# Copyright (c) 2009-2011, 2013-2014 LOGILAB S.A. (Paris, FRANCE) # Copyright (c) 2014-2016 Claudiu Popa # Copyright (c) 2015-2016 Cara Vinson # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER """ Inference objects are a way to represent objects which are available only at runtime, so they can't be found in the original AST tree. For instance, inferring the following frozenset use, leads to an inferred FrozenSet: Call(func=Name('frozenset'), args=Tuple(...)) """ import sys import types import six from astroid import context as contextmod from astroid import decorators from astroid import exceptions from astroid.interpreter.util import infer_stmts from astroid.interpreter import runtimeabc from astroid.tree import base from astroid.tree import treeabc from astroid import util manager = util.lazy_import('manager') objectmodel = util.lazy_import('interpreter.objectmodel') MANAGER = manager.AstroidManager() BUILTINS = six.moves.builtins.__name__ if sys.version_info >= (3, 0): BOOL_SPECIAL_METHOD = '__bool__' else: BOOL_SPECIAL_METHOD = '__nonzero__' PROPERTIES = {BUILTINS + '.property', 'abc.abstractproperty'} # List of possible property names. We use this list in order # to see if a method is a property or not. This should be # pretty reliable and fast, the alternative being to check each # decorator to see if its a real property-like descriptor, which # can be too complicated. # Also, these aren't qualified, because each project can # define them, we shouldn't expect to know every possible # property-like decorator! # TODO(cpopa): just implement descriptors already. POSSIBLE_PROPERTIES = {"cached_property", "cachedproperty", "lazyproperty", "lazy_property", "reify", "lazyattribute", "lazy_attribute", "LazyProperty", "lazy"} def is_property(meth): if PROPERTIES.intersection(meth.decoratornames()): return True stripped = {name.split(".")[-1] for name in meth.decoratornames() if name is not util.Uninferable} return any(name in stripped for name in POSSIBLE_PROPERTIES) class Proxy(object): """a simple proxy object""" _proxied = None # proxied object may be set by class or by instance def __init__(self, proxied=None): if proxied is not None: self._proxied = proxied def __getattr__(self, name): if name == '_proxied': return getattr(self.__class__, '_proxied') if name in self.__dict__: return self.__dict__[name] return getattr(self._proxied, name) def infer(self, context=None): yield self def _infer_method_result_truth(instance, method_name, context): # Get the method from the instance and try to infer # its return's truth value. meth = next(instance.igetattr(method_name, context=context), None) if meth and hasattr(meth, 'infer_call_result'): if not meth.callable(): return util.Uninferable for value in meth.infer_call_result(instance, context=context): if value is util.Uninferable: return value inferred = next(value.infer(context=context)) return inferred.bool_value() return util.Uninferable class BaseInstance(Proxy): """An instance base class, which provides lookup methods for potential instances.""" special_attributes = None def display_type(self): return 'Instance of' def getattr(self, name, context=None, lookupclass=True): try: values = self._proxied.instance_attr(name, context) except exceptions.AttributeInferenceError: if self.special_attributes and name in self.special_attributes: return [self.special_attributes.lookup(name)] if lookupclass: # Class attributes not available through the instance # unless they are explicitly defined. return self._proxied.getattr(name, context, class_context=False) util.reraise(exceptions.AttributeInferenceError(target=self, attribute=name, context=context)) # since we've no context information, return matching class members as # well if lookupclass: try: return values + self._proxied.getattr(name, context, class_context=False) except exceptions.AttributeInferenceError: pass return values def igetattr(self, name, context=None): """inferred getattr""" if not context: context = contextmod.InferenceContext() try: # avoid recursively inferring the same attr on the same class if context.push((self._proxied, name)): return # XXX frame should be self._proxied, or not ? attrs = self.getattr(name, context, lookupclass=False) for stmt in infer_stmts(self._wrap_attr(attrs, context), context, frame=self): yield stmt except exceptions.AttributeInferenceError: try: # fallback to class'igetattr since it has some logic to handle # descriptors attrs = self._proxied.igetattr(name, context, class_context=False) for stmt in self._wrap_attr(attrs, context): yield stmt except exceptions.AttributeInferenceError as error: util.reraise(exceptions.InferenceError(**vars(error))) def _wrap_attr(self, attrs, context=None): """wrap bound methods of attrs in a InstanceMethod proxies""" for attr in attrs: if isinstance(attr, Method): if is_property(attr): for inferred in attr.infer_call_result(self, context): yield inferred elif type(attr) in (BoundMethod, UnboundMethod): # This is a strict type check because we can have subclasses # of these two objects which we don't want to be unproxied. yield BoundMethod(attr._proxied, self) else: yield attr elif hasattr(attr, 'name') and attr.name == '': # This is a lambda function defined at class level, # since its scope is the underlying _proxied class. # Unfortunately, we can't do an isinstance check here, # because of the circular dependency between astroid.bases # and astroid.scoped_nodes. if isinstance(attr.statement().scope(), treeabc.ClassDef): if attr.args.args and attr.args.args[0].name == 'self': yield BoundMethod(attr, self) continue yield attr else: yield attr def infer_call_result(self, caller, context=None): """infer what a class instance is returning when called""" inferred = False for node in self._proxied.igetattr('__call__', context): if node is util.Uninferable or not node.callable(): continue for res in node.infer_call_result(caller, context): inferred = True yield res if not inferred: raise exceptions.InferenceError(node=self, caller=caller, context=context) @util.register_implementation(runtimeabc.Instance) class Instance(BaseInstance): """A special node representing a class instance.""" special_attributes = util.lazy_descriptor(lambda: objectmodel.InstanceModel()) def __repr__(self): return '' % (self._proxied.root().name, self._proxied.name, id(self)) def __str__(self): return 'Instance of %s.%s' % (self._proxied.root().name, self._proxied.name) def callable(self): try: self._proxied.getattr('__call__', class_context=False) return True except exceptions.AttributeInferenceError: return False def pytype(self): return self._proxied.qname() def bool_value(self): """Infer the truth value for an Instance The truth value of an instance is determined by these conditions: * if it implements __bool__ on Python 3 or __nonzero__ on Python 2, then its bool value will be determined by calling this special method and checking its result. * when this method is not defined, __len__() is called, if it is defined, and the object is considered true if its result is nonzero. If a class defines neither __len__() nor __bool__(), all its instances are considered true. """ context = contextmod.InferenceContext() context.callcontext = contextmod.CallContext(args=[self]) try: result = _infer_method_result_truth(self, BOOL_SPECIAL_METHOD, context) except (exceptions.InferenceError, exceptions.AttributeInferenceError): # Fallback to __len__. try: result = _infer_method_result_truth(self, '__len__', context) except (exceptions.AttributeInferenceError, exceptions.InferenceError): return True return result def getitem(self, index, context=None): if context: new_context = context.clone() else: context = new_context = contextmod.InferenceContext() # Create a new callcontext for providing index as an argument. new_context.callcontext = contextmod.CallContext(args=[index]) new_context.boundnode = self method = next(self.igetattr('__getitem__', context=context)) if not isinstance(method, BoundMethod): raise exceptions.InferenceError( 'Could not find __getitem__ for {node!r}.', node=self, context=context) try: return next(method.infer_call_result(self, new_context)) except StopIteration: util.reraise(exceptions.InferenceError( message='Inference for {node!r}[{index!s}] failed.', node=self, index=index, context=context)) @util.register_implementation(runtimeabc.ExceptionInstance) class ExceptionInstance(Instance): """Class for instances of exceptions It has special treatment for some of the exceptions's attributes, which are transformed at runtime into certain concrete objects, such as the case of .args. """ special_attributes = util.lazy_descriptor(lambda: objectmodel.ExceptionInstanceModel()) class Method(Proxy): def __repr__(self): frame = self._proxied.parent.frame() return '<%s %s of %s at 0x%s' % (self.__class__.__name__, self._proxied.name, frame.qname(), id(self)) def getattr(self, name, context=None): if name in self.special_attributes: return [self.special_attributes.lookup(name)] return self._proxied.getattr(name, context) def igetattr(self, name, context=None): if name in self.special_attributes: return iter((self.special_attributes.lookup(name), )) return self._proxied.igetattr(name, context) def infer_call_result(self, caller, context): return self._proxied.infer_call_result(caller, context) def bool_value(self): return True def is_bound(self): return False @util.register_implementation(runtimeabc.UnboundMethod) class UnboundMethod(Method): """a special node representing a method not bound to an instance""" special_attributes = util.lazy_descriptor(lambda: objectmodel.UnboundMethodModel()) @util.register_implementation(runtimeabc.BoundMethod) class BoundMethod(Method): """a special node representing a method bound to an instance""" special_attributes = util.lazy_descriptor(lambda: objectmodel.BoundMethodModel()) def __init__(self, proxy, bound): super(BoundMethod, self).__init__(proxy) self.bound = bound def is_bound(self): return True def infer_call_result(self, caller, context=None): if context is None: context = contextmod.InferenceContext() context = context.clone() context.boundnode = self.bound return super(BoundMethod, self).infer_call_result(caller, context) @util.register_implementation(runtimeabc.Generator) class Generator(BaseInstance): """a special node representing a generator. Proxied class is set once for all in raw_building. """ special_attributes = util.lazy_descriptor(lambda: objectmodel.GeneratorModel()) def __init__(self, parent): self.parent = parent def callable(self): return False def pytype(self): return '%s.generator' % BUILTINS def display_type(self): return 'Generator' def bool_value(self): return True def __repr__(self): return '' % (self._proxied.name, self.lineno, id(self)) def __str__(self): return 'Generator(%s)' % (self._proxied.name) @decorators.cachedproperty def _proxied(self): builtins = MANAGER.builtins() return builtins.getattr(types.GeneratorType.__name__)[0] @util.register_implementation(runtimeabc.FrozenSet) class FrozenSet(base.BaseContainer, Instance): """Class representing a FrozenSet composite node.""" def pytype(self): return '%s.frozenset' % BUILTINS @decorators.cachedproperty def _proxied(self): builtins = MANAGER.builtins() return builtins.getattr('frozenset')[0] @util.register_implementation(runtimeabc.Super) class Super(base.NodeNG): """Proxy class over a super call. This class offers almost the same behaviour as Python's super, which is MRO lookups for retrieving attributes from the parents. The *mro_pointer* is the place in the MRO from where we should start looking, not counting it. *mro_type* is the object which provides the MRO, it can be both a type or an instance. *self_class* is the class where the super call is, while *scope* is the function where the super call is. """ # Need to make this lazy, due to circular dependencies. special_attributes = util.lazy_descriptor(lambda: objectmodel.SuperModel()) def __init__(self, mro_pointer, mro_type, self_class, scope): self.type = mro_type self.mro_pointer = mro_pointer self._class_based = False self._self_class = self_class self._scope = scope def super_mro(self): """Get the MRO which will be used to lookup attributes in this super.""" if not isinstance(self.mro_pointer, treeabc.ClassDef): raise exceptions.SuperError( "The first argument to super must be a subtype of " "type, not {mro_pointer}.", super_=self) if isinstance(self.type, treeabc.ClassDef): # `super(type, type)`, most likely in a class method. self._class_based = True mro_type = self.type else: mro_type = getattr(self.type, '_proxied', None) if not isinstance(mro_type, (runtimeabc.Instance, treeabc.ClassDef)): raise exceptions.SuperError( "The second argument to super must be an " "instance or subtype of type, not {type}.", super_=self) if not mro_type.newstyle: raise exceptions.SuperError("Unable to call super on old-style classes.", super_=self) mro = mro_type.mro() if self.mro_pointer not in mro: raise exceptions.SuperError( "The second argument to super must be an " "instance or subtype of type, not {type}.", super_=self) index = mro.index(self.mro_pointer) return mro[index + 1:] @decorators.cachedproperty def _proxied(self): builtins = MANAGER.builtins() return builtins.getattr('super')[0] def pytype(self): return '%s.super' % BUILTINS def display_type(self): return 'Super of' @property def name(self): """Get the name of the MRO pointer.""" return self.mro_pointer.name def igetattr(self, name, context=None): """Retrieve the inferred values of the given attribute name.""" if name in self.special_attributes: yield self.special_attributes.lookup(name) return try: mro = self.super_mro() # Don't let invalid MROs or invalid super calls # leak out as is from this function. except exceptions.SuperError as exc: msg = ('Lookup for {name} on {target!r} because super call {super!r} ' 'is invalid.'), structured = exceptions.AttributeInferenceError(msg, target=self, attribute=name, context=context, super_=exc.super_) util.reraise(structured) except exceptions.MroError as exc: msg = ('Lookup for {name} on {target!r} failed because {cls!r} has an ' 'invalid MRO.') structured = exceptions.AttributeInferenceError(msg, target=self, attribute=name, context=context, mros=exc.mros, cls=exc.cls) util.reraise(structured) found = False for cls in mro: if name not in cls.locals: # and name not in cls.external_attrs: continue found = True for inferred in infer_stmts([cls[name]], context, frame=self): if not isinstance(inferred, treeabc.FunctionDef): yield inferred continue # We can obtain different descriptors from a super depending # on what we are accessing and where the super call is. if inferred.type == 'classmethod': yield BoundMethod(inferred, cls) elif self._scope.type == 'classmethod' and inferred.type == 'method': yield inferred elif self._class_based or inferred.type == 'staticmethod': yield inferred elif is_property(inferred): # TODO: support other descriptors as well. for value in inferred.infer_call_result(self, context): yield value else: yield BoundMethod(inferred, cls) if not found: raise exceptions.AttributeInferenceError(target=self, attribute=name, context=context) def getattr(self, name, context=None): return list(self.igetattr(name, context=context)) @util.register_implementation(treeabc.Dict) class DictInstance(BaseInstance): """Special kind of instances for dictionaries This instance knows the underlying object model of the dictionaries, which means that methods such as .values or .items can be properly inferred. """ special_attributes = util.lazy_descriptor(lambda: objectmodel.DictModel()) # Custom objects tailored for dictionaries, which are used to # disambiguate between the types of Python 2 dict's method returns # and Python 3 (where they return set like objects). @util.register_implementation(runtimeabc.DictItems) class DictItems(Proxy): __str__ = base.NodeNG.__str__ __repr__ = base.NodeNG.__repr__ @util.register_implementation(runtimeabc.DictKeys) class DictKeys(Proxy): __str__ = base.NodeNG.__str__ __repr__ = base.NodeNG.__repr__ @util.register_implementation(runtimeabc.DictValues) class DictValues(Proxy): __str__ = base.NodeNG.__str__ __repr__ = base.NodeNG.__repr__