diff options
Diffstat (limited to 'kafka/consumer')
-rw-r--r-- | kafka/consumer/__init__.py | 6 | ||||
-rw-r--r-- | kafka/consumer/base.py | 169 | ||||
-rw-r--r-- | kafka/consumer/multiprocess.py | 248 | ||||
-rw-r--r-- | kafka/consumer/simple.py | 318 |
4 files changed, 741 insertions, 0 deletions
diff --git a/kafka/consumer/__init__.py b/kafka/consumer/__init__.py new file mode 100644 index 0000000..d2fa306 --- /dev/null +++ b/kafka/consumer/__init__.py @@ -0,0 +1,6 @@ +from .simple import SimpleConsumer +from .multiprocess import MultiProcessConsumer + +__all__ = [ + 'SimpleConsumer', 'MultiProcessConsumer' +] diff --git a/kafka/consumer/base.py b/kafka/consumer/base.py new file mode 100644 index 0000000..506b405 --- /dev/null +++ b/kafka/consumer/base.py @@ -0,0 +1,169 @@ +from __future__ import absolute_import + +import logging +import numbers +from threading import Lock + +import kafka.common +from kafka.common import ( + OffsetRequest, OffsetCommitRequest, OffsetFetchRequest, + UnknownTopicOrPartitionError +) + +from kafka.util import ReentrantTimer + +log = logging.getLogger("kafka") + +AUTO_COMMIT_MSG_COUNT = 100 +AUTO_COMMIT_INTERVAL = 5000 + +FETCH_DEFAULT_BLOCK_TIMEOUT = 1 +FETCH_MAX_WAIT_TIME = 100 +FETCH_MIN_BYTES = 4096 +FETCH_BUFFER_SIZE_BYTES = 4096 +MAX_FETCH_BUFFER_SIZE_BYTES = FETCH_BUFFER_SIZE_BYTES * 8 + +ITER_TIMEOUT_SECONDS = 60 +NO_MESSAGES_WAIT_TIME_SECONDS = 0.1 + + +class Consumer(object): + """ + Base class to be used by other consumers. Not to be used directly + + This base class provides logic for + * initialization and fetching metadata of partitions + * Auto-commit logic + * APIs for fetching pending message count + """ + def __init__(self, client, group, topic, partitions=None, auto_commit=True, + auto_commit_every_n=AUTO_COMMIT_MSG_COUNT, + auto_commit_every_t=AUTO_COMMIT_INTERVAL): + + self.client = client + self.topic = topic + self.group = group + self.client.load_metadata_for_topics(topic) + self.offsets = {} + + if not partitions: + partitions = self.client.get_partition_ids_for_topic(topic) + else: + assert all(isinstance(x, numbers.Integral) for x in partitions) + + # Variables for handling offset commits + self.commit_lock = Lock() + self.commit_timer = None + self.count_since_commit = 0 + self.auto_commit = auto_commit + self.auto_commit_every_n = auto_commit_every_n + self.auto_commit_every_t = auto_commit_every_t + + # Set up the auto-commit timer + if auto_commit is True and auto_commit_every_t is not None: + self.commit_timer = ReentrantTimer(auto_commit_every_t, + self.commit) + self.commit_timer.start() + + if auto_commit: + self.fetch_last_known_offsets(partitions) + else: + for partition in partitions: + self.offsets[partition] = 0 + + def fetch_last_known_offsets(self, partitions=None): + if not partitions: + partitions = self.client.get_partition_ids_for_topic(self.topic) + + def get_or_init_offset(resp): + try: + kafka.common.check_error(resp) + return resp.offset + except UnknownTopicOrPartitionError: + return 0 + + for partition in partitions: + req = OffsetFetchRequest(self.topic, partition) + (resp,) = self.client.send_offset_fetch_request(self.group, [req], + fail_on_error=False) + self.offsets[partition] = get_or_init_offset(resp) + self.fetch_offsets = self.offsets.copy() + + def commit(self, partitions=None): + """ + Commit offsets for this consumer + + partitions: list of partitions to commit, default is to commit + all of them + """ + + # short circuit if nothing happened. This check is kept outside + # to prevent un-necessarily acquiring a lock for checking the state + if self.count_since_commit == 0: + return + + with self.commit_lock: + # Do this check again, just in case the state has changed + # during the lock acquiring timeout + if self.count_since_commit == 0: + return + + reqs = [] + if not partitions: # commit all partitions + partitions = self.offsets.keys() + + for partition in partitions: + offset = self.offsets[partition] + log.debug("Commit offset %d in SimpleConsumer: " + "group=%s, topic=%s, partition=%s" % + (offset, self.group, self.topic, partition)) + + reqs.append(OffsetCommitRequest(self.topic, partition, + offset, None)) + + resps = self.client.send_offset_commit_request(self.group, reqs) + for resp in resps: + kafka.common.check_error(resp) + + self.count_since_commit = 0 + + def _auto_commit(self): + """ + Check if we have to commit based on number of messages and commit + """ + + # Check if we are supposed to do an auto-commit + if not self.auto_commit or self.auto_commit_every_n is None: + return + + if self.count_since_commit >= self.auto_commit_every_n: + self.commit() + + def stop(self): + if self.commit_timer is not None: + self.commit_timer.stop() + self.commit() + + def pending(self, partitions=None): + """ + Gets the pending message count + + partitions: list of partitions to check for, default is to check all + """ + if not partitions: + partitions = self.offsets.keys() + + total = 0 + reqs = [] + + for partition in partitions: + reqs.append(OffsetRequest(self.topic, partition, -1, 1)) + + resps = self.client.send_offset_request(reqs) + for resp in resps: + partition = resp.partition + pending = resp.offsets[0] + offset = self.offsets[partition] + total += pending - offset - (1 if offset > 0 else 0) + + return total diff --git a/kafka/consumer/multiprocess.py b/kafka/consumer/multiprocess.py new file mode 100644 index 0000000..912e64b --- /dev/null +++ b/kafka/consumer/multiprocess.py @@ -0,0 +1,248 @@ +from __future__ import absolute_import + +import logging +import time +from multiprocessing import Process, Queue as MPQueue, Event, Value + +try: + from Queue import Empty +except ImportError: # python 2 + from queue import Empty + +from .base import ( + AUTO_COMMIT_MSG_COUNT, AUTO_COMMIT_INTERVAL, + NO_MESSAGES_WAIT_TIME_SECONDS +) +from .simple import Consumer, SimpleConsumer + +log = logging.getLogger("kafka") + + +def _mp_consume(client, group, topic, chunk, queue, start, exit, pause, size): + """ + A child process worker which consumes messages based on the + notifications given by the controller process + + NOTE: Ideally, this should have been a method inside the Consumer + class. However, multiprocessing module has issues in windows. The + functionality breaks unless this function is kept outside of a class + """ + + # Make the child processes open separate socket connections + client.reinit() + + # We will start consumers without auto-commit. Auto-commit will be + # done by the master controller process. + consumer = SimpleConsumer(client, group, topic, + partitions=chunk, + auto_commit=False, + auto_commit_every_n=None, + auto_commit_every_t=None) + + # Ensure that the consumer provides the partition information + consumer.provide_partition_info() + + while True: + # Wait till the controller indicates us to start consumption + start.wait() + + # If we are asked to quit, do so + if exit.is_set(): + break + + # Consume messages and add them to the queue. If the controller + # indicates a specific number of messages, follow that advice + count = 0 + + message = consumer.get_message() + if message: + queue.put(message) + count += 1 + + # We have reached the required size. The controller might have + # more than what he needs. Wait for a while. + # Without this logic, it is possible that we run into a big + # loop consuming all available messages before the controller + # can reset the 'start' event + if count == size.value: + pause.wait() + + else: + # In case we did not receive any message, give up the CPU for + # a while before we try again + time.sleep(NO_MESSAGES_WAIT_TIME_SECONDS) + + consumer.stop() + + +class MultiProcessConsumer(Consumer): + """ + A consumer implementation that consumes partitions for a topic in + parallel using multiple processes + + client: a connected KafkaClient + group: a name for this consumer, used for offset storage and must be unique + topic: the topic to consume + + auto_commit: default True. Whether or not to auto commit the offsets + auto_commit_every_n: default 100. How many messages to consume + before a commit + auto_commit_every_t: default 5000. How much time (in milliseconds) to + wait before commit + num_procs: Number of processes to start for consuming messages. + The available partitions will be divided among these processes + partitions_per_proc: Number of partitions to be allocated per process + (overrides num_procs) + + Auto commit details: + If both auto_commit_every_n and auto_commit_every_t are set, they will + reset one another when one is triggered. These triggers simply call the + commit method on this class. A manual call to commit will also reset + these triggers + """ + def __init__(self, client, group, topic, auto_commit=True, + auto_commit_every_n=AUTO_COMMIT_MSG_COUNT, + auto_commit_every_t=AUTO_COMMIT_INTERVAL, + num_procs=1, partitions_per_proc=0): + + # Initiate the base consumer class + super(MultiProcessConsumer, self).__init__( + client, group, topic, + partitions=None, + auto_commit=auto_commit, + auto_commit_every_n=auto_commit_every_n, + auto_commit_every_t=auto_commit_every_t) + + # Variables for managing and controlling the data flow from + # consumer child process to master + self.queue = MPQueue(1024) # Child consumers dump messages into this + self.start = Event() # Indicates the consumers to start fetch + self.exit = Event() # Requests the consumers to shutdown + self.pause = Event() # Requests the consumers to pause fetch + self.size = Value('i', 0) # Indicator of number of messages to fetch + + partitions = self.offsets.keys() + + # If unspecified, start one consumer per partition + # The logic below ensures that + # * we do not cross the num_procs limit + # * we have an even distribution of partitions among processes + if not partitions_per_proc: + partitions_per_proc = round(len(partitions) * 1.0 / num_procs) + if partitions_per_proc < num_procs * 0.5: + partitions_per_proc += 1 + + # The final set of chunks + chunker = lambda *x: [] + list(x) + chunks = map(chunker, *[iter(partitions)] * int(partitions_per_proc)) + + self.procs = [] + for chunk in chunks: + chunk = filter(lambda x: x is not None, chunk) + args = (client.copy(), + group, topic, list(chunk), + self.queue, self.start, self.exit, + self.pause, self.size) + + proc = Process(target=_mp_consume, args=args) + proc.daemon = True + proc.start() + self.procs.append(proc) + + def __repr__(self): + return '<MultiProcessConsumer group=%s, topic=%s, consumers=%d>' % \ + (self.group, self.topic, len(self.procs)) + + def stop(self): + # Set exit and start off all waiting consumers + self.exit.set() + self.pause.set() + self.start.set() + + for proc in self.procs: + proc.join() + proc.terminate() + + super(MultiProcessConsumer, self).stop() + + def __iter__(self): + """ + Iterator to consume the messages available on this consumer + """ + # Trigger the consumer procs to start off. + # We will iterate till there are no more messages available + self.size.value = 0 + self.pause.set() + + while True: + self.start.set() + try: + # We will block for a small while so that the consumers get + # a chance to run and put some messages in the queue + # TODO: This is a hack and will make the consumer block for + # at least one second. Need to find a better way of doing this + partition, message = self.queue.get(block=True, timeout=1) + except Empty: + break + + # Count, check and commit messages if necessary + self.offsets[partition] = message.offset + 1 + self.start.clear() + self.count_since_commit += 1 + self._auto_commit() + yield message + + self.start.clear() + + def get_messages(self, count=1, block=True, timeout=10): + """ + Fetch the specified number of messages + + count: Indicates the maximum number of messages to be fetched + block: If True, the API will block till some messages are fetched. + timeout: If block is True, the function will block for the specified + time (in seconds) until count messages is fetched. If None, + it will block forever. + """ + messages = [] + + # Give a size hint to the consumers. Each consumer process will fetch + # a maximum of "count" messages. This will fetch more messages than + # necessary, but these will not be committed to kafka. Also, the extra + # messages can be provided in subsequent runs + self.size.value = count + self.pause.clear() + + if timeout is not None: + max_time = time.time() + timeout + + new_offsets = {} + while count > 0 and (timeout is None or timeout > 0): + # Trigger consumption only if the queue is empty + # By doing this, we will ensure that consumers do not + # go into overdrive and keep consuming thousands of + # messages when the user might need only a few + if self.queue.empty(): + self.start.set() + + try: + partition, message = self.queue.get(block, timeout) + except Empty: + break + + messages.append(message) + new_offsets[partition] = message.offset + 1 + count -= 1 + if timeout is not None: + timeout = max_time - time.time() + + self.size.value = 0 + self.start.clear() + self.pause.set() + + # Update and commit offsets if necessary + self.offsets.update(new_offsets) + self.count_since_commit += len(messages) + self._auto_commit() + + return messages diff --git a/kafka/consumer/simple.py b/kafka/consumer/simple.py new file mode 100644 index 0000000..dcc71a9 --- /dev/null +++ b/kafka/consumer/simple.py @@ -0,0 +1,318 @@ +from __future__ import absolute_import + +try: + from itertools import zip_longest as izip_longest, repeat # pylint: disable-msg=E0611 +except ImportError: # python 2 + from itertools import izip_longest as izip_longest, repeat +import logging +import time + +import six + +try: + from Queue import Empty, Queue +except ImportError: # python 2 + from queue import Empty, Queue + +from kafka.common import ( + FetchRequest, OffsetRequest, + ConsumerFetchSizeTooSmall, ConsumerNoMoreData +) +from .base import ( + Consumer, + FETCH_DEFAULT_BLOCK_TIMEOUT, + AUTO_COMMIT_MSG_COUNT, + AUTO_COMMIT_INTERVAL, + FETCH_MIN_BYTES, + FETCH_BUFFER_SIZE_BYTES, + MAX_FETCH_BUFFER_SIZE_BYTES, + FETCH_MAX_WAIT_TIME, + ITER_TIMEOUT_SECONDS, + NO_MESSAGES_WAIT_TIME_SECONDS +) + +log = logging.getLogger("kafka") + +class FetchContext(object): + """ + Class for managing the state of a consumer during fetch + """ + def __init__(self, consumer, block, timeout): + self.consumer = consumer + self.block = block + + if block: + if not timeout: + timeout = FETCH_DEFAULT_BLOCK_TIMEOUT + self.timeout = timeout * 1000 + + def __enter__(self): + """Set fetch values based on blocking status""" + self.orig_fetch_max_wait_time = self.consumer.fetch_max_wait_time + self.orig_fetch_min_bytes = self.consumer.fetch_min_bytes + if self.block: + self.consumer.fetch_max_wait_time = self.timeout + self.consumer.fetch_min_bytes = 1 + else: + self.consumer.fetch_min_bytes = 0 + + def __exit__(self, type, value, traceback): + """Reset values""" + self.consumer.fetch_max_wait_time = self.orig_fetch_max_wait_time + self.consumer.fetch_min_bytes = self.orig_fetch_min_bytes + + +class SimpleConsumer(Consumer): + """ + A simple consumer implementation that consumes all/specified partitions + for a topic + + client: a connected KafkaClient + group: a name for this consumer, used for offset storage and must be unique + topic: the topic to consume + partitions: An optional list of partitions to consume the data from + + auto_commit: default True. Whether or not to auto commit the offsets + auto_commit_every_n: default 100. How many messages to consume + before a commit + auto_commit_every_t: default 5000. How much time (in milliseconds) to + wait before commit + fetch_size_bytes: number of bytes to request in a FetchRequest + buffer_size: default 4K. Initial number of bytes to tell kafka we + have available. This will double as needed. + max_buffer_size: default 16K. Max number of bytes to tell kafka we have + available. None means no limit. + iter_timeout: default None. How much time (in seconds) to wait for a + message in the iterator before exiting. None means no + timeout, so it will wait forever. + + Auto commit details: + If both auto_commit_every_n and auto_commit_every_t are set, they will + reset one another when one is triggered. These triggers simply call the + commit method on this class. A manual call to commit will also reset + these triggers + """ + def __init__(self, client, group, topic, auto_commit=True, partitions=None, + auto_commit_every_n=AUTO_COMMIT_MSG_COUNT, + auto_commit_every_t=AUTO_COMMIT_INTERVAL, + fetch_size_bytes=FETCH_MIN_BYTES, + buffer_size=FETCH_BUFFER_SIZE_BYTES, + max_buffer_size=MAX_FETCH_BUFFER_SIZE_BYTES, + iter_timeout=None): + super(SimpleConsumer, self).__init__( + client, group, topic, + partitions=partitions, + auto_commit=auto_commit, + auto_commit_every_n=auto_commit_every_n, + auto_commit_every_t=auto_commit_every_t) + + if max_buffer_size is not None and buffer_size > max_buffer_size: + raise ValueError("buffer_size (%d) is greater than " + "max_buffer_size (%d)" % + (buffer_size, max_buffer_size)) + self.buffer_size = buffer_size + self.max_buffer_size = max_buffer_size + self.partition_info = False # Do not return partition info in msgs + self.fetch_max_wait_time = FETCH_MAX_WAIT_TIME + self.fetch_min_bytes = fetch_size_bytes + self.fetch_offsets = self.offsets.copy() + self.iter_timeout = iter_timeout + self.queue = Queue() + + def __repr__(self): + return '<SimpleConsumer group=%s, topic=%s, partitions=%s>' % \ + (self.group, self.topic, str(self.offsets.keys())) + + def provide_partition_info(self): + """ + Indicates that partition info must be returned by the consumer + """ + self.partition_info = True + + def seek(self, offset, whence): + """ + Alter the current offset in the consumer, similar to fseek + + offset: how much to modify the offset + whence: where to modify it from + 0 is relative to the earliest available offset (head) + 1 is relative to the current offset + 2 is relative to the latest known offset (tail) + """ + + if whence == 1: # relative to current position + for partition, _offset in self.offsets.items(): + self.offsets[partition] = _offset + offset + elif whence in (0, 2): # relative to beginning or end + # divide the request offset by number of partitions, + # distribute the remained evenly + (delta, rem) = divmod(offset, len(self.offsets)) + deltas = {} + for partition, r in izip_longest(self.offsets.keys(), + repeat(1, rem), fillvalue=0): + deltas[partition] = delta + r + + reqs = [] + for partition in self.offsets.keys(): + if whence == 0: + reqs.append(OffsetRequest(self.topic, partition, -2, 1)) + elif whence == 2: + reqs.append(OffsetRequest(self.topic, partition, -1, 1)) + else: + pass + + resps = self.client.send_offset_request(reqs) + for resp in resps: + self.offsets[resp.partition] = \ + resp.offsets[0] + deltas[resp.partition] + else: + raise ValueError("Unexpected value for `whence`, %d" % whence) + + # Reset queue and fetch offsets since they are invalid + self.fetch_offsets = self.offsets.copy() + if self.auto_commit: + self.count_since_commit += 1 + self.commit() + + self.queue = Queue() + + def get_messages(self, count=1, block=True, timeout=0.1): + """ + Fetch the specified number of messages + + count: Indicates the maximum number of messages to be fetched + block: If True, the API will block till some messages are fetched. + timeout: If block is True, the function will block for the specified + time (in seconds) until count messages is fetched. If None, + it will block forever. + """ + messages = [] + if timeout is not None: + max_time = time.time() + timeout + + new_offsets = {} + while count > 0 and (timeout is None or timeout > 0): + result = self._get_message(block, timeout, get_partition_info=True, + update_offset=False) + if result: + partition, message = result + if self.partition_info: + messages.append(result) + else: + messages.append(message) + new_offsets[partition] = message.offset + 1 + count -= 1 + else: + # Ran out of messages for the last request. + if not block: + # If we're not blocking, break. + break + if timeout is not None: + # If we're blocking and have a timeout, reduce it to the + # appropriate value + timeout = max_time - time.time() + + # Update and commit offsets if necessary + self.offsets.update(new_offsets) + self.count_since_commit += len(messages) + self._auto_commit() + return messages + + def get_message(self, block=True, timeout=0.1, get_partition_info=None): + return self._get_message(block, timeout, get_partition_info) + + def _get_message(self, block=True, timeout=0.1, get_partition_info=None, + update_offset=True): + """ + If no messages can be fetched, returns None. + If get_partition_info is None, it defaults to self.partition_info + If get_partition_info is True, returns (partition, message) + If get_partition_info is False, returns message + """ + if self.queue.empty(): + # We're out of messages, go grab some more. + with FetchContext(self, block, timeout): + self._fetch() + try: + partition, message = self.queue.get_nowait() + + if update_offset: + # Update partition offset + self.offsets[partition] = message.offset + 1 + + # Count, check and commit messages if necessary + self.count_since_commit += 1 + self._auto_commit() + + if get_partition_info is None: + get_partition_info = self.partition_info + if get_partition_info: + return partition, message + else: + return message + except Empty: + return None + + def __iter__(self): + if self.iter_timeout is None: + timeout = ITER_TIMEOUT_SECONDS + else: + timeout = self.iter_timeout + + while True: + message = self.get_message(True, timeout) + if message: + yield message + elif self.iter_timeout is None: + # We did not receive any message yet but we don't have a + # timeout, so give up the CPU for a while before trying again + time.sleep(NO_MESSAGES_WAIT_TIME_SECONDS) + else: + # Timed out waiting for a message + break + + def _fetch(self): + # Create fetch request payloads for all the partitions + partitions = dict((p, self.buffer_size) + for p in self.fetch_offsets.keys()) + while partitions: + requests = [] + for partition, buffer_size in six.iteritems(partitions): + requests.append(FetchRequest(self.topic, partition, + self.fetch_offsets[partition], + buffer_size)) + # Send request + responses = self.client.send_fetch_request( + requests, + max_wait_time=int(self.fetch_max_wait_time), + min_bytes=self.fetch_min_bytes) + + retry_partitions = {} + for resp in responses: + partition = resp.partition + buffer_size = partitions[partition] + try: + for message in resp.messages: + # Put the message in our queue + self.queue.put((partition, message)) + self.fetch_offsets[partition] = message.offset + 1 + except ConsumerFetchSizeTooSmall: + if (self.max_buffer_size is not None and + buffer_size == self.max_buffer_size): + log.error("Max fetch size %d too small", + self.max_buffer_size) + raise + if self.max_buffer_size is None: + buffer_size *= 2 + else: + buffer_size = max(buffer_size * 2, + self.max_buffer_size) + log.warn("Fetch size too small, increase to %d (2x) " + "and retry", buffer_size) + retry_partitions[partition] = buffer_size + except ConsumerNoMoreData as e: + log.debug("Iteration was ended by %r", e) + except StopIteration: + # Stop iterating through this partition + log.debug("Done iterating over partition %s" % partition) + partitions = retry_partitions |