summaryrefslogtreecommitdiff
path: root/blessed/sequences.py
blob: 9353da83b97200036fd384f5ae1fccc4725fbeca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# encoding: utf-8
" This sub-module provides 'sequence awareness' for blessed."

__author__ = 'Jeff Quast <contact@jeffquast.com>'
__license__ = 'MIT'

__all__ = ('init_sequence_patterns', 'Sequence', 'SequenceTextWrapper',)

# built-ins
import functools
import textwrap
import warnings
import math
import sys
import re

# local
from ._binterms import binary_terminals as _BINTERM_UNSUPPORTED

# 3rd-party
import wcwidth  # https://github.com/jquast/wcwidth

_BINTERM_UNSUPPORTED_MSG = (
    u"Terminal kind {0!r} contains binary-packed capabilities, blessed "
    u"is likely to fail to measure the length of its sequences.")

if sys.version_info[0] == 3:
    text_type = str
else:
    text_type = unicode  # noqa


def _merge_sequences(inp):
    """Merge a list of input sequence patterns for use in a regular expression.
    Order by lengthyness (full sequence set precedent over subset),
    and exclude any empty (u'') sequences.
    """
    return sorted(list(filter(None, inp)), key=len, reverse=True)


def _build_numeric_capability(term, cap, optional=False,
                              base_num=99, nparams=1):
    """ Build regexp from capabilities having matching numeric
        parameter contained within termcap value: n->(\d+).
    """
    _cap = getattr(term, cap)
    opt = '?' if optional else ''
    if _cap:
        args = (base_num,) * nparams
        cap_re = re.escape(_cap(*args))
        for num in range(base_num - 1, base_num + 2):
            # search for matching ascii, n-1 through n+1
            if str(num) in cap_re:
                # modify & return n to matching digit expression
                cap_re = cap_re.replace(str(num), r'(\d+)%s' % (opt,))
                return cap_re
        warnings.warn('Unknown parameter in %r (%r, %r)' % (cap, _cap, cap_re))
    return None  # no such capability


def _build_any_numeric_capability(term, cap, num=99, nparams=1):
    """ Build regexp from capabilities having *any* digit parameters
        (substitute matching \d with pattern \d and return).
    """
    _cap = getattr(term, cap)
    if _cap:
        cap_re = re.escape(_cap(*((num,) * nparams)))
        cap_re = re.sub('(\d+)', r'(\d+)', cap_re)
        if r'(\d+)' in cap_re:
            return cap_re
        warnings.warn('Missing numerics in %r, %r' % (cap, cap_re))
    return None  # no such capability


def get_movement_sequence_patterns(term):
    """ Build and return set of regexp for capabilities of ``term`` known
        to cause movement.
    """
    bnc = functools.partial(_build_numeric_capability, term)

    return set([
        # carriage_return
        re.escape(term.cr),
        # column_address: Horizontal position, absolute
        bnc(cap='hpa'),
        # row_address: Vertical position #1 absolute
        bnc(cap='vpa'),
        # cursor_address: Move to row #1 columns #2
        bnc(cap='cup', nparams=2),
        # cursor_down: Down one line
        re.escape(term.cud1),
        # cursor_home: Home cursor (if no cup)
        re.escape(term.home),
        # cursor_left: Move left one space
        re.escape(term.cub1),
        # cursor_right: Non-destructive space (move right one space)
        re.escape(term.cuf1),
        # cursor_up: Up one line
        re.escape(term.cuu1),
        # param_down_cursor: Down #1 lines
        bnc(cap='cud', optional=True),
        # restore_cursor: Restore cursor to position of last save_cursor
        re.escape(term.rc),
        # clear_screen: clear screen and home cursor
        re.escape(term.clear),
        # enter/exit_fullscreen: switch to alternate screen buffer
        re.escape(term.enter_fullscreen),
        re.escape(term.exit_fullscreen),
        # forward cursor
        term._cuf,
        # backward cursor
        term._cub,
    ])


def get_wontmove_sequence_patterns(term):
    """ Build and return set of regexp for capabilities of ``term`` known
        not to cause any movement.
    """
    bnc = functools.partial(_build_numeric_capability, term)
    bna = functools.partial(_build_any_numeric_capability, term)

    return list([
        # print_screen: Print contents of screen
        re.escape(term.mc0),
        # prtr_off: Turn off printer
        re.escape(term.mc4),
        # prtr_on: Turn on printer
        re.escape(term.mc5),
        # save_cursor: Save current cursor position (P)
        re.escape(term.sc),
        # set_tab: Set a tab in every row, current columns
        re.escape(term.hts),
        # enter_bold_mode: Turn on bold (extra bright) mode
        re.escape(term.bold),
        # enter_standout_mode
        re.escape(term.standout),
        # enter_subscript_mode
        re.escape(term.subscript),
        # enter_superscript_mode
        re.escape(term.superscript),
        # enter_underline_mode: Begin underline mode
        re.escape(term.underline),
        # enter_blink_mode: Turn on blinking
        re.escape(term.blink),
        # enter_dim_mode: Turn on half-bright mode
        re.escape(term.dim),
        # cursor_invisible: Make cursor invisible
        re.escape(term.civis),
        # cursor_visible: Make cursor very visible
        re.escape(term.cvvis),
        # cursor_normal: Make cursor appear normal (undo civis/cvvis)
        re.escape(term.cnorm),
        # clear_all_tabs: Clear all tab stops
        re.escape(term.tbc),
        # change_scroll_region: Change region to line #1 to line #2
        bnc(cap='csr', nparams=2),
        # clr_bol: Clear to beginning of line
        re.escape(term.el1),
        # clr_eol: Clear to end of line
        re.escape(term.el),
        # clr_eos: Clear to end of screen
        re.escape(term.clear_eos),
        # delete_character: Delete character
        re.escape(term.dch1),
        # delete_line: Delete line (P*)
        re.escape(term.dl1),
        # erase_chars: Erase #1 characters
        bnc(cap='ech'),
        # insert_line: Insert line (P*)
        re.escape(term.il1),
        # parm_dch: Delete #1 characters
        bnc(cap='dch'),
        # parm_delete_line: Delete #1 lines
        bnc(cap='dl'),
        # exit_alt_charset_mode: End alternate character set (P)
        re.escape(term.rmacs),
        # exit_am_mode: Turn off automatic margins
        re.escape(term.rmam),
        # exit_attribute_mode: Turn off all attributes
        re.escape(term.sgr0),
        # exit_ca_mode: Strings to end programs using cup
        re.escape(term.rmcup),
        # exit_insert_mode: Exit insert mode
        re.escape(term.rmir),
        # exit_standout_mode: Exit standout mode
        re.escape(term.rmso),
        # exit_underline_mode: Exit underline mode
        re.escape(term.rmul),
        # flash_hook: Flash switch hook
        re.escape(term.hook),
        # flash_screen: Visible bell (may not move cursor)
        re.escape(term.flash),
        # keypad_local: Leave 'keyboard_transmit' mode
        re.escape(term.rmkx),
        # keypad_xmit: Enter 'keyboard_transmit' mode
        re.escape(term.smkx),
        # meta_off: Turn off meta mode
        re.escape(term.rmm),
        # meta_on: Turn on meta mode (8th-bit on)
        re.escape(term.smm),
        # orig_pair: Set default pair to its original value
        re.escape(term.op),
        # parm_ich: Insert #1 characters
        bnc(cap='ich'),
        # parm_index: Scroll forward #1
        bnc(cap='indn'),
        # parm_insert_line: Insert #1 lines
        bnc(cap='il'),
        # erase_chars: Erase #1 characters
        bnc(cap='ech'),
        # parm_rindex: Scroll back #1 lines
        bnc(cap='rin'),
        # parm_up_cursor: Up #1 lines
        bnc(cap='cuu'),
        # scroll_forward: Scroll text up (P)
        re.escape(term.ind),
        # scroll_reverse: Scroll text down (P)
        re.escape(term.rev),
        # tab: Tab to next 8-space hardware tab stop
        re.escape(term.ht),
        # set_a_background: Set background color to #1, using ANSI escape
        bna(cap='setab', num=1),
        bna(cap='setab', num=(term.number_of_colors - 1)),
        # set_a_foreground: Set foreground color to #1, using ANSI escape
        bna(cap='setaf', num=1),
        bna(cap='setaf', num=(term.number_of_colors - 1)),
    ] + [
        # set_attributes: Define video attributes #1-#9 (PG9)
        # ( not *exactly* legal, being extra forgiving. )
        bna(cap='sgr', nparams=_num) for _num in range(1, 10)
        # reset_{1,2,3}string: Reset string
    ] + list(map(re.escape, (term.r1, term.r2, term.r3,))))


def init_sequence_patterns(term):
    """Given a Terminal instance, ``term``, this function processes
    and parses several known terminal capabilities, and builds and
    returns a dictionary database of regular expressions, which may
    be re-attached to the terminal by attributes of the same key-name:

    ``_re_will_move``
      any sequence matching this pattern will cause the terminal
      cursor to move (such as *term.home*).

    ``_re_wont_move``
      any sequence matching this pattern will not cause the cursor
      to move (such as *term.bold*).

    ``_re_cuf``
      regular expression that matches term.cuf(N) (move N characters forward),
      or None if temrinal is without cuf sequence.

    ``_cuf1``
      *term.cuf1* sequence (cursor forward 1 character) as a static value.

    ``_re_cub``
      regular expression that matches term.cub(N) (move N characters backward),
      or None if terminal is without cub sequence.

    ``_cub1``
      *term.cuf1* sequence (cursor backward 1 character) as a static value.

    These attributes make it possible to perform introspection on strings
    containing sequences generated by this terminal, to determine the
    printable length of a string.
    """
    if term.kind in _BINTERM_UNSUPPORTED:
        warnings.warn(_BINTERM_UNSUPPORTED_MSG.format(term.kind))

    # Build will_move, a list of terminal capabilities that have
    # indeterminate effects on the terminal cursor position.
    _will_move = set()
    if term.does_styling:
        _will_move = _merge_sequences(get_movement_sequence_patterns(term))

    # Build wont_move, a list of terminal capabilities that mainly affect
    # video attributes, for use with measure_length().
    _wont_move = set()
    if term.does_styling:
        _wont_move = _merge_sequences(get_wontmove_sequence_patterns(term))
        _wont_move += [
            # some last-ditch match efforts; well, xterm and aixterm is going
            # to throw \x1b(B and other oddities all around, so, when given
            # input such as ansi art (see test using wall.ans), and well,
            # theres no reason a vt220 terminal shouldn't be able to recognize
            # blue_on_red, even if it didn't cause it to be generated. these
            # are final "ok, i will match this, anyway"
            re.escape(u'\x1b') + r'\[(\d+)m',
            re.escape(u'\x1b') + r'\[(\d+)\;(\d+)m',
            re.escape(u'\x1b') + r'\[(\d+)\;(\d+)\;(\d+)m',
            re.escape(u'\x1b') + r'\[(\d+)\;(\d+)\;(\d+)\;(\d+)m',
            re.escape(u'\x1b(B'),
        ]

    # compile as regular expressions, OR'd.
    _re_will_move = re.compile('(%s)' % ('|'.join(_will_move)))
    _re_wont_move = re.compile('(%s)' % ('|'.join(_wont_move)))

    # static pattern matching for horizontal_distance(ucs, term)
    bnc = functools.partial(_build_numeric_capability, term)

    # parm_right_cursor: Move #1 characters to the right
    _cuf = bnc(cap='cuf', optional=True)
    _re_cuf = re.compile(_cuf) if _cuf else None

    # cursor_right: Non-destructive space (move right one space)
    _cuf1 = term.cuf1

    # parm_left_cursor: Move #1 characters to the left
    _cub = bnc(cap='cub', optional=True)
    _re_cub = re.compile(_cub) if _cub else None

    # cursor_left: Move left one space
    _cub1 = term.cub1

    return {'_re_will_move': _re_will_move,
            '_re_wont_move': _re_wont_move,
            '_re_cuf': _re_cuf,
            '_re_cub': _re_cub,
            '_cuf1': _cuf1,
            '_cub1': _cub1, }


class SequenceTextWrapper(textwrap.TextWrapper):
    def __init__(self, width, term, **kwargs):
        self.term = term
        textwrap.TextWrapper.__init__(self, width, **kwargs)

    def _wrap_chunks(self, chunks):
        """
        escape-sequence aware variant of _wrap_chunks. Though
        movement sequences, such as term.left() are certainly not
        honored, sequences such as term.bold() are, and are not
        broken mid-sequence.
        """
        lines = []
        if self.width <= 0 or not isinstance(self.width, int):
            raise ValueError("invalid width %r(%s) (must be integer > 0)" % (
                self.width, type(self.width)))
        term = self.term
        drop_whitespace = not hasattr(self, 'drop_whitespace'
                                      ) or self.drop_whitespace
        chunks.reverse()
        while chunks:
            cur_line = []
            cur_len = 0
            if lines:
                indent = self.subsequent_indent
            else:
                indent = self.initial_indent
            width = self.width - len(indent)
            if drop_whitespace and (
                    Sequence(chunks[-1], term).strip() == '' and lines):
                del chunks[-1]
            while chunks:
                chunk_len = Sequence(chunks[-1], term).length()
                if cur_len + chunk_len <= width:
                    cur_line.append(chunks.pop())
                    cur_len += chunk_len
                else:
                    break
            if chunks and Sequence(chunks[-1], term).length() > width:
                self._handle_long_word(chunks, cur_line, cur_len, width)
            if drop_whitespace and (
                    cur_line and Sequence(cur_line[-1], term).strip() == ''):
                del cur_line[-1]
            if cur_line:
                lines.append(indent + u''.join(cur_line))
        return lines

    def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width):
        """_handle_long_word(chunks : [string],
                             cur_line : [string],
                             cur_len : int, width : int)

        Handle a chunk of text (most likely a word, not whitespace) that
        is too long to fit in any line.
        """
        # Figure out when indent is larger than the specified width, and make
        # sure at least one character is stripped off on every pass
        if width < 1:
            space_left = 1
        else:
            space_left = width - cur_len

        # If we're allowed to break long words, then do so: put as much
        # of the next chunk onto the current line as will fit.
        if self.break_long_words:
            term = self.term
            chunk = reversed_chunks[-1]
            nxt = 0
            for idx in range(0, len(chunk)):
                if idx == nxt:
                    # at sequence, point beyond it,
                    nxt = idx + measure_length(chunk[idx:], term)
                if nxt <= idx:
                    # point beyond next sequence, if any,
                    # otherwise point to next character
                    nxt = idx + measure_length(chunk[idx:], term) + 1
                if Sequence(chunk[:nxt], term).length() > space_left:
                    break
            else:
                # our text ends with a sequence, such as in text
                # u'!\x1b(B\x1b[m', set index at at end (nxt)
                idx = nxt

            cur_line.append(chunk[:idx])
            reversed_chunks[-1] = chunk[idx:]

        # Otherwise, we have to preserve the long word intact.  Only add
        # it to the current line if there's nothing already there --
        # that minimizes how much we violate the width constraint.
        elif not cur_line:
            cur_line.append(reversed_chunks.pop())

        # If we're not allowed to break long words, and there's already
        # text on the current line, do nothing.  Next time through the
        # main loop of _wrap_chunks(), we'll wind up here again, but
        # cur_len will be zero, so the next line will be entirely
        # devoted to the long word that we can't handle right now.


SequenceTextWrapper.__doc__ = textwrap.TextWrapper.__doc__


class Sequence(text_type):
    """
    This unicode-derived class understands the effect of escape sequences
    of printable length, allowing a properly implemented .rjust(), .ljust(),
    .center(), and .len()
    """

    def __new__(cls, sequence_text, term):
        """Sequence(sequence_text, term) -> unicode object

        :arg sequence_text: A string containing sequences.
        :arg term: Terminal instance this string was created with.
        """
        new = text_type.__new__(cls, sequence_text)
        new._term = term
        return new

    def ljust(self, width, fillchar=u' '):
        """S.ljust(width, fillchar) -> unicode

        Returns string derived from unicode string ``S``, left-adjusted
        by trailing whitespace padding ``fillchar``."""
        rightside = fillchar * int((max(0.0, float(width - self.length())))
                                   / float(len(fillchar)))
        return u''.join((self, rightside))

    def rjust(self, width, fillchar=u' '):
        """S.rjust(width, fillchar=u'') -> unicode

        Returns string derived from unicode string ``S``, right-adjusted
        by leading whitespace padding ``fillchar``."""
        leftside = fillchar * int((max(0.0, float(width - self.length())))
                                  / float(len(fillchar)))
        return u''.join((leftside, self))

    def center(self, width, fillchar=u' '):
        """S.center(width, fillchar=u'') -> unicode

        Returns string derived from unicode string ``S``, centered
        and surrounded with whitespace padding ``fillchar``."""
        split = max(0.0, float(width) - self.length()) / 2
        leftside = fillchar * int((max(0.0, math.floor(split)))
                                  / float(len(fillchar)))
        rightside = fillchar * int((max(0.0, math.ceil(split)))
                                   / float(len(fillchar)))
        return u''.join((leftside, self, rightside))

    def length(self):
        """S.length() -> int

        Returns printable length of unicode string ``S`` that may contain
        terminal sequences.

        Although accounted for, strings containing sequences such as
        ``term.clear`` will not give accurate returns, it is not
        considered lengthy (a length of 0). Combining characters,
        are also not considered lengthy.

        Strings containing ``term.left`` or ``\b`` will cause "overstrike",
        but a length less than 0 is not ever returned. So ``_\b+`` is a
        length of 1 (``+``), but ``\b`` is simply a length of 0.

        Some characters may consume more than one cell, mainly those CJK
        Unified Ideographs (Chinese, Japanese, Korean) defined by Unicode
        as half or full-width characters.

        For example:
            >>> from blessed import Terminal
            >>> from blessed.sequences import Sequence
            >>> term = Terminal()
            >>> Sequence(term.clear + term.red(u'コンニチハ')).length()
            5
        """
        # because combining characters may return -1, "clip" their length to 0.
        clip = functools.partial(max, 0)
        return sum(clip(wcwidth.wcwidth(w_char))
                   for w_char in self.strip_seqs())

    def strip(self, chars=None):
        """S.strip([chars]) -> unicode

        Return a copy of the string S with terminal sequences removed, and
        leading and trailing whitespace removed.

        If chars is given and not None, remove characters in chars instead.
        """
        return self.strip_seqs().strip(chars)

    def lstrip(self, chars=None):
        """S.lstrip([chars]) -> unicode

        Return a copy of the string S with terminal sequences and leading
        whitespace removed.

        If chars is given and not None, remove characters in chars instead.
        """
        return self.strip_seqs().lstrip(chars)

    def rstrip(self, chars=None):
        """S.rstrip([chars]) -> unicode

        Return a copy of the string S with terminal sequences and trailing
        whitespace removed.

        If chars is given and not None, remove characters in chars instead.
        """
        return self.strip_seqs().rstrip(chars)

    def strip_seqs(self):
        """S.strip_seqs() -> unicode

        Return a string without sequences for a string that contains
        sequences for the Terminal with which they were created.

        Where sequence ``move_right(n)`` is detected, it is replaced with
        ``n * u' '``, and where ``move_left()`` or ``\\b`` is detected,
        those last-most characters are destroyed.

        All other sequences are simply removed. An example,
            >>> from blessed import Terminal
            >>> from blessed.sequences import Sequence
            >>> term = Terminal()
            >>> Sequence(term.clear + term.red(u'test')).strip_seqs()
            u'test'
        """
        # nxt: points to first character beyond current escape sequence.
        # width: currently estimated display length.
        input = self.padd()
        outp = u''
        nxt = 0
        for idx in range(0, len(input)):
            if idx == nxt:
                # at sequence, point beyond it,
                nxt = idx + measure_length(input[idx:], self._term)
            if nxt <= idx:
                # append non-sequence to outp,
                outp += input[idx]
                # point beyond next sequence, if any,
                # otherwise point to next character
                nxt = idx + measure_length(input[idx:], self._term) + 1
        return outp

    def padd(self):
        """S.padd() -> unicode
        Make non-destructive space or backspace into destructive ones.

        Where sequence ``move_right(n)`` is detected, it is replaced with
        ``n * u' '``.  Where sequence ``move_left(n)`` or ``\\b`` is
        detected, those last-most characters are destroyed.
        """
        outp = u''
        nxt = 0
        for idx in range(0, text_type.__len__(self)):
            width = horizontal_distance(self[idx:], self._term)
            if width != 0:
                nxt = idx + measure_length(self[idx:], self._term)
                if width > 0:
                    outp += u' ' * width
                elif width < 0:
                    outp = outp[:width]
            if nxt <= idx:
                outp += self[idx]
                nxt = idx + 1
        return outp


def measure_length(ucs, term):
    """measure_length(S, term) -> int

    Returns non-zero for string ``S`` that begins with a terminal sequence,
    that is: the width of the first unprintable sequence found in S.  For use
    as a *next* pointer to skip past sequences. If string ``S`` is not a
    sequence, 0 is returned.

    A sequence may be a typical terminal sequence beginning with Escape
    (``\x1b``), especially a Control Sequence Initiator (``CSI``, ``\x1b[``,
    ...), or those of ``\a``, ``\b``, ``\r``, ``\n``, ``\xe0`` (shift in),
    ``\x0f`` (shift out). They do not necessarily have to begin with CSI, they
    need only match the capabilities of attributes ``_re_will_move`` and
    ``_re_wont_move`` of terminal ``term``.
    """

    # simple terminal control characters,
    ctrl_seqs = u'\a\b\r\n\x0e\x0f'

    if any([ucs.startswith(_ch) for _ch in ctrl_seqs]):
        return 1

    # known multibyte sequences,
    matching_seq = term and (
        term._re_will_move.match(ucs) or
        term._re_wont_move.match(ucs) or
        term._re_cub and term._re_cub.match(ucs) or
        term._re_cuf and term._re_cuf.match(ucs)
    )

    if matching_seq:
        start, end = matching_seq.span()
        return end

    # none found, must be printable!
    return 0


def termcap_distance(ucs, cap, unit, term):
    """termcap_distance(S, cap, unit, term) -> int

    Match horizontal distance by simple ``cap`` capability name, ``cub1`` or
    ``cuf1``, with string matching the sequences identified by Terminal
    instance ``term`` and a distance of ``unit`` *1* or *-1*, for right and
    left, respectively.

    Otherwise, by regular expression (using dynamic regular expressions built
    using ``cub(n)`` and ``cuf(n)``. Failing that, any of the standard SGR
    sequences (``\033[C``, ``\033[D``, ``\033[nC``, ``\033[nD``).

    Returns 0 if unmatched.
    """
    assert cap in ('cuf', 'cub')
    # match cub1(left), cuf1(right)
    one = getattr(term, '_%s1' % (cap,))
    if one and ucs.startswith(one):
        return unit

    # match cub(n), cuf(n) using regular expressions
    re_pattern = getattr(term, '_re_%s' % (cap,))
    _dist = re_pattern and re_pattern.match(ucs)
    if _dist:
        return unit * int(_dist.group(1))

    return 0


def horizontal_distance(ucs, term):
    """horizontal_distance(S, term) -> int

    Returns Integer ``<n>`` in SGR sequence of form ``<ESC>[<n>C``
    (T.move_right(n)),  or ``-(n)`` in sequence of form ``<ESC>[<n>D``
    (T.move_left(n)).  Returns -1 for backspace (0x08), Otherwise 0.

    Tabstop (``\t``) cannot be correctly calculated, as the relative column
    position cannot be determined: 8 is always (and, incorrectly) returned.
    """

    if ucs.startswith('\b'):
        return -1

    elif ucs.startswith('\t'):
        # As best as I can prove it, a tabstop is always 8 by default.
        # Though, given that blessings is:
        #
        #  1. unaware of the output device's current cursor position, and
        #  2. unaware of the location the callee may chose to output any
        #     given string,
        #
        # It is not possible to determine how many cells any particular
        # \t would consume on the output device!
        return 8

    return (termcap_distance(ucs, 'cub', -1, term) or
            termcap_distance(ucs, 'cuf', 1, term) or
            0)