summaryrefslogtreecommitdiff
path: root/glib/glib/gvariant.c
diff options
context:
space:
mode:
Diffstat (limited to 'glib/glib/gvariant.c')
-rw-r--r--glib/glib/gvariant.c5224
1 files changed, 5224 insertions, 0 deletions
diff --git a/glib/glib/gvariant.c b/glib/glib/gvariant.c
new file mode 100644
index 0000000..5f2337c
--- /dev/null
+++ b/glib/glib/gvariant.c
@@ -0,0 +1,5224 @@
+/*
+ * Copyright © 2007, 2008 Ryan Lortie
+ * Copyright © 2010 Codethink Limited
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the licence, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ *
+ * Author: Ryan Lortie <desrt@desrt.ca>
+ */
+
+/* Prologue {{{1 */
+
+#include "config.h"
+
+#include <glib/gvariant-serialiser.h>
+#include "gvariant-internal.h"
+#include <glib/gvariant-core.h>
+#include <glib/gtestutils.h>
+#include <glib/gstrfuncs.h>
+#include <glib/gslice.h>
+#include <glib/ghash.h>
+#include <glib/gmem.h>
+
+#include <string.h>
+
+
+/**
+ * SECTION:gvariant
+ * @title: GVariant
+ * @short_description: strongly typed value datatype
+ * @see_also: GVariantType
+ *
+ * #GVariant is a variant datatype; it stores a value along with
+ * information about the type of that value. The range of possible
+ * values is determined by the type. The type system used by #GVariant
+ * is #GVariantType.
+ *
+ * #GVariant instances always have a type and a value (which are given
+ * at construction time). The type and value of a #GVariant instance
+ * can never change other than by the #GVariant itself being
+ * destroyed. A #GVariant cannot contain a pointer.
+ *
+ * #GVariant is reference counted using g_variant_ref() and
+ * g_variant_unref(). #GVariant also has floating reference counts --
+ * see g_variant_ref_sink().
+ *
+ * #GVariant is completely threadsafe. A #GVariant instance can be
+ * concurrently accessed in any way from any number of threads without
+ * problems.
+ *
+ * #GVariant is heavily optimised for dealing with data in serialised
+ * form. It works particularly well with data located in memory-mapped
+ * files. It can perform nearly all deserialisation operations in a
+ * small constant time, usually touching only a single memory page.
+ * Serialised #GVariant data can also be sent over the network.
+ *
+ * #GVariant is largely compatible with D-Bus. Almost all types of
+ * #GVariant instances can be sent over D-Bus. See #GVariantType for
+ * exceptions. (However, #GVariant's serialisation format is not the same
+ * as the serialisation format of a D-Bus message body: use #GDBusMessage,
+ * in the gio library, for those.)
+ *
+ * For space-efficiency, the #GVariant serialisation format does not
+ * automatically include the variant's type or endianness, which must
+ * either be implied from context (such as knowledge that a particular
+ * file format always contains a little-endian %G_VARIANT_TYPE_VARIANT)
+ * or supplied out-of-band (for instance, a type and/or endianness
+ * indicator could be placed at the beginning of a file, network message
+ * or network stream).
+ *
+ * A #GVariant's size is limited mainly by any lower level operating
+ * system constraints, such as the number of bits in #gsize. For
+ * example, it is reasonable to have a 2GB file mapped into memory
+ * with #GMappedFile, and call g_variant_new_from_data() on it.
+ *
+ * For convenience to C programmers, #GVariant features powerful
+ * varargs-based value construction and destruction. This feature is
+ * designed to be embedded in other libraries.
+ *
+ * There is a Python-inspired text language for describing #GVariant
+ * values. #GVariant includes a printer for this language and a parser
+ * with type inferencing.
+ *
+ * <refsect2>
+ * <title>Memory Use</title>
+ * <para>
+ * #GVariant tries to be quite efficient with respect to memory use.
+ * This section gives a rough idea of how much memory is used by the
+ * current implementation. The information here is subject to change
+ * in the future.
+ * </para>
+ * <para>
+ * The memory allocated by #GVariant can be grouped into 4 broad
+ * purposes: memory for serialised data, memory for the type
+ * information cache, buffer management memory and memory for the
+ * #GVariant structure itself.
+ * </para>
+ * <refsect3 id="gvariant-serialised-data-memory">
+ * <title>Serialised Data Memory</title>
+ * <para>
+ * This is the memory that is used for storing GVariant data in
+ * serialised form. This is what would be sent over the network or
+ * what would end up on disk.
+ * </para>
+ * <para>
+ * The amount of memory required to store a boolean is 1 byte. 16,
+ * 32 and 64 bit integers and double precision floating point numbers
+ * use their "natural" size. Strings (including object path and
+ * signature strings) are stored with a nul terminator, and as such
+ * use the length of the string plus 1 byte.
+ * </para>
+ * <para>
+ * Maybe types use no space at all to represent the null value and
+ * use the same amount of space (sometimes plus one byte) as the
+ * equivalent non-maybe-typed value to represent the non-null case.
+ * </para>
+ * <para>
+ * Arrays use the amount of space required to store each of their
+ * members, concatenated. Additionally, if the items stored in an
+ * array are not of a fixed-size (ie: strings, other arrays, etc)
+ * then an additional framing offset is stored for each item. The
+ * size of this offset is either 1, 2 or 4 bytes depending on the
+ * overall size of the container. Additionally, extra padding bytes
+ * are added as required for alignment of child values.
+ * </para>
+ * <para>
+ * Tuples (including dictionary entries) use the amount of space
+ * required to store each of their members, concatenated, plus one
+ * framing offset (as per arrays) for each non-fixed-sized item in
+ * the tuple, except for the last one. Additionally, extra padding
+ * bytes are added as required for alignment of child values.
+ * </para>
+ * <para>
+ * Variants use the same amount of space as the item inside of the
+ * variant, plus 1 byte, plus the length of the type string for the
+ * item inside the variant.
+ * </para>
+ * <para>
+ * As an example, consider a dictionary mapping strings to variants.
+ * In the case that the dictionary is empty, 0 bytes are required for
+ * the serialisation.
+ * </para>
+ * <para>
+ * If we add an item "width" that maps to the int32 value of 500 then
+ * we will use 4 byte to store the int32 (so 6 for the variant
+ * containing it) and 6 bytes for the string. The variant must be
+ * aligned to 8 after the 6 bytes of the string, so that's 2 extra
+ * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
+ * for the dictionary entry. An additional 1 byte is added to the
+ * array as a framing offset making a total of 15 bytes.
+ * </para>
+ * <para>
+ * If we add another entry, "title" that maps to a nullable string
+ * that happens to have a value of null, then we use 0 bytes for the
+ * null value (and 3 bytes for the variant to contain it along with
+ * its type string) plus 6 bytes for the string. Again, we need 2
+ * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
+ * </para>
+ * <para>
+ * We now require extra padding between the two items in the array.
+ * After the 14 bytes of the first item, that's 2 bytes required. We
+ * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
+ * + 2 = 29 bytes to encode the entire two-item dictionary.
+ * </para>
+ * </refsect3>
+ * <refsect3>
+ * <title>Type Information Cache</title>
+ * <para>
+ * For each GVariant type that currently exists in the program a type
+ * information structure is kept in the type information cache. The
+ * type information structure is required for rapid deserialisation.
+ * </para>
+ * <para>
+ * Continuing with the above example, if a #GVariant exists with the
+ * type "a{sv}" then a type information struct will exist for
+ * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
+ * will share the same type information. Additionally, all
+ * single-digit types are stored in read-only static memory and do
+ * not contribute to the writable memory footprint of a program using
+ * #GVariant.
+ * </para>
+ * <para>
+ * Aside from the type information structures stored in read-only
+ * memory, there are two forms of type information. One is used for
+ * container types where there is a single element type: arrays and
+ * maybe types. The other is used for container types where there
+ * are multiple element types: tuples and dictionary entries.
+ * </para>
+ * <para>
+ * Array type info structures are 6 * sizeof (void *), plus the
+ * memory required to store the type string itself. This means that
+ * on 32bit systems, the cache entry for "a{sv}" would require 30
+ * bytes of memory (plus malloc overhead).
+ * </para>
+ * <para>
+ * Tuple type info structures are 6 * sizeof (void *), plus 4 *
+ * sizeof (void *) for each item in the tuple, plus the memory
+ * required to store the type string itself. A 2-item tuple, for
+ * example, would have a type information structure that consumed
+ * writable memory in the size of 14 * sizeof (void *) (plus type
+ * string) This means that on 32bit systems, the cache entry for
+ * "{sv}" would require 61 bytes of memory (plus malloc overhead).
+ * </para>
+ * <para>
+ * This means that in total, for our "a{sv}" example, 91 bytes of
+ * type information would be allocated.
+ * </para>
+ * <para>
+ * The type information cache, additionally, uses a #GHashTable to
+ * store and lookup the cached items and stores a pointer to this
+ * hash table in static storage. The hash table is freed when there
+ * are zero items in the type cache.
+ * </para>
+ * <para>
+ * Although these sizes may seem large it is important to remember
+ * that a program will probably only have a very small number of
+ * different types of values in it and that only one type information
+ * structure is required for many different values of the same type.
+ * </para>
+ * </refsect3>
+ * <refsect3>
+ * <title>Buffer Management Memory</title>
+ * <para>
+ * #GVariant uses an internal buffer management structure to deal
+ * with the various different possible sources of serialised data
+ * that it uses. The buffer is responsible for ensuring that the
+ * correct call is made when the data is no longer in use by
+ * #GVariant. This may involve a g_free() or a g_slice_free() or
+ * even g_mapped_file_unref().
+ * </para>
+ * <para>
+ * One buffer management structure is used for each chunk of
+ * serialised data. The size of the buffer management structure is 4
+ * * (void *). On 32bit systems, that's 16 bytes.
+ * </para>
+ * </refsect3>
+ * <refsect3>
+ * <title>GVariant structure</title>
+ * <para>
+ * The size of a #GVariant structure is 6 * (void *). On 32 bit
+ * systems, that's 24 bytes.
+ * </para>
+ * <para>
+ * #GVariant structures only exist if they are explicitly created
+ * with API calls. For example, if a #GVariant is constructed out of
+ * serialised data for the example given above (with the dictionary)
+ * then although there are 9 individual values that comprise the
+ * entire dictionary (two keys, two values, two variants containing
+ * the values, two dictionary entries, plus the dictionary itself),
+ * only 1 #GVariant instance exists -- the one referring to the
+ * dictionary.
+ * </para>
+ * <para>
+ * If calls are made to start accessing the other values then
+ * #GVariant instances will exist for those values only for as long
+ * as they are in use (ie: until you call g_variant_unref()). The
+ * type information is shared. The serialised data and the buffer
+ * management structure for that serialised data is shared by the
+ * child.
+ * </para>
+ * </refsect3>
+ * <refsect3>
+ * <title>Summary</title>
+ * <para>
+ * To put the entire example together, for our dictionary mapping
+ * strings to variants (with two entries, as given above), we are
+ * using 91 bytes of memory for type information, 29 byes of memory
+ * for the serialised data, 16 bytes for buffer management and 24
+ * bytes for the #GVariant instance, or a total of 160 bytes, plus
+ * malloc overhead. If we were to use g_variant_get_child_value() to
+ * access the two dictionary entries, we would use an additional 48
+ * bytes. If we were to have other dictionaries of the same type, we
+ * would use more memory for the serialised data and buffer
+ * management for those dictionaries, but the type information would
+ * be shared.
+ * </para>
+ * </refsect3>
+ * </refsect2>
+ */
+
+/* definition of GVariant structure is in gvariant-core.c */
+
+/* this is a g_return_val_if_fail() for making
+ * sure a (GVariant *) has the required type.
+ */
+#define TYPE_CHECK(value, TYPE, val) \
+ if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
+ g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
+ "g_variant_is_of_type (" #value \
+ ", " #TYPE ")"); \
+ return val; \
+ }
+
+/* Numeric Type Constructor/Getters {{{1 */
+/* < private >
+ * g_variant_new_from_trusted:
+ * @type: the #GVariantType
+ * @data: the data to use
+ * @size: the size of @data
+ *
+ * Constructs a new trusted #GVariant instance from the provided data.
+ * This is used to implement g_variant_new_* for all the basic types.
+ *
+ * Returns: a new floating #GVariant
+ */
+static GVariant *
+g_variant_new_from_trusted (const GVariantType *type,
+ gconstpointer data,
+ gsize size)
+{
+ GVariant *value;
+ GBytes *bytes;
+
+ bytes = g_bytes_new (data, size);
+ value = g_variant_new_from_bytes (type, bytes, TRUE);
+ g_bytes_unref (bytes);
+
+ return value;
+}
+
+/**
+ * g_variant_new_boolean:
+ * @value: a #gboolean value
+ *
+ * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
+ *
+ * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_boolean (gboolean value)
+{
+ guchar v = value;
+
+ return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
+}
+
+/**
+ * g_variant_get_boolean:
+ * @value: a boolean #GVariant instance
+ *
+ * Returns the boolean value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_BOOLEAN.
+ *
+ * Returns: %TRUE or %FALSE
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_get_boolean (GVariant *value)
+{
+ const guchar *data;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
+
+ data = g_variant_get_data (value);
+
+ return data != NULL ? *data != 0 : FALSE;
+}
+
+/* the constructors and accessors for byte, int{16,32,64}, handles and
+ * doubles all look pretty much exactly the same, so we reduce
+ * copy/pasting here.
+ */
+#define NUMERIC_TYPE(TYPE, type, ctype) \
+ GVariant *g_variant_new_##type (ctype value) { \
+ return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
+ &value, sizeof value); \
+ } \
+ ctype g_variant_get_##type (GVariant *value) { \
+ const ctype *data; \
+ TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
+ data = g_variant_get_data (value); \
+ return data != NULL ? *data : 0; \
+ }
+
+
+/**
+ * g_variant_new_byte:
+ * @value: a #guint8 value
+ *
+ * Creates a new byte #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new byte #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_byte:
+ * @value: a byte #GVariant instance
+ *
+ * Returns the byte value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_BYTE.
+ *
+ * Returns: a #guchar
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (BYTE, byte, guchar)
+
+/**
+ * g_variant_new_int16:
+ * @value: a #gint16 value
+ *
+ * Creates a new int16 #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_int16:
+ * @value: a int16 #GVariant instance
+ *
+ * Returns the 16-bit signed integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_INT16.
+ *
+ * Returns: a #gint16
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (INT16, int16, gint16)
+
+/**
+ * g_variant_new_uint16:
+ * @value: a #guint16 value
+ *
+ * Creates a new uint16 #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_uint16:
+ * @value: a uint16 #GVariant instance
+ *
+ * Returns the 16-bit unsigned integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_UINT16.
+ *
+ * Returns: a #guint16
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (UINT16, uint16, guint16)
+
+/**
+ * g_variant_new_int32:
+ * @value: a #gint32 value
+ *
+ * Creates a new int32 #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_int32:
+ * @value: a int32 #GVariant instance
+ *
+ * Returns the 32-bit signed integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_INT32.
+ *
+ * Returns: a #gint32
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (INT32, int32, gint32)
+
+/**
+ * g_variant_new_uint32:
+ * @value: a #guint32 value
+ *
+ * Creates a new uint32 #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_uint32:
+ * @value: a uint32 #GVariant instance
+ *
+ * Returns the 32-bit unsigned integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_UINT32.
+ *
+ * Returns: a #guint32
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (UINT32, uint32, guint32)
+
+/**
+ * g_variant_new_int64:
+ * @value: a #gint64 value
+ *
+ * Creates a new int64 #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_int64:
+ * @value: a int64 #GVariant instance
+ *
+ * Returns the 64-bit signed integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_INT64.
+ *
+ * Returns: a #gint64
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (INT64, int64, gint64)
+
+/**
+ * g_variant_new_uint64:
+ * @value: a #guint64 value
+ *
+ * Creates a new uint64 #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_uint64:
+ * @value: a uint64 #GVariant instance
+ *
+ * Returns the 64-bit unsigned integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_UINT64.
+ *
+ * Returns: a #guint64
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (UINT64, uint64, guint64)
+
+/**
+ * g_variant_new_handle:
+ * @value: a #gint32 value
+ *
+ * Creates a new handle #GVariant instance.
+ *
+ * By convention, handles are indexes into an array of file descriptors
+ * that are sent alongside a D-Bus message. If you're not interacting
+ * with D-Bus, you probably don't need them.
+ *
+ * Returns: (transfer none): a floating reference to a new handle #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_handle:
+ * @value: a handle #GVariant instance
+ *
+ * Returns the 32-bit signed integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type other
+ * than %G_VARIANT_TYPE_HANDLE.
+ *
+ * By convention, handles are indexes into an array of file descriptors
+ * that are sent alongside a D-Bus message. If you're not interacting
+ * with D-Bus, you probably don't need them.
+ *
+ * Returns: a #gint32
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (HANDLE, handle, gint32)
+
+/**
+ * g_variant_new_double:
+ * @value: a #gdouble floating point value
+ *
+ * Creates a new double #GVariant instance.
+ *
+ * Returns: (transfer none): a floating reference to a new double #GVariant instance
+ *
+ * Since: 2.24
+ **/
+/**
+ * g_variant_get_double:
+ * @value: a double #GVariant instance
+ *
+ * Returns the double precision floating point value of @value.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than %G_VARIANT_TYPE_DOUBLE.
+ *
+ * Returns: a #gdouble
+ *
+ * Since: 2.24
+ **/
+NUMERIC_TYPE (DOUBLE, double, gdouble)
+
+/* Container type Constructor / Deconstructors {{{1 */
+/**
+ * g_variant_new_maybe:
+ * @child_type: (allow-none): the #GVariantType of the child, or %NULL
+ * @child: (allow-none): the child value, or %NULL
+ *
+ * Depending on if @child is %NULL, either wraps @child inside of a
+ * maybe container or creates a Nothing instance for the given @type.
+ *
+ * At least one of @child_type and @child must be non-%NULL.
+ * If @child_type is non-%NULL then it must be a definite type.
+ * If they are both non-%NULL then @child_type must be the type
+ * of @child.
+ *
+ * If @child is a floating reference (see g_variant_ref_sink()), the new
+ * instance takes ownership of @child.
+ *
+ * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_maybe (const GVariantType *child_type,
+ GVariant *child)
+{
+ GVariantType *maybe_type;
+ GVariant *value;
+
+ g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
+ (child_type), 0);
+ g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
+ g_return_val_if_fail (child_type == NULL || child == NULL ||
+ g_variant_is_of_type (child, child_type),
+ NULL);
+
+ if (child_type == NULL)
+ child_type = g_variant_get_type (child);
+
+ maybe_type = g_variant_type_new_maybe (child_type);
+
+ if (child != NULL)
+ {
+ GVariant **children;
+ gboolean trusted;
+
+ children = g_new (GVariant *, 1);
+ children[0] = g_variant_ref_sink (child);
+ trusted = g_variant_is_trusted (children[0]);
+
+ value = g_variant_new_from_children (maybe_type, children, 1, trusted);
+ }
+ else
+ value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
+
+ g_variant_type_free (maybe_type);
+
+ return value;
+}
+
+/**
+ * g_variant_get_maybe:
+ * @value: a maybe-typed value
+ *
+ * Given a maybe-typed #GVariant instance, extract its value. If the
+ * value is Nothing, then this function returns %NULL.
+ *
+ * Returns: (allow-none) (transfer full): the contents of @value, or %NULL
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_get_maybe (GVariant *value)
+{
+ TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
+
+ if (g_variant_n_children (value))
+ return g_variant_get_child_value (value, 0);
+
+ return NULL;
+}
+
+/**
+ * g_variant_new_variant: (constructor)
+ * @value: a #GVariant instance
+ *
+ * Boxes @value. The result is a #GVariant instance representing a
+ * variant containing the original value.
+ *
+ * If @child is a floating reference (see g_variant_ref_sink()), the new
+ * instance takes ownership of @child.
+ *
+ * Returns: (transfer none): a floating reference to a new variant #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_variant (GVariant *value)
+{
+ g_return_val_if_fail (value != NULL, NULL);
+
+ g_variant_ref_sink (value);
+
+ return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
+ g_memdup (&value, sizeof value),
+ 1, g_variant_is_trusted (value));
+}
+
+/**
+ * g_variant_get_variant:
+ * @value: a variant #GVariant instance
+ *
+ * Unboxes @value. The result is the #GVariant instance that was
+ * contained in @value.
+ *
+ * Returns: (transfer full): the item contained in the variant
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_get_variant (GVariant *value)
+{
+ TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
+
+ return g_variant_get_child_value (value, 0);
+}
+
+/**
+ * g_variant_new_array:
+ * @child_type: (allow-none): the element type of the new array
+ * @children: (allow-none) (array length=n_children): an array of
+ * #GVariant pointers, the children
+ * @n_children: the length of @children
+ *
+ * Creates a new #GVariant array from @children.
+ *
+ * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
+ * child type is determined by inspecting the first element of the
+ * @children array. If @child_type is non-%NULL then it must be a
+ * definite type.
+ *
+ * The items of the array are taken from the @children array. No entry
+ * in the @children array may be %NULL.
+ *
+ * All items in the array must have the same type, which must be the
+ * same as @child_type, if given.
+ *
+ * If the @children are floating references (see g_variant_ref_sink()), the
+ * new instance takes ownership of them as if via g_variant_ref_sink().
+ *
+ * Returns: (transfer none): a floating reference to a new #GVariant array
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_array (const GVariantType *child_type,
+ GVariant * const *children,
+ gsize n_children)
+{
+ GVariantType *array_type;
+ GVariant **my_children;
+ gboolean trusted;
+ GVariant *value;
+ gsize i;
+
+ g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
+ g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
+ g_return_val_if_fail (child_type == NULL ||
+ g_variant_type_is_definite (child_type), NULL);
+
+ my_children = g_new (GVariant *, n_children);
+ trusted = TRUE;
+
+ if (child_type == NULL)
+ child_type = g_variant_get_type (children[0]);
+ array_type = g_variant_type_new_array (child_type);
+
+ for (i = 0; i < n_children; i++)
+ {
+ TYPE_CHECK (children[i], child_type, NULL);
+ my_children[i] = g_variant_ref_sink (children[i]);
+ trusted &= g_variant_is_trusted (children[i]);
+ }
+
+ value = g_variant_new_from_children (array_type, my_children,
+ n_children, trusted);
+ g_variant_type_free (array_type);
+
+ return value;
+}
+
+/*< private >
+ * g_variant_make_tuple_type:
+ * @children: (array length=n_children): an array of GVariant *
+ * @n_children: the length of @children
+ *
+ * Return the type of a tuple containing @children as its items.
+ **/
+static GVariantType *
+g_variant_make_tuple_type (GVariant * const *children,
+ gsize n_children)
+{
+ const GVariantType **types;
+ GVariantType *type;
+ gsize i;
+
+ types = g_new (const GVariantType *, n_children);
+
+ for (i = 0; i < n_children; i++)
+ types[i] = g_variant_get_type (children[i]);
+
+ type = g_variant_type_new_tuple (types, n_children);
+ g_free (types);
+
+ return type;
+}
+
+/**
+ * g_variant_new_tuple:
+ * @children: (array length=n_children): the items to make the tuple out of
+ * @n_children: the length of @children
+ *
+ * Creates a new tuple #GVariant out of the items in @children. The
+ * type is determined from the types of @children. No entry in the
+ * @children array may be %NULL.
+ *
+ * If @n_children is 0 then the unit tuple is constructed.
+ *
+ * If the @children are floating references (see g_variant_ref_sink()), the
+ * new instance takes ownership of them as if via g_variant_ref_sink().
+ *
+ * Returns: (transfer none): a floating reference to a new #GVariant tuple
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_tuple (GVariant * const *children,
+ gsize n_children)
+{
+ GVariantType *tuple_type;
+ GVariant **my_children;
+ gboolean trusted;
+ GVariant *value;
+ gsize i;
+
+ g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
+
+ my_children = g_new (GVariant *, n_children);
+ trusted = TRUE;
+
+ for (i = 0; i < n_children; i++)
+ {
+ my_children[i] = g_variant_ref_sink (children[i]);
+ trusted &= g_variant_is_trusted (children[i]);
+ }
+
+ tuple_type = g_variant_make_tuple_type (children, n_children);
+ value = g_variant_new_from_children (tuple_type, my_children,
+ n_children, trusted);
+ g_variant_type_free (tuple_type);
+
+ return value;
+}
+
+/*< private >
+ * g_variant_make_dict_entry_type:
+ * @key: a #GVariant, the key
+ * @val: a #GVariant, the value
+ *
+ * Return the type of a dictionary entry containing @key and @val as its
+ * children.
+ **/
+static GVariantType *
+g_variant_make_dict_entry_type (GVariant *key,
+ GVariant *val)
+{
+ return g_variant_type_new_dict_entry (g_variant_get_type (key),
+ g_variant_get_type (val));
+}
+
+/**
+ * g_variant_new_dict_entry: (constructor)
+ * @key: a basic #GVariant, the key
+ * @value: a #GVariant, the value
+ *
+ * Creates a new dictionary entry #GVariant. @key and @value must be
+ * non-%NULL. @key must be a value of a basic type (ie: not a container).
+ *
+ * If the @key or @value are floating references (see g_variant_ref_sink()),
+ * the new instance takes ownership of them as if via g_variant_ref_sink().
+ *
+ * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_dict_entry (GVariant *key,
+ GVariant *value)
+{
+ GVariantType *dict_type;
+ GVariant **children;
+ gboolean trusted;
+
+ g_return_val_if_fail (key != NULL && value != NULL, NULL);
+ g_return_val_if_fail (!g_variant_is_container (key), NULL);
+
+ children = g_new (GVariant *, 2);
+ children[0] = g_variant_ref_sink (key);
+ children[1] = g_variant_ref_sink (value);
+ trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
+
+ dict_type = g_variant_make_dict_entry_type (key, value);
+ value = g_variant_new_from_children (dict_type, children, 2, trusted);
+ g_variant_type_free (dict_type);
+
+ return value;
+}
+
+/**
+ * g_variant_lookup: (skip)
+ * @dictionary: a dictionary #GVariant
+ * @key: the key to lookup in the dictionary
+ * @format_string: a GVariant format string
+ * @...: the arguments to unpack the value into
+ *
+ * Looks up a value in a dictionary #GVariant.
+ *
+ * This function is a wrapper around g_variant_lookup_value() and
+ * g_variant_get(). In the case that %NULL would have been returned,
+ * this function returns %FALSE. Otherwise, it unpacks the returned
+ * value and returns %TRUE.
+ *
+ * @format_string determines the C types that are used for unpacking
+ * the values and also determines if the values are copied or borrowed,
+ * see the section on
+ * <link linkend='gvariant-format-strings-pointers'>GVariant Format Strings</link>.
+ *
+ * Returns: %TRUE if a value was unpacked
+ *
+ * Since: 2.28
+ */
+gboolean
+g_variant_lookup (GVariant *dictionary,
+ const gchar *key,
+ const gchar *format_string,
+ ...)
+{
+ GVariantType *type;
+ GVariant *value;
+
+ /* flatten */
+ g_variant_get_data (dictionary);
+
+ type = g_variant_format_string_scan_type (format_string, NULL, NULL);
+ value = g_variant_lookup_value (dictionary, key, type);
+ g_variant_type_free (type);
+
+ if (value)
+ {
+ va_list ap;
+
+ va_start (ap, format_string);
+ g_variant_get_va (value, format_string, NULL, &ap);
+ g_variant_unref (value);
+ va_end (ap);
+
+ return TRUE;
+ }
+
+ else
+ return FALSE;
+}
+
+/**
+ * g_variant_lookup_value:
+ * @dictionary: a dictionary #GVariant
+ * @key: the key to lookup in the dictionary
+ * @expected_type: (allow-none): a #GVariantType, or %NULL
+ *
+ * Looks up a value in a dictionary #GVariant.
+ *
+ * This function works with dictionaries of the type
+ * <literal>a{s*}</literal> (and equally well with type
+ * <literal>a{o*}</literal>, but we only further discuss the string case
+ * for sake of clarity).
+ *
+ * In the event that @dictionary has the type <literal>a{sv}</literal>,
+ * the @expected_type string specifies what type of value is expected to
+ * be inside of the variant. If the value inside the variant has a
+ * different type then %NULL is returned. In the event that @dictionary
+ * has a value type other than <literal>v</literal> then @expected_type
+ * must directly match the key type and it is used to unpack the value
+ * directly or an error occurs.
+ *
+ * In either case, if @key is not found in @dictionary, %NULL is
+ * returned.
+ *
+ * If the key is found and the value has the correct type, it is
+ * returned. If @expected_type was specified then any non-%NULL return
+ * value will have this type.
+ *
+ * Returns: (transfer full): the value of the dictionary key, or %NULL
+ *
+ * Since: 2.28
+ */
+GVariant *
+g_variant_lookup_value (GVariant *dictionary,
+ const gchar *key,
+ const GVariantType *expected_type)
+{
+ GVariantIter iter;
+ GVariant *entry;
+ GVariant *value;
+
+ g_return_val_if_fail (g_variant_is_of_type (dictionary,
+ G_VARIANT_TYPE ("a{s*}")) ||
+ g_variant_is_of_type (dictionary,
+ G_VARIANT_TYPE ("a{o*}")),
+ NULL);
+
+ g_variant_iter_init (&iter, dictionary);
+
+ while ((entry = g_variant_iter_next_value (&iter)))
+ {
+ GVariant *entry_key;
+ gboolean matches;
+
+ entry_key = g_variant_get_child_value (entry, 0);
+ matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
+ g_variant_unref (entry_key);
+
+ if (matches)
+ break;
+
+ g_variant_unref (entry);
+ }
+
+ if (entry == NULL)
+ return NULL;
+
+ value = g_variant_get_child_value (entry, 1);
+ g_variant_unref (entry);
+
+ if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
+ {
+ GVariant *tmp;
+
+ tmp = g_variant_get_variant (value);
+ g_variant_unref (value);
+
+ if (expected_type && !g_variant_is_of_type (tmp, expected_type))
+ {
+ g_variant_unref (tmp);
+ tmp = NULL;
+ }
+
+ value = tmp;
+ }
+
+ g_return_val_if_fail (expected_type == NULL || value == NULL ||
+ g_variant_is_of_type (value, expected_type), NULL);
+
+ return value;
+}
+
+/**
+ * g_variant_get_fixed_array:
+ * @value: a #GVariant array with fixed-sized elements
+ * @n_elements: (out): a pointer to the location to store the number of items
+ * @element_size: the size of each element
+ *
+ * Provides access to the serialised data for an array of fixed-sized
+ * items.
+ *
+ * @value must be an array with fixed-sized elements. Numeric types are
+ * fixed-size, as are tuples containing only other fixed-sized types.
+ *
+ * @element_size must be the size of a single element in the array,
+ * as given by the section on
+ * <link linkend='gvariant-serialised-data-memory'>Serialised Data
+ * Memory</link>.
+ *
+ * In particular, arrays of these fixed-sized types can be interpreted
+ * as an array of the given C type, with @element_size set to
+ * <code>sizeof</code> the appropriate type:
+ *
+ * <informaltable>
+ * <tgroup cols='2'>
+ * <thead><row><entry>element type</entry> <entry>C type</entry></row></thead>
+ * <tbody>
+ * <row><entry>%G_VARIANT_TYPE_INT16 (etc.)</entry>
+ * <entry>#gint16 (etc.)</entry></row>
+ * <row><entry>%G_VARIANT_TYPE_BOOLEAN</entry>
+ * <entry>#guchar (not #gboolean!)</entry></row>
+ * <row><entry>%G_VARIANT_TYPE_BYTE</entry> <entry>#guchar</entry></row>
+ * <row><entry>%G_VARIANT_TYPE_HANDLE</entry> <entry>#guint32</entry></row>
+ * <row><entry>%G_VARIANT_TYPE_DOUBLE</entry> <entry>#gdouble</entry></row>
+ * </tbody>
+ * </tgroup>
+ * </informaltable>
+ *
+ * For example, if calling this function for an array of 32 bit integers,
+ * you might say <code>sizeof (gint32)</code>. This value isn't used
+ * except for the purpose of a double-check that the form of the
+ * serialised data matches the caller's expectation.
+ *
+ * @n_elements, which must be non-%NULL is set equal to the number of
+ * items in the array.
+ *
+ * Returns: (array length=n_elements) (transfer none): a pointer to
+ * the fixed array
+ *
+ * Since: 2.24
+ **/
+gconstpointer
+g_variant_get_fixed_array (GVariant *value,
+ gsize *n_elements,
+ gsize element_size)
+{
+ GVariantTypeInfo *array_info;
+ gsize array_element_size;
+ gconstpointer data;
+ gsize size;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
+
+ g_return_val_if_fail (n_elements != NULL, NULL);
+ g_return_val_if_fail (element_size > 0, NULL);
+
+ array_info = g_variant_get_type_info (value);
+ g_variant_type_info_query_element (array_info, NULL, &array_element_size);
+
+ g_return_val_if_fail (array_element_size, NULL);
+
+ if G_UNLIKELY (array_element_size != element_size)
+ {
+ if (array_element_size)
+ g_critical ("g_variant_get_fixed_array: assertion "
+ "`g_variant_array_has_fixed_size (value, element_size)' "
+ "failed: array size %"G_GSIZE_FORMAT" does not match "
+ "given element_size %"G_GSIZE_FORMAT".",
+ array_element_size, element_size);
+ else
+ g_critical ("g_variant_get_fixed_array: assertion "
+ "`g_variant_array_has_fixed_size (value, element_size)' "
+ "failed: array does not have fixed size.");
+ }
+
+ data = g_variant_get_data (value);
+ size = g_variant_get_size (value);
+
+ if (size % element_size)
+ *n_elements = 0;
+ else
+ *n_elements = size / element_size;
+
+ if (*n_elements)
+ return data;
+
+ return NULL;
+}
+
+/**
+ * g_variant_new_fixed_array:
+ * @element_type: the #GVariantType of each element
+ * @elements: a pointer to the fixed array of contiguous elements
+ * @n_elements: the number of elements
+ * @element_size: the size of each element
+ *
+ * Provides access to the serialised data for an array of fixed-sized
+ * items.
+ *
+ * @value must be an array with fixed-sized elements. Numeric types are
+ * fixed-size as are tuples containing only other fixed-sized types.
+ *
+ * @element_size must be the size of a single element in the array. For
+ * example, if calling this function for an array of 32 bit integers,
+ * you might say <code>sizeof (gint32)</code>. This value isn't used
+ * except for the purpose of a double-check that the form of the
+ * serialised data matches the caller's expectation.
+ *
+ * @n_elements, which must be non-%NULL is set equal to the number of
+ * items in the array.
+ *
+ * Returns: (transfer none): a floating reference to a new array #GVariant instance
+ *
+ * Since: 2.32
+ **/
+GVariant *
+g_variant_new_fixed_array (const GVariantType *element_type,
+ gconstpointer elements,
+ gsize n_elements,
+ gsize element_size)
+{
+ GVariantType *array_type;
+ gsize array_element_size;
+ GVariantTypeInfo *array_info;
+ GVariant *value;
+ gpointer data;
+
+ g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
+ g_return_val_if_fail (element_size > 0, NULL);
+
+ array_type = g_variant_type_new_array (element_type);
+ array_info = g_variant_type_info_get (array_type);
+ g_variant_type_info_query_element (array_info, NULL, &array_element_size);
+ if G_UNLIKELY (array_element_size != element_size)
+ {
+ if (array_element_size)
+ g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
+ " does not match given element_size %" G_GSIZE_FORMAT ".",
+ array_element_size, element_size);
+ else
+ g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
+ return NULL;
+ }
+
+ data = g_memdup (elements, n_elements * element_size);
+ value = g_variant_new_from_data (array_type, data,
+ n_elements * element_size,
+ FALSE, g_free, data);
+
+ g_variant_type_free (array_type);
+ g_variant_type_info_unref (array_info);
+
+ return value;
+}
+
+/* String type constructor/getters/validation {{{1 */
+/**
+ * g_variant_new_string:
+ * @string: a normal utf8 nul-terminated string
+ *
+ * Creates a string #GVariant with the contents of @string.
+ *
+ * @string must be valid utf8.
+ *
+ * Returns: (transfer none): a floating reference to a new string #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_string (const gchar *string)
+{
+ g_return_val_if_fail (string != NULL, NULL);
+ g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
+
+ return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
+ string, strlen (string) + 1);
+}
+
+/**
+ * g_variant_new_object_path:
+ * @object_path: a normal C nul-terminated string
+ *
+ * Creates a D-Bus object path #GVariant with the contents of @string.
+ * @string must be a valid D-Bus object path. Use
+ * g_variant_is_object_path() if you're not sure.
+ *
+ * Returns: (transfer none): a floating reference to a new object path #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_object_path (const gchar *object_path)
+{
+ g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
+
+ return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
+ object_path, strlen (object_path) + 1);
+}
+
+/**
+ * g_variant_is_object_path:
+ * @string: a normal C nul-terminated string
+ *
+ * Determines if a given string is a valid D-Bus object path. You
+ * should ensure that a string is a valid D-Bus object path before
+ * passing it to g_variant_new_object_path().
+ *
+ * A valid object path starts with '/' followed by zero or more
+ * sequences of characters separated by '/' characters. Each sequence
+ * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
+ * (including the one following the final '/' character) may be empty.
+ *
+ * Returns: %TRUE if @string is a D-Bus object path
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_is_object_path (const gchar *string)
+{
+ g_return_val_if_fail (string != NULL, FALSE);
+
+ return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
+}
+
+/**
+ * g_variant_new_signature:
+ * @signature: a normal C nul-terminated string
+ *
+ * Creates a D-Bus type signature #GVariant with the contents of
+ * @string. @string must be a valid D-Bus type signature. Use
+ * g_variant_is_signature() if you're not sure.
+ *
+ * Returns: (transfer none): a floating reference to a new signature #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_signature (const gchar *signature)
+{
+ g_return_val_if_fail (g_variant_is_signature (signature), NULL);
+
+ return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
+ signature, strlen (signature) + 1);
+}
+
+/**
+ * g_variant_is_signature:
+ * @string: a normal C nul-terminated string
+ *
+ * Determines if a given string is a valid D-Bus type signature. You
+ * should ensure that a string is a valid D-Bus type signature before
+ * passing it to g_variant_new_signature().
+ *
+ * D-Bus type signatures consist of zero or more definite #GVariantType
+ * strings in sequence.
+ *
+ * Returns: %TRUE if @string is a D-Bus type signature
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_is_signature (const gchar *string)
+{
+ g_return_val_if_fail (string != NULL, FALSE);
+
+ return g_variant_serialiser_is_signature (string, strlen (string) + 1);
+}
+
+/**
+ * g_variant_get_string:
+ * @value: a string #GVariant instance
+ * @length: (allow-none) (default 0) (out): a pointer to a #gsize,
+ * to store the length
+ *
+ * Returns the string value of a #GVariant instance with a string
+ * type. This includes the types %G_VARIANT_TYPE_STRING,
+ * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
+ *
+ * The string will always be utf8 encoded.
+ *
+ * If @length is non-%NULL then the length of the string (in bytes) is
+ * returned there. For trusted values, this information is already
+ * known. For untrusted values, a strlen() will be performed.
+ *
+ * It is an error to call this function with a @value of any type
+ * other than those three.
+ *
+ * The return value remains valid as long as @value exists.
+ *
+ * Returns: (transfer none): the constant string, utf8 encoded
+ *
+ * Since: 2.24
+ **/
+const gchar *
+g_variant_get_string (GVariant *value,
+ gsize *length)
+{
+ gconstpointer data;
+ gsize size;
+
+ g_return_val_if_fail (value != NULL, NULL);
+ g_return_val_if_fail (
+ g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
+ g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
+ g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
+
+ data = g_variant_get_data (value);
+ size = g_variant_get_size (value);
+
+ if (!g_variant_is_trusted (value))
+ {
+ switch (g_variant_classify (value))
+ {
+ case G_VARIANT_CLASS_STRING:
+ if (g_variant_serialiser_is_string (data, size))
+ break;
+
+ data = "";
+ size = 1;
+ break;
+
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ if (g_variant_serialiser_is_object_path (data, size))
+ break;
+
+ data = "/";
+ size = 2;
+ break;
+
+ case G_VARIANT_CLASS_SIGNATURE:
+ if (g_variant_serialiser_is_signature (data, size))
+ break;
+
+ data = "";
+ size = 1;
+ break;
+
+ default:
+ g_assert_not_reached ();
+ }
+ }
+
+ if (length)
+ *length = size - 1;
+
+ return data;
+}
+
+/**
+ * g_variant_dup_string:
+ * @value: a string #GVariant instance
+ * @length: (out): a pointer to a #gsize, to store the length
+ *
+ * Similar to g_variant_get_string() except that instead of returning
+ * a constant string, the string is duplicated.
+ *
+ * The string will always be utf8 encoded.
+ *
+ * The return value must be freed using g_free().
+ *
+ * Returns: (transfer full): a newly allocated string, utf8 encoded
+ *
+ * Since: 2.24
+ **/
+gchar *
+g_variant_dup_string (GVariant *value,
+ gsize *length)
+{
+ return g_strdup (g_variant_get_string (value, length));
+}
+
+/**
+ * g_variant_new_strv:
+ * @strv: (array length=length) (element-type utf8): an array of strings
+ * @length: the length of @strv, or -1
+ *
+ * Constructs an array of strings #GVariant from the given array of
+ * strings.
+ *
+ * If @length is -1 then @strv is %NULL-terminated.
+ *
+ * Returns: (transfer none): a new floating #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_strv (const gchar * const *strv,
+ gssize length)
+{
+ GVariant **strings;
+ gsize i;
+
+ g_return_val_if_fail (length == 0 || strv != NULL, NULL);
+
+ if (length < 0)
+ length = g_strv_length ((gchar **) strv);
+
+ strings = g_new (GVariant *, length);
+ for (i = 0; i < length; i++)
+ strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
+
+ return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
+ strings, length, TRUE);
+}
+
+/**
+ * g_variant_get_strv:
+ * @value: an array of strings #GVariant
+ * @length: (out) (allow-none): the length of the result, or %NULL
+ *
+ * Gets the contents of an array of strings #GVariant. This call
+ * makes a shallow copy; the return result should be released with
+ * g_free(), but the individual strings must not be modified.
+ *
+ * If @length is non-%NULL then the number of elements in the result
+ * is stored there. In any case, the resulting array will be
+ * %NULL-terminated.
+ *
+ * For an empty array, @length will be set to 0 and a pointer to a
+ * %NULL pointer will be returned.
+ *
+ * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
+ *
+ * Since: 2.24
+ **/
+const gchar **
+g_variant_get_strv (GVariant *value,
+ gsize *length)
+{
+ const gchar **strv;
+ gsize n;
+ gsize i;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
+
+ g_variant_get_data (value);
+ n = g_variant_n_children (value);
+ strv = g_new (const gchar *, n + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ GVariant *string;
+
+ string = g_variant_get_child_value (value, i);
+ strv[i] = g_variant_get_string (string, NULL);
+ g_variant_unref (string);
+ }
+ strv[i] = NULL;
+
+ if (length)
+ *length = n;
+
+ return strv;
+}
+
+/**
+ * g_variant_dup_strv:
+ * @value: an array of strings #GVariant
+ * @length: (out) (allow-none): the length of the result, or %NULL
+ *
+ * Gets the contents of an array of strings #GVariant. This call
+ * makes a deep copy; the return result should be released with
+ * g_strfreev().
+ *
+ * If @length is non-%NULL then the number of elements in the result
+ * is stored there. In any case, the resulting array will be
+ * %NULL-terminated.
+ *
+ * For an empty array, @length will be set to 0 and a pointer to a
+ * %NULL pointer will be returned.
+ *
+ * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
+ *
+ * Since: 2.24
+ **/
+gchar **
+g_variant_dup_strv (GVariant *value,
+ gsize *length)
+{
+ gchar **strv;
+ gsize n;
+ gsize i;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
+
+ n = g_variant_n_children (value);
+ strv = g_new (gchar *, n + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ GVariant *string;
+
+ string = g_variant_get_child_value (value, i);
+ strv[i] = g_variant_dup_string (string, NULL);
+ g_variant_unref (string);
+ }
+ strv[i] = NULL;
+
+ if (length)
+ *length = n;
+
+ return strv;
+}
+
+/**
+ * g_variant_new_objv:
+ * @strv: (array length=length) (element-type utf8): an array of strings
+ * @length: the length of @strv, or -1
+ *
+ * Constructs an array of object paths #GVariant from the given array of
+ * strings.
+ *
+ * Each string must be a valid #GVariant object path; see
+ * g_variant_is_object_path().
+ *
+ * If @length is -1 then @strv is %NULL-terminated.
+ *
+ * Returns: (transfer none): a new floating #GVariant instance
+ *
+ * Since: 2.30
+ **/
+GVariant *
+g_variant_new_objv (const gchar * const *strv,
+ gssize length)
+{
+ GVariant **strings;
+ gsize i;
+
+ g_return_val_if_fail (length == 0 || strv != NULL, NULL);
+
+ if (length < 0)
+ length = g_strv_length ((gchar **) strv);
+
+ strings = g_new (GVariant *, length);
+ for (i = 0; i < length; i++)
+ strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
+
+ return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
+ strings, length, TRUE);
+}
+
+/**
+ * g_variant_get_objv:
+ * @value: an array of object paths #GVariant
+ * @length: (out) (allow-none): the length of the result, or %NULL
+ *
+ * Gets the contents of an array of object paths #GVariant. This call
+ * makes a shallow copy; the return result should be released with
+ * g_free(), but the individual strings must not be modified.
+ *
+ * If @length is non-%NULL then the number of elements in the result
+ * is stored there. In any case, the resulting array will be
+ * %NULL-terminated.
+ *
+ * For an empty array, @length will be set to 0 and a pointer to a
+ * %NULL pointer will be returned.
+ *
+ * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
+ *
+ * Since: 2.30
+ **/
+const gchar **
+g_variant_get_objv (GVariant *value,
+ gsize *length)
+{
+ const gchar **strv;
+ gsize n;
+ gsize i;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
+
+ g_variant_get_data (value);
+ n = g_variant_n_children (value);
+ strv = g_new (const gchar *, n + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ GVariant *string;
+
+ string = g_variant_get_child_value (value, i);
+ strv[i] = g_variant_get_string (string, NULL);
+ g_variant_unref (string);
+ }
+ strv[i] = NULL;
+
+ if (length)
+ *length = n;
+
+ return strv;
+}
+
+/**
+ * g_variant_dup_objv:
+ * @value: an array of object paths #GVariant
+ * @length: (out) (allow-none): the length of the result, or %NULL
+ *
+ * Gets the contents of an array of object paths #GVariant. This call
+ * makes a deep copy; the return result should be released with
+ * g_strfreev().
+ *
+ * If @length is non-%NULL then the number of elements in the result
+ * is stored there. In any case, the resulting array will be
+ * %NULL-terminated.
+ *
+ * For an empty array, @length will be set to 0 and a pointer to a
+ * %NULL pointer will be returned.
+ *
+ * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
+ *
+ * Since: 2.30
+ **/
+gchar **
+g_variant_dup_objv (GVariant *value,
+ gsize *length)
+{
+ gchar **strv;
+ gsize n;
+ gsize i;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
+
+ n = g_variant_n_children (value);
+ strv = g_new (gchar *, n + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ GVariant *string;
+
+ string = g_variant_get_child_value (value, i);
+ strv[i] = g_variant_dup_string (string, NULL);
+ g_variant_unref (string);
+ }
+ strv[i] = NULL;
+
+ if (length)
+ *length = n;
+
+ return strv;
+}
+
+
+/**
+ * g_variant_new_bytestring:
+ * @string: (array zero-terminated=1) (element-type guint8): a normal
+ * nul-terminated string in no particular encoding
+ *
+ * Creates an array-of-bytes #GVariant with the contents of @string.
+ * This function is just like g_variant_new_string() except that the
+ * string need not be valid utf8.
+ *
+ * The nul terminator character at the end of the string is stored in
+ * the array.
+ *
+ * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
+ *
+ * Since: 2.26
+ **/
+GVariant *
+g_variant_new_bytestring (const gchar *string)
+{
+ g_return_val_if_fail (string != NULL, NULL);
+
+ return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
+ string, strlen (string) + 1);
+}
+
+/**
+ * g_variant_get_bytestring:
+ * @value: an array-of-bytes #GVariant instance
+ *
+ * Returns the string value of a #GVariant instance with an
+ * array-of-bytes type. The string has no particular encoding.
+ *
+ * If the array does not end with a nul terminator character, the empty
+ * string is returned. For this reason, you can always trust that a
+ * non-%NULL nul-terminated string will be returned by this function.
+ *
+ * If the array contains a nul terminator character somewhere other than
+ * the last byte then the returned string is the string, up to the first
+ * such nul character.
+ *
+ * It is an error to call this function with a @value that is not an
+ * array of bytes.
+ *
+ * The return value remains valid as long as @value exists.
+ *
+ * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
+ * the constant string
+ *
+ * Since: 2.26
+ **/
+const gchar *
+g_variant_get_bytestring (GVariant *value)
+{
+ const gchar *string;
+ gsize size;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
+
+ /* Won't be NULL since this is an array type */
+ string = g_variant_get_data (value);
+ size = g_variant_get_size (value);
+
+ if (size && string[size - 1] == '\0')
+ return string;
+ else
+ return "";
+}
+
+/**
+ * g_variant_dup_bytestring:
+ * @value: an array-of-bytes #GVariant instance
+ * @length: (out) (allow-none) (default NULL): a pointer to a #gsize, to store
+ * the length (not including the nul terminator)
+ *
+ * Similar to g_variant_get_bytestring() except that instead of
+ * returning a constant string, the string is duplicated.
+ *
+ * The return value must be freed using g_free().
+ *
+ * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
+ * a newly allocated string
+ *
+ * Since: 2.26
+ **/
+gchar *
+g_variant_dup_bytestring (GVariant *value,
+ gsize *length)
+{
+ const gchar *original = g_variant_get_bytestring (value);
+ gsize size;
+
+ /* don't crash in case get_bytestring() had an assert failure */
+ if (original == NULL)
+ return NULL;
+
+ size = strlen (original);
+
+ if (length)
+ *length = size;
+
+ return g_memdup (original, size + 1);
+}
+
+/**
+ * g_variant_new_bytestring_array:
+ * @strv: (array length=length): an array of strings
+ * @length: the length of @strv, or -1
+ *
+ * Constructs an array of bytestring #GVariant from the given array of
+ * strings.
+ *
+ * If @length is -1 then @strv is %NULL-terminated.
+ *
+ * Returns: (transfer none): a new floating #GVariant instance
+ *
+ * Since: 2.26
+ **/
+GVariant *
+g_variant_new_bytestring_array (const gchar * const *strv,
+ gssize length)
+{
+ GVariant **strings;
+ gsize i;
+
+ g_return_val_if_fail (length == 0 || strv != NULL, NULL);
+
+ if (length < 0)
+ length = g_strv_length ((gchar **) strv);
+
+ strings = g_new (GVariant *, length);
+ for (i = 0; i < length; i++)
+ strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
+
+ return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
+ strings, length, TRUE);
+}
+
+/**
+ * g_variant_get_bytestring_array:
+ * @value: an array of array of bytes #GVariant ('aay')
+ * @length: (out) (allow-none): the length of the result, or %NULL
+ *
+ * Gets the contents of an array of array of bytes #GVariant. This call
+ * makes a shallow copy; the return result should be released with
+ * g_free(), but the individual strings must not be modified.
+ *
+ * If @length is non-%NULL then the number of elements in the result is
+ * stored there. In any case, the resulting array will be
+ * %NULL-terminated.
+ *
+ * For an empty array, @length will be set to 0 and a pointer to a
+ * %NULL pointer will be returned.
+ *
+ * Returns: (array length=length) (transfer container): an array of constant strings
+ *
+ * Since: 2.26
+ **/
+const gchar **
+g_variant_get_bytestring_array (GVariant *value,
+ gsize *length)
+{
+ const gchar **strv;
+ gsize n;
+ gsize i;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
+
+ g_variant_get_data (value);
+ n = g_variant_n_children (value);
+ strv = g_new (const gchar *, n + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ GVariant *string;
+
+ string = g_variant_get_child_value (value, i);
+ strv[i] = g_variant_get_bytestring (string);
+ g_variant_unref (string);
+ }
+ strv[i] = NULL;
+
+ if (length)
+ *length = n;
+
+ return strv;
+}
+
+/**
+ * g_variant_dup_bytestring_array:
+ * @value: an array of array of bytes #GVariant ('aay')
+ * @length: (out) (allow-none): the length of the result, or %NULL
+ *
+ * Gets the contents of an array of array of bytes #GVariant. This call
+ * makes a deep copy; the return result should be released with
+ * g_strfreev().
+ *
+ * If @length is non-%NULL then the number of elements in the result is
+ * stored there. In any case, the resulting array will be
+ * %NULL-terminated.
+ *
+ * For an empty array, @length will be set to 0 and a pointer to a
+ * %NULL pointer will be returned.
+ *
+ * Returns: (array length=length) (transfer full): an array of strings
+ *
+ * Since: 2.26
+ **/
+gchar **
+g_variant_dup_bytestring_array (GVariant *value,
+ gsize *length)
+{
+ gchar **strv;
+ gsize n;
+ gsize i;
+
+ TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
+
+ g_variant_get_data (value);
+ n = g_variant_n_children (value);
+ strv = g_new (gchar *, n + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ GVariant *string;
+
+ string = g_variant_get_child_value (value, i);
+ strv[i] = g_variant_dup_bytestring (string, NULL);
+ g_variant_unref (string);
+ }
+ strv[i] = NULL;
+
+ if (length)
+ *length = n;
+
+ return strv;
+}
+
+/* Type checking and querying {{{1 */
+/**
+ * g_variant_get_type:
+ * @value: a #GVariant
+ *
+ * Determines the type of @value.
+ *
+ * The return value is valid for the lifetime of @value and must not
+ * be freed.
+ *
+ * Returns: a #GVariantType
+ *
+ * Since: 2.24
+ **/
+const GVariantType *
+g_variant_get_type (GVariant *value)
+{
+ GVariantTypeInfo *type_info;
+
+ g_return_val_if_fail (value != NULL, NULL);
+
+ type_info = g_variant_get_type_info (value);
+
+ return (GVariantType *) g_variant_type_info_get_type_string (type_info);
+}
+
+/**
+ * g_variant_get_type_string:
+ * @value: a #GVariant
+ *
+ * Returns the type string of @value. Unlike the result of calling
+ * g_variant_type_peek_string(), this string is nul-terminated. This
+ * string belongs to #GVariant and must not be freed.
+ *
+ * Returns: the type string for the type of @value
+ *
+ * Since: 2.24
+ **/
+const gchar *
+g_variant_get_type_string (GVariant *value)
+{
+ GVariantTypeInfo *type_info;
+
+ g_return_val_if_fail (value != NULL, NULL);
+
+ type_info = g_variant_get_type_info (value);
+
+ return g_variant_type_info_get_type_string (type_info);
+}
+
+/**
+ * g_variant_is_of_type:
+ * @value: a #GVariant instance
+ * @type: a #GVariantType
+ *
+ * Checks if a value has a type matching the provided type.
+ *
+ * Returns: %TRUE if the type of @value matches @type
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_is_of_type (GVariant *value,
+ const GVariantType *type)
+{
+ return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
+}
+
+/**
+ * g_variant_is_container:
+ * @value: a #GVariant instance
+ *
+ * Checks if @value is a container.
+ *
+ * Returns: %TRUE if @value is a container
+ *
+ * Since: 2.24
+ */
+gboolean
+g_variant_is_container (GVariant *value)
+{
+ return g_variant_type_is_container (g_variant_get_type (value));
+}
+
+
+/**
+ * g_variant_classify:
+ * @value: a #GVariant
+ *
+ * Classifies @value according to its top-level type.
+ *
+ * Returns: the #GVariantClass of @value
+ *
+ * Since: 2.24
+ **/
+/**
+ * GVariantClass:
+ * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
+ * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
+ * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
+ * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
+ * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
+ * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
+ * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
+ * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
+ * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
+ * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
+ * point value.
+ * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
+ * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
+ * string.
+ * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
+ * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
+ * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
+ * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
+ * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
+ * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
+ *
+ * The range of possible top-level types of #GVariant instances.
+ *
+ * Since: 2.24
+ **/
+GVariantClass
+g_variant_classify (GVariant *value)
+{
+ g_return_val_if_fail (value != NULL, 0);
+
+ return *g_variant_get_type_string (value);
+}
+
+/* Pretty printer {{{1 */
+/* This function is not introspectable because if @string is NULL,
+ @returns is (transfer full), otherwise it is (transfer none), which
+ is not supported by GObjectIntrospection */
+/**
+ * g_variant_print_string: (skip)
+ * @value: a #GVariant
+ * @string: (allow-none) (default NULL): a #GString, or %NULL
+ * @type_annotate: %TRUE if type information should be included in
+ * the output
+ *
+ * Behaves as g_variant_print(), but operates on a #GString.
+ *
+ * If @string is non-%NULL then it is appended to and returned. Else,
+ * a new empty #GString is allocated and it is returned.
+ *
+ * Returns: a #GString containing the string
+ *
+ * Since: 2.24
+ **/
+GString *
+g_variant_print_string (GVariant *value,
+ GString *string,
+ gboolean type_annotate)
+{
+ if G_UNLIKELY (string == NULL)
+ string = g_string_new (NULL);
+
+ switch (g_variant_classify (value))
+ {
+ case G_VARIANT_CLASS_MAYBE:
+ if (type_annotate)
+ g_string_append_printf (string, "@%s ",
+ g_variant_get_type_string (value));
+
+ if (g_variant_n_children (value))
+ {
+ gchar *printed_child;
+ GVariant *element;
+
+ /* Nested maybes:
+ *
+ * Consider the case of the type "mmi". In this case we could
+ * write "just just 4", but "4" alone is totally unambiguous,
+ * so we try to drop "just" where possible.
+ *
+ * We have to be careful not to always drop "just", though,
+ * since "nothing" needs to be distinguishable from "just
+ * nothing". The case where we need to ensure we keep the
+ * "just" is actually exactly the case where we have a nested
+ * Nothing.
+ *
+ * Instead of searching for that nested Nothing, we just print
+ * the contained value into a separate string and see if we
+ * end up with "nothing" at the end of it. If so, we need to
+ * add "just" at our level.
+ */
+ element = g_variant_get_child_value (value, 0);
+ printed_child = g_variant_print (element, FALSE);
+ g_variant_unref (element);
+
+ if (g_str_has_suffix (printed_child, "nothing"))
+ g_string_append (string, "just ");
+ g_string_append (string, printed_child);
+ g_free (printed_child);
+ }
+ else
+ g_string_append (string, "nothing");
+
+ break;
+
+ case G_VARIANT_CLASS_ARRAY:
+ /* it's an array so the first character of the type string is 'a'
+ *
+ * if the first two characters are 'ay' then it's a bytestring.
+ * under certain conditions we print those as strings.
+ */
+ if (g_variant_get_type_string (value)[1] == 'y')
+ {
+ const gchar *str;
+ gsize size;
+ gsize i;
+
+ /* first determine if it is a byte string.
+ * that's when there's a single nul character: at the end.
+ */
+ str = g_variant_get_data (value);
+ size = g_variant_get_size (value);
+
+ for (i = 0; i < size; i++)
+ if (str[i] == '\0')
+ break;
+
+ /* first nul byte is the last byte -> it's a byte string. */
+ if (i == size - 1)
+ {
+ gchar *escaped = g_strescape (str, NULL);
+
+ /* use double quotes only if a ' is in the string */
+ if (strchr (str, '\''))
+ g_string_append_printf (string, "b\"%s\"", escaped);
+ else
+ g_string_append_printf (string, "b'%s'", escaped);
+
+ g_free (escaped);
+ break;
+ }
+
+ else
+ /* fall through and handle normally... */;
+ }
+
+ /*
+ * if the first two characters are 'a{' then it's an array of
+ * dictionary entries (ie: a dictionary) so we print that
+ * differently.
+ */
+ if (g_variant_get_type_string (value)[1] == '{')
+ /* dictionary */
+ {
+ const gchar *comma = "";
+ gsize n, i;
+
+ if ((n = g_variant_n_children (value)) == 0)
+ {
+ if (type_annotate)
+ g_string_append_printf (string, "@%s ",
+ g_variant_get_type_string (value));
+ g_string_append (string, "{}");
+ break;
+ }
+
+ g_string_append_c (string, '{');
+ for (i = 0; i < n; i++)
+ {
+ GVariant *entry, *key, *val;
+
+ g_string_append (string, comma);
+ comma = ", ";
+
+ entry = g_variant_get_child_value (value, i);
+ key = g_variant_get_child_value (entry, 0);
+ val = g_variant_get_child_value (entry, 1);
+ g_variant_unref (entry);
+
+ g_variant_print_string (key, string, type_annotate);
+ g_variant_unref (key);
+ g_string_append (string, ": ");
+ g_variant_print_string (val, string, type_annotate);
+ g_variant_unref (val);
+ type_annotate = FALSE;
+ }
+ g_string_append_c (string, '}');
+ }
+ else
+ /* normal (non-dictionary) array */
+ {
+ const gchar *comma = "";
+ gsize n, i;
+
+ if ((n = g_variant_n_children (value)) == 0)
+ {
+ if (type_annotate)
+ g_string_append_printf (string, "@%s ",
+ g_variant_get_type_string (value));
+ g_string_append (string, "[]");
+ break;
+ }
+
+ g_string_append_c (string, '[');
+ for (i = 0; i < n; i++)
+ {
+ GVariant *element;
+
+ g_string_append (string, comma);
+ comma = ", ";
+
+ element = g_variant_get_child_value (value, i);
+
+ g_variant_print_string (element, string, type_annotate);
+ g_variant_unref (element);
+ type_annotate = FALSE;
+ }
+ g_string_append_c (string, ']');
+ }
+
+ break;
+
+ case G_VARIANT_CLASS_TUPLE:
+ {
+ gsize n, i;
+
+ n = g_variant_n_children (value);
+
+ g_string_append_c (string, '(');
+ for (i = 0; i < n; i++)
+ {
+ GVariant *element;
+
+ element = g_variant_get_child_value (value, i);
+ g_variant_print_string (element, string, type_annotate);
+ g_string_append (string, ", ");
+ g_variant_unref (element);
+ }
+
+ /* for >1 item: remove final ", "
+ * for 1 item: remove final " ", but leave the ","
+ * for 0 items: there is only "(", so remove nothing
+ */
+ g_string_truncate (string, string->len - (n > 0) - (n > 1));
+ g_string_append_c (string, ')');
+ }
+ break;
+
+ case G_VARIANT_CLASS_DICT_ENTRY:
+ {
+ GVariant *element;
+
+ g_string_append_c (string, '{');
+
+ element = g_variant_get_child_value (value, 0);
+ g_variant_print_string (element, string, type_annotate);
+ g_variant_unref (element);
+
+ g_string_append (string, ", ");
+
+ element = g_variant_get_child_value (value, 1);
+ g_variant_print_string (element, string, type_annotate);
+ g_variant_unref (element);
+
+ g_string_append_c (string, '}');
+ }
+ break;
+
+ case G_VARIANT_CLASS_VARIANT:
+ {
+ GVariant *child = g_variant_get_variant (value);
+
+ /* Always annotate types in nested variants, because they are
+ * (by nature) of variable type.
+ */
+ g_string_append_c (string, '<');
+ g_variant_print_string (child, string, TRUE);
+ g_string_append_c (string, '>');
+
+ g_variant_unref (child);
+ }
+ break;
+
+ case G_VARIANT_CLASS_BOOLEAN:
+ if (g_variant_get_boolean (value))
+ g_string_append (string, "true");
+ else
+ g_string_append (string, "false");
+ break;
+
+ case G_VARIANT_CLASS_STRING:
+ {
+ const gchar *str = g_variant_get_string (value, NULL);
+ gunichar quote = strchr (str, '\'') ? '"' : '\'';
+
+ g_string_append_c (string, quote);
+
+ while (*str)
+ {
+ gunichar c = g_utf8_get_char (str);
+
+ if (c == quote || c == '\\')
+ g_string_append_c (string, '\\');
+
+ if (g_unichar_isprint (c))
+ g_string_append_unichar (string, c);
+
+ else
+ {
+ g_string_append_c (string, '\\');
+ if (c < 0x10000)
+ switch (c)
+ {
+ case '\a':
+ g_string_append_c (string, 'a');
+ break;
+
+ case '\b':
+ g_string_append_c (string, 'b');
+ break;
+
+ case '\f':
+ g_string_append_c (string, 'f');
+ break;
+
+ case '\n':
+ g_string_append_c (string, 'n');
+ break;
+
+ case '\r':
+ g_string_append_c (string, 'r');
+ break;
+
+ case '\t':
+ g_string_append_c (string, 't');
+ break;
+
+ case '\v':
+ g_string_append_c (string, 'v');
+ break;
+
+ default:
+ g_string_append_printf (string, "u%04x", c);
+ break;
+ }
+ else
+ g_string_append_printf (string, "U%08x", c);
+ }
+
+ str = g_utf8_next_char (str);
+ }
+
+ g_string_append_c (string, quote);
+ }
+ break;
+
+ case G_VARIANT_CLASS_BYTE:
+ if (type_annotate)
+ g_string_append (string, "byte ");
+ g_string_append_printf (string, "0x%02x",
+ g_variant_get_byte (value));
+ break;
+
+ case G_VARIANT_CLASS_INT16:
+ if (type_annotate)
+ g_string_append (string, "int16 ");
+ g_string_append_printf (string, "%"G_GINT16_FORMAT,
+ g_variant_get_int16 (value));
+ break;
+
+ case G_VARIANT_CLASS_UINT16:
+ if (type_annotate)
+ g_string_append (string, "uint16 ");
+ g_string_append_printf (string, "%"G_GUINT16_FORMAT,
+ g_variant_get_uint16 (value));
+ break;
+
+ case G_VARIANT_CLASS_INT32:
+ /* Never annotate this type because it is the default for numbers
+ * (and this is a *pretty* printer)
+ */
+ g_string_append_printf (string, "%"G_GINT32_FORMAT,
+ g_variant_get_int32 (value));
+ break;
+
+ case G_VARIANT_CLASS_HANDLE:
+ if (type_annotate)
+ g_string_append (string, "handle ");
+ g_string_append_printf (string, "%"G_GINT32_FORMAT,
+ g_variant_get_handle (value));
+ break;
+
+ case G_VARIANT_CLASS_UINT32:
+ if (type_annotate)
+ g_string_append (string, "uint32 ");
+ g_string_append_printf (string, "%"G_GUINT32_FORMAT,
+ g_variant_get_uint32 (value));
+ break;
+
+ case G_VARIANT_CLASS_INT64:
+ if (type_annotate)
+ g_string_append (string, "int64 ");
+ g_string_append_printf (string, "%"G_GINT64_FORMAT,
+ g_variant_get_int64 (value));
+ break;
+
+ case G_VARIANT_CLASS_UINT64:
+ if (type_annotate)
+ g_string_append (string, "uint64 ");
+ g_string_append_printf (string, "%"G_GUINT64_FORMAT,
+ g_variant_get_uint64 (value));
+ break;
+
+ case G_VARIANT_CLASS_DOUBLE:
+ {
+ gchar buffer[100];
+ gint i;
+
+ g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
+
+ for (i = 0; buffer[i]; i++)
+ if (buffer[i] == '.' || buffer[i] == 'e' ||
+ buffer[i] == 'n' || buffer[i] == 'N')
+ break;
+
+ /* if there is no '.' or 'e' in the float then add one */
+ if (buffer[i] == '\0')
+ {
+ buffer[i++] = '.';
+ buffer[i++] = '0';
+ buffer[i++] = '\0';
+ }
+
+ g_string_append (string, buffer);
+ }
+ break;
+
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ if (type_annotate)
+ g_string_append (string, "objectpath ");
+ g_string_append_printf (string, "\'%s\'",
+ g_variant_get_string (value, NULL));
+ break;
+
+ case G_VARIANT_CLASS_SIGNATURE:
+ if (type_annotate)
+ g_string_append (string, "signature ");
+ g_string_append_printf (string, "\'%s\'",
+ g_variant_get_string (value, NULL));
+ break;
+
+ default:
+ g_assert_not_reached ();
+ }
+
+ return string;
+}
+
+/**
+ * g_variant_print:
+ * @value: a #GVariant
+ * @type_annotate: %TRUE if type information should be included in
+ * the output
+ *
+ * Pretty-prints @value in the format understood by g_variant_parse().
+ *
+ * The format is described <link linkend='gvariant-text'>here</link>.
+ *
+ * If @type_annotate is %TRUE, then type information is included in
+ * the output.
+ *
+ * Returns: (transfer full): a newly-allocated string holding the result.
+ *
+ * Since: 2.24
+ */
+gchar *
+g_variant_print (GVariant *value,
+ gboolean type_annotate)
+{
+ return g_string_free (g_variant_print_string (value, NULL, type_annotate),
+ FALSE);
+};
+
+/* Hash, Equal, Compare {{{1 */
+/**
+ * g_variant_hash:
+ * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
+ *
+ * Generates a hash value for a #GVariant instance.
+ *
+ * The output of this function is guaranteed to be the same for a given
+ * value only per-process. It may change between different processor
+ * architectures or even different versions of GLib. Do not use this
+ * function as a basis for building protocols or file formats.
+ *
+ * The type of @value is #gconstpointer only to allow use of this
+ * function with #GHashTable. @value must be a #GVariant.
+ *
+ * Returns: a hash value corresponding to @value
+ *
+ * Since: 2.24
+ **/
+guint
+g_variant_hash (gconstpointer value_)
+{
+ GVariant *value = (GVariant *) value_;
+
+ switch (g_variant_classify (value))
+ {
+ case G_VARIANT_CLASS_STRING:
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ case G_VARIANT_CLASS_SIGNATURE:
+ return g_str_hash (g_variant_get_string (value, NULL));
+
+ case G_VARIANT_CLASS_BOOLEAN:
+ /* this is a very odd thing to hash... */
+ return g_variant_get_boolean (value);
+
+ case G_VARIANT_CLASS_BYTE:
+ return g_variant_get_byte (value);
+
+ case G_VARIANT_CLASS_INT16:
+ case G_VARIANT_CLASS_UINT16:
+ {
+ const guint16 *ptr;
+
+ ptr = g_variant_get_data (value);
+
+ if (ptr)
+ return *ptr;
+ else
+ return 0;
+ }
+
+ case G_VARIANT_CLASS_INT32:
+ case G_VARIANT_CLASS_UINT32:
+ case G_VARIANT_CLASS_HANDLE:
+ {
+ const guint *ptr;
+
+ ptr = g_variant_get_data (value);
+
+ if (ptr)
+ return *ptr;
+ else
+ return 0;
+ }
+
+ case G_VARIANT_CLASS_INT64:
+ case G_VARIANT_CLASS_UINT64:
+ case G_VARIANT_CLASS_DOUBLE:
+ /* need a separate case for these guys because otherwise
+ * performance could be quite bad on big endian systems
+ */
+ {
+ const guint *ptr;
+
+ ptr = g_variant_get_data (value);
+
+ if (ptr)
+ return ptr[0] + ptr[1];
+ else
+ return 0;
+ }
+
+ default:
+ g_return_val_if_fail (!g_variant_is_container (value), 0);
+ g_assert_not_reached ();
+ }
+}
+
+/**
+ * g_variant_equal:
+ * @one: (type GVariant): a #GVariant instance
+ * @two: (type GVariant): a #GVariant instance
+ *
+ * Checks if @one and @two have the same type and value.
+ *
+ * The types of @one and @two are #gconstpointer only to allow use of
+ * this function with #GHashTable. They must each be a #GVariant.
+ *
+ * Returns: %TRUE if @one and @two are equal
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_equal (gconstpointer one,
+ gconstpointer two)
+{
+ gboolean equal;
+
+ g_return_val_if_fail (one != NULL && two != NULL, FALSE);
+
+ if (g_variant_get_type_info ((GVariant *) one) !=
+ g_variant_get_type_info ((GVariant *) two))
+ return FALSE;
+
+ /* if both values are trusted to be in their canonical serialised form
+ * then a simple memcmp() of their serialised data will answer the
+ * question.
+ *
+ * if not, then this might generate a false negative (since it is
+ * possible for two different byte sequences to represent the same
+ * value). for now we solve this by pretty-printing both values and
+ * comparing the result.
+ */
+ if (g_variant_is_trusted ((GVariant *) one) &&
+ g_variant_is_trusted ((GVariant *) two))
+ {
+ gconstpointer data_one, data_two;
+ gsize size_one, size_two;
+
+ size_one = g_variant_get_size ((GVariant *) one);
+ size_two = g_variant_get_size ((GVariant *) two);
+
+ if (size_one != size_two)
+ return FALSE;
+
+ data_one = g_variant_get_data ((GVariant *) one);
+ data_two = g_variant_get_data ((GVariant *) two);
+
+ equal = memcmp (data_one, data_two, size_one) == 0;
+ }
+ else
+ {
+ gchar *strone, *strtwo;
+
+ strone = g_variant_print ((GVariant *) one, FALSE);
+ strtwo = g_variant_print ((GVariant *) two, FALSE);
+ equal = strcmp (strone, strtwo) == 0;
+ g_free (strone);
+ g_free (strtwo);
+ }
+
+ return equal;
+}
+
+/**
+ * g_variant_compare:
+ * @one: (type GVariant): a basic-typed #GVariant instance
+ * @two: (type GVariant): a #GVariant instance of the same type
+ *
+ * Compares @one and @two.
+ *
+ * The types of @one and @two are #gconstpointer only to allow use of
+ * this function with #GTree, #GPtrArray, etc. They must each be a
+ * #GVariant.
+ *
+ * Comparison is only defined for basic types (ie: booleans, numbers,
+ * strings). For booleans, %FALSE is less than %TRUE. Numbers are
+ * ordered in the usual way. Strings are in ASCII lexographical order.
+ *
+ * It is a programmer error to attempt to compare container values or
+ * two values that have types that are not exactly equal. For example,
+ * you cannot compare a 32-bit signed integer with a 32-bit unsigned
+ * integer. Also note that this function is not particularly
+ * well-behaved when it comes to comparison of doubles; in particular,
+ * the handling of incomparable values (ie: NaN) is undefined.
+ *
+ * If you only require an equality comparison, g_variant_equal() is more
+ * general.
+ *
+ * Returns: negative value if a &lt; b;
+ * zero if a = b;
+ * positive value if a &gt; b.
+ *
+ * Since: 2.26
+ **/
+gint
+g_variant_compare (gconstpointer one,
+ gconstpointer two)
+{
+ GVariant *a = (GVariant *) one;
+ GVariant *b = (GVariant *) two;
+
+ g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
+
+ switch (g_variant_classify (a))
+ {
+ case G_VARIANT_CLASS_BOOLEAN:
+ return g_variant_get_boolean (a) -
+ g_variant_get_boolean (b);
+
+ case G_VARIANT_CLASS_BYTE:
+ return ((gint) g_variant_get_byte (a)) -
+ ((gint) g_variant_get_byte (b));
+
+ case G_VARIANT_CLASS_INT16:
+ return ((gint) g_variant_get_int16 (a)) -
+ ((gint) g_variant_get_int16 (b));
+
+ case G_VARIANT_CLASS_UINT16:
+ return ((gint) g_variant_get_uint16 (a)) -
+ ((gint) g_variant_get_uint16 (b));
+
+ case G_VARIANT_CLASS_INT32:
+ {
+ gint32 a_val = g_variant_get_int32 (a);
+ gint32 b_val = g_variant_get_int32 (b);
+
+ return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
+ }
+
+ case G_VARIANT_CLASS_UINT32:
+ {
+ guint32 a_val = g_variant_get_uint32 (a);
+ guint32 b_val = g_variant_get_uint32 (b);
+
+ return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
+ }
+
+ case G_VARIANT_CLASS_INT64:
+ {
+ gint64 a_val = g_variant_get_int64 (a);
+ gint64 b_val = g_variant_get_int64 (b);
+
+ return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
+ }
+
+ case G_VARIANT_CLASS_UINT64:
+ {
+ guint64 a_val = g_variant_get_uint64 (a);
+ guint64 b_val = g_variant_get_uint64 (b);
+
+ return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
+ }
+
+ case G_VARIANT_CLASS_DOUBLE:
+ {
+ gdouble a_val = g_variant_get_double (a);
+ gdouble b_val = g_variant_get_double (b);
+
+ return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
+ }
+
+ case G_VARIANT_CLASS_STRING:
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ case G_VARIANT_CLASS_SIGNATURE:
+ return strcmp (g_variant_get_string (a, NULL),
+ g_variant_get_string (b, NULL));
+
+ default:
+ g_return_val_if_fail (!g_variant_is_container (a), 0);
+ g_assert_not_reached ();
+ }
+}
+
+/* GVariantIter {{{1 */
+/**
+ * GVariantIter: (skip)
+ *
+ * #GVariantIter is an opaque data structure and can only be accessed
+ * using the following functions.
+ **/
+struct stack_iter
+{
+ GVariant *value;
+ gssize n, i;
+
+ const gchar *loop_format;
+
+ gsize padding[3];
+ gsize magic;
+};
+
+G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
+
+struct heap_iter
+{
+ struct stack_iter iter;
+
+ GVariant *value_ref;
+ gsize magic;
+};
+
+#define GVSI(i) ((struct stack_iter *) (i))
+#define GVHI(i) ((struct heap_iter *) (i))
+#define GVSI_MAGIC ((gsize) 3579507750u)
+#define GVHI_MAGIC ((gsize) 1450270775u)
+#define is_valid_iter(i) (i != NULL && \
+ GVSI(i)->magic == GVSI_MAGIC)
+#define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
+ is_valid_iter(i))
+
+/**
+ * g_variant_iter_new:
+ * @value: a container #GVariant
+ *
+ * Creates a heap-allocated #GVariantIter for iterating over the items
+ * in @value.
+ *
+ * Use g_variant_iter_free() to free the return value when you no longer
+ * need it.
+ *
+ * A reference is taken to @value and will be released only when
+ * g_variant_iter_free() is called.
+ *
+ * Returns: (transfer full): a new heap-allocated #GVariantIter
+ *
+ * Since: 2.24
+ **/
+GVariantIter *
+g_variant_iter_new (GVariant *value)
+{
+ GVariantIter *iter;
+
+ iter = (GVariantIter *) g_slice_new (struct heap_iter);
+ GVHI(iter)->value_ref = g_variant_ref (value);
+ GVHI(iter)->magic = GVHI_MAGIC;
+
+ g_variant_iter_init (iter, value);
+
+ return iter;
+}
+
+/**
+ * g_variant_iter_init: (skip)
+ * @iter: a pointer to a #GVariantIter
+ * @value: a container #GVariant
+ *
+ * Initialises (without allocating) a #GVariantIter. @iter may be
+ * completely uninitialised prior to this call; its old value is
+ * ignored.
+ *
+ * The iterator remains valid for as long as @value exists, and need not
+ * be freed in any way.
+ *
+ * Returns: the number of items in @value
+ *
+ * Since: 2.24
+ **/
+gsize
+g_variant_iter_init (GVariantIter *iter,
+ GVariant *value)
+{
+ GVSI(iter)->magic = GVSI_MAGIC;
+ GVSI(iter)->value = value;
+ GVSI(iter)->n = g_variant_n_children (value);
+ GVSI(iter)->i = -1;
+ GVSI(iter)->loop_format = NULL;
+
+ return GVSI(iter)->n;
+}
+
+/**
+ * g_variant_iter_copy:
+ * @iter: a #GVariantIter
+ *
+ * Creates a new heap-allocated #GVariantIter to iterate over the
+ * container that was being iterated over by @iter. Iteration begins on
+ * the new iterator from the current position of the old iterator but
+ * the two copies are independent past that point.
+ *
+ * Use g_variant_iter_free() to free the return value when you no longer
+ * need it.
+ *
+ * A reference is taken to the container that @iter is iterating over
+ * and will be releated only when g_variant_iter_free() is called.
+ *
+ * Returns: (transfer full): a new heap-allocated #GVariantIter
+ *
+ * Since: 2.24
+ **/
+GVariantIter *
+g_variant_iter_copy (GVariantIter *iter)
+{
+ GVariantIter *copy;
+
+ g_return_val_if_fail (is_valid_iter (iter), 0);
+
+ copy = g_variant_iter_new (GVSI(iter)->value);
+ GVSI(copy)->i = GVSI(iter)->i;
+
+ return copy;
+}
+
+/**
+ * g_variant_iter_n_children:
+ * @iter: a #GVariantIter
+ *
+ * Queries the number of child items in the container that we are
+ * iterating over. This is the total number of items -- not the number
+ * of items remaining.
+ *
+ * This function might be useful for preallocation of arrays.
+ *
+ * Returns: the number of children in the container
+ *
+ * Since: 2.24
+ **/
+gsize
+g_variant_iter_n_children (GVariantIter *iter)
+{
+ g_return_val_if_fail (is_valid_iter (iter), 0);
+
+ return GVSI(iter)->n;
+}
+
+/**
+ * g_variant_iter_free:
+ * @iter: (transfer full): a heap-allocated #GVariantIter
+ *
+ * Frees a heap-allocated #GVariantIter. Only call this function on
+ * iterators that were returned by g_variant_iter_new() or
+ * g_variant_iter_copy().
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_iter_free (GVariantIter *iter)
+{
+ g_return_if_fail (is_valid_heap_iter (iter));
+
+ g_variant_unref (GVHI(iter)->value_ref);
+ GVHI(iter)->magic = 0;
+
+ g_slice_free (struct heap_iter, GVHI(iter));
+}
+
+/**
+ * g_variant_iter_next_value:
+ * @iter: a #GVariantIter
+ *
+ * Gets the next item in the container. If no more items remain then
+ * %NULL is returned.
+ *
+ * Use g_variant_unref() to drop your reference on the return value when
+ * you no longer need it.
+ *
+ * <example>
+ * <title>Iterating with g_variant_iter_next_value()</title>
+ * <programlisting>
+ * /<!-- -->* recursively iterate a container *<!-- -->/
+ * void
+ * iterate_container_recursive (GVariant *container)
+ * {
+ * GVariantIter iter;
+ * GVariant *child;
+ *
+ * g_variant_iter_init (&iter, container);
+ * while ((child = g_variant_iter_next_value (&iter)))
+ * {
+ * g_print ("type '%s'\n", g_variant_get_type_string (child));
+ *
+ * if (g_variant_is_container (child))
+ * iterate_container_recursive (child);
+ *
+ * g_variant_unref (child);
+ * }
+ * }
+ * </programlisting>
+ * </example>
+ *
+ * Returns: (allow-none) (transfer full): a #GVariant, or %NULL
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_iter_next_value (GVariantIter *iter)
+{
+ g_return_val_if_fail (is_valid_iter (iter), FALSE);
+
+ if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
+ {
+ g_critical ("g_variant_iter_next_value: must not be called again "
+ "after NULL has already been returned.");
+ return NULL;
+ }
+
+ GVSI(iter)->i++;
+
+ if (GVSI(iter)->i < GVSI(iter)->n)
+ return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
+
+ return NULL;
+}
+
+/* GVariantBuilder {{{1 */
+/**
+ * GVariantBuilder:
+ *
+ * A utility type for constructing container-type #GVariant instances.
+ *
+ * This is an opaque structure and may only be accessed using the
+ * following functions.
+ *
+ * #GVariantBuilder is not threadsafe in any way. Do not attempt to
+ * access it from more than one thread.
+ **/
+
+struct stack_builder
+{
+ GVariantBuilder *parent;
+ GVariantType *type;
+
+ /* type constraint explicitly specified by 'type'.
+ * for tuple types, this moves along as we add more items.
+ */
+ const GVariantType *expected_type;
+
+ /* type constraint implied by previous array item.
+ */
+ const GVariantType *prev_item_type;
+
+ /* constraints on the number of children. max = -1 for unlimited. */
+ gsize min_items;
+ gsize max_items;
+
+ /* dynamically-growing pointer array */
+ GVariant **children;
+ gsize allocated_children;
+ gsize offset;
+
+ /* set to '1' if all items in the container will have the same type
+ * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
+ */
+ guint uniform_item_types : 1;
+
+ /* set to '1' initially and changed to '0' if an untrusted value is
+ * added
+ */
+ guint trusted : 1;
+
+ gsize magic;
+};
+
+G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
+
+struct heap_builder
+{
+ GVariantBuilder builder;
+ gsize magic;
+
+ gint ref_count;
+};
+
+#define GVSB(b) ((struct stack_builder *) (b))
+#define GVHB(b) ((struct heap_builder *) (b))
+#define GVSB_MAGIC ((gsize) 1033660112u)
+#define GVHB_MAGIC ((gsize) 3087242682u)
+#define is_valid_builder(b) (b != NULL && \
+ GVSB(b)->magic == GVSB_MAGIC)
+#define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
+
+/**
+ * g_variant_builder_new:
+ * @type: a container type
+ *
+ * Allocates and initialises a new #GVariantBuilder.
+ *
+ * You should call g_variant_builder_unref() on the return value when it
+ * is no longer needed. The memory will not be automatically freed by
+ * any other call.
+ *
+ * In most cases it is easier to place a #GVariantBuilder directly on
+ * the stack of the calling function and initialise it with
+ * g_variant_builder_init().
+ *
+ * Returns: (transfer full): a #GVariantBuilder
+ *
+ * Since: 2.24
+ **/
+GVariantBuilder *
+g_variant_builder_new (const GVariantType *type)
+{
+ GVariantBuilder *builder;
+
+ builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
+ g_variant_builder_init (builder, type);
+ GVHB(builder)->magic = GVHB_MAGIC;
+ GVHB(builder)->ref_count = 1;
+
+ return builder;
+}
+
+/**
+ * g_variant_builder_unref:
+ * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
+ *
+ * Decreases the reference count on @builder.
+ *
+ * In the event that there are no more references, releases all memory
+ * associated with the #GVariantBuilder.
+ *
+ * Don't call this on stack-allocated #GVariantBuilder instances or bad
+ * things will happen.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_unref (GVariantBuilder *builder)
+{
+ g_return_if_fail (is_valid_heap_builder (builder));
+
+ if (--GVHB(builder)->ref_count)
+ return;
+
+ g_variant_builder_clear (builder);
+ GVHB(builder)->magic = 0;
+
+ g_slice_free (struct heap_builder, GVHB(builder));
+}
+
+/**
+ * g_variant_builder_ref:
+ * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
+ *
+ * Increases the reference count on @builder.
+ *
+ * Don't call this on stack-allocated #GVariantBuilder instances or bad
+ * things will happen.
+ *
+ * Returns: (transfer full): a new reference to @builder
+ *
+ * Since: 2.24
+ **/
+GVariantBuilder *
+g_variant_builder_ref (GVariantBuilder *builder)
+{
+ g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
+
+ GVHB(builder)->ref_count++;
+
+ return builder;
+}
+
+/**
+ * g_variant_builder_clear: (skip)
+ * @builder: a #GVariantBuilder
+ *
+ * Releases all memory associated with a #GVariantBuilder without
+ * freeing the #GVariantBuilder structure itself.
+ *
+ * It typically only makes sense to do this on a stack-allocated
+ * #GVariantBuilder if you want to abort building the value part-way
+ * through. This function need not be called if you call
+ * g_variant_builder_end() and it also doesn't need to be called on
+ * builders allocated with g_variant_builder_new (see
+ * g_variant_builder_unref() for that).
+ *
+ * This function leaves the #GVariantBuilder structure set to all-zeros.
+ * It is valid to call this function on either an initialised
+ * #GVariantBuilder or one that is set to all-zeros but it is not valid
+ * to call this function on uninitialised memory.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_clear (GVariantBuilder *builder)
+{
+ gsize i;
+
+ if (GVSB(builder)->magic == 0)
+ /* all-zeros case */
+ return;
+
+ g_return_if_fail (is_valid_builder (builder));
+
+ g_variant_type_free (GVSB(builder)->type);
+
+ for (i = 0; i < GVSB(builder)->offset; i++)
+ g_variant_unref (GVSB(builder)->children[i]);
+
+ g_free (GVSB(builder)->children);
+
+ if (GVSB(builder)->parent)
+ {
+ g_variant_builder_clear (GVSB(builder)->parent);
+ g_slice_free (GVariantBuilder, GVSB(builder)->parent);
+ }
+
+ memset (builder, 0, sizeof (GVariantBuilder));
+}
+
+/**
+ * g_variant_builder_init: (skip)
+ * @builder: a #GVariantBuilder
+ * @type: a container type
+ *
+ * Initialises a #GVariantBuilder structure.
+ *
+ * @type must be non-%NULL. It specifies the type of container to
+ * construct. It can be an indefinite type such as
+ * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
+ * Maybe, array, tuple, dictionary entry and variant-typed values may be
+ * constructed.
+ *
+ * After the builder is initialised, values are added using
+ * g_variant_builder_add_value() or g_variant_builder_add().
+ *
+ * After all the child values are added, g_variant_builder_end() frees
+ * the memory associated with the builder and returns the #GVariant that
+ * was created.
+ *
+ * This function completely ignores the previous contents of @builder.
+ * On one hand this means that it is valid to pass in completely
+ * uninitialised memory. On the other hand, this means that if you are
+ * initialising over top of an existing #GVariantBuilder you need to
+ * first call g_variant_builder_clear() in order to avoid leaking
+ * memory.
+ *
+ * You must not call g_variant_builder_ref() or
+ * g_variant_builder_unref() on a #GVariantBuilder that was initialised
+ * with this function. If you ever pass a reference to a
+ * #GVariantBuilder outside of the control of your own code then you
+ * should assume that the person receiving that reference may try to use
+ * reference counting; you should use g_variant_builder_new() instead of
+ * this function.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_init (GVariantBuilder *builder,
+ const GVariantType *type)
+{
+ g_return_if_fail (type != NULL);
+ g_return_if_fail (g_variant_type_is_container (type));
+
+ memset (builder, 0, sizeof (GVariantBuilder));
+
+ GVSB(builder)->type = g_variant_type_copy (type);
+ GVSB(builder)->magic = GVSB_MAGIC;
+ GVSB(builder)->trusted = TRUE;
+
+ switch (*(const gchar *) type)
+ {
+ case G_VARIANT_CLASS_VARIANT:
+ GVSB(builder)->uniform_item_types = TRUE;
+ GVSB(builder)->allocated_children = 1;
+ GVSB(builder)->expected_type = NULL;
+ GVSB(builder)->min_items = 1;
+ GVSB(builder)->max_items = 1;
+ break;
+
+ case G_VARIANT_CLASS_ARRAY:
+ GVSB(builder)->uniform_item_types = TRUE;
+ GVSB(builder)->allocated_children = 8;
+ GVSB(builder)->expected_type =
+ g_variant_type_element (GVSB(builder)->type);
+ GVSB(builder)->min_items = 0;
+ GVSB(builder)->max_items = -1;
+ break;
+
+ case G_VARIANT_CLASS_MAYBE:
+ GVSB(builder)->uniform_item_types = TRUE;
+ GVSB(builder)->allocated_children = 1;
+ GVSB(builder)->expected_type =
+ g_variant_type_element (GVSB(builder)->type);
+ GVSB(builder)->min_items = 0;
+ GVSB(builder)->max_items = 1;
+ break;
+
+ case G_VARIANT_CLASS_DICT_ENTRY:
+ GVSB(builder)->uniform_item_types = FALSE;
+ GVSB(builder)->allocated_children = 2;
+ GVSB(builder)->expected_type =
+ g_variant_type_key (GVSB(builder)->type);
+ GVSB(builder)->min_items = 2;
+ GVSB(builder)->max_items = 2;
+ break;
+
+ case 'r': /* G_VARIANT_TYPE_TUPLE was given */
+ GVSB(builder)->uniform_item_types = FALSE;
+ GVSB(builder)->allocated_children = 8;
+ GVSB(builder)->expected_type = NULL;
+ GVSB(builder)->min_items = 0;
+ GVSB(builder)->max_items = -1;
+ break;
+
+ case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
+ GVSB(builder)->allocated_children = g_variant_type_n_items (type);
+ GVSB(builder)->expected_type =
+ g_variant_type_first (GVSB(builder)->type);
+ GVSB(builder)->min_items = GVSB(builder)->allocated_children;
+ GVSB(builder)->max_items = GVSB(builder)->allocated_children;
+ GVSB(builder)->uniform_item_types = FALSE;
+ break;
+
+ default:
+ g_assert_not_reached ();
+ }
+
+ GVSB(builder)->children = g_new (GVariant *,
+ GVSB(builder)->allocated_children);
+}
+
+static void
+g_variant_builder_make_room (struct stack_builder *builder)
+{
+ if (builder->offset == builder->allocated_children)
+ {
+ builder->allocated_children *= 2;
+ builder->children = g_renew (GVariant *, builder->children,
+ builder->allocated_children);
+ }
+}
+
+/**
+ * g_variant_builder_add_value:
+ * @builder: a #GVariantBuilder
+ * @value: a #GVariant
+ *
+ * Adds @value to @builder.
+ *
+ * It is an error to call this function in any way that would create an
+ * inconsistent value to be constructed. Some examples of this are
+ * putting different types of items into an array, putting the wrong
+ * types or number of items in a tuple, putting more than one value into
+ * a variant, etc.
+ *
+ * If @value is a floating reference (see g_variant_ref_sink()),
+ * the @builder instance takes ownership of @value.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_add_value (GVariantBuilder *builder,
+ GVariant *value)
+{
+ g_return_if_fail (is_valid_builder (builder));
+ g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
+ g_return_if_fail (!GVSB(builder)->expected_type ||
+ g_variant_is_of_type (value,
+ GVSB(builder)->expected_type));
+ g_return_if_fail (!GVSB(builder)->prev_item_type ||
+ g_variant_is_of_type (value,
+ GVSB(builder)->prev_item_type));
+
+ GVSB(builder)->trusted &= g_variant_is_trusted (value);
+
+ if (!GVSB(builder)->uniform_item_types)
+ {
+ /* advance our expected type pointers */
+ if (GVSB(builder)->expected_type)
+ GVSB(builder)->expected_type =
+ g_variant_type_next (GVSB(builder)->expected_type);
+
+ if (GVSB(builder)->prev_item_type)
+ GVSB(builder)->prev_item_type =
+ g_variant_type_next (GVSB(builder)->prev_item_type);
+ }
+ else
+ GVSB(builder)->prev_item_type = g_variant_get_type (value);
+
+ g_variant_builder_make_room (GVSB(builder));
+
+ GVSB(builder)->children[GVSB(builder)->offset++] =
+ g_variant_ref_sink (value);
+}
+
+/**
+ * g_variant_builder_open:
+ * @builder: a #GVariantBuilder
+ * @type: a #GVariantType
+ *
+ * Opens a subcontainer inside the given @builder. When done adding
+ * items to the subcontainer, g_variant_builder_close() must be called.
+ *
+ * It is an error to call this function in any way that would cause an
+ * inconsistent value to be constructed (ie: adding too many values or
+ * a value of an incorrect type).
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_open (GVariantBuilder *builder,
+ const GVariantType *type)
+{
+ GVariantBuilder *parent;
+
+ g_return_if_fail (is_valid_builder (builder));
+ g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
+ g_return_if_fail (!GVSB(builder)->expected_type ||
+ g_variant_type_is_subtype_of (type,
+ GVSB(builder)->expected_type));
+ g_return_if_fail (!GVSB(builder)->prev_item_type ||
+ g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
+ type));
+
+ parent = g_slice_dup (GVariantBuilder, builder);
+ g_variant_builder_init (builder, type);
+ GVSB(builder)->parent = parent;
+
+ /* push the prev_item_type down into the subcontainer */
+ if (GVSB(parent)->prev_item_type)
+ {
+ if (!GVSB(builder)->uniform_item_types)
+ /* tuples and dict entries */
+ GVSB(builder)->prev_item_type =
+ g_variant_type_first (GVSB(parent)->prev_item_type);
+
+ else if (!g_variant_type_is_variant (GVSB(builder)->type))
+ /* maybes and arrays */
+ GVSB(builder)->prev_item_type =
+ g_variant_type_element (GVSB(parent)->prev_item_type);
+ }
+}
+
+/**
+ * g_variant_builder_close:
+ * @builder: a #GVariantBuilder
+ *
+ * Closes the subcontainer inside the given @builder that was opened by
+ * the most recent call to g_variant_builder_open().
+ *
+ * It is an error to call this function in any way that would create an
+ * inconsistent value to be constructed (ie: too few values added to the
+ * subcontainer).
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_close (GVariantBuilder *builder)
+{
+ GVariantBuilder *parent;
+
+ g_return_if_fail (is_valid_builder (builder));
+ g_return_if_fail (GVSB(builder)->parent != NULL);
+
+ parent = GVSB(builder)->parent;
+ GVSB(builder)->parent = NULL;
+
+ g_variant_builder_add_value (parent, g_variant_builder_end (builder));
+ *builder = *parent;
+
+ g_slice_free (GVariantBuilder, parent);
+}
+
+/*< private >
+ * g_variant_make_maybe_type:
+ * @element: a #GVariant
+ *
+ * Return the type of a maybe containing @element.
+ */
+static GVariantType *
+g_variant_make_maybe_type (GVariant *element)
+{
+ return g_variant_type_new_maybe (g_variant_get_type (element));
+}
+
+/*< private >
+ * g_variant_make_array_type:
+ * @element: a #GVariant
+ *
+ * Return the type of an array containing @element.
+ */
+static GVariantType *
+g_variant_make_array_type (GVariant *element)
+{
+ return g_variant_type_new_array (g_variant_get_type (element));
+}
+
+/**
+ * g_variant_builder_end:
+ * @builder: a #GVariantBuilder
+ *
+ * Ends the builder process and returns the constructed value.
+ *
+ * It is not permissible to use @builder in any way after this call
+ * except for reference counting operations (in the case of a
+ * heap-allocated #GVariantBuilder) or by reinitialising it with
+ * g_variant_builder_init() (in the case of stack-allocated).
+ *
+ * It is an error to call this function in any way that would create an
+ * inconsistent value to be constructed (ie: insufficient number of
+ * items added to a container with a specific number of children
+ * required). It is also an error to call this function if the builder
+ * was created with an indefinite array or maybe type and no children
+ * have been added; in this case it is impossible to infer the type of
+ * the empty array.
+ *
+ * Returns: (transfer none): a new, floating, #GVariant
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_builder_end (GVariantBuilder *builder)
+{
+ GVariantType *my_type;
+ GVariant *value;
+
+ g_return_val_if_fail (is_valid_builder (builder), NULL);
+ g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
+ NULL);
+ g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
+ GVSB(builder)->prev_item_type != NULL ||
+ g_variant_type_is_definite (GVSB(builder)->type),
+ NULL);
+
+ if (g_variant_type_is_definite (GVSB(builder)->type))
+ my_type = g_variant_type_copy (GVSB(builder)->type);
+
+ else if (g_variant_type_is_maybe (GVSB(builder)->type))
+ my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
+
+ else if (g_variant_type_is_array (GVSB(builder)->type))
+ my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
+
+ else if (g_variant_type_is_tuple (GVSB(builder)->type))
+ my_type = g_variant_make_tuple_type (GVSB(builder)->children,
+ GVSB(builder)->offset);
+
+ else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
+ my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
+ GVSB(builder)->children[1]);
+ else
+ g_assert_not_reached ();
+
+ value = g_variant_new_from_children (my_type,
+ g_renew (GVariant *,
+ GVSB(builder)->children,
+ GVSB(builder)->offset),
+ GVSB(builder)->offset,
+ GVSB(builder)->trusted);
+ GVSB(builder)->children = NULL;
+ GVSB(builder)->offset = 0;
+
+ g_variant_builder_clear (builder);
+ g_variant_type_free (my_type);
+
+ return value;
+}
+
+/* Format strings {{{1 */
+/*< private >
+ * g_variant_format_string_scan:
+ * @string: a string that may be prefixed with a format string
+ * @limit: (allow-none) (default NULL): a pointer to the end of @string,
+ * or %NULL
+ * @endptr: (allow-none) (default NULL): location to store the end pointer,
+ * or %NULL
+ *
+ * Checks the string pointed to by @string for starting with a properly
+ * formed #GVariant varargs format string. If no valid format string is
+ * found then %FALSE is returned.
+ *
+ * If @string does start with a valid format string then %TRUE is
+ * returned. If @endptr is non-%NULL then it is updated to point to the
+ * first character after the format string.
+ *
+ * If @limit is non-%NULL then @limit (and any charater after it) will
+ * not be accessed and the effect is otherwise equivalent to if the
+ * character at @limit were nul.
+ *
+ * See the section on <link linkend='gvariant-format-strings'>GVariant
+ * Format Strings</link>.
+ *
+ * Returns: %TRUE if there was a valid format string
+ *
+ * Since: 2.24
+ */
+gboolean
+g_variant_format_string_scan (const gchar *string,
+ const gchar *limit,
+ const gchar **endptr)
+{
+#define next_char() (string == limit ? '\0' : *string++)
+#define peek_char() (string == limit ? '\0' : *string)
+ char c;
+
+ switch (next_char())
+ {
+ case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
+ case 'x': case 't': case 'h': case 'd': case 's': case 'o':
+ case 'g': case 'v': case '*': case '?': case 'r':
+ break;
+
+ case 'm':
+ return g_variant_format_string_scan (string, limit, endptr);
+
+ case 'a':
+ case '@':
+ return g_variant_type_string_scan (string, limit, endptr);
+
+ case '(':
+ while (peek_char() != ')')
+ if (!g_variant_format_string_scan (string, limit, &string))
+ return FALSE;
+
+ next_char(); /* consume ')' */
+ break;
+
+ case '{':
+ c = next_char();
+
+ if (c == '&')
+ {
+ c = next_char ();
+
+ if (c != 's' && c != 'o' && c != 'g')
+ return FALSE;
+ }
+ else
+ {
+ if (c == '@')
+ c = next_char ();
+
+ /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
+ * The terminating null character is considered to be
+ * part of the string.
+ */
+ if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
+ return FALSE;
+ }
+
+ if (!g_variant_format_string_scan (string, limit, &string))
+ return FALSE;
+
+ if (next_char() != '}')
+ return FALSE;
+
+ break;
+
+ case '^':
+ if ((c = next_char()) == 'a')
+ {
+ if ((c = next_char()) == '&')
+ {
+ if ((c = next_char()) == 'a')
+ {
+ if ((c = next_char()) == 'y')
+ break; /* '^a&ay' */
+ }
+
+ else if (c == 's' || c == 'o')
+ break; /* '^a&s', '^a&o' */
+ }
+
+ else if (c == 'a')
+ {
+ if ((c = next_char()) == 'y')
+ break; /* '^aay' */
+ }
+
+ else if (c == 's' || c == 'o')
+ break; /* '^as', '^ao' */
+
+ else if (c == 'y')
+ break; /* '^ay' */
+ }
+ else if (c == '&')
+ {
+ if ((c = next_char()) == 'a')
+ {
+ if ((c = next_char()) == 'y')
+ break; /* '^&ay' */
+ }
+ }
+
+ return FALSE;
+
+ case '&':
+ c = next_char();
+
+ if (c != 's' && c != 'o' && c != 'g')
+ return FALSE;
+
+ break;
+
+ default:
+ return FALSE;
+ }
+
+ if (endptr != NULL)
+ *endptr = string;
+
+#undef next_char
+#undef peek_char
+
+ return TRUE;
+}
+
+/*< private >
+ * g_variant_format_string_scan_type:
+ * @string: a string that may be prefixed with a format string
+ * @limit: (allow-none) (default NULL): a pointer to the end of @string,
+ * or %NULL
+ * @endptr: (allow-none) (default NULL): location to store the end pointer,
+ * or %NULL
+ *
+ * If @string starts with a valid format string then this function will
+ * return the type that the format string corresponds to. Otherwise
+ * this function returns %NULL.
+ *
+ * Use g_variant_type_free() to free the return value when you no longer
+ * need it.
+ *
+ * This function is otherwise exactly like
+ * g_variant_format_string_scan().
+ *
+ * Returns: (allow-none): a #GVariantType if there was a valid format string
+ *
+ * Since: 2.24
+ */
+GVariantType *
+g_variant_format_string_scan_type (const gchar *string,
+ const gchar *limit,
+ const gchar **endptr)
+{
+ const gchar *my_end;
+ gchar *dest;
+ gchar *new;
+
+ if (endptr == NULL)
+ endptr = &my_end;
+
+ if (!g_variant_format_string_scan (string, limit, endptr))
+ return NULL;
+
+ dest = new = g_malloc (*endptr - string + 1);
+ while (string != *endptr)
+ {
+ if (*string != '@' && *string != '&' && *string != '^')
+ *dest++ = *string;
+ string++;
+ }
+ *dest = '\0';
+
+ return (GVariantType *) G_VARIANT_TYPE (new);
+}
+
+static gboolean
+valid_format_string (const gchar *format_string,
+ gboolean single,
+ GVariant *value)
+{
+ const gchar *endptr;
+ GVariantType *type;
+
+ type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
+
+ if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
+ {
+ if (single)
+ g_critical ("`%s' is not a valid GVariant format string",
+ format_string);
+ else
+ g_critical ("`%s' does not have a valid GVariant format "
+ "string as a prefix", format_string);
+
+ if (type != NULL)
+ g_variant_type_free (type);
+
+ return FALSE;
+ }
+
+ if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
+ {
+ gchar *fragment;
+ gchar *typestr;
+
+ fragment = g_strndup (format_string, endptr - format_string);
+ typestr = g_variant_type_dup_string (type);
+
+ g_critical ("the GVariant format string `%s' has a type of "
+ "`%s' but the given value has a type of `%s'",
+ fragment, typestr, g_variant_get_type_string (value));
+
+ g_variant_type_free (type);
+
+ return FALSE;
+ }
+
+ g_variant_type_free (type);
+
+ return TRUE;
+}
+
+/* Variable Arguments {{{1 */
+/* We consider 2 main classes of format strings:
+ *
+ * - recursive format strings
+ * these are ones that result in recursion and the collection of
+ * possibly more than one argument. Maybe types, tuples,
+ * dictionary entries.
+ *
+ * - leaf format string
+ * these result in the collection of a single argument.
+ *
+ * Leaf format strings are further subdivided into two categories:
+ *
+ * - single non-null pointer ("nnp")
+ * these either collect or return a single non-null pointer.
+ *
+ * - other
+ * these collect or return something else (bool, number, etc).
+ *
+ * Based on the above, the varargs handling code is split into 4 main parts:
+ *
+ * - nnp handling code
+ * - leaf handling code (which may invoke nnp code)
+ * - generic handling code (may be recursive, may invoke leaf code)
+ * - user-facing API (which invokes the generic code)
+ *
+ * Each section implements some of the following functions:
+ *
+ * - skip:
+ * collect the arguments for the format string as if
+ * g_variant_new() had been called, but do nothing with them. used
+ * for skipping over arguments when constructing a Nothing maybe
+ * type.
+ *
+ * - new:
+ * create a GVariant *
+ *
+ * - get:
+ * unpack a GVariant *
+ *
+ * - free (nnp only):
+ * free a previously allocated item
+ */
+
+static gboolean
+g_variant_format_string_is_leaf (const gchar *str)
+{
+ return str[0] != 'm' && str[0] != '(' && str[0] != '{';
+}
+
+static gboolean
+g_variant_format_string_is_nnp (const gchar *str)
+{
+ return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
+ str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
+ str[0] == 'r' || str[0] == 'v' || str[0] == '&';
+}
+
+/* Single non-null pointer ("nnp") {{{2 */
+static void
+g_variant_valist_free_nnp (const gchar *str,
+ gpointer ptr)
+{
+ switch (*str)
+ {
+ case 'a':
+ g_variant_iter_free (ptr);
+ break;
+
+ case '^':
+ if (str[2] != '&') /* '^as', '^ao' */
+ g_strfreev (ptr);
+ else /* '^a&s', '^a&o' */
+ g_free (ptr);
+ break;
+
+ case 's':
+ case 'o':
+ case 'g':
+ g_free (ptr);
+ break;
+
+ case '@':
+ case '*':
+ case '?':
+ case 'v':
+ g_variant_unref (ptr);
+ break;
+
+ case '&':
+ break;
+
+ default:
+ g_assert_not_reached ();
+ }
+}
+
+static gchar
+g_variant_scan_convenience (const gchar **str,
+ gboolean *constant,
+ guint *arrays)
+{
+ *constant = FALSE;
+ *arrays = 0;
+
+ for (;;)
+ {
+ char c = *(*str)++;
+
+ if (c == '&')
+ *constant = TRUE;
+
+ else if (c == 'a')
+ (*arrays)++;
+
+ else
+ return c;
+ }
+}
+
+static GVariant *
+g_variant_valist_new_nnp (const gchar **str,
+ gpointer ptr)
+{
+ if (**str == '&')
+ (*str)++;
+
+ switch (*(*str)++)
+ {
+ case 'a':
+ if (ptr != NULL)
+ {
+ const GVariantType *type;
+ GVariant *value;
+
+ value = g_variant_builder_end (ptr);
+ type = g_variant_get_type (value);
+
+ if G_UNLIKELY (!g_variant_type_is_array (type))
+ g_error ("g_variant_new: expected array GVariantBuilder but "
+ "the built value has type `%s'",
+ g_variant_get_type_string (value));
+
+ type = g_variant_type_element (type);
+
+ if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
+ g_error ("g_variant_new: expected GVariantBuilder array element "
+ "type `%s' but the built value has element type `%s'",
+ g_variant_type_dup_string ((GVariantType *) *str),
+ g_variant_get_type_string (value) + 1);
+
+ g_variant_type_string_scan (*str, NULL, str);
+
+ return value;
+ }
+ else
+
+ /* special case: NULL pointer for empty array */
+ {
+ const GVariantType *type = (GVariantType *) *str;
+
+ g_variant_type_string_scan (*str, NULL, str);
+
+ if G_UNLIKELY (!g_variant_type_is_definite (type))
+ g_error ("g_variant_new: NULL pointer given with indefinite "
+ "array type; unable to determine which type of empty "
+ "array to construct.");
+
+ return g_variant_new_array (type, NULL, 0);
+ }
+
+ case 's':
+ {
+ GVariant *value;
+
+ value = g_variant_new_string (ptr);
+
+ if (value == NULL)
+ value = g_variant_new_string ("[Invalid UTF-8]");
+
+ return value;
+ }
+
+ case 'o':
+ return g_variant_new_object_path (ptr);
+
+ case 'g':
+ return g_variant_new_signature (ptr);
+
+ case '^':
+ {
+ gboolean constant;
+ guint arrays;
+ gchar type;
+
+ type = g_variant_scan_convenience (str, &constant, &arrays);
+
+ if (type == 's')
+ return g_variant_new_strv (ptr, -1);
+
+ if (type == 'o')
+ return g_variant_new_objv (ptr, -1);
+
+ if (arrays > 1)
+ return g_variant_new_bytestring_array (ptr, -1);
+
+ return g_variant_new_bytestring (ptr);
+ }
+
+ case '@':
+ if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
+ g_error ("g_variant_new: expected GVariant of type `%s' but "
+ "received value has type `%s'",
+ g_variant_type_dup_string ((GVariantType *) *str),
+ g_variant_get_type_string (ptr));
+
+ g_variant_type_string_scan (*str, NULL, str);
+
+ return ptr;
+
+ case '*':
+ return ptr;
+
+ case '?':
+ if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
+ g_error ("g_variant_new: format string `?' expects basic-typed "
+ "GVariant, but received value has type `%s'",
+ g_variant_get_type_string (ptr));
+
+ return ptr;
+
+ case 'r':
+ if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
+ g_error ("g_variant_new: format string `r` expects tuple-typed "
+ "GVariant, but received value has type `%s'",
+ g_variant_get_type_string (ptr));
+
+ return ptr;
+
+ case 'v':
+ return g_variant_new_variant (ptr);
+
+ default:
+ g_assert_not_reached ();
+ }
+}
+
+static gpointer
+g_variant_valist_get_nnp (const gchar **str,
+ GVariant *value)
+{
+ switch (*(*str)++)
+ {
+ case 'a':
+ g_variant_type_string_scan (*str, NULL, str);
+ return g_variant_iter_new (value);
+
+ case '&':
+ (*str)++;
+ return (gchar *) g_variant_get_string (value, NULL);
+
+ case 's':
+ case 'o':
+ case 'g':
+ return g_variant_dup_string (value, NULL);
+
+ case '^':
+ {
+ gboolean constant;
+ guint arrays;
+ gchar type;
+
+ type = g_variant_scan_convenience (str, &constant, &arrays);
+
+ if (type == 's')
+ {
+ if (constant)
+ return g_variant_get_strv (value, NULL);
+ else
+ return g_variant_dup_strv (value, NULL);
+ }
+
+ else if (type == 'o')
+ {
+ if (constant)
+ return g_variant_get_objv (value, NULL);
+ else
+ return g_variant_dup_objv (value, NULL);
+ }
+
+ else if (arrays > 1)
+ {
+ if (constant)
+ return g_variant_get_bytestring_array (value, NULL);
+ else
+ return g_variant_dup_bytestring_array (value, NULL);
+ }
+
+ else
+ {
+ if (constant)
+ return (gchar *) g_variant_get_bytestring (value);
+ else
+ return g_variant_dup_bytestring (value, NULL);
+ }
+ }
+
+ case '@':
+ g_variant_type_string_scan (*str, NULL, str);
+ /* fall through */
+
+ case '*':
+ case '?':
+ case 'r':
+ return g_variant_ref (value);
+
+ case 'v':
+ return g_variant_get_variant (value);
+
+ default:
+ g_assert_not_reached ();
+ }
+}
+
+/* Leaves {{{2 */
+static void
+g_variant_valist_skip_leaf (const gchar **str,
+ va_list *app)
+{
+ if (g_variant_format_string_is_nnp (*str))
+ {
+ g_variant_format_string_scan (*str, NULL, str);
+ va_arg (*app, gpointer);
+ return;
+ }
+
+ switch (*(*str)++)
+ {
+ case 'b':
+ case 'y':
+ case 'n':
+ case 'q':
+ case 'i':
+ case 'u':
+ case 'h':
+ va_arg (*app, int);
+ return;
+
+ case 'x':
+ case 't':
+ va_arg (*app, guint64);
+ return;
+
+ case 'd':
+ va_arg (*app, gdouble);
+ return;
+
+ default:
+ g_assert_not_reached ();
+ }
+}
+
+static GVariant *
+g_variant_valist_new_leaf (const gchar **str,
+ va_list *app)
+{
+ if (g_variant_format_string_is_nnp (*str))
+ return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
+
+ switch (*(*str)++)
+ {
+ case 'b':
+ return g_variant_new_boolean (va_arg (*app, gboolean));
+
+ case 'y':
+ return g_variant_new_byte (va_arg (*app, guint));
+
+ case 'n':
+ return g_variant_new_int16 (va_arg (*app, gint));
+
+ case 'q':
+ return g_variant_new_uint16 (va_arg (*app, guint));
+
+ case 'i':
+ return g_variant_new_int32 (va_arg (*app, gint));
+
+ case 'u':
+ return g_variant_new_uint32 (va_arg (*app, guint));
+
+ case 'x':
+ return g_variant_new_int64 (va_arg (*app, gint64));
+
+ case 't':
+ return g_variant_new_uint64 (va_arg (*app, guint64));
+
+ case 'h':
+ return g_variant_new_handle (va_arg (*app, gint));
+
+ case 'd':
+ return g_variant_new_double (va_arg (*app, gdouble));
+
+ default:
+ g_assert_not_reached ();
+ }
+}
+
+/* The code below assumes this */
+G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
+G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
+
+static void
+g_variant_valist_get_leaf (const gchar **str,
+ GVariant *value,
+ gboolean free,
+ va_list *app)
+{
+ gpointer ptr = va_arg (*app, gpointer);
+
+ if (ptr == NULL)
+ {
+ g_variant_format_string_scan (*str, NULL, str);
+ return;
+ }
+
+ if (g_variant_format_string_is_nnp (*str))
+ {
+ gpointer *nnp = (gpointer *) ptr;
+
+ if (free && *nnp != NULL)
+ g_variant_valist_free_nnp (*str, *nnp);
+
+ *nnp = NULL;
+
+ if (value != NULL)
+ *nnp = g_variant_valist_get_nnp (str, value);
+ else
+ g_variant_format_string_scan (*str, NULL, str);
+
+ return;
+ }
+
+ if (value != NULL)
+ {
+ switch (*(*str)++)
+ {
+ case 'b':
+ *(gboolean *) ptr = g_variant_get_boolean (value);
+ return;
+
+ case 'y':
+ *(guchar *) ptr = g_variant_get_byte (value);
+ return;
+
+ case 'n':
+ *(gint16 *) ptr = g_variant_get_int16 (value);
+ return;
+
+ case 'q':
+ *(guint16 *) ptr = g_variant_get_uint16 (value);
+ return;
+
+ case 'i':
+ *(gint32 *) ptr = g_variant_get_int32 (value);
+ return;
+
+ case 'u':
+ *(guint32 *) ptr = g_variant_get_uint32 (value);
+ return;
+
+ case 'x':
+ *(gint64 *) ptr = g_variant_get_int64 (value);
+ return;
+
+ case 't':
+ *(guint64 *) ptr = g_variant_get_uint64 (value);
+ return;
+
+ case 'h':
+ *(gint32 *) ptr = g_variant_get_handle (value);
+ return;
+
+ case 'd':
+ *(gdouble *) ptr = g_variant_get_double (value);
+ return;
+ }
+ }
+ else
+ {
+ switch (*(*str)++)
+ {
+ case 'y':
+ *(guchar *) ptr = 0;
+ return;
+
+ case 'n':
+ case 'q':
+ *(guint16 *) ptr = 0;
+ return;
+
+ case 'i':
+ case 'u':
+ case 'h':
+ case 'b':
+ *(guint32 *) ptr = 0;
+ return;
+
+ case 'x':
+ case 't':
+ case 'd':
+ *(guint64 *) ptr = 0;
+ return;
+ }
+ }
+
+ g_assert_not_reached ();
+}
+
+/* Generic (recursive) {{{2 */
+static void
+g_variant_valist_skip (const gchar **str,
+ va_list *app)
+{
+ if (g_variant_format_string_is_leaf (*str))
+ g_variant_valist_skip_leaf (str, app);
+
+ else if (**str == 'm') /* maybe */
+ {
+ (*str)++;
+
+ if (!g_variant_format_string_is_nnp (*str))
+ va_arg (*app, gboolean);
+
+ g_variant_valist_skip (str, app);
+ }
+ else /* tuple, dictionary entry */
+ {
+ g_assert (**str == '(' || **str == '{');
+ (*str)++;
+ while (**str != ')' && **str != '}')
+ g_variant_valist_skip (str, app);
+ (*str)++;
+ }
+}
+
+static GVariant *
+g_variant_valist_new (const gchar **str,
+ va_list *app)
+{
+ if (g_variant_format_string_is_leaf (*str))
+ return g_variant_valist_new_leaf (str, app);
+
+ if (**str == 'm') /* maybe */
+ {
+ GVariantType *type = NULL;
+ GVariant *value = NULL;
+
+ (*str)++;
+
+ if (g_variant_format_string_is_nnp (*str))
+ {
+ gpointer nnp = va_arg (*app, gpointer);
+
+ if (nnp != NULL)
+ value = g_variant_valist_new_nnp (str, nnp);
+ else
+ type = g_variant_format_string_scan_type (*str, NULL, str);
+ }
+ else
+ {
+ gboolean just = va_arg (*app, gboolean);
+
+ if (just)
+ value = g_variant_valist_new (str, app);
+ else
+ {
+ type = g_variant_format_string_scan_type (*str, NULL, NULL);
+ g_variant_valist_skip (str, app);
+ }
+ }
+
+ value = g_variant_new_maybe (type, value);
+
+ if (type != NULL)
+ g_variant_type_free (type);
+
+ return value;
+ }
+ else /* tuple, dictionary entry */
+ {
+ GVariantBuilder b;
+
+ if (**str == '(')
+ g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
+ else
+ {
+ g_assert (**str == '{');
+ g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
+ }
+
+ (*str)++; /* '(' */
+ while (**str != ')' && **str != '}')
+ g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
+ (*str)++; /* ')' */
+
+ return g_variant_builder_end (&b);
+ }
+}
+
+static void
+g_variant_valist_get (const gchar **str,
+ GVariant *value,
+ gboolean free,
+ va_list *app)
+{
+ if (g_variant_format_string_is_leaf (*str))
+ g_variant_valist_get_leaf (str, value, free, app);
+
+ else if (**str == 'm')
+ {
+ (*str)++;
+
+ if (value != NULL)
+ value = g_variant_get_maybe (value);
+
+ if (!g_variant_format_string_is_nnp (*str))
+ {
+ gboolean *ptr = va_arg (*app, gboolean *);
+
+ if (ptr != NULL)
+ *ptr = value != NULL;
+ }
+
+ g_variant_valist_get (str, value, free, app);
+
+ if (value != NULL)
+ g_variant_unref (value);
+ }
+
+ else /* tuple, dictionary entry */
+ {
+ gint index = 0;
+
+ g_assert (**str == '(' || **str == '{');
+
+ (*str)++;
+ while (**str != ')' && **str != '}')
+ {
+ if (value != NULL)
+ {
+ GVariant *child = g_variant_get_child_value (value, index++);
+ g_variant_valist_get (str, child, free, app);
+ g_variant_unref (child);
+ }
+ else
+ g_variant_valist_get (str, NULL, free, app);
+ }
+ (*str)++;
+ }
+}
+
+/* User-facing API {{{2 */
+/**
+ * g_variant_new: (skip)
+ * @format_string: a #GVariant format string
+ * @...: arguments, as per @format_string
+ *
+ * Creates a new #GVariant instance.
+ *
+ * Think of this function as an analogue to g_strdup_printf().
+ *
+ * The type of the created instance and the arguments that are
+ * expected by this function are determined by @format_string. See the
+ * section on <link linkend='gvariant-format-strings'>GVariant Format
+ * Strings</link>. Please note that the syntax of the format string is
+ * very likely to be extended in the future.
+ *
+ * The first character of the format string must not be '*' '?' '@' or
+ * 'r'; in essence, a new #GVariant must always be constructed by this
+ * function (and not merely passed through it unmodified).
+ *
+ * Returns: a new floating #GVariant instance
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new (const gchar *format_string,
+ ...)
+{
+ GVariant *value;
+ va_list ap;
+
+ g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
+ format_string[0] != '?' && format_string[0] != '@' &&
+ format_string[0] != '*' && format_string[0] != 'r',
+ NULL);
+
+ va_start (ap, format_string);
+ value = g_variant_new_va (format_string, NULL, &ap);
+ va_end (ap);
+
+ return value;
+}
+
+/**
+ * g_variant_new_va: (skip)
+ * @format_string: a string that is prefixed with a format string
+ * @endptr: (allow-none) (default NULL): location to store the end pointer,
+ * or %NULL
+ * @app: a pointer to a #va_list
+ *
+ * This function is intended to be used by libraries based on
+ * #GVariant that want to provide g_variant_new()-like functionality
+ * to their users.
+ *
+ * The API is more general than g_variant_new() to allow a wider range
+ * of possible uses.
+ *
+ * @format_string must still point to a valid format string, but it only
+ * needs to be nul-terminated if @endptr is %NULL. If @endptr is
+ * non-%NULL then it is updated to point to the first character past the
+ * end of the format string.
+ *
+ * @app is a pointer to a #va_list. The arguments, according to
+ * @format_string, are collected from this #va_list and the list is left
+ * pointing to the argument following the last.
+ *
+ * These two generalisations allow mixing of multiple calls to
+ * g_variant_new_va() and g_variant_get_va() within a single actual
+ * varargs call by the user.
+ *
+ * The return value will be floating if it was a newly created GVariant
+ * instance (for example, if the format string was "(ii)"). In the case
+ * that the format_string was '*', '?', 'r', or a format starting with
+ * '@' then the collected #GVariant pointer will be returned unmodified,
+ * without adding any additional references.
+ *
+ * In order to behave correctly in all cases it is necessary for the
+ * calling function to g_variant_ref_sink() the return result before
+ * returning control to the user that originally provided the pointer.
+ * At this point, the caller will have their own full reference to the
+ * result. This can also be done by adding the result to a container,
+ * or by passing it to another g_variant_new() call.
+ *
+ * Returns: a new, usually floating, #GVariant
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_va (const gchar *format_string,
+ const gchar **endptr,
+ va_list *app)
+{
+ GVariant *value;
+
+ g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
+ NULL);
+ g_return_val_if_fail (app != NULL, NULL);
+
+ value = g_variant_valist_new (&format_string, app);
+
+ if (endptr != NULL)
+ *endptr = format_string;
+
+ return value;
+}
+
+/**
+ * g_variant_get: (skip)
+ * @value: a #GVariant instance
+ * @format_string: a #GVariant format string
+ * @...: arguments, as per @format_string
+ *
+ * Deconstructs a #GVariant instance.
+ *
+ * Think of this function as an analogue to scanf().
+ *
+ * The arguments that are expected by this function are entirely
+ * determined by @format_string. @format_string also restricts the
+ * permissible types of @value. It is an error to give a value with
+ * an incompatible type. See the section on <link
+ * linkend='gvariant-format-strings'>GVariant Format Strings</link>.
+ * Please note that the syntax of the format string is very likely to be
+ * extended in the future.
+ *
+ * @format_string determines the C types that are used for unpacking
+ * the values and also determines if the values are copied or borrowed,
+ * see the section on
+ * <link linkend='gvariant-format-strings-pointers'>GVariant Format Strings</link>.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_get (GVariant *value,
+ const gchar *format_string,
+ ...)
+{
+ va_list ap;
+
+ g_return_if_fail (valid_format_string (format_string, TRUE, value));
+
+ /* if any direct-pointer-access formats are in use, flatten first */
+ if (strchr (format_string, '&'))
+ g_variant_get_data (value);
+
+ va_start (ap, format_string);
+ g_variant_get_va (value, format_string, NULL, &ap);
+ va_end (ap);
+}
+
+/**
+ * g_variant_get_va: (skip)
+ * @value: a #GVariant
+ * @format_string: a string that is prefixed with a format string
+ * @endptr: (allow-none) (default NULL): location to store the end pointer,
+ * or %NULL
+ * @app: a pointer to a #va_list
+ *
+ * This function is intended to be used by libraries based on #GVariant
+ * that want to provide g_variant_get()-like functionality to their
+ * users.
+ *
+ * The API is more general than g_variant_get() to allow a wider range
+ * of possible uses.
+ *
+ * @format_string must still point to a valid format string, but it only
+ * need to be nul-terminated if @endptr is %NULL. If @endptr is
+ * non-%NULL then it is updated to point to the first character past the
+ * end of the format string.
+ *
+ * @app is a pointer to a #va_list. The arguments, according to
+ * @format_string, are collected from this #va_list and the list is left
+ * pointing to the argument following the last.
+ *
+ * These two generalisations allow mixing of multiple calls to
+ * g_variant_new_va() and g_variant_get_va() within a single actual
+ * varargs call by the user.
+ *
+ * @format_string determines the C types that are used for unpacking
+ * the values and also determines if the values are copied or borrowed,
+ * see the section on
+ * <link linkend='gvariant-format-strings-pointers'>GVariant Format Strings</link>.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_get_va (GVariant *value,
+ const gchar *format_string,
+ const gchar **endptr,
+ va_list *app)
+{
+ g_return_if_fail (valid_format_string (format_string, !endptr, value));
+ g_return_if_fail (value != NULL);
+ g_return_if_fail (app != NULL);
+
+ /* if any direct-pointer-access formats are in use, flatten first */
+ if (strchr (format_string, '&'))
+ g_variant_get_data (value);
+
+ g_variant_valist_get (&format_string, value, FALSE, app);
+
+ if (endptr != NULL)
+ *endptr = format_string;
+}
+
+/* Varargs-enabled Utility Functions {{{1 */
+
+/**
+ * g_variant_builder_add: (skp)
+ * @builder: a #GVariantBuilder
+ * @format_string: a #GVariant varargs format string
+ * @...: arguments, as per @format_string
+ *
+ * Adds to a #GVariantBuilder.
+ *
+ * This call is a convenience wrapper that is exactly equivalent to
+ * calling g_variant_new() followed by g_variant_builder_add_value().
+ *
+ * This function might be used as follows:
+ *
+ * <programlisting>
+ * GVariant *
+ * make_pointless_dictionary (void)
+ * {
+ * GVariantBuilder *builder;
+ * int i;
+ *
+ * builder = g_variant_builder_new (G_VARIANT_TYPE_ARRAY);
+ * for (i = 0; i < 16; i++)
+ * {
+ * gchar buf[3];
+ *
+ * sprintf (buf, "%d", i);
+ * g_variant_builder_add (builder, "{is}", i, buf);
+ * }
+ *
+ * return g_variant_builder_end (builder);
+ * }
+ * </programlisting>
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_builder_add (GVariantBuilder *builder,
+ const gchar *format_string,
+ ...)
+{
+ GVariant *variant;
+ va_list ap;
+
+ va_start (ap, format_string);
+ variant = g_variant_new_va (format_string, NULL, &ap);
+ va_end (ap);
+
+ g_variant_builder_add_value (builder, variant);
+}
+
+/**
+ * g_variant_get_child: (skip)
+ * @value: a container #GVariant
+ * @index_: the index of the child to deconstruct
+ * @format_string: a #GVariant format string
+ * @...: arguments, as per @format_string
+ *
+ * Reads a child item out of a container #GVariant instance and
+ * deconstructs it according to @format_string. This call is
+ * essentially a combination of g_variant_get_child_value() and
+ * g_variant_get().
+ *
+ * @format_string determines the C types that are used for unpacking
+ * the values and also determines if the values are copied or borrowed,
+ * see the section on
+ * <link linkend='gvariant-format-strings-pointers'>GVariant Format Strings</link>.
+ *
+ * Since: 2.24
+ **/
+void
+g_variant_get_child (GVariant *value,
+ gsize index_,
+ const gchar *format_string,
+ ...)
+{
+ GVariant *child;
+ va_list ap;
+
+ child = g_variant_get_child_value (value, index_);
+ g_return_if_fail (valid_format_string (format_string, TRUE, child));
+
+ va_start (ap, format_string);
+ g_variant_get_va (child, format_string, NULL, &ap);
+ va_end (ap);
+
+ g_variant_unref (child);
+}
+
+/**
+ * g_variant_iter_next: (skip)
+ * @iter: a #GVariantIter
+ * @format_string: a GVariant format string
+ * @...: the arguments to unpack the value into
+ *
+ * Gets the next item in the container and unpacks it into the variable
+ * argument list according to @format_string, returning %TRUE.
+ *
+ * If no more items remain then %FALSE is returned.
+ *
+ * All of the pointers given on the variable arguments list of this
+ * function are assumed to point at uninitialised memory. It is the
+ * responsibility of the caller to free all of the values returned by
+ * the unpacking process.
+ *
+ * See the section on <link linkend='gvariant-format-strings'>GVariant
+ * Format Strings</link>.
+ *
+ * <example>
+ * <title>Memory management with g_variant_iter_next()</title>
+ * <programlisting>
+ * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
+ * void
+ * iterate_dictionary (GVariant *dictionary)
+ * {
+ * GVariantIter iter;
+ * GVariant *value;
+ * gchar *key;
+ *
+ * g_variant_iter_init (&iter, dictionary);
+ * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
+ * {
+ * g_print ("Item '%s' has type '%s'\n", key,
+ * g_variant_get_type_string (value));
+ *
+ * /<!-- -->* must free data for ourselves *<!-- -->/
+ * g_variant_unref (value);
+ * g_free (key);
+ * }
+ * }
+ * </programlisting>
+ * </example>
+ *
+ * For a solution that is likely to be more convenient to C programmers
+ * when dealing with loops, see g_variant_iter_loop().
+ *
+ * @format_string determines the C types that are used for unpacking
+ * the values and also determines if the values are copied or borrowed,
+ * see the section on
+ * <link linkend='gvariant-format-strings-pointers'>GVariant Format Strings</link>.
+ *
+ * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_iter_next (GVariantIter *iter,
+ const gchar *format_string,
+ ...)
+{
+ GVariant *value;
+
+ value = g_variant_iter_next_value (iter);
+
+ g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
+ FALSE);
+
+ if (value != NULL)
+ {
+ va_list ap;
+
+ va_start (ap, format_string);
+ g_variant_valist_get (&format_string, value, FALSE, &ap);
+ va_end (ap);
+
+ g_variant_unref (value);
+ }
+
+ return value != NULL;
+}
+
+/**
+ * g_variant_iter_loop: (skip)
+ * @iter: a #GVariantIter
+ * @format_string: a GVariant format string
+ * @...: the arguments to unpack the value into
+ *
+ * Gets the next item in the container and unpacks it into the variable
+ * argument list according to @format_string, returning %TRUE.
+ *
+ * If no more items remain then %FALSE is returned.
+ *
+ * On the first call to this function, the pointers appearing on the
+ * variable argument list are assumed to point at uninitialised memory.
+ * On the second and later calls, it is assumed that the same pointers
+ * will be given and that they will point to the memory as set by the
+ * previous call to this function. This allows the previous values to
+ * be freed, as appropriate.
+ *
+ * This function is intended to be used with a while loop as
+ * demonstrated in the following example. This function can only be
+ * used when iterating over an array. It is only valid to call this
+ * function with a string constant for the format string and the same
+ * string constant must be used each time. Mixing calls to this
+ * function and g_variant_iter_next() or g_variant_iter_next_value() on
+ * the same iterator causes undefined behavior.
+ *
+ * If you break out of a such a while loop using g_variant_iter_loop() then
+ * you must free or unreference all the unpacked values as you would with
+ * g_variant_get(). Failure to do so will cause a memory leak.
+ *
+ * See the section on <link linkend='gvariant-format-strings'>GVariant
+ * Format Strings</link>.
+ *
+ * <example>
+ * <title>Memory management with g_variant_iter_loop()</title>
+ * <programlisting>
+ * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
+ * void
+ * iterate_dictionary (GVariant *dictionary)
+ * {
+ * GVariantIter iter;
+ * GVariant *value;
+ * gchar *key;
+ *
+ * g_variant_iter_init (&iter, dictionary);
+ * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
+ * {
+ * g_print ("Item '%s' has type '%s'\n", key,
+ * g_variant_get_type_string (value));
+ *
+ * /<!-- -->* no need to free 'key' and 'value' here *<!-- -->/
+ * /<!-- -->* unless breaking out of this loop *<!-- -->/
+ * }
+ * }
+ * </programlisting>
+ * </example>
+ *
+ * For most cases you should use g_variant_iter_next().
+ *
+ * This function is really only useful when unpacking into #GVariant or
+ * #GVariantIter in order to allow you to skip the call to
+ * g_variant_unref() or g_variant_iter_free().
+ *
+ * For example, if you are only looping over simple integer and string
+ * types, g_variant_iter_next() is definitely preferred. For string
+ * types, use the '&' prefix to avoid allocating any memory at all (and
+ * thereby avoiding the need to free anything as well).
+ *
+ * @format_string determines the C types that are used for unpacking
+ * the values and also determines if the values are copied or borrowed,
+ * see the section on
+ * <link linkend='gvariant-format-strings-pointers'>GVariant Format Strings</link>.
+ *
+ * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
+ * value
+ *
+ * Since: 2.24
+ **/
+gboolean
+g_variant_iter_loop (GVariantIter *iter,
+ const gchar *format_string,
+ ...)
+{
+ gboolean first_time = GVSI(iter)->loop_format == NULL;
+ GVariant *value;
+ va_list ap;
+
+ g_return_val_if_fail (first_time ||
+ format_string == GVSI(iter)->loop_format,
+ FALSE);
+
+ if (first_time)
+ {
+ TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
+ GVSI(iter)->loop_format = format_string;
+
+ if (strchr (format_string, '&'))
+ g_variant_get_data (GVSI(iter)->value);
+ }
+
+ value = g_variant_iter_next_value (iter);
+
+ g_return_val_if_fail (!first_time ||
+ valid_format_string (format_string, TRUE, value),
+ FALSE);
+
+ va_start (ap, format_string);
+ g_variant_valist_get (&format_string, value, !first_time, &ap);
+ va_end (ap);
+
+ if (value != NULL)
+ g_variant_unref (value);
+
+ return value != NULL;
+}
+
+/* Serialised data {{{1 */
+static GVariant *
+g_variant_deep_copy (GVariant *value)
+{
+ switch (g_variant_classify (value))
+ {
+ case G_VARIANT_CLASS_MAYBE:
+ case G_VARIANT_CLASS_ARRAY:
+ case G_VARIANT_CLASS_TUPLE:
+ case G_VARIANT_CLASS_DICT_ENTRY:
+ case G_VARIANT_CLASS_VARIANT:
+ {
+ GVariantBuilder builder;
+ GVariantIter iter;
+ GVariant *child;
+
+ g_variant_builder_init (&builder, g_variant_get_type (value));
+ g_variant_iter_init (&iter, value);
+
+ while ((child = g_variant_iter_next_value (&iter)))
+ {
+ g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
+ g_variant_unref (child);
+ }
+
+ return g_variant_builder_end (&builder);
+ }
+
+ case G_VARIANT_CLASS_BOOLEAN:
+ return g_variant_new_boolean (g_variant_get_boolean (value));
+
+ case G_VARIANT_CLASS_BYTE:
+ return g_variant_new_byte (g_variant_get_byte (value));
+
+ case G_VARIANT_CLASS_INT16:
+ return g_variant_new_int16 (g_variant_get_int16 (value));
+
+ case G_VARIANT_CLASS_UINT16:
+ return g_variant_new_uint16 (g_variant_get_uint16 (value));
+
+ case G_VARIANT_CLASS_INT32:
+ return g_variant_new_int32 (g_variant_get_int32 (value));
+
+ case G_VARIANT_CLASS_UINT32:
+ return g_variant_new_uint32 (g_variant_get_uint32 (value));
+
+ case G_VARIANT_CLASS_INT64:
+ return g_variant_new_int64 (g_variant_get_int64 (value));
+
+ case G_VARIANT_CLASS_UINT64:
+ return g_variant_new_uint64 (g_variant_get_uint64 (value));
+
+ case G_VARIANT_CLASS_HANDLE:
+ return g_variant_new_handle (g_variant_get_handle (value));
+
+ case G_VARIANT_CLASS_DOUBLE:
+ return g_variant_new_double (g_variant_get_double (value));
+
+ case G_VARIANT_CLASS_STRING:
+ return g_variant_new_string (g_variant_get_string (value, NULL));
+
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ return g_variant_new_object_path (g_variant_get_string (value, NULL));
+
+ case G_VARIANT_CLASS_SIGNATURE:
+ return g_variant_new_signature (g_variant_get_string (value, NULL));
+ }
+
+ g_assert_not_reached ();
+}
+
+/**
+ * g_variant_get_normal_form:
+ * @value: a #GVariant
+ *
+ * Gets a #GVariant instance that has the same value as @value and is
+ * trusted to be in normal form.
+ *
+ * If @value is already trusted to be in normal form then a new
+ * reference to @value is returned.
+ *
+ * If @value is not already trusted, then it is scanned to check if it
+ * is in normal form. If it is found to be in normal form then it is
+ * marked as trusted and a new reference to it is returned.
+ *
+ * If @value is found not to be in normal form then a new trusted
+ * #GVariant is created with the same value as @value.
+ *
+ * It makes sense to call this function if you've received #GVariant
+ * data from untrusted sources and you want to ensure your serialised
+ * output is definitely in normal form.
+ *
+ * Returns: (transfer full): a trusted #GVariant
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_get_normal_form (GVariant *value)
+{
+ GVariant *trusted;
+
+ if (g_variant_is_normal_form (value))
+ return g_variant_ref (value);
+
+ trusted = g_variant_deep_copy (value);
+ g_assert (g_variant_is_trusted (trusted));
+
+ return g_variant_ref_sink (trusted);
+}
+
+/**
+ * g_variant_byteswap:
+ * @value: a #GVariant
+ *
+ * Performs a byteswapping operation on the contents of @value. The
+ * result is that all multi-byte numeric data contained in @value is
+ * byteswapped. That includes 16, 32, and 64bit signed and unsigned
+ * integers as well as file handles and double precision floating point
+ * values.
+ *
+ * This function is an identity mapping on any value that does not
+ * contain multi-byte numeric data. That include strings, booleans,
+ * bytes and containers containing only these things (recursively).
+ *
+ * The returned value is always in normal form and is marked as trusted.
+ *
+ * Returns: (transfer full): the byteswapped form of @value
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_byteswap (GVariant *value)
+{
+ GVariantTypeInfo *type_info;
+ guint alignment;
+ GVariant *new;
+
+ type_info = g_variant_get_type_info (value);
+
+ g_variant_type_info_query (type_info, &alignment, NULL);
+
+ if (alignment)
+ /* (potentially) contains multi-byte numeric data */
+ {
+ GVariantSerialised serialised;
+ GVariant *trusted;
+ GBytes *bytes;
+
+ trusted = g_variant_get_normal_form (value);
+ serialised.type_info = g_variant_get_type_info (trusted);
+ serialised.size = g_variant_get_size (trusted);
+ serialised.data = g_malloc (serialised.size);
+ g_variant_store (trusted, serialised.data);
+ g_variant_unref (trusted);
+
+ g_variant_serialised_byteswap (serialised);
+
+ bytes = g_bytes_new_take (serialised.data, serialised.size);
+ new = g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE);
+ g_bytes_unref (bytes);
+ }
+ else
+ /* contains no multi-byte data */
+ new = value;
+
+ return g_variant_ref_sink (new);
+}
+
+/**
+ * g_variant_new_from_data:
+ * @type: a definite #GVariantType
+ * @data: (array length=size) (element-type guint8): the serialised data
+ * @size: the size of @data
+ * @trusted: %TRUE if @data is definitely in normal form
+ * @notify: (scope async): function to call when @data is no longer needed
+ * @user_data: data for @notify
+ *
+ * Creates a new #GVariant instance from serialised data.
+ *
+ * @type is the type of #GVariant instance that will be constructed.
+ * The interpretation of @data depends on knowing the type.
+ *
+ * @data is not modified by this function and must remain valid with an
+ * unchanging value until such a time as @notify is called with
+ * @user_data. If the contents of @data change before that time then
+ * the result is undefined.
+ *
+ * If @data is trusted to be serialised data in normal form then
+ * @trusted should be %TRUE. This applies to serialised data created
+ * within this process or read from a trusted location on the disk (such
+ * as a file installed in /usr/lib alongside your application). You
+ * should set trusted to %FALSE if @data is read from the network, a
+ * file in the user's home directory, etc.
+ *
+ * If @data was not stored in this machine's native endianness, any multi-byte
+ * numeric values in the returned variant will also be in non-native
+ * endianness. g_variant_byteswap() can be used to recover the original values.
+ *
+ * @notify will be called with @user_data when @data is no longer
+ * needed. The exact time of this call is unspecified and might even be
+ * before this function returns.
+ *
+ * Returns: (transfer none): a new floating #GVariant of type @type
+ *
+ * Since: 2.24
+ **/
+GVariant *
+g_variant_new_from_data (const GVariantType *type,
+ gconstpointer data,
+ gsize size,
+ gboolean trusted,
+ GDestroyNotify notify,
+ gpointer user_data)
+{
+ GVariant *value;
+ GBytes *bytes;
+
+ g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
+ g_return_val_if_fail (data != NULL || size == 0, NULL);
+
+ if (notify)
+ bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
+ else
+ bytes = g_bytes_new_static (data, size);
+
+ value = g_variant_new_from_bytes (type, bytes, trusted);
+ g_bytes_unref (bytes);
+
+ return value;
+}
+
+/* Epilogue {{{1 */
+/* vim:set foldmethod=marker: */