# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://bitbucket.org/ned/coveragepy/src/default/NOTICE.txt """Results of coverage measurement.""" import collections from coverage.backward import iitems from coverage.misc import contract, format_lines, SimpleRepr class Analysis(object): """The results of analyzing a FileReporter.""" def __init__(self, data, file_reporter): self.data = data self.file_reporter = file_reporter self.filename = self.file_reporter.filename self.statements = self.file_reporter.lines() self.excluded = self.file_reporter.excluded_lines() # Identify missing statements. executed = self.data.lines(self.filename) or [] executed = self.file_reporter.translate_lines(executed) self.missing = self.statements - executed if self.data.has_arcs(): self._arc_possibilities = sorted(self.file_reporter.arcs()) self.exit_counts = self.file_reporter.exit_counts() self.no_branch = self.file_reporter.no_branch_lines() n_branches = self.total_branches() mba = self.missing_branch_arcs() n_partial_branches = sum(len(v) for k,v in iitems(mba) if k not in self.missing) n_missing_branches = sum(len(v) for k,v in iitems(mba)) else: self._arc_possibilities = [] self.exit_counts = {} self.no_branch = set() n_branches = n_partial_branches = n_missing_branches = 0 self.numbers = Numbers( n_files=1, n_statements=len(self.statements), n_excluded=len(self.excluded), n_missing=len(self.missing), n_branches=n_branches, n_partial_branches=n_partial_branches, n_missing_branches=n_missing_branches, ) def missing_formatted(self): """The missing line numbers, formatted nicely. Returns a string like "1-2, 5-11, 13-14". """ return format_lines(self.statements, self.missing) def has_arcs(self): """Were arcs measured in this result?""" return self.data.has_arcs() def arc_possibilities(self): """Returns a sorted list of the arcs in the code.""" return self._arc_possibilities def arcs_executed(self): """Returns a sorted list of the arcs actually executed in the code.""" executed = self.data.arcs(self.filename) or [] executed = self.file_reporter.translate_arcs(executed) return sorted(executed) def arcs_missing(self): """Returns a sorted list of the arcs in the code not executed.""" possible = self.arc_possibilities() executed = self.arcs_executed() missing = ( p for p in possible if p not in executed and p[0] not in self.no_branch ) return sorted(missing) def arcs_missing_formatted(self): """The missing branch arcs, formatted nicely. Returns a string like "1->2, 1->3, 16->20". Omits any mention of branches from missing lines, so if line 17 is missing, then 17->18 won't be included. """ arcs = self.missing_branch_arcs() missing = self.missing line_exits = sorted(iitems(arcs)) pairs = [] for line, exits in line_exits: for ex in sorted(exits): if line not in missing: pairs.append("%d->%s" % (line, (ex if ex > 0 else "exit"))) return ', '.join(pairs) def arcs_unpredicted(self): """Returns a sorted list of the executed arcs missing from the code.""" possible = self.arc_possibilities() executed = self.arcs_executed() # Exclude arcs here which connect a line to itself. They can occur # in executed data in some cases. This is where they can cause # trouble, and here is where it's the least burden to remove them. # Also, generators can somehow cause arcs from "enter" to "exit", so # make sure we have at least one positive value. unpredicted = ( e for e in executed if e not in possible and e[0] != e[1] and (e[0] > 0 or e[1] > 0) ) return sorted(unpredicted) def branch_lines(self): """Returns a list of line numbers that have more than one exit.""" return [l1 for l1,count in iitems(self.exit_counts) if count > 1] def total_branches(self): """How many total branches are there?""" return sum(count for count in self.exit_counts.values() if count > 1) def missing_branch_arcs(self): """Return arcs that weren't executed from branch lines. Returns {l1:[l2a,l2b,...], ...} """ missing = self.arcs_missing() branch_lines = set(self.branch_lines()) mba = collections.defaultdict(list) for l1, l2 in missing: if l1 in branch_lines: mba[l1].append(l2) return mba def branch_stats(self): """Get stats about branches. Returns a dict mapping line numbers to a tuple: (total_exits, taken_exits). """ missing_arcs = self.missing_branch_arcs() stats = {} for lnum in self.branch_lines(): exits = self.exit_counts[lnum] try: missing = len(missing_arcs[lnum]) except KeyError: missing = 0 stats[lnum] = (exits, exits - missing) return stats class Numbers(SimpleRepr): """The numerical results of measuring coverage. This holds the basic statistics from `Analysis`, and is used to roll up statistics across files. """ # A global to determine the precision on coverage percentages, the number # of decimal places. _precision = 0 _near0 = 1.0 # These will change when _precision is changed. _near100 = 99.0 def __init__(self, n_files=0, n_statements=0, n_excluded=0, n_missing=0, n_branches=0, n_partial_branches=0, n_missing_branches=0 ): self.n_files = n_files self.n_statements = n_statements self.n_excluded = n_excluded self.n_missing = n_missing self.n_branches = n_branches self.n_partial_branches = n_partial_branches self.n_missing_branches = n_missing_branches def init_args(self): """Return a list for __init__(*args) to recreate this object.""" return [ self.n_files, self.n_statements, self.n_excluded, self.n_missing, self.n_branches, self.n_partial_branches, self.n_missing_branches, ] @classmethod def set_precision(cls, precision): """Set the number of decimal places used to report percentages.""" assert 0 <= precision < 10 cls._precision = precision cls._near0 = 1.0 / 10**precision cls._near100 = 100.0 - cls._near0 @property def n_executed(self): """Returns the number of executed statements.""" return self.n_statements - self.n_missing @property def n_executed_branches(self): """Returns the number of executed branches.""" return self.n_branches - self.n_missing_branches @property def pc_covered(self): """Returns a single percentage value for coverage.""" if self.n_statements > 0: numerator, denominator = self.ratio_covered pc_cov = (100.0 * numerator) / denominator else: pc_cov = 100.0 return pc_cov @property def pc_covered_str(self): """Returns the percent covered, as a string, without a percent sign. Note that "0" is only returned when the value is truly zero, and "100" is only returned when the value is truly 100. Rounding can never result in either "0" or "100". """ pc = self.pc_covered if 0 < pc < self._near0: pc = self._near0 elif self._near100 < pc < 100: pc = self._near100 else: pc = round(pc, self._precision) return "%.*f" % (self._precision, pc) @classmethod def pc_str_width(cls): """How many characters wide can pc_covered_str be?""" width = 3 # "100" if cls._precision > 0: width += 1 + cls._precision return width @property def ratio_covered(self): """Return a numerator and denominator for the coverage ratio.""" numerator = self.n_executed + self.n_executed_branches denominator = self.n_statements + self.n_branches return numerator, denominator def __add__(self, other): nums = Numbers() nums.n_files = self.n_files + other.n_files nums.n_statements = self.n_statements + other.n_statements nums.n_excluded = self.n_excluded + other.n_excluded nums.n_missing = self.n_missing + other.n_missing nums.n_branches = self.n_branches + other.n_branches nums.n_partial_branches = ( self.n_partial_branches + other.n_partial_branches ) nums.n_missing_branches = ( self.n_missing_branches + other.n_missing_branches ) return nums def __radd__(self, other): # Implementing 0+Numbers allows us to sum() a list of Numbers. if other == 0: return self return NotImplemented @contract(total='number', fail_under='number', precision=int, returns=bool) def should_fail_under(total, fail_under, precision): """Determine if a total should fail due to fail-under. `total` is a float, the coverage measurement total. `fail_under` is the fail_under setting to compare with. `precision` is the number of digits to consider after the decimal point. Returns True if the total should fail. """ # Special case for fail_under=100, it must really be 100. if fail_under == 100.0 and total != 100.0: return True return round(total, precision) < fail_under