/***
This file is part of PulseAudio.
Copyright 2004-2008 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see .
***/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef USE_SMOOTHER_2
#include
#else
#include
#endif
#include
PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION("Combine multiple sinks to one");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
"sink_name= "
"sink_properties= "
"slaves= "
"adjust_time= "
"resample_method= "
"format= "
"rate= "
"channels= "
"channel_map="
"remix=");
#define DEFAULT_SINK_NAME "combined"
#define MEMBLOCKQ_MAXLENGTH (1024*1024*16)
#define DEFAULT_ADJUST_TIME_USEC (1*PA_USEC_PER_SEC)
#define BLOCK_USEC (PA_USEC_PER_MSEC * 200)
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"slaves",
"adjust_time",
"resample_method",
"format",
"rate",
"channels",
"channel_map",
"remix",
NULL
};
struct output {
struct userdata *userdata;
pa_sink *sink;
pa_sink_input *sink_input;
bool ignore_state_change;
/* This message queue is only for POST messages, i.e. the messages that
* carry audio data from the sink thread to the output thread. The POST
* messages need to be handled in a separate queue, because the queue is
* processed not only in the output thread mainloop, but also inside the
* sink input pop() callback. Processing other messages (such as
* SET_REQUESTED_LATENCY) is not safe inside the pop() callback; at least
* one reason why it's not safe is that messages that generate rewind
* requests (such as SET_REQUESTED_LATENCY) cause crashes when processed
* in the pop() callback. */
pa_asyncmsgq *audio_inq;
/* This message queue is for all other messages than POST from the sink
* thread to the output thread (currently "all other messages" means just
* the SET_REQUESTED_LATENCY message). */
pa_asyncmsgq *control_inq;
/* Message queue from the output thread to the sink thread. */
pa_asyncmsgq *outq;
pa_rtpoll_item *audio_inq_rtpoll_item_read, *audio_inq_rtpoll_item_write;
pa_rtpoll_item *control_inq_rtpoll_item_read, *control_inq_rtpoll_item_write;
pa_rtpoll_item *outq_rtpoll_item_read, *outq_rtpoll_item_write;
pa_memblockq *memblockq;
/* For communication of the stream latencies to the main thread */
pa_usec_t total_latency;
struct {
pa_usec_t timestamp;
pa_usec_t sink_latency;
size_t output_memblockq_size;
uint64_t receive_counter;
} latency_snapshot;
uint64_t receive_counter;
/* For communication of the stream parameters to the sink thread */
pa_atomic_t max_request;
pa_atomic_t max_latency;
pa_atomic_t min_latency;
PA_LLIST_FIELDS(struct output);
};
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_time_event *time_event;
pa_usec_t adjust_time;
bool automatic;
bool auto_desc;
pa_strlist *unlinked_slaves;
pa_hook_slot *sink_put_slot, *sink_unlink_slot, *sink_state_changed_slot;
pa_resample_method_t resample_method;
pa_usec_t block_usec;
pa_usec_t default_min_latency;
pa_usec_t default_max_latency;
pa_idxset* outputs; /* managed in main context */
bool remix;
struct {
PA_LLIST_HEAD(struct output, active_outputs); /* managed in IO thread context */
pa_atomic_t running; /* we cache that value here, so that every thread can query it cheaply */
pa_usec_t timestamp;
bool in_null_mode;
#ifdef USE_SMOOTHER_2
pa_smoother_2 *smoother;
#else
pa_smoother *smoother;
#endif
uint64_t counter;
uint64_t snapshot_counter;
pa_usec_t snapshot_time;
pa_usec_t render_timestamp;
} thread_info;
};
struct sink_snapshot {
pa_usec_t timestamp;
uint64_t send_counter;
};
enum {
SINK_MESSAGE_ADD_OUTPUT = PA_SINK_MESSAGE_MAX,
SINK_MESSAGE_REMOVE_OUTPUT,
SINK_MESSAGE_NEED,
SINK_MESSAGE_UPDATE_LATENCY,
SINK_MESSAGE_UPDATE_MAX_REQUEST,
SINK_MESSAGE_UPDATE_LATENCY_RANGE,
SINK_MESSAGE_GET_SNAPSHOT
};
enum {
SINK_INPUT_MESSAGE_POST = PA_SINK_INPUT_MESSAGE_MAX,
SINK_INPUT_MESSAGE_SET_REQUESTED_LATENCY,
SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT
};
static void output_disable(struct output *o);
static void output_enable(struct output *o);
static void output_free(struct output *o);
static int output_create_sink_input(struct output *o);
/* rate controller, called from main context
* - maximum deviation from base rate is less than 1%
* - controller step size is limited to 2.01‰
* - exhibits hunting with USB or Bluetooth devices
*/
static uint32_t rate_controller(
struct output *o,
uint32_t base_rate, uint32_t old_rate,
int32_t latency_difference_usec) {
double new_rate, new_rate_1, new_rate_2;
double min_cycles_1, min_cycles_2;
/* Calculate next rate that is not more than 2‰ away from the last rate */
min_cycles_1 = (double)abs(latency_difference_usec) / o->userdata->adjust_time / 0.002 + 1;
new_rate_1 = old_rate + base_rate * (double)latency_difference_usec / min_cycles_1 / o->userdata->adjust_time;
/* Calculate best rate to correct the current latency offset, limit at
* 1% difference from base_rate */
min_cycles_2 = (double)abs(latency_difference_usec) / o->userdata->adjust_time / 0.01 + 1;
new_rate_2 = (double)base_rate * (1.0 + (double)latency_difference_usec / min_cycles_2 / o->userdata->adjust_time);
/* Choose the rate that is nearer to base_rate */
new_rate = new_rate_2;
if (fabs(new_rate_1 - base_rate) < fabs(new_rate_2 - base_rate))
new_rate = new_rate_1;
return (uint32_t)(new_rate + 0.5);
}
static void adjust_rates(struct userdata *u) {
struct output *o;
struct sink_snapshot rdata;
pa_usec_t avg_total_latency = 0;
pa_usec_t target_latency = 0;
pa_usec_t max_sink_latency = 0;
pa_usec_t min_total_latency = (pa_usec_t)-1;
uint32_t base_rate;
uint32_t idx;
unsigned n = 0;
pa_usec_t now;
struct output *o_max;
pa_assert(u);
pa_sink_assert_ref(u->sink);
if (pa_idxset_size(u->outputs) <= 0)
return;
if (u->sink->state != PA_SINK_RUNNING)
return;
/* Get sink snapshot */
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_GET_SNAPSHOT, &rdata, 0, NULL);
/* The sink snapshot time is the time when the last data was rendered.
* Latency is calculated for that point in time. */
now = rdata.timestamp;
/* Sink snapshot is not yet valid. */
if (!now)
return;
PA_IDXSET_FOREACH(o, u->outputs, idx) {
pa_usec_t snapshot_latency;
int64_t time_difference;
if (!o->sink_input || !PA_SINK_IS_OPENED(o->sink->state))
continue;
/* The difference may become negative, because it is probable, that the last
* render time was before the sink input snapshot. In this case, the sink
* had some more latency at the render time, so subtracting the value still
* gives the right result. */
time_difference = (int64_t)now - (int64_t)o->latency_snapshot.timestamp;
/* Latency at sink snapshot time is sink input snapshot latency minus time
* passed between the two snapshots. */
snapshot_latency = o->latency_snapshot.sink_latency
+ pa_bytes_to_usec(o->latency_snapshot.output_memblockq_size, &o->sink_input->sample_spec)
- time_difference;
/* Add the data that was sent between taking the sink input snapshot
* and the sink snapshot. */
snapshot_latency += pa_bytes_to_usec(rdata.send_counter - o->latency_snapshot.receive_counter, &o->sink_input->sample_spec);
/* This is the current combined latency of the slave sink and the related
* memblockq at the time of the sink snapshot. */
o->total_latency = snapshot_latency;
avg_total_latency += snapshot_latency;
/* Get max_sink_latency and min_total_latency for target selection. */
if (min_total_latency == (pa_usec_t)-1 || o->total_latency < min_total_latency)
min_total_latency = o->total_latency;
if (o->latency_snapshot.sink_latency > max_sink_latency) {
max_sink_latency = o->latency_snapshot.sink_latency;
o_max = o;
}
/* Debug output */
pa_log_debug("[%s] Snapshot sink latency = %0.2fms, total snapshot latency = %0.2fms", o->sink->name, (double) o->latency_snapshot.sink_latency / PA_USEC_PER_MSEC, (double) snapshot_latency / PA_USEC_PER_MSEC);
if (o->total_latency > 10*PA_USEC_PER_SEC)
pa_log_warn("[%s] Total latency of output is very high (%0.2fms), most likely the audio timing in one of your drivers is broken.", o->sink->name, (double) o->total_latency / PA_USEC_PER_MSEC);
n++;
}
/* If there is no valid output there is nothing to do. */
if (min_total_latency == (pa_usec_t) -1)
return;
avg_total_latency /= n;
/* The target selection ensures, that at least one of the
* sinks will use the base rate and all other sinks are set
* relative to it. */
if (max_sink_latency > min_total_latency)
target_latency = o_max->total_latency;
else
target_latency = min_total_latency;
pa_log_info("[%s] avg total latency is %0.2f msec.", u->sink->name, (double) avg_total_latency / PA_USEC_PER_MSEC);
pa_log_info("[%s] target latency for all slaves is %0.2f msec.", u->sink->name, (double) target_latency / PA_USEC_PER_MSEC);
base_rate = u->sink->sample_spec.rate;
/* Calculate and set rates for the sink inputs. */
PA_IDXSET_FOREACH(o, u->outputs, idx) {
uint32_t new_rate;
int32_t latency_difference;
if (!o->sink_input || !PA_SINK_IS_OPENED(o->sink->state))
continue;
latency_difference = (int64_t)o->total_latency - (int64_t)target_latency;
new_rate = rate_controller(o, base_rate, o->sink_input->sample_spec.rate, latency_difference);
pa_log_info("[%s] new rate is %u Hz; ratio is %0.3f.", o->sink_input->sink->name, new_rate, (double) new_rate / base_rate);
pa_sink_input_set_rate(o->sink_input, new_rate);
}
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_UPDATE_LATENCY, NULL, (int64_t) avg_total_latency, NULL);
}
static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_assert(a);
pa_assert(u->time_event == e);
if (u->sink->state == PA_SINK_SUSPENDED) {
u->core->mainloop->time_free(e);
u->time_event = NULL;
} else {
struct output *o;
uint32_t idx;
pa_core_rttime_restart(u->core, e, pa_rtclock_now() + u->adjust_time);
/* Get latency snapshots */
PA_IDXSET_FOREACH(o, u->outputs, idx) {
pa_asyncmsgq_send(o->control_inq, PA_MSGOBJECT(o->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
}
}
adjust_rates(u);
}
static void process_render_null(struct userdata *u, pa_usec_t now) {
size_t ate = 0;
pa_assert(u);
pa_assert(u->sink->thread_info.state == PA_SINK_RUNNING);
if (u->thread_info.in_null_mode)
u->thread_info.timestamp = now;
while (u->thread_info.timestamp < now + u->block_usec) {
pa_memchunk chunk;
pa_sink_render(u->sink, u->sink->thread_info.max_request, &chunk);
pa_memblock_unref(chunk.memblock);
u->thread_info.counter += chunk.length;
/* pa_log_debug("Ate %lu bytes.", (unsigned long) chunk.length); */
u->thread_info.timestamp += pa_bytes_to_usec(chunk.length, &u->sink->sample_spec);
ate += chunk.length;
if (ate >= u->sink->thread_info.max_request)
break;
}
/* pa_log_debug("Ate in sum %lu bytes (of %lu)", (unsigned long) ate, (unsigned long) nbytes); */
#ifdef USE_SMOOTHER_2
pa_smoother_2_put(u->thread_info.smoother, now,
u->thread_info.counter - pa_usec_to_bytes(u->thread_info.timestamp - now, &u->sink->sample_spec));
#else
pa_smoother_put(u->thread_info.smoother, now,
pa_bytes_to_usec(u->thread_info.counter, &u->sink->sample_spec) - (u->thread_info.timestamp - now));
#endif
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_log_debug("Thread starting up");
if (u->core->realtime_scheduling)
pa_thread_make_realtime(u->core->realtime_priority+1);
pa_thread_mq_install(&u->thread_mq);
u->thread_info.timestamp = pa_rtclock_now();
u->thread_info.in_null_mode = false;
for (;;) {
int ret;
if (PA_UNLIKELY(u->sink->thread_info.rewind_requested))
pa_sink_process_rewind(u->sink, 0);
/* If no outputs are connected, render some data and drop it immediately. */
if (u->sink->thread_info.state == PA_SINK_RUNNING && !u->thread_info.active_outputs) {
pa_usec_t now;
now = pa_rtclock_now();
if (!u->thread_info.in_null_mode || u->thread_info.timestamp <= now)
process_render_null(u, now);
pa_rtpoll_set_timer_absolute(u->rtpoll, u->thread_info.timestamp);
u->thread_info.in_null_mode = true;
} else {
pa_rtpoll_set_timer_disabled(u->rtpoll);
u->thread_info.in_null_mode = false;
}
/* Hmm, nothing to do. Let's sleep */
if ((ret = pa_rtpoll_run(u->rtpoll)) < 0) {
pa_log_info("pa_rtpoll_run() = %i", ret);
goto fail;
}
if (ret == 0)
goto finish;
}
fail:
/* If this was no regular exit from the loop we have to continue
* processing messages until we received PA_MESSAGE_SHUTDOWN */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
/* Called from combine sink I/O thread context */
static void render_memblock(struct userdata *u, struct output *o, size_t length) {
pa_assert(u);
pa_assert(o);
/* We are run by the sink thread, on behalf of an output (o). The
* output is waiting for us, hence it is safe to access its
* mainblockq and asyncmsgq directly. */
/* If we are not running, we cannot produce any data */
if (!pa_atomic_load(&u->thread_info.running))
return;
/* Maybe there's some data in the requesting output's queue
* now? */
while (pa_asyncmsgq_process_one(o->audio_inq) > 0)
;
/* Ok, now let's prepare some data if we really have to. Save the
* the time for latency calculations. */
u->thread_info.render_timestamp = pa_rtclock_now();
while (!pa_memblockq_is_readable(o->memblockq)) {
struct output *j;
pa_memchunk chunk;
/* Render data! */
pa_sink_render(u->sink, length, &chunk);
u->thread_info.counter += chunk.length;
o->receive_counter += chunk.length;
/* OK, let's send this data to the other threads */
PA_LLIST_FOREACH(j, u->thread_info.active_outputs) {
if (j == o)
continue;
pa_asyncmsgq_post(j->audio_inq, PA_MSGOBJECT(j->sink_input), SINK_INPUT_MESSAGE_POST, NULL, 0, &chunk, NULL);
}
/* And place it directly into the requesting output's queue */
pa_memblockq_push_align(o->memblockq, &chunk);
pa_memblock_unref(chunk.memblock);
}
}
/* Called from I/O thread context */
static void request_memblock(struct output *o, size_t length) {
pa_assert(o);
pa_sink_input_assert_ref(o->sink_input);
pa_sink_assert_ref(o->userdata->sink);
/* If another thread already prepared some data we received
* the data over the asyncmsgq, hence let's first process
* it. */
while (pa_asyncmsgq_process_one(o->audio_inq) > 0)
;
/* Check whether we're now readable */
if (pa_memblockq_is_readable(o->memblockq))
return;
/* OK, we need to prepare new data, but only if the sink is actually running */
if (pa_atomic_load(&o->userdata->thread_info.running))
pa_asyncmsgq_send(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_NEED, o, (int64_t) length, NULL);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
/* If necessary, get some new data */
request_memblock(o, nbytes);
/* pa_log("%s q size is %u + %u (%u/%u)", */
/* i->sink->name, */
/* pa_memblockq_get_nblocks(o->memblockq), */
/* pa_memblockq_get_nblocks(i->thread_info.render_memblockq), */
/* pa_memblockq_get_maxrewind(o->memblockq), */
/* pa_memblockq_get_maxrewind(i->thread_info.render_memblockq)); */
if (pa_memblockq_peek(o->memblockq, chunk) < 0)
return -1;
pa_memblockq_drop(o->memblockq, chunk->length);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
pa_memblockq_rewind(o->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
pa_memblockq_set_maxrewind(o->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
if (pa_atomic_load(&o->max_request) == (int) nbytes)
return;
pa_atomic_store(&o->max_request, (int) nbytes);
pa_log_debug("Sink input update max request %lu", (unsigned long) nbytes);
pa_asyncmsgq_post(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_UPDATE_MAX_REQUEST, NULL, 0, NULL, NULL);
}
/* Called from thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct output *o;
pa_usec_t min, max, fix;
pa_assert(i);
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
fix = i->sink->thread_info.fixed_latency;
if (fix > 0) {
min = fix;
max = fix;
} else {
min = i->sink->thread_info.min_latency;
max = i->sink->thread_info.max_latency;
}
if ((pa_atomic_load(&o->min_latency) == (int) min) &&
(pa_atomic_load(&o->max_latency) == (int) max))
return;
pa_atomic_store(&o->min_latency, (int) min);
pa_atomic_store(&o->max_latency, (int) max);
pa_log_debug("Sink input update latency range %lu %lu", (unsigned long) min, (unsigned long) max);
pa_asyncmsgq_post(o->outq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_UPDATE_LATENCY_RANGE, NULL, 0, NULL, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct output *o;
pa_usec_t fix, min, max;
size_t nbytes;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
/* Set up the queue from the sink thread to us */
pa_assert(!o->audio_inq_rtpoll_item_read);
pa_assert(!o->control_inq_rtpoll_item_read);
pa_assert(!o->outq_rtpoll_item_write);
o->audio_inq_rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
i->sink->thread_info.rtpoll,
PA_RTPOLL_LATE, /* This one is not that important, since we check for data in _peek() anyway. */
o->audio_inq);
o->control_inq_rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
i->sink->thread_info.rtpoll,
PA_RTPOLL_NORMAL,
o->control_inq);
o->outq_rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
i->sink->thread_info.rtpoll,
PA_RTPOLL_EARLY,
o->outq);
pa_sink_input_request_rewind(i, 0, false, true, true);
nbytes = pa_sink_input_get_max_request(i);
pa_atomic_store(&o->max_request, (int) nbytes);
pa_log_debug("attach max request %lu", (unsigned long) nbytes);
fix = i->sink->thread_info.fixed_latency;
if (fix > 0) {
min = max = fix;
} else {
min = i->sink->thread_info.min_latency;
max = i->sink->thread_info.max_latency;
}
pa_atomic_store(&o->min_latency, (int) min);
pa_atomic_store(&o->max_latency, (int) max);
pa_log_debug("attach latency range %lu %lu", (unsigned long) min, (unsigned long) max);
/* We register the output. That means that the sink will start to pass data to
* this output. */
pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_ADD_OUTPUT, o, 0, NULL);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
/* We unregister the output. That means that the sink doesn't
* pass any further data to this output */
pa_asyncmsgq_send(o->userdata->sink->asyncmsgq, PA_MSGOBJECT(o->userdata->sink), SINK_MESSAGE_REMOVE_OUTPUT, o, 0, NULL);
if (o->audio_inq_rtpoll_item_read) {
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_read);
o->audio_inq_rtpoll_item_read = NULL;
}
if (o->control_inq_rtpoll_item_read) {
pa_rtpoll_item_free(o->control_inq_rtpoll_item_read);
o->control_inq_rtpoll_item_read = NULL;
}
if (o->outq_rtpoll_item_write) {
pa_rtpoll_item_free(o->outq_rtpoll_item_write);
o->outq_rtpoll_item_write = NULL;
}
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct output *o;
pa_sink_input_assert_ref(i);
pa_assert_se(o = i->userdata);
pa_module_unload_request(o->userdata->module, true);
pa_idxset_remove_by_data(o->userdata->outputs, o, NULL);
output_free(o);
}
/* Called from thread context */
static int sink_input_process_msg(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct output *o = PA_SINK_INPUT(obj)->userdata;
switch (code) {
case PA_SINK_INPUT_MESSAGE_GET_LATENCY: {
pa_usec_t *r = data;
*r = pa_bytes_to_usec(pa_memblockq_get_length(o->memblockq), &o->sink_input->sample_spec);
/* Fall through, the default handler will add in the extra
* latency added by the resampler */
break;
}
case SINK_INPUT_MESSAGE_POST:
if (o->sink_input->sink->thread_info.state == PA_SINK_RUNNING) {
pa_memblockq_push_align(o->memblockq, chunk);
o->receive_counter += chunk->length;
} else
pa_memblockq_flush_write(o->memblockq, true);
return 0;
case SINK_INPUT_MESSAGE_SET_REQUESTED_LATENCY: {
pa_usec_t latency = (pa_usec_t) offset;
pa_sink_input_set_requested_latency_within_thread(o->sink_input, latency);
return 0;
}
case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: {
size_t length;
length = pa_memblockq_get_length(o->sink_input->thread_info.render_memblockq);
o->latency_snapshot.output_memblockq_size = pa_memblockq_get_length(o->memblockq);
/* Add content of memblockq's to sink latency */
o->latency_snapshot.sink_latency = pa_sink_get_latency_within_thread(o->sink, true) +
pa_bytes_to_usec(length, &o->sink->sample_spec);
/* Add resampler latency */
o->latency_snapshot.sink_latency += pa_resampler_get_delay_usec(o->sink_input->thread_info.resampler);
o->latency_snapshot.timestamp = pa_rtclock_now();
o->latency_snapshot.receive_counter = o->receive_counter;
return 0;
}
}
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
}
/* Called from main context */
static void suspend(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
/* Let's suspend by unlinking all streams */
PA_IDXSET_FOREACH(o, u->outputs, idx)
output_disable(o);
pa_log_info("Device suspended...");
}
/* Called from main context */
static void unsuspend(struct userdata *u) {
struct output *o;
uint32_t idx;
pa_assert(u);
/* Let's resume */
PA_IDXSET_FOREACH(o, u->outputs, idx)
output_enable(o);
pa_log_info("Resumed successfully...");
}
/* Called from main context */
static int sink_set_state_in_main_thread_cb(pa_sink *sink, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) {
struct userdata *u;
pa_sink_assert_ref(sink);
pa_assert_se(u = sink->userdata);
/* It may be that only the suspend cause is changing, in which
* case there's nothing to do. */
if (state == u->sink->state)
return 0;
/* Please note that in contrast to the ALSA modules we call
* suspend/unsuspend from main context here! */
switch (state) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_IS_OPENED(u->sink->state));
suspend(u);
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (u->sink->state == PA_SINK_SUSPENDED)
unsuspend(u);
/* The first smoother update should be done early, otherwise the smoother will
* not be aware of the slave sink latencies and report far too small values.
* This is especially important if after an unsuspend the sink runs on a different
* latency than before. */
if (state == PA_SINK_RUNNING && !u->time_event && u->adjust_time > 0)
u->time_event = pa_core_rttime_new(u->core, pa_rtclock_now() + pa_sink_get_requested_latency(u->sink), time_callback, u);
break;
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
case PA_SINK_INVALID_STATE:
;
}
return 0;
}
/* Called from the IO thread. */
static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
struct userdata *u;
bool running;
pa_assert(s);
pa_assert_se(u = s->userdata);
/* It may be that only the suspend cause is changing, in which case there's
* nothing to do. */
if (new_state == s->thread_info.state)
return 0;
running = new_state == PA_SINK_RUNNING;
pa_atomic_store(&u->thread_info.running, running);
if (running) {
u->thread_info.render_timestamp = 0;
#ifdef USE_SMOOTHER_2
pa_smoother_2_resume(u->thread_info.smoother, pa_rtclock_now());
} else
pa_smoother_2_pause(u->thread_info.smoother, pa_rtclock_now());
#else
pa_smoother_resume(u->thread_info.smoother, pa_rtclock_now(), true);
} else
pa_smoother_pause(u->thread_info.smoother, pa_rtclock_now());
#endif
return 0;
}
/* Called from IO context */
static void update_max_request(struct userdata *u) {
size_t max_request = 0;
struct output *o;
pa_assert(u);
pa_sink_assert_io_context(u->sink);
/* Collects the max_request values of all streams and sets the
* largest one locally */
PA_LLIST_FOREACH(o, u->thread_info.active_outputs) {
size_t mr = (size_t) pa_atomic_load(&o->max_request);
if (mr > max_request)
max_request = mr;
}
if (max_request <= 0)
max_request = pa_usec_to_bytes(u->block_usec, &u->sink->sample_spec);
pa_log_debug("Sink update max request %lu", (unsigned long) max_request);
pa_sink_set_max_request_within_thread(u->sink, max_request);
}
/* Called from IO context */
static void update_latency_range(struct userdata *u) {
pa_usec_t min_latency = 0, max_latency = (pa_usec_t) -1;
struct output *o;
pa_assert(u);
pa_sink_assert_io_context(u->sink);
/* Collects the latency_range values of all streams and sets
* the max of min and min of max locally */
PA_LLIST_FOREACH(o, u->thread_info.active_outputs) {
pa_usec_t min = (size_t) pa_atomic_load(&o->min_latency);
pa_usec_t max = (size_t) pa_atomic_load(&o->max_latency);
if (min > min_latency)
min_latency = min;
if (max_latency == (pa_usec_t) -1 || max < max_latency)
max_latency = max;
}
if (max_latency == (pa_usec_t) -1) {
/* No outputs, use default limits. */
min_latency = u->default_min_latency;
max_latency = u->default_max_latency;
}
/* As long as we don't support rewinding, we should limit the max latency
* to a conservative value. */
if (max_latency > u->default_max_latency)
max_latency = u->default_max_latency;
/* Never ever try to set lower max latency than min latency, it just
* doesn't make sense. */
if (max_latency < min_latency)
max_latency = min_latency;
pa_log_debug("Sink update latency range %" PRIu64 " %" PRIu64, min_latency, max_latency);
pa_sink_set_latency_range_within_thread(u->sink, min_latency, max_latency);
}
/* Called from thread context of the io thread */
static void output_add_within_thread(struct output *o) {
pa_assert(o);
pa_sink_assert_io_context(o->sink);
PA_LLIST_PREPEND(struct output, o->userdata->thread_info.active_outputs, o);
pa_assert(!o->outq_rtpoll_item_read);
pa_assert(!o->audio_inq_rtpoll_item_write);
pa_assert(!o->control_inq_rtpoll_item_write);
o->outq_rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
o->userdata->rtpoll,
PA_RTPOLL_EARLY-1, /* This item is very important */
o->outq);
o->audio_inq_rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
o->userdata->rtpoll,
PA_RTPOLL_EARLY,
o->audio_inq);
o->control_inq_rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
o->userdata->rtpoll,
PA_RTPOLL_NORMAL,
o->control_inq);
o->receive_counter = o->userdata->thread_info.counter;
}
/* Called from thread context of the io thread */
static void output_remove_within_thread(struct output *o) {
pa_assert(o);
pa_sink_assert_io_context(o->sink);
PA_LLIST_REMOVE(struct output, o->userdata->thread_info.active_outputs, o);
if (o->outq_rtpoll_item_read) {
pa_rtpoll_item_free(o->outq_rtpoll_item_read);
o->outq_rtpoll_item_read = NULL;
}
if (o->audio_inq_rtpoll_item_write) {
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_write);
o->audio_inq_rtpoll_item_write = NULL;
}
if (o->control_inq_rtpoll_item_write) {
pa_rtpoll_item_free(o->control_inq_rtpoll_item_write);
o->control_inq_rtpoll_item_write = NULL;
}
}
/* Called from sink I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
struct userdata *u;
struct output *o;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
u->block_usec = pa_sink_get_requested_latency_within_thread(s);
if (u->block_usec == (pa_usec_t) -1)
u->block_usec = s->thread_info.max_latency;
pa_log_debug("Sink update requested latency %0.2f", (double) u->block_usec / PA_USEC_PER_MSEC);
/* Just hand this one over to all sink_inputs */
PA_LLIST_FOREACH(o, u->thread_info.active_outputs) {
pa_asyncmsgq_post(o->control_inq, PA_MSGOBJECT(o->sink_input), SINK_INPUT_MESSAGE_SET_REQUESTED_LATENCY, NULL,
u->block_usec, NULL, NULL);
}
}
/* Called from thread context of the io thread */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
int64_t *delay = data;
#ifdef USE_SMOOTHER_2
*delay = pa_smoother_2_get_delay(u->thread_info.smoother, pa_rtclock_now(), u->thread_info.counter);
#else
pa_usec_t x, y, c;
x = pa_rtclock_now();
y = pa_smoother_get(u->thread_info.smoother, x);
c = pa_bytes_to_usec(u->thread_info.counter, &u->sink->sample_spec);
*delay = (int64_t)c - y;
#endif
return 0;
}
case SINK_MESSAGE_ADD_OUTPUT:
output_add_within_thread(data);
update_max_request(u);
update_latency_range(u);
return 0;
case SINK_MESSAGE_REMOVE_OUTPUT:
output_remove_within_thread(data);
update_max_request(u);
update_latency_range(u);
return 0;
case SINK_MESSAGE_NEED:
render_memblock(u, (struct output*) data, (size_t) offset);
return 0;
case SINK_MESSAGE_UPDATE_LATENCY: {
#ifdef USE_SMOOTHER_2
size_t latency;
latency = pa_usec_to_bytes((pa_usec_t)offset, &u->sink->sample_spec);
pa_smoother_2_put(u->thread_info.smoother, u->thread_info.snapshot_time, (int64_t)u->thread_info.snapshot_counter - latency);
#else
pa_usec_t x, y, latency = (pa_usec_t) offset;
/* It may be possible that thread_info.counter has been increased
* since we took the snapshot. Therefore we have to use the snapshot
* time and counter instead of the current values. */
x = u->thread_info.snapshot_time;
y = pa_bytes_to_usec(u->thread_info.snapshot_counter, &u->sink->sample_spec);
if (y > latency)
y -= latency;
else
y = 0;
pa_smoother_put(u->thread_info.smoother, x, y);
#endif
return 0;
}
case SINK_MESSAGE_GET_SNAPSHOT: {
struct sink_snapshot *rdata = data;
rdata->timestamp = u->thread_info.render_timestamp;
rdata->send_counter = u->thread_info.counter;
u->thread_info.snapshot_counter = u->thread_info.counter;
u->thread_info.snapshot_time = u->thread_info.render_timestamp;
return 0;
}
case SINK_MESSAGE_UPDATE_MAX_REQUEST:
update_max_request(u);
break;
case SINK_MESSAGE_UPDATE_LATENCY_RANGE:
update_latency_range(u);
break;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
static void update_description(struct userdata *u) {
bool first = true;
char *t;
struct output *o;
uint32_t idx;
pa_assert(u);
if (!u->auto_desc)
return;
if (pa_idxset_isempty(u->outputs)) {
pa_sink_set_description(u->sink, "Simultaneous output");
return;
}
t = pa_xstrdup("Simultaneous output to");
PA_IDXSET_FOREACH(o, u->outputs, idx) {
char *e;
if (first) {
e = pa_sprintf_malloc("%s %s", t, pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
first = false;
} else
e = pa_sprintf_malloc("%s, %s", t, pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
pa_xfree(t);
t = e;
}
pa_sink_set_description(u->sink, t);
pa_xfree(t);
}
static int output_create_sink_input(struct output *o) {
struct userdata *u;
pa_sink_input_new_data data;
pa_assert(o);
if (o->sink_input)
return 0;
u = o->userdata;
pa_sink_input_new_data_init(&data);
pa_sink_input_new_data_set_sink(&data, o->sink, false, true);
data.driver = __FILE__;
pa_proplist_setf(data.proplist, PA_PROP_MEDIA_NAME, "Simultaneous output on %s", pa_strnull(pa_proplist_gets(o->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
pa_proplist_sets(data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&data, &u->sink->sample_spec);
pa_sink_input_new_data_set_channel_map(&data, &u->sink->channel_map);
data.module = u->module;
data.resample_method = u->resample_method;
data.flags = PA_SINK_INPUT_VARIABLE_RATE|PA_SINK_INPUT_DONT_MOVE|PA_SINK_INPUT_NO_CREATE_ON_SUSPEND;
data.origin_sink = u->sink;
if (!u->remix)
data.flags |= PA_SINK_INPUT_NO_REMIX;
pa_sink_input_new(&o->sink_input, u->core, &data);
pa_sink_input_new_data_done(&data);
if (!o->sink_input)
return -1;
o->sink_input->parent.process_msg = sink_input_process_msg;
o->sink_input->pop = sink_input_pop_cb;
o->sink_input->process_rewind = sink_input_process_rewind_cb;
o->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
o->sink_input->update_max_request = sink_input_update_max_request_cb;
o->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
o->sink_input->attach = sink_input_attach_cb;
o->sink_input->detach = sink_input_detach_cb;
o->sink_input->kill = sink_input_kill_cb;
o->sink_input->userdata = o;
pa_sink_input_set_requested_latency(o->sink_input, pa_sink_get_requested_latency(u->sink));
return 0;
}
/* Called from main context */
static struct output *output_new(struct userdata *u, pa_sink *sink) {
struct output *o;
pa_assert(u);
pa_assert(sink);
pa_assert(u->sink);
o = pa_xnew0(struct output, 1);
o->userdata = u;
o->audio_inq = pa_asyncmsgq_new(0);
if (!o->audio_inq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
o->control_inq = pa_asyncmsgq_new(0);
if (!o->control_inq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
o->outq = pa_asyncmsgq_new(0);
if (!o->outq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
o->sink = sink;
o->memblockq = pa_memblockq_new(
"module-combine-sink output memblockq",
0,
MEMBLOCKQ_MAXLENGTH,
MEMBLOCKQ_MAXLENGTH,
&u->sink->sample_spec,
1,
0,
0,
&u->sink->silence);
pa_assert_se(pa_idxset_put(u->outputs, o, NULL) == 0);
update_description(u);
return o;
fail:
output_free(o);
return NULL;
}
/* Called from main context */
static void output_free(struct output *o) {
pa_assert(o);
output_disable(o);
update_description(o->userdata);
if (o->audio_inq_rtpoll_item_read)
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_read);
if (o->audio_inq_rtpoll_item_write)
pa_rtpoll_item_free(o->audio_inq_rtpoll_item_write);
if (o->control_inq_rtpoll_item_read)
pa_rtpoll_item_free(o->control_inq_rtpoll_item_read);
if (o->control_inq_rtpoll_item_write)
pa_rtpoll_item_free(o->control_inq_rtpoll_item_write);
if (o->outq_rtpoll_item_read)
pa_rtpoll_item_free(o->outq_rtpoll_item_read);
if (o->outq_rtpoll_item_write)
pa_rtpoll_item_free(o->outq_rtpoll_item_write);
if (o->audio_inq)
pa_asyncmsgq_unref(o->audio_inq);
if (o->control_inq)
pa_asyncmsgq_unref(o->control_inq);
if (o->outq)
pa_asyncmsgq_unref(o->outq);
if (o->memblockq)
pa_memblockq_free(o->memblockq);
pa_xfree(o);
}
/* Called from main context */
static void output_enable(struct output *o) {
pa_assert(o);
if (o->sink_input)
return;
/* This might cause the sink to be resumed. The state change hook
* of the sink might hence be called from here, which might then
* cause us to be called in a loop. Make sure that state changes
* for this output don't cause this loop by setting a flag here */
o->ignore_state_change = true;
if (output_create_sink_input(o) >= 0) {
if (o->sink->state != PA_SINK_INIT) {
/* Enable the sink input. That means that the sink
* is now asked for new data. */
pa_sink_input_put(o->sink_input);
}
}
o->ignore_state_change = false;
}
/* Called from main context */
static void output_disable(struct output *o) {
pa_assert(o);
if (!o->sink_input)
return;
/* We disable the sink input. That means that the sink is
* not asked for new data anymore */
pa_sink_input_unlink(o->sink_input);
/* Now deallocate the stream */
pa_sink_input_unref(o->sink_input);
o->sink_input = NULL;
/* Finally, drop all queued data */
pa_memblockq_flush_write(o->memblockq, true);
pa_asyncmsgq_flush(o->audio_inq, false);
pa_asyncmsgq_flush(o->control_inq, false);
pa_asyncmsgq_flush(o->outq, false);
}
/* Called from main context */
static void output_verify(struct output *o) {
pa_assert(o);
if (PA_SINK_IS_OPENED(o->userdata->sink->state))
output_enable(o);
else
output_disable(o);
}
/* Called from main context */
static bool is_suitable_sink(struct userdata *u, pa_sink *s) {
const char *t;
pa_sink_assert_ref(s);
if (s == u->sink)
return false;
if (!(s->flags & PA_SINK_HARDWARE))
return false;
if (!(s->flags & PA_SINK_LATENCY))
return false;
if ((t = pa_proplist_gets(s->proplist, PA_PROP_DEVICE_CLASS)))
if (!pa_streq(t, "sound"))
return false;
return true;
}
/* Called from main context */
static pa_hook_result_t sink_put_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
pa_core_assert_ref(c);
pa_sink_assert_ref(s);
pa_assert(u);
if (u->automatic) {
if (!is_suitable_sink(u, s))
return PA_HOOK_OK;
} else {
/* Check if the sink is a previously unlinked slave (non-automatic mode) */
pa_strlist *l = u->unlinked_slaves;
while (l && !pa_streq(pa_strlist_data(l), s->name))
l = pa_strlist_next(l);
if (!l)
return PA_HOOK_OK;
u->unlinked_slaves = pa_strlist_remove(u->unlinked_slaves, s->name);
}
pa_log_info("Configuring new sink: %s", s->name);
if (!(o = output_new(u, s))) {
pa_log("Failed to create sink input on sink '%s'.", s->name);
return PA_HOOK_OK;
}
output_verify(o);
return PA_HOOK_OK;
}
/* Called from main context */
static struct output* find_output(struct userdata *u, pa_sink *s) {
struct output *o;
uint32_t idx;
pa_assert(u);
pa_assert(s);
if (u->sink == s)
return NULL;
PA_IDXSET_FOREACH(o, u->outputs, idx)
if (o->sink == s)
return o;
return NULL;
}
/* Called from main context */
static pa_hook_result_t sink_unlink_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
pa_assert(c);
pa_sink_assert_ref(s);
pa_assert(u);
if (!(o = find_output(u, s)))
return PA_HOOK_OK;
pa_log_info("Unconfiguring sink: %s", s->name);
if (!u->automatic)
u->unlinked_slaves = pa_strlist_prepend(u->unlinked_slaves, s->name);
pa_idxset_remove_by_data(u->outputs, o, NULL);
output_free(o);
return PA_HOOK_OK;
}
/* Called from main context */
static pa_hook_result_t sink_state_changed_hook_cb(pa_core *c, pa_sink *s, struct userdata* u) {
struct output *o;
if (!(o = find_output(u, s)))
return PA_HOOK_OK;
/* This state change might be triggered because we are creating a
* stream here, in that case we don't want to create it a second
* time here and enter a loop */
if (o->ignore_state_change)
return PA_HOOK_OK;
output_verify(o);
return PA_HOOK_OK;
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_modargs *ma = NULL;
const char *slaves, *rm;
int resample_method;
pa_sample_spec ss;
pa_channel_map map;
struct output *o;
uint32_t idx;
pa_sink_new_data data;
uint32_t adjust_time_sec;
size_t nbytes;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments");
goto fail;
}
resample_method = m->core->resample_method;
if ((rm = pa_modargs_get_value(ma, "resample_method", NULL))) {
if ((resample_method = pa_parse_resample_method(rm)) < 0) {
pa_log("invalid resample method '%s'", rm);
goto fail;
}
}
m->userdata = u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
u->rtpoll = pa_rtpoll_new();
if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) {
pa_log("pa_thread_mq_init() failed.");
goto fail;
}
u->remix = !m->core->disable_remixing;
if (pa_modargs_get_value_boolean(ma, "remix", &u->remix) < 0) {
pa_log("Invalid boolean remix parameter");
goto fail;
}
u->resample_method = resample_method;
u->outputs = pa_idxset_new(NULL, NULL);
#ifndef USE_SMOOTHER_2
u->thread_info.smoother = pa_smoother_new(
PA_USEC_PER_SEC,
PA_USEC_PER_SEC*2,
true,
true,
10,
pa_rtclock_now(),
true);
#endif
adjust_time_sec = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC;
if (pa_modargs_get_value_u32(ma, "adjust_time", &adjust_time_sec) < 0) {
pa_log("Failed to parse adjust_time value");
goto fail;
}
if (adjust_time_sec != DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC)
u->adjust_time = adjust_time_sec * PA_USEC_PER_SEC;
else
u->adjust_time = DEFAULT_ADJUST_TIME_USEC;
slaves = pa_modargs_get_value(ma, "slaves", NULL);
u->automatic = !slaves;
ss = m->core->default_sample_spec;
map = m->core->default_channel_map;
/* Check the specified slave sinks for sample_spec and channel_map to use for the combined sink */
if (!u->automatic) {
const char*split_state = NULL;
char *n = NULL;
pa_sample_spec slaves_spec;
pa_channel_map slaves_map;
bool is_first_slave = true;
pa_sample_spec_init(&slaves_spec);
while ((n = pa_split(slaves, ",", &split_state))) {
pa_sink *slave_sink;
if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK))) {
pa_log("Invalid slave sink '%s'", n);
pa_xfree(n);
goto fail;
}
pa_xfree(n);
if (is_first_slave) {
slaves_spec = slave_sink->sample_spec;
slaves_map = slave_sink->channel_map;
is_first_slave = false;
} else {
if (slaves_spec.format != slave_sink->sample_spec.format)
slaves_spec.format = PA_SAMPLE_INVALID;
if (slaves_spec.rate < slave_sink->sample_spec.rate)
slaves_spec.rate = slave_sink->sample_spec.rate;
if (!pa_channel_map_equal(&slaves_map, &slave_sink->channel_map))
slaves_spec.channels = 0;
}
}
if (!is_first_slave) {
if (slaves_spec.format != PA_SAMPLE_INVALID)
ss.format = slaves_spec.format;
ss.rate = slaves_spec.rate;
if (slaves_spec.channels > 0) {
map = slaves_map;
ss.channels = slaves_map.channels;
}
}
}
if ((pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0)) {
pa_log("Invalid sample specification.");
goto fail;
}
pa_sink_new_data_init(&data);
data.namereg_fail = false;
data.driver = __FILE__;
data.module = m;
pa_sink_new_data_set_name(&data, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME));
pa_sink_new_data_set_sample_spec(&data, &ss);
pa_sink_new_data_set_channel_map(&data, &map);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (slaves)
pa_proplist_sets(data.proplist, "combine.slaves", slaves);
if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&data);
goto fail;
}
/* Check proplist for a description & fill in a default value if not */
u->auto_desc = false;
if (NULL == pa_proplist_gets(data.proplist, PA_PROP_DEVICE_DESCRIPTION)) {
u->auto_desc = true;
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Simultaneous Output");
}
u->sink = pa_sink_new(m->core, &data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
pa_sink_new_data_done(&data);
if (!u->sink) {
pa_log("Failed to create sink");
goto fail;
}
#ifdef USE_SMOOTHER_2
/* The smoother window size needs to be larger than the time between updates */
u->thread_info.smoother = pa_smoother_2_new(u->adjust_time + 5*PA_USEC_PER_SEC, pa_rtclock_now(), pa_frame_size(&u->sink->sample_spec), u->sink->sample_spec.rate);
#endif
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb;
u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb;
u->sink->update_requested_latency = sink_update_requested_latency;
u->sink->userdata = u;
pa_sink_set_rtpoll(u->sink, u->rtpoll);
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
nbytes = pa_usec_to_bytes(BLOCK_USEC, &u->sink->sample_spec);
pa_sink_set_max_request(u->sink, nbytes);
pa_sink_set_latency_range(u->sink, 0, BLOCK_USEC);
/* pulse clamps the range, get the real values */
u->default_min_latency = u->sink->thread_info.min_latency;
u->default_max_latency = u->sink->thread_info.max_latency;
u->block_usec = u->sink->thread_info.max_latency;
if (!u->automatic) {
const char*split_state;
char *n = NULL;
pa_assert(slaves);
/* The slaves have been specified manually */
split_state = NULL;
while ((n = pa_split(slaves, ",", &split_state))) {
pa_sink *slave_sink;
if (!(slave_sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK)) || slave_sink == u->sink) {
pa_log("Invalid slave sink '%s'", n);
pa_xfree(n);
goto fail;
}
pa_xfree(n);
if (!output_new(u, slave_sink)) {
pa_log("Failed to create slave sink input on sink '%s'.", slave_sink->name);
goto fail;
}
}
if (pa_idxset_size(u->outputs) <= 1)
pa_log_warn("No slave sinks specified.");
u->sink_put_slot = NULL;
} else {
pa_sink *s;
/* We're in automatic mode, we add every sink that matches our needs */
PA_IDXSET_FOREACH(s, m->core->sinks, idx) {
if (!is_suitable_sink(u, s))
continue;
if (!output_new(u, s)) {
pa_log("Failed to create sink input on sink '%s'.", s->name);
goto fail;
}
}
}
u->sink_put_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_PUT], PA_HOOK_LATE, (pa_hook_cb_t) sink_put_hook_cb, u);
u->sink_unlink_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_UNLINK], PA_HOOK_EARLY, (pa_hook_cb_t) sink_unlink_hook_cb, u);
u->sink_state_changed_slot = pa_hook_connect(&m->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], PA_HOOK_NORMAL, (pa_hook_cb_t) sink_state_changed_hook_cb, u);
u->thread_info.render_timestamp = 0;
if (!(u->thread = pa_thread_new("combine", thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
/* Activate the sink and the sink inputs */
pa_sink_put(u->sink);
PA_IDXSET_FOREACH(o, u->outputs, idx)
output_verify(o);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sink && PA_SINK_IS_LINKED(u->sink->state))
pa_sink_suspend(u->sink, true, PA_SUSPEND_UNAVAILABLE);
pa_strlist_free(u->unlinked_slaves);
if (u->sink_put_slot)
pa_hook_slot_free(u->sink_put_slot);
if (u->sink_unlink_slot)
pa_hook_slot_free(u->sink_unlink_slot);
if (u->sink_state_changed_slot)
pa_hook_slot_free(u->sink_state_changed_slot);
if (u->outputs)
pa_idxset_free(u->outputs, (pa_free_cb_t) output_free);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->time_event)
u->core->mainloop->time_free(u->time_event);
if (u->thread_info.smoother)
#ifdef USE_SMOOTHER_2
pa_smoother_2_free(u->thread_info.smoother);
#else
pa_smoother_free(u->thread_info.smoother);
#endif
pa_xfree(u);
}