (SLJIT_GREATER_EQUAL | SLJIT_INT_OP)
#define SLJIT_GREATER 4
#define SLJIT_I_GREATER (SLJIT_GREATER | SLJIT_INT_OP)
#define SLJIT_LESS_EQUAL 5
#define SLJIT_I_LESS_EQUAL (SLJIT_LESS_EQUAL | SLJIT_INT_OP)
#define SLJIT_SIG_LESS 6
#define SLJIT_I_SIG_LESS (SLJIT_SIG_LESS | SLJIT_INT_OP)
#define SLJIT_SIG_GREATER_EQUAL 7
#define SLJIT_I_SIG_GREATER_EQUAL (SLJIT_SIG_GREATER_EQUAL | SLJIT_INT_OP)
#define SLJIT_SIG_GREATER 8
#define SLJIT_I_SIG_GREATER (SLJIT_SIG_GREATER | SLJIT_INT_OP)
#define SLJIT_SIG_LESS_EQUAL 9
#define SLJIT_I_SIG_LESS_EQUAL (SLJIT_SIG_LESS_EQUAL | SLJIT_INT_OP)
#define SLJIT_OVERFLOW 10
#define SLJIT_I_OVERFLOW (SLJIT_OVERFLOW | SLJIT_INT_OP)
#define SLJIT_NOT_OVERFLOW 11
#define SLJIT_I_NOT_OVERFLOW (SLJIT_NOT_OVERFLOW | SLJIT_INT_OP)
#define SLJIT_MUL_OVERFLOW 12
#define SLJIT_I_MUL_OVERFLOW (SLJIT_MUL_OVERFLOW | SLJIT_INT_OP)
#define SLJIT_MUL_NOT_OVERFLOW 13
#define SLJIT_I_MUL_NOT_OVERFLOW (SLJIT_MUL_NOT_OVERFLOW | SLJIT_INT_OP)
/* Floating point comparison types. */
#define SLJIT_D_EQUAL 14
#define SLJIT_S_EQUAL (SLJIT_D_EQUAL | SLJIT_SINGLE_OP)
#define SLJIT_D_NOT_EQUAL 15
#define SLJIT_S_NOT_EQUAL (SLJIT_D_NOT_EQUAL | SLJIT_SINGLE_OP)
#define SLJIT_D_LESS 16
#define SLJIT_S_LESS (SLJIT_D_LESS | SLJIT_SINGLE_OP)
#define SLJIT_D_GREATER_EQUAL 17
#define SLJIT_S_GREATER_EQUAL (SLJIT_D_GREATER_EQUAL | SLJIT_SINGLE_OP)
#define SLJIT_D_GREATER 18
#define SLJIT_S_GREATER (SLJIT_D_GREATER | SLJIT_SINGLE_OP)
#define SLJIT_D_LESS_EQUAL 19
#define SLJIT_S_LESS_EQUAL (SLJIT_D_LESS_EQUAL | SLJIT_SINGLE_OP)
#define SLJIT_D_UNORDERED 20
#define SLJIT_S_UNORDERED (SLJIT_D_UNORDERED | SLJIT_SINGLE_OP)
#define SLJIT_D_ORDERED 21
#define SLJIT_S_ORDERED (SLJIT_D_ORDERED | SLJIT_SINGLE_OP)
/* Unconditional jump types. */
#define SLJIT_JUMP 22
#define SLJIT_FAST_CALL 23
#define SLJIT_CALL0 24
#define SLJIT_CALL1 25
#define SLJIT_CALL2 26
#define SLJIT_CALL3 27
/* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
/* The target can be changed during runtime (see: sljit_set_jump_addr). */
#define SLJIT_REWRITABLE_JUMP 0x1000
/* Emit a jump instruction. The destination is not set, only the type of the jump.
type must be between SLJIT_EQUAL and SLJIT_CALL3
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
Flags: - (never set any flags) for both conditional and unconditional jumps.
Flags: destroy all flags for calls. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
/* Basic arithmetic comparison. In most architectures it is implemented as
an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
appropriate flags) followed by a sljit_emit_jump. However some
architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
It is suggested to use this comparison form when appropriate.
type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
Flags: destroy flags. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w);
/* Basic floating point comparison. In most architectures it is implemented as
an SLJIT_FCMP operation (setting appropriate flags) followed by a
sljit_emit_jump. However some architectures (i.e: MIPS) may employ
special optimizations here. It is suggested to use this comparison form
when appropriate.
type must be between SLJIT_D_EQUAL and SLJIT_S_ORDERED
type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
Flags: destroy flags.
Note: if either operand is NaN, the behaviour is undefined for
types up to SLJIT_S_LESS_EQUAL. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w);
/* Set the destination of the jump to this label. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
/* Set the destination address of the jump to this label. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
/* Call function or jump anywhere. Both direct and indirect form
type must be between SLJIT_JUMP and SLJIT_CALL3
Direct form: set src to SLJIT_IMM() and srcw to the address
Indirect form: any other valid addressing mode
Flags: - (never set any flags) for unconditional jumps.
Flags: destroy all flags for calls. */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
/* Perform the operation using the conditional flags as the second argument.
Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
represented by the type is 1, if the condition represented by the type
is fulfilled, and 0 otherwise.
If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
Set dst to the value represented by the type (0 or 1).
Src must be SLJIT_UNUSED, and srcw must be 0
Flags: - (never set any flags)
If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
Performs the binary operation using src as the first, and the value
represented by type as the second argument.
Important note: only dst=src and dstw=srcw is supported at the moment!
Flags: I | E | K
Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type);
/* Copies the base address of SLJIT_SP + offset to dst.
Flags: - (never set any flags) */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
/* The constant can be changed runtime (see: sljit_set_const)
Flags: - (never set any flags) */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
/* After the code generation the address for label, jump and const instructions
are computed. Since these structures are freed by sljit_free_compiler, the
addresses must be preserved by the user program elsewere. */
static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
/* Only the address is required to rewrite the code. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
/* --------------------------------------------------------------------- */
/* Miscellaneous utility functions */
/* --------------------------------------------------------------------- */
#define SLJIT_MAJOR_VERSION 0
#define SLJIT_MINOR_VERSION 93
/* Get the human readable name of the platform. Can be useful on platforms
like ARM, where ARM and Thumb2 functions can be mixed, and
it is useful to know the type of the code generator. */
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
/* Portable helper function to get an offset of a member. */
#define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
#if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
/* This global lock is useful to compile common functions. */
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
#endif
#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
/* The sljit_stack is a utiliy feature of sljit, which allocates a
writable memory region between base (inclusive) and limit (exclusive).
Both base and limit is a pointer, and base is always <= than limit.
This feature uses the "address space reserve" feature
of modern operating systems. Basically we don't need to allocate a
huge memory block in one step for the worst case, we can start with
a smaller chunk and extend it later. Since the address space is
reserved, the data never copied to other regions, thus it is safe
to store pointers here. */
/* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
Note: stack growing should not happen in small steps: 4k, 16k or even
bigger growth is better.
Note: this structure may not be supported by all operating systems.
Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
is not defined. */
struct sljit_stack {
/* User data, anything can be stored here.
Starting with the same value as base. */
sljit_uw top;
/* These members are read only. */
sljit_uw base;
sljit_uw limit;
sljit_uw max_limit;
};
/* Returns NULL if unsuccessful.
Note: limit and max_limit contains the size for stack allocation.
Note: the top field is initialized to base.
Note: see sljit_create_compiler for the explanation of allocator_data. */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
/* Can be used to increase (allocate) or decrease (free) the memory area.
Returns with a non-zero value if unsuccessful. If new_limit is greater than
max_limit, it will fail. It is very easy to implement a stack data structure,
since the growth ratio can be added to the current limit, and sljit_stack_resize
will do all the necessary checks. The fields of the stack are not changed if
sljit_stack_resize fails. */
SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
#if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
/* Get the entry address of a given function. */
#define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
#else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
/* All JIT related code should be placed in the same context (library, binary, etc.). */
#define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
/* For powerpc64, the function pointers point to a context descriptor. */
struct sljit_function_context {
sljit_sw addr;
sljit_sw r2;
sljit_sw r11;
};
/* Fill the context arguments using the addr and the function.
If func_ptr is NULL, it will not be set to the address of context
If addr is NULL, the function address also comes from the func pointer. */
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
#endif /* _SLJIT_LIR_H_ */
|